
TIME-BASED COORDINATED CHECKPOINTING

BY

NUNO F. NEVES

Licenciatura, Universidade Técnica de Lisboa, 1992
Mestrado, Universidade Técnica de Lisboa, 1995

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1998

Urbana, Illinois



TIME-BASED COORDINATED CHECKPOINTING

Nuno Ferreira Neves, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1998
W. Kent Fuchs, Advisor

Distributed systems are being used to support the execution of applications ranging from long-

running scientific simulators to e-commerce on the Internet. In this type of environment, the failure

of one of its components, either a computer or the network, may prevent other components from

completing their tasks. Since the probability of failure increases with the number of computers and

execution time, it is likely that these applications will be interrupted unless provision is made for

failure handling. In this thesis we address the problem of fault recovery in distributed systems.

The thesis describes two variations of a coordinated checkpoint protocol that uses time to re-

move most causes of overhead, and to avoid all types of direct coordination. The time-based pro-

tocol does not have to transmit extra messages, does not need to tag the application messages, and

only accesses the stable storage when the checkpoints are saved. The thesis also describes a new

coordinated checkpoint protocol that is well adapted to mobile environments. It uses time to indi-

rectly coordinate the creation of new global states, and it saves two different types of checkpoints

to adapt its behavior to the current network characteristics.

Traditional techniques for fault diagnosis in distributed systems, either based on watch-dogs

or polling, exchange performance with detection latency. The thesis introduces a complementary

mechanism that uses the error codes returned by the stream sockets. Since these errors are gener-

ated automatically when there is communication with a failed process, the mechanism incurs only

in small overheads. Our results show that, in most cases, failures could be located using only the

errors from the sockets.

iii



A large number of checkpoint-based recovery protocols have been proposed in the literature,

however, most of them were never evaluated. The thesis describes the design and implementation

of a run-time system for clusters of workstations that allows the rapid testing of checkpoint proto-

cols with standard benchmarks. RENEW - Recoverable Network of Workstations provides a flexible

set of operations that facilitates the integration of checkpoint and rollback recovery protocols.

iv



To my father, Marinho Ferreira Neves.

v



Acknowledgments

To my advisor, Professor W. Kent Fuchs, for his comments and suggestions. This research

would not have been possible without his invaluable support and guidance.

To the members of my dissertation committee, Professors Gul Agha, Ravishankar Iyer, Jane

Liu, Laxmikant Kale, and William Sanders, for their many contributions to this thesis. Special

thanks are due to Professor William Sanders for his help on the treatment of experimental data.

To Jenny Applequist and Jill Comer for carefully reading the papers and for correcting their

imperfections.

To Pedro Trancoso for his constant encouragement and friendship. Thanks are also due to

my friends Enamul Amyeen, Kuo-Feng Ssu, Vamsi Boppana, Bin Yao, Chen Wang, and Srikanth

Venkataraman for their help during my graduate studies.

To my parents, brother and grandfather, for the enthusiasm and support. A special thanks for

my wife, Cristina, for her patience and encouragement.

vi



Table of Contents

Chapter Page

1 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1
1.1 Definitions and Performance Metrics � � � � � � � � � � � � � � � � � � � � � � � 2

1.1.1 Consistent and Recoverable Global States � � � � � � � � � � � � � � � � � 2
1.1.2 Checkpoint Overhead and Latency � � � � � � � � � � � � � � � � � � � � 3

1.2 Types of Checkpoint Protocols � � � � � � � � � � � � � � � � � � � � � � � � � � � 4
1.2.1 Coordinated Protocols � � � � � � � � � � � � � � � � � � � � � � � � � � � 4
1.2.2 Uncoordinated Protocols � � � � � � � � � � � � � � � � � � � � � � � � � � 5
1.2.3 Log-Based Protocols � � � � � � � � � � � � � � � � � � � � � � � � � � � � 7

1.3 Contributions of the Thesis � � � � � � � � � � � � � � � � � � � � � � � � � � � � 8
1.3.1 Optimizing Coordinated Protocols � � � � � � � � � � � � � � � � � � � � � 8
1.3.2 Checkpoint Protocol for Mobile Environments � � � � � � � � � � � � � � 9
1.3.3 Fault Detection Using the Socket Errors � � � � � � � � � � � � � � � � � � 9
1.3.4 A Tool for Implementation and Evaluation of Checkpoint Protocols � � � 10

2 Time-Based Checkpointing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 11
2.1 Distributed System Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 12
2.2 No-Logging and Logging at the Sender Protocols � � � � � � � � � � � � � � � � � 14

2.2.1 Create Checkpoint Procedure � � � � � � � � � � � � � � � � � � � � � � � 15
2.2.2 Re-synchronization Procedure � � � � � � � � � � � � � � � � � � � � � � � 20
2.2.3 An Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 25
2.2.4 User Initiated Checkpoints � � � � � � � � � � � � � � � � � � � � � � � � � 27
2.2.5 Garbage Collection and Recovery � � � � � � � � � � � � � � � � � � � � � 28
2.2.6 Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 28

2.3 Adaptive Protocol � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 30
2.3.1 Unique Aspects of Mobile Environments � � � � � � � � � � � � � � � � � 30
2.3.2 Mobile Environment and Terminology � � � � � � � � � � � � � � � � � � 32
2.3.3 Protocol Specification � � � � � � � � � � � � � � � � � � � � � � � � � � � 33
2.3.4 Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 41

3 Fault Detection Using the Socket Errors � � � � � � � � � � � � � � � � � � � � � � � 44
3.1 Background � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 45
3.2 Types of Faults � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 46

vii



3.3 Fault Detector � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 46
3.3.1 Kill � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 48
3.3.2 Crash � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 50
3.3.3 Reboot � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 52
3.3.4 Crash & boot � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 53
3.3.5 Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 54

3.4 Fault Injection Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 55
3.4.1 Applications and Environment � � � � � � � � � � � � � � � � � � � � � � � 55
3.4.2 Coverage and Latency � � � � � � � � � � � � � � � � � � � � � � � � � � � 56

3.5 Integration and Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � 59

4 The RENEW Tool � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 61
4.1 Overview � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 61
4.2 Checkpoint Interface Specification � � � � � � � � � � � � � � � � � � � � � � � � � 63

4.2.1 Initialization and Ending � � � � � � � � � � � � � � � � � � � � � � � � � � 64
4.2.2 Message Tagging and Logging � � � � � � � � � � � � � � � � � � � � � � 64
4.2.3 Process Checkpoint � � � � � � � � � � � � � � � � � � � � � � � � � � � � 65
4.2.4 Roll back and Log Replay � � � � � � � � � � � � � � � � � � � � � � � � � 66
4.2.5 Communication, Data Storage, and Timers � � � � � � � � � � � � � � � � 67

4.3 Implementation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 67
4.3.1 Message Tagging and Logging � � � � � � � � � � � � � � � � � � � � � � 68
4.3.2 Process Recovery � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 69

4.4 Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 71

5 Evaluation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 73
5.1 Time-Based with No-Logging � � � � � � � � � � � � � � � � � � � � � � � � � � � 74

5.1.1 Two-Phase Implementation � � � � � � � � � � � � � � � � � � � � � � � � 74
5.1.2 Time-Based Implementation � � � � � � � � � � � � � � � � � � � � � � � � 76
5.1.3 Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 76
5.1.4 Individual Overheads � � � � � � � � � � � � � � � � � � � � � � � � � � � 78

5.2 Time-Based with Logging at the Sender � � � � � � � � � � � � � � � � � � � � � � 82
5.2.1 Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 82
5.2.2 Failure-Free Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � 83

5.3 Adaptive Protocol � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 84
5.3.1 Other Checkpoint Protocols � � � � � � � � � � � � � � � � � � � � � � � � 84
5.3.2 Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 85
5.3.3 Performance Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � 86

6 Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 90
6.1 Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 90
6.2 Future Directions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 92

References � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 94

viii



Vita � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 104

ix



List of Tables

Table Page

2.1 Configuration Table for maxSoft. � � � � � � � � � � � � � � � � � � � � � � � � � 37

3.1 Summary of the Conditions and Errors for the Stream Sockets on Solaris. � � � � � 54

4.1 Operations of the Checkpoint Interface. � � � � � � � � � � � � � � � � � � � � � � 63

5.1 Applications Used in the Experiments on the CM5. � � � � � � � � � � � � � � � � 77
5.2 Experimental Results on a 32-Node Partition of the CM5. � � � � � � � � � � � � 78
5.3 In-Transit Messages. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 81
5.4 Description of the Applications Used in the Experiments. � � � � � � � � � � � � � 82
5.5 Performance Results on a Cluster of Workstations. � � � � � � � � � � � � � � � � 83
5.6 Applications Used in the Experiments. � � � � � � � � � � � � � � � � � � � � � � � 85
5.7 Failure-Free Results (Ckp. Period 5 min.) � � � � � � � � � � � � � � � � � � � � � 86
5.8 Recovery Times for the Coordinated and Message Logging Protocols (values in sec). 89

x



List of Figures

Figure Page

1.1 Two global states: GS1 is inconsistent, and GS2 is consistent. � � � � � � � � � � � 2

2.1 Message m1 creates a consistency problem, and message m2 does not violate the
consistency property. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 16

2.2 No-logging protocol: In-transit messages are prevented from occurring by disal-
lowing message sends during tdmax �D� ��nT seconds before checkpoint time.
In this protocol message m2 would not be sent. � � � � � � � � � � � � � � � � � � 17

2.3 Checkpoint creation procedure for the no-logging protocol. � � � � � � � � � � � � 18
2.4 Checkpoint creation procedure for the logging-at-sender protocol. � � � � � � � � 20
2.5 Estimate the value of DEV . � � � � � � � � � � � � � � � � � � � � � � � � � � � � 21
2.6 Timer resynchronization procedure. � � � � � � � � � � � � � � � � � � � � � � � � 24
2.7 Example with the creation of the i checkpoint. � � � � � � � � � � � � � � � � � � � 25
2.8 Example with the execution of the protocol through several checkpoints. � � � � � 26
2.9 Mobile environment. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 32
2.10 Message reception. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 35
2.11 Time-based checkpointing. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 36
2.12 Functions to create a new checkpoint. � � � � � � � � � � � � � � � � � � � � � � � 39

3.1 Terminology used in the state diagrams. � � � � � � � � � � � � � � � � � � � � � � 47
3.2 Process P2 suffers a kill fault and process P1 makes the detection. � � � � � � � � 48
3.3 State diagram for kill fault on Solaris. � � � � � � � � � � � � � � � � � � � � � � � 49
3.4 State diagram for kill fault on SunOS. � � � � � � � � � � � � � � � � � � � � � � � 50
3.5 State diagram for crash fault on Solaris. � � � � � � � � � � � � � � � � � � � � � � 51
3.6 State diagram for reboot fault on Solaris. � � � � � � � � � � � � � � � � � � � � � 52
3.7 State diagram for crash & boot fault on Solaris. � � � � � � � � � � � � � � � � � � 53
3.8 Histograms of the fault injection results on ising. � � � � � � � � � � � � � � � � 56
3.9 Histograms of the fault injection results on povray. � � � � � � � � � � � � � � � � 57

4.1 Architecture of RENEW. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 62
4.2 Message tagging and logging implementation. � � � � � � � � � � � � � � � � � � � 67
4.3 Recovery of process P�. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 69

xi



5.1 Distribution of the overheads. � � � � � � � � � � � � � � � � � � � � � � � � � � � 80
5.2 Failure-free overheads. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 88

xii



Chapter 1

Introduction

Distributed applications can be found in a large number of fields, such as automated banking

systems, parallel simulators, aircraft control systems, cooperative editors and games. The main

characteristic of these applications is that they are executed by a group of processes that cooperate

to carry out a common goal [1]. Typically, the processes run on a set of machines, possibly het-

erogeneous, connected by a network. The physical separation among the processes increases the

probability of an application crash since the network or any of the machines can fail. Whenever

this happens, live processes might not be able to continue their work unless the system provides

support for fault tolerance.

This thesis addresses the problem of fault recovery in distributed systems. The techniques de-

scribed are based on checkpointing and roll back recovery. Two types of computing environments

are considered: a cluster of workstations and a mobile system.

1



P1

P2

GS1

m1

GS2

m2 In-transit
Message

Figure 1.1: Two global states: GS1 is inconsistent, and GS2 is consistent.

1.1 Definitions and Performance Metrics

1.1.1 Consistent and Recoverable Global States

A distributed application is run by a group of processes executing on several machines that co-

operate by exchanging messages. The main responsibility of a checkpoint protocol is to save, dur-

ing the failure-free intervals, information about the application execution. When a failure occurs,

the protocol uses the stored information to recover the failed processes, bringing the application to

a state that is consistent. Intuitively, a global state is consistent if it could have occurred during a

failure-free execution of the application [2]. A global state includes the state of each process and

the messages that are in transit in the network. The following property is verified by a consistent

global state,

Consistency : If the reception of a message mi is reflected in the global state then the send of

message mi must also be reflected in the global state.

The previous requirement does not consider the messages that are in-transit in the network and

that are also part of the global state (e.g., message m2 in Figure 1.1). A message is in-transit if

it was transmitted before the global state and is received after the global state. The checkpoint

protocol must be able to restore all the in-transit messages (e.g., by logging and re-sending them)

2



to guarantee that no messages become lost during the application re-execution. Therefore, the

application should be recovered to a global state that also verifies the following property,

Recoverability : If the send of message mi is reflected in the global state then the reception of

message mi must also be reflected in the global state or the checkpoint protocol must be able

to restore the message.

1.1.2 Checkpoint Overhead and Latency

The performance metric that is most widely used to compare checkpoint protocols is the over-

head. By definition, overhead is equal to �Exec T ime With Ckp�Original Exec T ime�� �,

and it accounts for the performance degradation on the application execution time as a result of the

introduction of a checkpoint protocol. Typically, users will utilize a protocol with less overhead,

unless their application requires a special characteristic that is only provided by a specific protocol.

Some of the factors that contribute to the checkpoint overhead are the following:

� Checkpoint Storage: Checkpoint protocols need to save periodically the state of the appli-

cation. Whenever this happens, processes have to create a snapshot of their state, and then

they have to write it in stable storage. Checkpoint storage is the only overhead that can not

be avoided, however it can be decreased with optimizations like copy on write [3] and main

memory exclusion [4].

� Extra Accesses to Stable Storage: In some cases, protocols might have to make extra accesses

to stable storage to save information necessary for recovery (e.g., message log or in-transit

messages). The protocol should merge several accesses into one, since it is normally more

efficient to do fewer writes with more information.

� Extra Messages: Coordinated protocols usually exchange extra messages during checkpoint

creation to ensure that all processes initiate their checkpoints. The actual number of trans-

3



mitted messages is highly dependent on the protocol; in the well-known protocol by Chandy

and Lamport [2] it is in the order of O(n�), where n is the number of processes.

� Message Tagging: Sometimes protocols piggyback information on the messages of the ap-

plication. This information is used, for instance, to enforce the consistency property or to

minimize the number of processes that have to roll back. The amount of added information

can be a fixed quantity or can be proportional on the number of processes.

� Blocking: Processes might be required to suspend their normal execution or to stop trans-

mitting messages during certain periods of time, while they wait for one task to be finished.

For example, a pessimistic sender-based message logging protocol disallows message sends

until all receive sequence numbers have been saved [5]. The blocking interval is usually

proportional to the message delivery times.

An important concern of high-availability applications is to minimize down time. With check-

pointing, the length of recovery is proportional to the checkpoint period. Larger checkpoint periods

result on average in larger rollbacks, and consequently in longer recovery times. Typically, a proto-

col only begins to create a new application checkpoint when the previous one has been completely

stored. Therefore, the checkpoint period is lower bounded by the checkpoint latency. The check-

point latency is defined as the time a protocol takes to save a new checkpoint [6, 7].

1.2 Types of Checkpoint Protocols

1.2.1 Coordinated Protocols

A coordinated protocol saves during the failure-free periods consistent and recoverable global

states of the application. After a failure, recovery is performed in a relatively simple way: first, the

checkpoints of the failed processes are reloaded in the available nodes and the surviving processes

4



roll back to their last checkpoints. Next, processes re-execute the application program and re-read

the logged in-transit messages. Examples of this type of protocol can be found in [2, 3, 8–26].

The major difficulty in designing this type of protocol comes from the distributed nature of the

systems. In general, it is impossible to stop and save the state of all application's processes and

in-transit messages at once. The usual solution to this problem consists of dividing the storage of

a new global state into two (or more) phases [2, 3, 16, 19, 22, 23]. In the initial phase, processes try

to agree on a new consistent state by exchanging a few messages. Since the whole procedure is

not atomic, failures can occur in the middle, processes start by saving a tentative global state [12].

In the second phase, the tentative global state is made permanent. In case of a failure, processes

roll back at most to their last permanent checkpoint. Therefore, the system only needs to keep the

last checkpoint of each process in the intervals between the creation of new checkpoints, and the

previous ones can be removed. Coordinated protocols also have to ensure that the recoverability

property is verified. This is usually done by logging the in-transit messages as they arrive at the

receiver [2, 19], or by including them in the senders' checkpoints [12].

The various coordinated protocols that have been described in the literature differ, for instance,

in terms of the amount of concurrency allowed during checkpoint creation, and on the assumptions

of the underlying support system (e.g., communication channels are FIFO or not). Protocols have

also been proposed that try to minimize the number of processes that have to take part on the

checkpoint creation, and that have to roll back after a failure [8, 11, 12, 27]. Other protocols have

assumed synchronized clocks and bounded message delivery times to avoid the exchange of the

coordination messages [10, 18, 24].

1.2.2 Uncoordinated Protocols

Uncoordinated protocols decrease the checkpoint overhead by avoiding the message exchanges

during the creation of the checkpoints [28–37]. With these protocols, each process saves its state

5



independently from the others. After a failure, processes have to find a consistent global state to

restart the computation, which in some cases may require some sort of coordination among the

surviving processes and the new processes, and in others it may involve only the new processes.

A protocol based on the previous description has as a main advantage the small overhead that

it introduces during the failure-free periods [28]. The protocol only has to save the checkpoints

and to keep some information about the messages that were transmitted. Unfortunately, during

recovery, it can suffer from the domino effect [38], which can result in an unbounded number of

roll backs as the processes attempt to find a consistent global state.

To prevent the domino effect, communication-induced protocols store extra checkpoints when

processes exchange information. A protocol can guarantee that only a bounded number of roll

backs will occur by storing a checkpoint before delivering a message, if the application had sent a

message since the last checkpoint [32, 39]. This protocol also has to log all received messages so

that they can be replayed during recovery. When a process fails, it returns to the last checkpoint,

and then it propagates the roll back to the other processes until consistency is found.

Another way of avoiding the domino effect is to create a checkpoint whenever a process sends

data to another process. The advantage of this solution is that only the failed process needs to

rollback, and the other processes can continue their execution without being disturbed. A second

advantage is that only one checkpoint has to be kept per process. Variations of this basic idea have

been proposed for shared memory multiprocessor systems [40, 41], for distributed shared memory

systems [30, 34, 37], and message passing systems [33, 42].

Communication-induced protocols can create a large number of checkpoints. One way to ad-

dress this problem requires that only some of the checkpoints are consistent [35]. The protocol

defines a laziness Z , and associates an increasing number to each process' checkpoint. Then, it

only guarantees that the checkpoints with numbers multiple of Z are consistent. This technique,

6



however, involves a tradeoff between the amount of roll back and checkpoint overhead. More re-

cently, other techniques have been proposed to lower the number of induced checkpoints [43, 44].

1.2.3 Log-Based Protocols

Log-based checkpoint protocols assume that processes execute in a piecewise deterministic

manner [45]. Under this assumption, the execution of a process can be divided into a sequence

of deterministic intervals, started by a non-deterministic event. By logging the outcome of each

non-deterministic event, these protocols are able to recreate during recovery the state of a process

affected by a failure. Most of these protocols also require that the only non-deterministic events

are the receive events. Even though this assumption might appear too strong, for several classes of

applications the assumption is valid.

A log-based protocol has to save only two things to be able to recover a process: the contents

of all messages and the order of their reception. If all this information is available after a failure,

only the failed process needs to roll back, and the surviving processes can continue their execution

without being disturbed. A process is recovered by loading its last checkpoint on a free processor,

and then by letting it run the program. Whenever it tries to receive a message, the checkpoint

protocol returns the same message that was originally read. The protocol also detects and removes

the messages that the process tries to transmit to avoid duplicates.

Logging can be done at the receiver, at the sender, or on a dedicated machine [46]. Simplicity is

the main advantage of logging at the receiver [47–51]. The protocol saves a copy of the messages

as they arrive. The reception order usually does not have to be logged since messages are replayed

in the same order that they were stored. Logging at the sender is more complex because one

process saves the message contents, the sender, and another knows the order of reception, the

receiver [5, 45, 52–55]. The main advantage of these protocols is the low logging overhead. By

assuming that the sender fails independently from the receiver, the sender process can log the

7



messages in the volatile memory, instead of writing them to stable storage. The messages are only

stored in stable storage when the sender process creates a new checkpoint. The receiver has to

guarantee that the reception order is not lost with failures by saving it in stable storage [45], at the

sender [5, 54], or in a remote process [52].

Log-based protocols can be pessimistic or optimistic. Pessimistic protocols guarantee that

all information related to the non-deterministic events is logged before the process is allowed

to communicate [5, 46, 47, 49, 52–54, 56]. With these protocols only the failed processes have

to roll back. Moreover, processes only need to keep their most recent checkpoint, and they do

not need to run a garbage collection protocol to remove the data that is no longer necessary for

recovery. Optimistic protocols decrease the failure-free overheads by logging the messages asyn-

chronously [45, 48, 50, 57–60]. These protocols usually group several receives and save them at

the same time to reduce the number of accesses to stable storage. The “optimism” comes from the

assumption that data is logged before a failure occurs. If this assumption is not verified, processes

can experience a bounded domino effect, and several processes might have to roll back not only to

the last checkpoint but also to previous ones.

1.3 Contributions of the Thesis

1.3.1 Optimizing Coordinated Protocols

The first problem addressed by this thesis is the design of a coordinated checkpoint protocol

with overheads comparable to an uncoordinated protocol, and at the same time with weak as-

sumptions about the underlying support system. Uncoordinated protocols, as was mentioned in

the previous section, attempt to reduce the failure-free overheads to the minimum since they only

have to store of the processes' states. However, this comes with the cost that several checkpoints

have to be kept per process, a garbage collector has to be run periodically, and the domino effect is

8



always a possibility. Coordinated protocols do not suffer from any of these problems, but require

some coordination during checkpoint creation. This thesis describes two variations of a coordi-

nated checkpoint protocol that uses time to avoid all types of direct coordination. The time-based

protocol does not have to exchange coordination messages, does not need to tag the application

messages, and only accesses the stable storage when the checkpoints are saved.

1.3.2 Checkpoint Protocol for Mobile Environments

Mobile computing allows ubiquitous and continuous access to computing resources while the

users travel or work at a client's site. The flexibility introduced by mobile computing brings new

challenges to the area of fault tolerance. Failures that were rare with fixed hosts become common,

and host disconnection makes fault detection and message coordination difficult. The thesis de-

scribes a new coordinated checkpoint protocol that is well adapted to mobile environments. The

protocol uses time to indirectly coordinate the creation of new global states, and it uses two differ-

ent types of checkpoints to adapt its behavior to the current network characteristics, and to trade

off performance with recovery time.

1.3.3 Fault Detection Using the Socket Errors

Traditionally, two techniques have been used to detect failures in distributed systems: watch-

dogs [61, 62] and polling [63]. In both techniques a tradeoff has to be made between performance

and speed of fault detection. By decreasing the timeout interval, faults are discovered faster but

with higher overheads, because more communication is necessary, and the tested process is more

frequently disturbed. The thesis describes a complementary mechanism that uses the error codes

returned by the stream sockets. Since these errors are generated automatically when there is com-

munication with a failed process, the mechanism does not incur in any failure-free overheads.

However, for some types of faults, detection can only be attained if the surviving processes use

9



certain communication operations. Nevertheless, our results show that in most cases, faults can be

found using only the errors from the socket layer.

1.3.4 A Tool for Implementation and Evaluation of Checkpoint Protocols

During the past 20 years a large number of checkpointing and roll back recovery protocols have

been proposed for distributed systems [64]. Most of these protocols, however, were never imple-

mented or tested. The thesis describes the design, implementation, and evaluation of a run-time

system for clusters of workstations that allows the rapid testing of checkpoint protocols with stan-

dard benchmarks. To achieve this goal, RENEW - Recoverable Network of Workstations provides

a flexible set of operations that facilitates the integration of a protocol in the system with reduced

programming effort. To support a broad range of applications, RENEW exports, as its external

interface, the industry endorsed MPI - Message Passing Interface [65].

10



Chapter 2

Time-Based Checkpointing

Coordinated checkpointing and rollback recovery is a technique for fault tolerance in dis-

tributed systems [12, 16, 22]. During the failure-free periods, the coordinated checkpoint proto-

col stores periodically in stable storage the state of the application and the messages that are in-

transit in the network. When a failure occurs, recovery involves rolling back the application to the

last available state, and then restarting its execution. One of the main advantages of coordinated

checkpointing, when compared with other checkpointing methods, is its simplicity. For instance,

log-based checkpoint protocols have to save the reception order and the contents of all messages,

and then have to garbage collect this information [5, 35, 50, 52, 59, 60]. Other positive aspects of

coordinated checkpointing are that concurrent failures can be tolerated, and applications do not

have to execute in a piece-wise deterministic manner [45].

Arguments commonly used against coordinated checkpointing have been the overhead and

lack of independence of checkpoint creation. Traditionally, two types of coordination have been

employed: extra message exchanges and message tagging. A coordinated protocol sends extra

messages, for example, to ensure that all processes start to save their states [2, 23]. One reason

for using message tagging is to minimize the number of processes that have to roll back after a

failure [27]. Time-based coordinated protocols do not need to exchange extra messages, because

11



they assume synchronized clocks and bounded message deliveries [10, 24]. In these protocols, pro-

cesses initiate their checkpoints whenever a local timer expires, and tag the application messages

to identify in-transit messages.

This chapter presents two variations of a new coordinated protocol that uses time to avoid

all types of direct coordination [66, 67]. Although processes save their states independently, the

protocol is able to store application checkpoints that are consistent and recoverable. The protocol

also does a minimal number of accesses to stable storage, since it only executes one write per

process in each application checkpoint. The protocol is specified using two procedures; one that

saves the process state whenever a local timer expires, and another that keeps timers approximately

synchronized. The second procedure is also used to detect failures in the processor clocks that

might lead to incorrect behavior of the protocol.

The chapter ends by describing a second coordinated protocol that is well adapted to mobile

environments [68, 69]. This protocol also utilizes time to indirectly coordinate the processes, how-

ever due to the specific characteristic of mobile environments, it uses other techniques to ensure

that application checkpoints are consistent and recoverable. Since mobile hosts might be con-

nected to different kinds of networks as they roam between places, the protocol adapts its behavior

by creating two different types of process checkpoints; it saves checkpoints in the local host or in a

remote stable storage. Locally stored checkpoints are used in most cases if the network bandwidth

is small, to reduce overheads and network consumption. Sometimes checkpoints also have to be

sent to stable store to guarantee that permanent failures can be tolerated.

2.1 Distributed System Model

An application is executed by a set of processes running on several nodes. A node contains a

processing unit, local memory and a local hardware clock. Clocks do not have to be synchronized,

however, they drift from real time with a maximum drift rate, �. This assumption requires that

12



local clocks have at most an error of ��e � s� time units at the end of the real-time interval [s� e].

Correct clocks obey to the following requirement:

Bounded Drift : If Cn�t� is time returned by the local clock of node n at real-time t, then �s� e �

s � e� ��� ���e� s� � Cn�e�� Cn�s� � �� � ���e� s�.

Processes can set timers to schedule future executions of operations. A timer started at real

time t with an initial value T expires at time Cn�v� � Cn�u� � Cn�t� � T . It is assumed that

a process does not execute the program during the interval [u� v], which is called the scheduling

delay. This interval is limited by a constant �, and it accounts for the situations when the operating

system suspends a process until it finishes another task. The bounded drift equation can be used to

derive a maximum deviation that separates two timers initiated in different nodes. If two timers are

started in two nodes exactly at the same time with the same initial value T , then they will expire

at most ���T � � � ������� � ��� time units from each other. This value will be approximated

by ��T � � because drift rates are very small. For most quartz clocks available in commodity

workstations the drift rates are in the order of �	�� or �	��, and for high precision clocks � is in

the order of �	�� or �	�� [70]. The value of the scheduling delay is normally in order of tens of

milliseconds, however, we will only require that � is smaller than the checkpoint period.

Processes communicate by exchanging messages. Messages may be lost while in transit, ar-

rive out of order, be duplicated, or may be discarded because of insufficient buffering space. To

guarantee in-order reliable message delivery, the application utilizes a communication protocol.

Typically, the communication protocol keeps a copy of each sent message until an acknowledg-

ment arrives. If the acknowledgment is lost or delayed, it retransmits the messages after a timeout

interval. After retransmitting the message a number of times, if no acknowledgment is received,

the protocol assumes that the remote process has failed and returns an error that can be used to

initiate recovery (see next chapter). The communication protocol associates with each message a

sequence number. When a message is received, it compares the associated sequence number with

13



the expected sequence number to identify communication problems (e.g., duplicates). Messages

take less than tdmax time units to be delivered, otherwise it is considered that there was a failure.

An upper bound on this value is equal to the maximum number of times a message is retransmitted

multiplied by the timeout interval.

It is assumed that it is possible to save, at checkpoint time, a copy of the messages that have not

yet been acknowledged and the current values of the send and receive sequence number counters.

This information can be easily obtained if the application is built on top of unreliable commu-

nication channels (e.g., sockets over UDP). In this case, the reliable communication protocol is

implemented as part of the application, which means that the unacknowledged messages and se-

quence counters are automatically stored when processes create their checkpoints. On the other

hand, if the application uses reliable communication channels (e.g., sockets over TCP), the check-

point protocol has to be able to extract the necessary information. In this case, the checkpoint

protocol might have to be implemented together with the communication protocol (normally in the

operating system).

Processes can suffer from crash and performance failures. However, processes can store data

in stable storage, and this data can be obtained after a failure by the correct processes.

2.2 No-Logging and Logging at the Sender Protocols

Time-based protocols are implemented using two procedures, one that saves the processes'

states, and another that keeps the checkpoint timers approximately synchronized. This section

starts by describing the checkpoint creation procedure, and then it presents the re-synchronization

procedure.

14



2.2.1 Create Checkpoint Procedure

The protocols use time to indirectly coordinate the creation of new global states. Processes

determine the instants when they should save their states using a local timer, without needing to

exchange messages. By keeping the timers approximately synchronized, the protocols are able

to guarantee that the independently created checkpoints form a consistent and recoverable global

state. In this section, it is assumed that timers are initially synchronized in such a way that they

expire at most D seconds apart.

2.2.1.1 Consistency Property

A coordinated protocol has to guarantee that processes create their checkpoints in such a way

that the consistency property is verified. This property is ensured if no process, after storing its

checkpoint, sends a message that is read before the receiver saves its state. If timers were ex-

actly synchronized, all processes would initiate their checkpoints at exactly the same time, and

no consistency problems could occur. In a distributed system, however, timers are never perfectly

synchronized, and they expire within an interval DEV . Therefore, one way to avoid consistency

violations consists in guaranteeing that no messages are sent during DEV . If the checkpoint pe-

riod is T , and n checkpoints have been created since the last timer re-synchronization, then the

interval DEV is bounded by a maximum deviation MD � D � ��nT � � � DEV . The value of

MD is composed of three factors: the initial deviation among the timers D; the drift of the clocks

��nT ; and the scheduling delay �. Processes, however, do not know if their timers expire at the

beginning or at the end of the interval MD. A conservative approach to address this problem con-

sists in preventing message sends during MD time units after the timers expire. This is expressed

with the following requirement,

CR1 : The consistency property is verified if, after the timer stops, a process does not send mes-

sages during MD � D � ��nT � � time units.

15



P1

P2

T1

T2

ED

MD

D + 2ρnT δ

m1
m2

Figure 2.1: Message m1 creates a consistency problem, and message m2 does not violate the
consistency property.

In practice, the previous requirement is too conservative for two reasons: first, since messages

take a minimum time to be delivered (tdmin), processes can start to send messages earlier without

causing consistency violations. A message transmitted at the end of the interval MD � tdmin

will arrive later than all timers expired, and consequently after the receiver process has initiated

its checkpoint. Second, since it is assumed that processes do not execute during the scheduling

delay, messages that arrive during this period will not be read. Therefore, it is possible to define a

tighter interval where messages should not be transmitted. This interval, called effective deviation,

is equal toED � D���nT �tdmin. The following requirement is implemented by the time-based

protocols,

CR2 : The consistency property is verified if processes do not send messages during ED �

D � ��nT � tdmin time units after their timer stops.

Figure 2.1 shows the execution of two processes with checkpoint timers expiring at times T1

and T2. Message m1 is sent during the critical interval ED and violates the consistency property.

The protocol guarantees that no such message sends can occur.

16



P1

P2

T1

T2

MD

D + 2ρnT δ

m1
m2

tdmax

Figure 2.2: No-logging protocol: In-transit messages are prevented from occurring by disallowing
message sends during tdmax�D���nT seconds before checkpoint time. In this protocol message
m2 would not be sent.

2.2.1.2 Recoverability Property

No-Logging Protocol

A coordinated protocol must be able to reconstruct all messages that are in-transit at checkpoint

time. These are messages that were sent before a process saved its state, and are read after the

receiver stored its checkpoint. One solution for the recoverability problem consists in avoiding

the creation of messages that might become in-transit. If in-transit messages can not occur, the

recoverability property is automatically satisfied. This approach simplifies the implementation of

the protocol during both the failure-free periods and recovery, since the protocol does not need

to log any messages or to re-send or re-read messages. It also avoids the overhead of storing the

in-transit messages.

The example from Figure 2.2 can be used to illustrate how in-transit messages can be prevented

from occurring. In the figure, process P� sends two messages, m� and m�. Message m� does not

have to be stored since it arrives before T�, but message m� would have to be logged if process

P� was allowed to send it. Therefore, a global state will satisfy the recoverability property if no

process is allowed to send messages tdmax time units before the first timer is scheduled to finish.

It should be noted that this condition does not prohibit processes from continuing their executions

17



procedure stopSMesg��
1 stopSendMesg � TRUE;
2 setTimer(stopSMesg� ckpTime� T � �D� ���N � ��T � tdmax�);

procedure createCkp��
3 saveProcessState();
4 N �N � �;
5 ckptT ime � ckpTime� T ;
6 setTimer(createCkp� ckpTime);
7 if (�D � ���N � ��T � tdmin� � �getTime��� �ckpTime� T ��)
8 requestResyncTimers();
9 stopSendMesg � FALSE;
10 sendQueuedMessages();

Figure 2.3: Checkpoint creation procedure for the no-logging protocol.

until they start to save their checkpoints. Whenever a process attempts to send a message, the

protocol queues the message and then lets the process continue with the computation. The actual

transmission of the message is done at the end of the critical interval.

Since timers do not terminate at exactly the same instant, processes need to prevent message

sends during an extra interval, corresponding to the maximum time that separates two scheduled

timers. This interval is equal to D � ��nT . The time-based protocol with no logging satisfies the

following requirement,

RR1 : The recoverability property is verified if each process k, with a timer scheduled to end at

Tk, does not transmit messages during D � ��nT � tdmax time units before Tk.

The checkpoint creation procedure for the no-logging protocol can be implemented using the

code from Figure 2.3. The procedure uses two timers, one that expires D���nT � tdmax seconds

before the checkpoint, and another that expires at checkpoint time. Whenever the first timer ter-

minates, it calls the stopSMesg function. This function sets a flag indicating that messages should

be queued, and then resets the timer (Lines 1-2). The function createCkp is executed when the

18



second timer stops. It saves the process state, increments the checkpoint time with the checkpoint

period T , and resets the timer (Lines 3-6). Variable N keeps the number of checkpoints created

since the last re-synchronization, and variable ckpT ime holds the current checkpoint time. Next,

createCkp tests if ED seconds have passed since the checkpoint time (Line 7). If the condition

is not satisfied, this means that the term ��nT has grown too large, and that timers need to be

re-synchronized. The frequency of re-synchronization, however, is usually small. For reasonably

good clocks (� � �	��), checkpoint sizes of 1 MBytes, and stable storage with bandwidth of

1 MBytes/s, the re-synchronization procedure only needs to be run once every 5 days. Before

returning, createCkp resets the flag and sends the messages that were queued (Lines 9-10).

Logging-at-Sender Protocol

Typical communication protocols, either implemented as part of the application or in the op-

erating system, ensure reliable message deliveries by keeping a copy of each sent message until

an acknowledgment arrives [71]. Lost or corrupted messages are recovered by re-transmitting the

messages if the acknowledgment is not received within a given interval, and duplicate messages

are detected using sequence numbers. An in-transit message is a message that was sent before

the sender process saved its state, and is received after the receiver process created its checkpoint.

Therefore, unless acknowledgments violate the consistency property, a copy of each in-transit mes-

sage exists in the sender machine at checkpoint time.

A checkpoint protocol can ensure that all in-transit messages are logged by including the un-

acknowledged messages in the sender checkpoint. During recovery, the sender re-transmits the

logged messages, avoiding message losses. Logging at the sender, however, might save a few

other messages besides the in-transit messages; a process can receive a message before its check-

point, but the acknowledgment might only arrive after the sender has started to save its state (see

message m1 in Figure 2.7). These extra messages have to be detected and discarded during re-

19



procedure createCkp��
1 saveProcessState();
2 N �N � �;
3 ckpTime � ckpTime� T ;
4 setTimer(createCkp� ckpTime);
5 if (�D � ���N � ��T � tdmin� � �getTime��� �ckpTime� T ��)
6 requestResyncTimers();

Figure 2.4: Checkpoint creation procedure for the logging-at-sender protocol.

covery, otherwise they are read twice. This can be accomplished by saving, in the checkpoints,

the value of the send and receive sequence number counters, which are used to detect duplicate

messages due to re-transmissions. By resetting these counters during recovery, the extra messages

will be considered duplicated messages and will be removed automatically.

The code from Figure 2.4 can be used to implement the checkpoint creation procedure. The

procedure starts by saving the process state and by preparing the timer for the next checkpoint

(Lines 1-4). The function saveProcessState(), stores the process state in stable storage, in-

cluding all unacknowledged messages and the send and receive sequence number counters. Next,

it verifies whether the critical interval ED has grown larger than the time necessary to save the

process checkpoint (Line 5). In the affirmative case, function requestResyncTimers() sends a

request for timer synchronization, and then executes the re-synchronization procedure.

2.2.2 Re-synchronization Procedure

Time-based coordinated protocols utilize the resynchronization procedure to keep the check-

point timers approximately synchronized. In addition, the procedure also detects failures in the

clocks that might result in incorrect behavior of the protocols.

The resynchronization procedure selects one of the processes to act as coordinator. The coor-

dinator adjusts the other processes' timers in such away that they expire at most D time units apart

20



P0

P1
T1

T2

D+2tdmin

P2

DEV1 DEV2
DEV

D+2tdmin

I2

I1

I01
I02

T0

Figure 2.5: Estimate the value of DEV .

from its timer (if � is zero). Since clocks might not be synchronized, it can not ask another process

to set timer to a given absolute time. Instead, it uses a simple iterative method; first, the coordi-

nator sends to the other process the interval until the next checkpoint, intervalc � ckpT imec �

currentT imec. Second, the process saves the intervalc and the current time, currentT imep, and

sends an acknowledgment back to the coordinator. Third, if the time that separates the transmis-

sion of intervalc and the reception of the acknowledgment is smaller than D � �tdmin time units,

the coordinator sends an END synchronization message. Otherwise, it returns to the first step and

repeats the same operations. When the remote process receives the END message, it resets the

timer with the new checkpoint time ckpT imep � currentT imep � intervalc � tdmin.

The resynchronization method has to be done in an iterative way because delivery times are

not constant. In some cases the first message of the coordinator can take more time to arrive than

in others. Therefore, the coordinator can only guarantee a deviation smaller than D if it rejects

all iterations where the round trip time is larger than D � �tdmin. Nevertheless, messages usually

have short delivery times, which allows D to be kept small. The constant D should be made equal

to a multiple of the round trip-time of a small message. As a rule of thumb, we normally set D to

10 ms, which works well for a 10/100 Mbit/s Ethernet and 155 Mbit/s ATM networks.

21



The time-based protocols are only able to ensure that global states are consistent if timers

expire within the expected deviation, �D���nT � � DEVexpected . For this reason, it is important to

detect clock failures. While the coordinator adjusts the timers, it estimates the maximum deviation

between two timers during the last checkpoint creation, DEV . IfDEV is larger thanDEVexpected ,

then at least one of the clocks is not working correctly.

The example from Figure 2.5 is used to illustrate the calculation of DEV . From the three

processes represented in the figure, P	 is the coordinator. T	, T�, and T� were the times when

the timers were scheduled to end during the last checkpoints. The coordinator estimates the value

of DEV � while it resynchronizes the timer of process P�. Before sending the intervalc, the

coordinator calculates the interval I	�. After receiving intervalc, process P� computes the value

of I� and returns it to the coordinator in the acknowledgment. If the coordinator accepts the

resynchronization, DEV � can be estimated in the following way:

j
�j �D � DEV � � j
�j�D� with
� � �I	� � tdmin�� I�

Using an equivalent method, the coordinator obtains the estimate of DEV �. Next, it computes

DEV using the estimates DEV � and DEV �. Two cases have to be considered: both timers

expired before or after T	, or one of the timers expired before and another after T	. The following

bounds can be derived for DEV ,

��������
�������

max�j
�j� j
�j��D � DEV � max�j
�j� j
�j� �D if ��
� � 	�and�
� � 	��

or ��
� � 	�and�
� � 	��

j
�j� j
�j � �D � DEV � j
�j� j
�j� �D otherwise

The coordinator can make the following conclusions by comparing the expected deviation with

the estimated maximum and minimum deviations:

22



��������
�������

DEVexpected � DEVmax OK

DEVexpected � DEVmin Failure

DEVmin � DEVexpected � DEVmax No conclusion

Since DEV is not exactly determined, there is a window of uncertainty of size �D time units

where conclusions can not be made about the failure of the processor clocks. A pessimistic or

optimistic approach can be used to address this problem; with the pessimistic approach, the pro-

tocol assumes that there was a failure if EDexpected � DEVmax. The optimistic approach uses

the condition EDexpected � DEVmin to detect clock failures. If a clock failure is found then a

system warning can be issued and the protocol can increase the assumed value for the drift rate

(e.g., �new � �old � �). If, after a few resynchronizations, the value of � does not converge to the

real drift rate, then another warning must be sent saying that the protocol is unable to recover from

the clock failure.

The resynchronization procedure is implemented using the code from Figure 2.6. The code

adjusts the checkpoint timers and detects the clock failures. For this reason, it should only be

utilized after processes have created at least one checkpoint. The first synchronization can be done

using an equivalent procedure with the lines corresponding to the fault detection removed. The

coordinator executes the while loop to synchronize the remote timers (Lines 2-3). It begins by

sending the intervalc, next waits for the acknowledgment, and then sees if the round-trip time is

smaller than D � �tdmin (Lines 4-7). In the affirmative case, it breaks the loop and begins to set

another timer (Line 11). The END message is sent when all timers have been adjusted (Line 14).

The code extends the fault detection method described previously to a number of processes larger

than three. The coordinator estimates the two deviations by receiving the interval from the other

process (Lines 6, and 8-10). The pessimistic approach is used to determine if there was a clock

23



procedure ResynchronizeTimers��
Coordinator�

1 �a ��b � 0;
2 for each�p � Processes� do
3 while (TRUE) f
4 currentT imec � getTime();
5 send�p� ckpTime� currentT imec�;
6 receive(p� I);
7 if ��getTime��� currentT imec� � �D � � � tdmin�� f
8 I� � �currentT imec � tdmin�� �ckpTime� T �;
9 if (I � I�) �b � max��b� I � I��;
10 else�a � max��a� I�� I�;
11 break;
12 g
13 g

14 broadcast(��);
15 if���a ��b � �D� � �D� ���N � ��T �� Error();
16 N � 1;

Process p�
17 receive�coord� loop�;
18 do f
19 currentT imep � getTime();
20 intervalc � loop

21 send�coord� currentT imep� �ckpTime� T ��;
22 receive�coord� loop�;
23 g while �loop � ��;
24 ckpTime � currentT imep � intervalc � tdmin;
25 setTimer�createCkp� ckpTime�;
26 N � 1;

Figure 2.6: Timer resynchronization procedure.

24



failure (Line 15). The other processes receive intervalc (Lines 17-23), and then they reset the

timers (Lines 24-25).

2.2.3 An Example

T1

T2

D+2ρnT+tdmax

P1

P2
m1

ED

MD

No-Logging

m2

P1

P2

T1

T2

m1

ED

MD

Logging at Sender

- No mesg sends - Time to store the ckpt

Figure 2.7: Example with the creation of the i checkpoint.

The example from Figure 2.7 shows the execution of the protocol with no-logging and with

logging at the sender during the creation of an application checkpoint. In both cases, the two

processes begin to save their states at different instants, because checkpoint timers are not exactly

synchronized. However, since timers stop at most MD seconds apart, the two checkpoints are

separated by a small interval. On the execution represented on the left part of the figure, the

protocol with no logging postpones the send of message m1. When process P1 attempts to send

m�, the flag stopSendMesg is set, and the message is queued. The message is sent when process

P� finishes saving its checkpoint.

The protocol with logging at the sender saves both messages represented in the right part fig-

ure. Message m1 is sent by process P1 and is received by process P2 before the creation of the

checkpoints, which means that m1 is not an in-transit message. However, the acknowledgment

25



of m1 only arrives to process P1 after the timer expires. At T1, process P1 does not know if m1

is an in-transit message or not, so it includes the message in the checkpoint. Later, if there is a

failure, processes will have to roll back to the stored checkpoints, and process P1 will re-send m1.

Process P2 will detect that m1 is a duplicate using the receive sequence number counter that was

included in its checkpoint, and will remove the message. (Although the acknowledgment of m1

is an in-transit message, the protocol does not need to log acknowledgments.) Message m2 is an

in-transit message, and is included in the checkpoint of process P2. Since process P1 is storing

its state when m2 arrives, the acknowledgment is sent after the checkpoint is completed. To avoid

violations to the consistency property, the acknowledgment only had to be postponed until the end

of the critical interval.

P1

P2

resync. 
timers

MD

- Effective deviation (ED) - Time to store ckpt

MD MD

CN=1 CN=N CN=N+1

Figure 2.8: Example with the execution of the protocol through several checkpoints.

The example from Figure 2.8 illustrates the behavior of the protocols throughout a long period

of time. When the application starts, timers are well synchronized, and ED is much smaller than

the time to save a checkpoint. As the application continues its execution, the value of ED increases

because of the clock drifts. On the N's checkpoint, the value of ED becomes larger than the time to

store the checkpoint of process P2. After saving its state, process P2 sends to process P1 a request

for timers' re-synchronization (in the example, P1 is the coordinator). When processes create their

next checkpoints, the value ED is again small.

26



2.2.4 User Initiated Checkpoints

Time-based protocols save new global states periodically, whenever the timers reach the check-

point period. Sometimes it is necessary to create extra global states either because the user wants

to save its work or because the application needs to guarantee that a specific task will not be rolled

back. As examples, the user might want to swap the application to disk so that it can be restarted in

a new group of machines, or the application might want to prevent the roll back of interactions with

the outside world. The creation of extra global states requires the exchange of messages among

the processes; at least a broadcast message has to be sent to announce the new checkpoint, and

then an acknowledgment has to be returned by each process. The acknowledgments are used to

detect delivery problems, and if they are not received within a given timeout, the broadcast has to

be retransmitted.

Time-based protocols piggyback in the broadcast message the information necessary to sched-

ule an extra checkpoint. The initiator, the process called by the user or that executed the op-

eration checkpoint(), sets the new checkpoint time, extraCkpT imei � currentT imei � �.

Then, it sends to the other processes the interval between the normal and the extra checkpoint,

intervali � ckpT imei� extraCkpT imei. When a process receives the message, it schedules the

extra checkpoint for the following time, extraCkpT imep � ckpT imep � intervali. If for some

reason the extra checkpoint can not be created (e.g., the broadcast arrives after extraCkpT imep),

the process returns to the initiator an error message indicating that distinct time should be used. As

a result, the initiator has to select a later time and has to repeat the whole process again.

The value of � should be chosen carefully. It should be sufficiently large to let the broadcast

and acknowledgments to be delivered before extraCkpT ime, otherwise several checkpoints might

be aborted. On the other hand, the user should not have to wait too much time for the checkpoint,

which means that � has to be smaller than a few hundreds of milliseconds. In typical networks,

27



like Ethernet or ATM, round trip times are in the order of 1 - 2 ms. Therefore, the value of � can

be set to 100 ms.

2.2.5 Garbage Collection and Recovery

Time-based protocols save regularly global states of the application, containing the processes'

checkpoints and the in-transit messages. This information should be garbage collected whenever

it stops being useful for recovery to avoid exhausting the stable storage. Since protocols always

recover the application to the last complete available state, this means that a global state can be

deleted as soon as a new one is created.

The entity responsible for the garbage collection can be, for instance, a special process in the

stable storage or the processes executing the application. In the first possibility, the process would

have to check periodically if new checkpoints had been saved and then remove the old checkpoints.

The second solution is not as simple as the first one because an application process does not know

when a global state is completely stored; it only knows when its checkpoint is finished. In any

case, the creation of a global state is upper bounded by tcmax�MD time units, where tcmax is the

maximum time to save a process checkpoint. Therefore, a process can delete its old checkpoint

whenever this interval has passed since the last timer expiration.

2.2.6 Related Work

Time plays a fundamental part in any fault tolerant real-time system, like MARS [72] and

DELTA-4 [73]. In the area of checkpoint-based recovery protocols it has been used to avoid extra

exchanges of messages in coordinated protocols [10, 24].

Tong et al. [24] proposed the first time-based protocol. This protocol assumes loosely syn-

chronized processor clocks and relatively small message delivery times. Processes use a positive

acknowledgment retransmission scheme to be able to communicate reliably. A process starts to

28



save its state whenever the local clock reaches a multiple of the checkpoint period. The check-

point of a process includes all messages that have been sent and have not been acknowledged. The

protocol adds to each application message and acknowledgment a checkpoint number to detect

in-transit messages, and then it stores them in stable storage as they are received. Processor clocks

are resynchronized periodically.

Cristian and Jahanian [10] also proposed a protocol that uses time to initiate the creation of the

checkpoints. This protocol requires stricter assumptions about the synchronization of the clocks

and assumes that message delivery times are small with high probability. During the creation of a

new checkpoint, the protocol defines a critical interval during which all in-transit messages have

to arrive. If an in-transit message takes longer than the bounded delivery time to be transmitted, it

can be received later than the critical interval. In this case, the protocol considers that there was

a communication failure, and the application has to roll back. After saving its state, each process

broadcasts a special message so that all bounded delivery violations can be detected. To identify

in-transit messages, the protocol tags each message with a checkpoint number and the time of the

local clock. In-transit messages are logged as they are received and are written to stable storage at

the end of the critical interval.

The protocols described in this chapter use synchronized checkpoint timers instead of syn-

chronized clocks. This characteristic is important in systems where, for security reasons, the ap-

plications are not allowed to change the value of the processor clocks. Contrary to the previous

time-based protocols, the protocols do not need to tag the application's messages with any infor-

mation, and they avoid the extra accesses to stable storage that were necessary to save the in-transit

messages. The protocols are also able to adapt the frequency of timer re-synchronization to the

application, and to detect clock failures that might lead to incorrect behavior.

The no-logging protocol assumes small and bounded message delivery times. It prevents the

existence of in-transit messages by disallowing message sends during an interval before the check-

29



point creation. The logging at the sender protocol has to save the in-transit messages, but it does

not need the assumption that message delivery times are small. This assumption is common to all

previous time-based protocols, and is the most important limitation to the applicability of these

protocols. The protocol also has a checkpoint latency completely independent of message delivery

times, which enables it to function correctly even with small checkpoint periods. To our knowl-

edge, this is the first coordinated protocol with this characteristic.

2.3 Adaptive Protocol

This section describes a coordinated checkpoint protocol that is well adapted to the charac-

teristics of mobile environments [68, 69]. The protocol uses time to be able to store consistent

recoverable states of the application without having to exchange messages. It creates two dif-

ferent types of process checkpoints to adapt to the current characteristics of the network and to

provide differentiated recoveries. Process checkpoints are saved in stable storage or locally in the

hosts. Locally stored checkpoints do not consume network bandwidth and take much less time to

be created. However, they can be lost due to permanent failures in the mobile hosts. During the

application execution, the protocol keeps a global state in stable storage and has another global

state that is dispersed through the mobile hosts and stable storage. The first global state is used to

recover permanent failures, and the second, transient failures.

2.3.1 Unique Aspects of Mobile Environments

Mobile hosts have several characteristics that make them different from fixed hosts. Checkpoint

protocols designed for mobile environments should consider these distinguishing features in their

definition. Otherwise, they will incur high overheads, or they will simply not work correctly.

30



1. Location is not fixed: As the user moves from one place to another, the location of the mobile

host in the network changes. The checkpoint protocol can store the processes' states in a well

known site or in a computer near the current location of the mobile host. In the second case,

the checkpoint protocol has to keep track of the places where processes' states were saved.

2. Disconnection: A mobile host can become disconnected. While disconnected, the mobile

host is not able to send or receive any messages. Protocols that need to exchange messages

will not work correctly in this situation. During disconnection, the checkpoint protocol

should provide a local recovery mechanism that allows the mobile host to recover from its

own failures.

3. Batteries store a limited amount of power: The mobile host is often powered by batteries.

Network transmissions and disk accesses are two of the most important sources of power

consumption [74]. To minimize power consumption, the checkpoint protocol should reduce

the amount of information that it adds to the application's messages, and it should avoid

sending extra messages. The protocol should also make a small number of accesses to disk.

4. Network characteristics are not constant: The various wireless technologies have completely

different qualities of service [75, 76]. For instance, a radio frequency LAN can have band-

widths between 2 and 20 Mbps, but a wide-area LAN using cellular digital packet data

(CDPD) may have a bandwidth of 19.2 Kbps. Other different characteristics are cost, packet

loss rates, and latency. The checkpoint protocol should adapt its behavior to the current

network.

5. Different types of failures: Mobile host failures can be separated into two different categories.

The first one includes all failures that can not be repaired; for example, the mobile host

falls and breaks, or is lost or stolen. The second category contains the failures that do not

permanently damage the mobile host; for example, the battery is discharged and the memory

31



Foreign Agent

Mobile
Host

Backbone Network

Corresponding Node
Home Agent

Network 1

Home Network

Foreign Network

Figure 2.9: Mobile environment.

contents are lost, or the operating system crashes. The first type of failures will be referred to

as hard failures, and the second type as soft failures. The protocol should provide different

mechanisms to tolerate the two types of failures.

2.3.2 Mobile Environment and Terminology

The terminology that is going to be used is based on the internet draft for mobile IP [77].

The system contains both fixed and mobile hosts interconnected by a backbone network (see Fig-

ure 2.9). A mobile host uses a wireless interface to maintain network connections while it moves,

and it is identified by a long-term address. The address also serves to localize the mobile host's

home network. While at home, the mobile host receives the packets as a normal fixed host. When

it moves to another network, the mobile host relies on the services of a foreign agent to be able to

communicate. Typically, the foreign agent has a wireless interface and is able to forward packets

to and from the mobile host (the mobile host can also be directly connected to the wired network).

The geographical cover area of the wireless interface is called the cell. Disconnection occurs when

the mobile host moves outside the range of all the cells. The mobile host can request the services

of another foreign agent if the current one fails. The home agent represents the mobile host when it

32



is away from the home network. The home agent intercepts the packets directed to the mobile host

and forwards them to the current foreign agent�. The mobile host informs the home node about

foreign agent changes.

The example from Figure 2.9 can be used to illustrate the communication between the mobile

host and another host. The corresponding host sends packets to the long-term address of the mobile

host. The backbone network routs these packets to the home network. The routing protocol is the

same as for packets that are sent to a fixed host. On the home network, the home agent intercepts the

packets and forwards them to the foreign agent. The foreign agent transmits the packets through the

wireless network to the mobile node. Packets sent by the mobile node do not have to be forwarded

by the home agent. The foreign agent sends the mobile host's packets directly to the corresponding

node.

2.3.3 Protocol Specification

The checkpoint protocol uses time to indirectly coordinate the creation of global states. Pro-

cesses save their states periodically, whenever a local checkpoint timer expires. The protocol can

set different checkpoint intervals to ensure distinct recovery times. Higher checkpoint intervals

require on average larger periods of re-execution, but reduce the protocol's overheads.

The protocol creates two distinct types of checkpoints. The protocol uses checkpoints saved

locally in the mobile host to tolerate soft failures, and it uses checkpoints stored in stable storage to

recover hard failures. The first type of checkpoint is called soft checkpoints, and second type hard

checkpoints. Soft checkpoints are necessarily less reliable than hard checkpoints, because they can

be lost with hard failures. However, soft checkpoints cost much less than hard checkpoints because

they are created locally, without any message exchanges. Hard checkpoints have to be sent through

�Mobile IP also allows messages to be directly forwarded to the mobile host, if it has a temporary address belonging
to the foreign network.

33



the wireless link, and then through the backbone network, until they are stored in stable storage.

A soft checkpoint with 1 Mbyte would take just a few seconds to be saved. On the other hand, a

similar hard checkpoint would take more than 7 minutes just to be transmitted through a cellular

link�.

The protocol uses the distinct creation costs of the two checkpoint types to adapt its behavior

to the quality of service of the current network. For different network configurations, the protocol

saves a distinct number of soft checkpoints per hard checkpoint. If the network is slow, the protocol

creates several soft checkpoints to avoid the network transmissions. By making a correct balance

between soft and hard checkpoints, the protocol can keep its overheads approximately equal across

the various types of networks.

For a given network configuration, the protocol can exchange hard failure recovery time with

performance costs. Hard failures are recovered with global states containing only hard checkpoints.

If the protocol creates hard checkpoints frequently, the amount of rollback due to hard failures is

small on average. However, the performance of the protocol can be poor.

Soft checkpoints let the protocol continue to function correctly while the mobile host is discon-

nected. Conceptually, a disconnected mobile host can be viewed as a host connected to a network

with no bandwidth. In this case, the number of soft checkpoints per hard checkpoint is set to in-

finity, which means that all processes' states are stored locally. The local checkpoints are used to

recover the mobile host from soft failures.

Recovery from soft failures should be faster than from hard failures, since soft failures will

occur more frequently. This can be accomplished with soft checkpoints because recovery can be

made completely local, or at most, it will be necessary to send a rollback request message to the

other processes.

�The actual transmission of the hard checkpoint can be done in the background, but it will always be a considerable
burden to the user.

34



�� Pm = Sender's identifier
�� CNm = Current checkpoint number of the sender
�� timeToCkpm = Time interval until next checkpoint
�� mesgm = Message contents
procedure receiveMesg(Pm� CNm� timeToCkpm� mesgm)

1 if (�CN � CNm� and �timeToCkp�� � timeToCkpm�)
2 resetTimer(timeToCkpm);
3 else if (CN � CNm) f �� orphan message
4 createCkp();
5 resetTimer(timeToCkpm);
6 g

7 deliverMesgToApplication(mesgm);

Figure 2.10: Message reception.

2.3.3.1 Checkpoint Creation Procedure

As with the protocols already described, the adaptive protocol creates checkpoints whenever

the timers stop. However, it uses other techniques to ensure the consistency property and to re-

synchronize the timers. The previous methods can not be utilized because, during certain periods

of time, it might be impossible to adjust the timers and consequently, it is not viable in general to

assume small timer deviations.

The protocol maintains a checkpoint number counter, CN , at each process to guarantee that

the independently saved checkpoints verify the consistency property [29, 78]. The value of CN is

incremented whenever the process creates a new checkpoint and is piggybacked in every message.

The consistency property is ensured if no process receives a message with a CNm larger than the

current local CN . The process creates a new checkpoint before delivering the message to the

application if CNm is larger than the local CN (see Figure 2.10). The recoverability property is

guaranteed by logging all messages that might become in-transit, as in the logging at the sender

protocol.

35



Figure 2.11: Time-based checkpointing.

The protocol uses two techniques to keep the timers roughly synchronized. When the appli-

cation starts, it sets the timers in all processes with the checkpoint period. Since processes do not

begin to execute in exactly the same instant, timers will end at different times. The protocol has a

re-synchronization mechanism that adjusts timers during the application execution. Each process

piggybacks in its messages the time interval until the next checkpoint. When a process receives a

message, it compares its local interval with the one just received (see Figure 2.10). If the received

interval is smaller, the process resets its timer with the received value. The re-synchronization

mechanism also serves to solve other causes of timer inaccuracies, such as clock drifts.

The example from Figure 2.11 will be used to illustrate the execution of the protocol. This fig-

ure represents the execution of three processes (to simplify the figure, message acknowledgments

are not represented). Processes create their checkpoints at different instants because timers are not

synchronized. After saving its CN checkpoint, process P� sends message m�. When m� arrives,

process P� is still in its CN � � checkpoint interval. To avoid a consistency problem, P� first

creates its CN checkpoint and then delivers m�. P� also resets the timer for the next checkpoint.

Message m� is an in-transit message that has not been acknowledged when process P� saves its

CN checkpoint. This message is logged in the checkpoint of P�. Message m� is a normal mes-

sage that indirectly re-synchronizes the timer of process P�. It is possible to observe in the figure

36



Table 2.1: Configuration Table for maxSoft.

Quality of maxSoft Network
Service Low High Example

QoS � 10 1 2 ethernet, ATM
6 � QoS �� 10 2 8 radio, infrared
3 � QoS �� 6 4 32 cellular
0 � QoS �� 3 8 128 satellite

QoS = 0 � � disconnected

the effectiveness of the re-synchronization mechanism. Timers are better synchronized after the

three messages have been received.

2.3.3.2 Soft vs. Hard Checkpoints

The protocol adapts its behavior to the current characteristics of the network. For instance,

if the network has a poor quality of service, the protocol saves several soft checkpoints before it

sends a hard checkpoint to stable storage. The quality of service of a network depends on several

factors, e.g., bandwidth and packet loss rate. Its value can be estimated by the protocol, or it can

be provided by the underlying communication layers [76, 79].

The number of soft checkpoints that are stored per hard checkpoint is called maxSoft, and it

depends on the quality of service of the current network. The assignment ofmaxSoft values to the

different networks is made statically and saved in a table. Table 2.1 gives two examples of possible

assignments. The minimal quality of service corresponds to a disconnected mobile host. In this

case, maxSoft is set to infinity, which means that only soft checkpoints are created. The low

maxSoft column represents an assignment where hard checkpoints are created frequently, which

guarantees a small re-execution time after a hard failure. The high maxSoft column corresponds

to the opposite case.

37



Application processes run on hosts that might be connected to different networks, each corre-

sponding to a distinctmaxSoft value. This means that a global state can include both soft and hard

checkpoints. To ensure that recovery is always possible, the protocol has to keep at each moment

a global state containing only hard checkpoints. This global state is used to recover the applica-

tion from hard failures. Otherwise, the domino effect [38] can occur, and recovery might not be

possible. The protocol guarantees that new hard global states are saved by correctly initializing

the maxSoft table. The process that creates hard checkpoints less frequently is the one running

in the host connected to the network with worse quality of service (the disconnect case will be

discussed in the next section). The protocol guarantees that a new hard global state is stored every

time this process creates a hard checkpoint, by initializing the table in such a way that maxSoft

values are multiples of each other. For example, if processes P� and P� have maxSoft values 4

and 8, this means that a new hard global state is stored every 8 checkpoints. Process P� creates

hard checkpoints whenever CN is equal to 4, 8, 12, 16, ..., and process P� whenever CN is equal

to 8, 16, ... The protocol also keeps the last global state that was stored (which can include soft

checkpoints) to recover from soft failures.

The functions from Figure 2.12 are used to create a new checkpoint. Function createCkp is

called to save a new process state. It starts by incrementing the CN , and then it resets the timer

with the checkpoint period (Lines 1-2). Next, the function determines if the checkpoint should be

saved locally or sent to stable storage (Lines 3-4). The function storeState stores locally the

process state, and the function sendCkpST sends the process state to stable storage. The function

receiveCkp is called by the stable storage to store newly arrived checkpoints. It first writes the

received state to the disk, and then updates the local checkpoint counter (Lines 5-6). Then, it

determines if a new hard global state has been stored using a checkpoint table (Lines 7-11). The

checkpoint table contains one row per CN , and one column per process. The table entries are

initialized to zero. An entry is set to one whenever the corresponding checkpoint is written to

38



�� Application process:
procedure createCkp()

1 CN �� CN � �;
2 resetTimer(T );
3 if ((CN modmaxSoft) = 0) sendCkpST(getState());
4 else storeState(getState(), CN );

�� Stable storage:
�� The function arguments are the same as in receiveMesg
procedure receiveCkp(Pm� CNm� timeToCkpm� statem):

5 storeState(statem� CNm);
6 CN �� max(CN�CNm);
7 setBit(CNm� Pm);
8 if (row(CNm) = 1) f
9 CNhard �� CNm;
10 garbageCollect(CNhard);
11 g

Figure 2.12: Functions to create a new checkpoint.

disk. The table only needs to keep one bit per entry, which means that it can be stored compactly.

A new hard global state has been saved when all entries of a row are equal to one. The variable

CNhard keeps the checkpoint number of the new hard global state. The function garbageCollect

removes all checkpoints with checkpoint numbers smaller than CNhard.

2.3.3.3 Mobile Host Disconnection

A mobile host becomes disconnected whenever it moves outside the range of all the cells, or

whenever the user turns off the network interface. While disconnected, the mobile host can not

access any information that is stored in the stable storage. For this reason, the protocol must be

able to perform its duties correctly using only local information. The protocol continues to save

soft checkpoints in order to recover from soft failures. Two different types of disconnection can

be considered. An orderly disconnection allows the protocol to exchange a few messages with the

39



stable storage just before the mobile becomes isolated. Examples of this type of disconnection

include situations in which the user calls a logout command, or the communication layers inform

the protocol when the mobile is about to move outside the range of the cells (when the wireless

signal becomes weaker). A disorderly disconnection corresponds to the opposite case, in which

the protocol is not able to exchange any messages with stable storage. This happens, for instance,

when the user unplugs the ethernet cable without turning off the application.

There are two reasons why the mobile host should create a new global state before it discon-

nects. From the mobile host owner's point of view, the protocol should create a new global state

because it prevents the rollback of work done while the mobile was disconnected. If a failure oc-

curs after the mobile's disconnection and before the creation of a new global state, the application

rolls back to the last global state that was stored (without warning the mobile host). Later, dur-

ing re-connection, the mobile's process will also have to roll back to this global state, undoing all

the work executed while the mobile host was isolated. The creation of a new global state is also

advantageous to the owners of the other hosts. If the mobile host (soft) fails after disconnecting

and before saving its state, the protocol recovers the application process by doing a local rollback

to the last checkpoint. When the mobile host re-connects, it will inform the other hosts about its

failure (if the failure was hard, the user will have to tell the system administrator), and all the other

processes will also have to roll back.

The mobile host cooperates with the stable storage to create a new global state before discon-

nection. Just before the mobile host becomes isolated, the protocol sends to stable storage a request

for checkpoint, and saves a new checkpoint of the process (hard or soft, depending on the network).

Then, the stable storage broadcasts the request to the other processes. Processes save their state

as they receive the request. New global states can only be created before the mobile host detaches

from the network if disconnections are orderly. Otherwise, the protocol is not able to determine

when disconnections occur. In any case, the protocol can always create a local checkpoint. This

40



soft checkpoint allows independent recovery of soft failures, and minimizes the second problem

that was mentioned in the previous paragraph.

When the mobile host re-connects, the protocol sends a request to stable storage, asking for the

current checkpoint number and the CN of the last hard global state. When the answer arrives, the

protocol updates the local CN using the current checkpoint number. The protocol also creates a

hard checkpoint if the mobile host has been isolated for a long time. If the difference between the

received CN and CNhard is larger than the maximum maxSoft (in the example from Table 2.1,

8 or 128 depending on the assignment), the mobile sends a new hard checkpoint to stable storage.

This checkpoint allows the hard global state to advance.

2.3.4 Related Work

Log-based checkpoint protocols save the processes' states without having to exchange mes-

sages [5, 50, 54, 56]. This is an interesting characteristic for mobile environments because pro-

cesses can continue to create checkpoints while they are disconnected. On the other hand, these

protocols usually have to save a reasonable amount of information to guarantee deterministic ex-

ecution after a failure. This information includes the reception order and the contents of the mes-

sages. This can be a problem if the information has to be saved in a mobile host, since there is

typically a limited amount of flash memory or disk. Log-based protocols also have the problem

that processes usually need to exchange messages to garbage collect the stored information [80].

During recovery, processes also send messages to find a consistent global state [57] or to obtain

information stored by the other processes [53, 54].

Most of the coordinated checkpoint protocols exchange messages during the checkpoint cre-

ation [19, 22, 81]. Messages are needed to guarantee that processes' checkpoints form a consistent

recoverable global state. This characteristic makes these protocols inadequate for mobile environ-

ments. Time-based coordinated protocols do not need to send the coordination messages [10, 24].

41



However, they rely on synchronized clocks, which is something that will be difficult to guarantee

in mobile environments.

Two checkpoint protocols designed for mobile environments have been proposed [39, 42]. The

protocol by Acharya and Badrinath [39] uses a two-phase rule to determine when processes need

to save their state. The two-phase rule requires processes to create new checkpoints whenever

they receive a message after having sent a message. Processes also have to create a checkpoint

whenever the mobile host switches from foreign agents, and prior to disconnection. The protocol

logs all messages that are exchanged between processes. Both the checkpoints and the messages

are stored in the current foreign agent. As the mobile host roams between places, the checkpoints

and logged messages become scattered through the foreign agents.

Pradhan et al. [42] proposed two uncoordinated checkpoint protocols. The first protocol creates

a checkpoint every time a process receives a message. The second approach creates checkpoints

periodically, and logs all messages that are received. As in the protocol by Acharya and Badrinath,

checkpoints and message logs are stored in the foreign agents. Pradhan et al. also propose three

ways to deal with the problem of checkpoints becoming distributed through several nodes as the

mobile host moves among cells.

The protocol described in this section creates checkpoints whenever a local timer expires, and

it only logs the unacknowledged messages at checkpoint time. Two of the previous protocols

create checkpoints based on the messages exchanged by the processes, which for certain patterns

of communication results in the creation of a large number of checkpoints. Two of the previous

protocols also need to log all messages, which can consume a large amount of disk. The proposed

protocol saves checkpoints in the mobile host and in stable storage to recover from different types

of failures. The previous protocols always assume hard failures, which means that they will always

pay the extra cost of sending the checkpoints through the network. The proposed protocol does not

rely on the foreign agents to store the checkpoints. In many cases, foreign agents will belong to

42



some external organization that provides a mobile networking service. The protocol is not likely

to be able to save the processes' states in these foreign agents. Having a computer in the home

network that serves as stable storage also has two other advantages. First, the checkpoint protocol

does not have to keep information about the location of the processes' states. Second, the computer

can be made as reliable as the applications executed by the mobile hosts require (it is not possible

to make all foreign agents highly reliable).

Vaidya has proposed previously a two-level scheme that uses two checkpoint protocols to tol-

erate distinct failures [82]. The two-level scheme relies on a log-based protocol to tolerate single

process failures, and on a coordinated protocol to recover multiple process failures. The protocol

described in this section is a coordinated protocol that saves two different types of global states.

The first type of global state is able to recover single or multiple soft failures, and the second type

of global state is used to tolerate single or multiple hard failures.

43



Chapter 3

Fault Detection Using the Socket Errors

One of the important components of any system that wants to provide transparent fault recovery

is the fault detection module. Traditionally, two techniques have been employed to locate faults

in distributed systems: polling [63] and watch-dogs [61, 62]. In the polling technique, a process

periodically sends a message to the process being tested and then waits for an acknowledgment. If

the acknowledgment does not arrive after a certain amount of time, the tested process is assumed

to have failed. In the watch-dog technique, the tester process keeps a timer and expects to receive a

message from the tested process before the timer expires. The tested process is considered to have

failed if it is unable to send the message that resets the timer. In both techniques a tradeoff has to

be made between performance and speed of fault detection. By decreasing the time out interval,

faults are discovered faster but with higher overheads, because more communication is necessary,

and the tested process is more frequently disturbed.

This chapter describes a way to detect failures in distributed systems, whose main advantage

is having minimal overheads during failure-free operation [83]. Conceptually, the fault detection

mechanism is very simple. It looks at the values returned by the stream socket functions as a pro-

cess exchanges messages. If one of these values belongs to the set of errors associated with process

failures, the mechanism can assume that the remote process was terminated. Fault detection based

44



solely on these errors is not accurate since some errors might indicate a process failure, when in

reality there was a network problem [84]. Nevertheless, the errors imply that at least the socket

has to be recovered. To assess the coverage and latency of the proposed mechanism, faults were

injected during the execution of two parallel applications. Our results show that in most cases,

faults could be found using only the errors from the socket layer. Depending on the type of fault

that was injected, detection occurred in an interval ranging from a few milliseconds to less than 9

minutes.

3.1 Background

Stream sockets based on the TCP/IP network protocols offer a full-duplex connection between

two processes [85]. Before communication can be initiated, each process must establish the con-

nection by opening a socket. Processes can exchange messages by writing to the socket or by

reading from the socket. Stream sockets deliver messages reliably and in order, but they do not

preserve message boundaries.

TCP uses checksums, sequence numbers, and acknowledgments to guarantee that messages are

not lost or damaged [71, 86]. Conceptually, each byte of a message is assigned a sequence number.

When TCP wants to transmit a message, it tags in the header with the sequence number of the first

byte and the size of the message. Then, it saves a copy of the message in a send queue and starts

a timer. The message is removed from the queue as soon as the acknowledgment arrives. If for

some reason the acknowledgment is lost or delayed, TCP re-transmits the message when the timer

expires. The receiver side saves the messages on a queue until a read call is issued and uses the

sequence numbers to detect duplicate messages due to re-transmissions.

45



3.2 Types of Faults

Four distinct types of faults were examined, each resulting in the termination of a process,

but with different behaviors observed at the socket interface. The four types of faults that were

considered were:

Kill : The fault terminates the process, but does not affect the rest of the system. Examples of this

type of fault are the following: the process is aborted because it executed an illegal instruc-

tion; the owner of the machine kills the process; or one of the assertions of the program is

violated, and the process exits.

Crash : The machine where the process is running crashes permanently or stays down for a long

period of time. Examples of this type of fault include a permanent failure in one of the

machine's components or a situation in which an unattended machine crashes and no one is

available to restart it.

Reboot : The machine where the process is executing shuts down, and then boots. A machine

might be rebooted because a new software version requires rebooting in order to be installed,

or because the machine is not performing as expected.

Crash & boot : The process is running on a machine that crashes, and then boots. Possible causes

of such faults include power failures, incorrect usage by users, or operating system bugs.

3.3 Fault Detector

This section describes in which circumstances the stream sockets generate an error after a pro-

cess failure. Two stream socket implementations were studied, both built on top of the TCP/IP

communication protocols. The first implementation is based on the Berkeley sockets (SunOS

46



Error values:

BP -- Broken Pipe

CRP 

SBP -- Signal Broken Pipe

CT -- Connection Timed Out

-- Connection Reset by Peer
IA -- Invalid Argument

SQ=0 -- Send Queue empty

SQ!=0 -- Send Queue not empty

RQ=0 -- Receive Queue empty

RQ!=0 -- Receive Queue not empty

R_Block -- Read Blocks in the OS 

RST -- Reset

R -- Read 

W -- Write

W_Block -- Write Blocks in the OS

TOUT -- Timed Out

Inputs:

0 -- Read returns 0 bytes

Figure 3.1: Terminology used in the state diagrams.

4.1.3) and the second implementation is based on the streams from the UNIX System V R4 (So-

laris 2.5). From the various functions of the socket interface that can be used to send or receive

information, we chose to study the read and write system calls. The other functions provide sim-

ilar error codes. To simplify the presentation, it is assumed that sockets are configured for blocking

I/O (e.g., a read blocks when there are no messages available). The same errors would be seen if

the sockets were set for non-blocking I/O.

A state diagram that explains the behavior of the sockets after the termination of a process was

developed for each type of fault. The diagrams were derived by looking at the values returned

by the read and write system calls, and at the messages exchanged by the surviving machines

and the machine where the failure occurred. In the following subsections the term local is used

to identify the failed machine, and the term remote denotes the machine that detects the fault by

trying to communicate with the failed one. The terminology used in the state diagrams is presented

in Figure 3.1.

47



P1

P2

TCP2
TCP1

FIN

read()
returns 0

Kill

Close 
recv-half

ACK

Close 
connection

m1

write()

RST

read() or write()
returns error

Close 
connection

Figure 3.2: Process P2 suffers a kill fault and process P1 makes the detection.

3.3.1 Kill

Whenever a kill fault terminates the execution of a process, the operating system asks the local

TCP to close all connections associated with the process (see Figure 3.2). A connection allows

messages to travel in two directions, therefore, both directions have to be shut down before the

connection is completely closed. During the closing procedure, the local TCP sends a special FIN

message to the remote TCP indicating that no more messages will be sent.� Next, it completely

closes the connection. After receiving the FIN message, the remote TCP closes the receive-half of

the connection, but leaves the send-half open. When it tries to transmit a message, the local TCP

responds with a RST message. The remote TCP completely closes the connection when the RST

arrives.

The low-level messages exchanged between the TCPs result in errors returned by the socket

interface. These errors are used by the fault detection mechanism to locate process failures. Fig-

ure 3.3 displays the various stages that a connection can undergo after a failure, as perceived by

a remote process running on a machine with the Solaris operating system. The connection goes

from state OK to one of the first four states depending on the status of the send and receive queues

when the FIN message arrives. If the send queue is empty (SQ=0), there is a transition to either

�A process can also close a connection by calling the close or shutdown system calls. When this happens, the
same FIN message is sent by the local TCP. Therefore, the fault detection mechanism must be disabled on a particular
connection, before that connection is closed.

48



W_Block, BP

W_Block, BP

R, 0

R, 0

R, 0 | W, ok

RQ=0RQ=0

RST

RST

W, ok

W, ok

R, ok | W, ok

R, ok

W, SBP

W, SBPR, CRP

RQ!=0&
SQ=0

RQ=0&
SQ=0

RQ=0&SQ!=0

RQ!=0&SQ!=0

OK

1

2

3

4

RST 5 F

Figure 3.3: State diagram for kill fault on Solaris.

state � or �. The connection goes to state � provided that there are messages to be read (RQ!=0);

otherwise, it goes to state � (RQ=0). In state �, the process reads the queued messages without

being informed about the failure. When the receive queue becomes empty (RQ=0), the connection

goes to state �. In this state, the failure is detected by a read call because the function returns 0

bytes.

A connection remains in state � and/or � as long as no messages are transmitted to the failed

process. There is a transition to state � or � if the process executes a write. The connection can also

leave state OK to one of these two states if the send queue was not empty at the moment of the failure

(SQ!=0). A connection stays in states � and/or � during a short period of time, corresponding to

the interval limited by the send of the message and the reception of the RST. Then, the connection

moves to state RST. If the process blocks in the operating system while doing a write (W Block),

the function returns the error broken pipe when the RST arrives. This error can be used to detect the

failure. The blocking happens if the process attempts to send a message larger than the available

space in the send queue. The arrow from OK to RST corresponds to the case when the process is

blocked in a write before the FIN message arrives. Any read or write call from RST state produces

an error that can be used to detect the failure. The first read gives connection reset by peer, and the

49



W_Block, SBP

R, 0

R, 0

R, 0 | W, ok

RQ=0RQ=0

RST

RST

W, ok

W, ok

R, ok | W, ok

R, ok
W, SBP

W, SBP

R, CRP

RQ!=0&
SQ=0

RQ=0&
SQ=0

RQ=0&SQ!=0

RQ!=0&SQ!=0

OK

1

2

3

4 RST2 5

F

RQ=0

R, ok

W_Block, IA

W_Block, IA

RST1

Figure 3.4: State diagram for kill fault on SunOS.

subsequent ones return 0 bytes. A write from the state � or RST generates a signal broken pipe that

is thrown to the process. Unless this signal is caught, it terminates the execution of the process.

Figure 3.4 displays the state diagram for the case when the fault is detected by a process running

on a machine with SunOS (we will present only this diagram for the SunOS). There are two main

differences between SunOS and Solaris. The first one is related to the writes that block in the

operating system (W Block). In SunOS, these writes usually generate a signal broken pipe when

the RST arrives. The only exceptions are in states � and �, where the error invalid argument is

returned (in state �, the process sometimes received the signal broken pipe). The second difference

is related to the messages stored in the receive queue. In SunOS, a process can continue to read

these messages even after the reception of the RST, without generating any errors.

3.3.2 Crash

When a crash failure occurs, all the processes that were running on the machine terminate their

execution. With this type of failure no warnings are transmitted to the remote TCPs. However,

they can be detected if a remote TCP tries to communicate with the failed one. Since no acknowl-

edgments are received in response to the sent messages, the remote TCP re-transmits the messages

50



W_Block, BP

R, 0

W, ok

R_Block TOUT

TOUT

W, ok

W, ok

R, ok | W, ok

R, ok

W, SBP

W, SBPR, CT

RQ!=0&
SQ=0

RQ=0&
SQ=0

RQ=0&SQ!=0

RQ!=0&SQ!=0

OK

1

2

3

4

5 FT O U T

R_Block, CT

RB

W_Block, BP

RQ=0

RQ=0

Figure 3.5: State diagram for crash fault on Solaris.

a certain number of times until it gives up, and then closes the connection. At that moment, an

error is passed to the socket layer indicating a communication problem.�

After a crash, a process running on a Solaris machine observes the connection going through

the stages depicted in Figure 3.5. As with the kill fault, the transition to one of the first four states

depends on the condition of the send and receive queues. The connection goes from state � to state

RB if the process attempts to read a message. In this state, the process blocks indefinitely in the

operating system while it is waiting to receive a message from the failed process. The RB state

corresponds to a case where the failure is not detected using only the errors from the sockets.� The

connection goes to states � and � if there is a message to be transmitted. This can happen because

the send queue was not empty when the failure occurred, or because the process tried to send a

message. The connection stays in either one of these states until there is a time out and TCP closes

the connection. If the process reads a message while the connection is in state �, it blocks in the

operating system as in state �. However, the read returns the error connection timed out after the

�Even though a network partition does not terminate a process, it gives the same type of errors as a crash. This is a
problem that has to be solved by any fault detection mechanism for distributed systems. Typical solutions require the
processes that were assumed to have failed to terminate their execution.

�The optional keepalive mechanism of TCP would allow the detection of the crash fault when the process blocks
in a read. However, the detection latency is typically around 2 hours, which makes this mechanism not very useful.

51



W_Block, BP

W_Block, BP

R, 0

R, 0

R, 0 | W, ok

RQ=0

RQ=0

RST

TOUT

W, ok

W, ok

R, ok | W, ok

R, ok

W, SBP

R, CRP

RQ!=0&
SQ=0

RQ=0&
SQ=0

RQ=0&SQ!=0

RQ!=0&SQ!=0

OK

1

2

3

4 RST 6

F

R, 0

W, SBP

R, CT 5

W, SBP

T O U T

Figure 3.6: State diagram for reboot fault on Solaris.

time out takes place. The write system call issues the error broken pipe if the process blocks in the

operating system while sending a message in states OK through �. Once the connection reaches the

TOUT state, the next read or write returns an error.

3.3.3 Reboot

The reboot of a machine can be divided into three phases. During the first phase, while the

machine is shut down, the operating system syncs all disks and tells TCP to close all connections.

TCP transmits a FIN message through each connection, and then awaits an acknowledgment (for

a few milliseconds). The second phase corresponds to the initial period of the booting procedure.

During this period, no messages are sent, even to respond to remote requests. In the last phase,

messages start to be transmitted and received as usual; however, all the knowledge about previous

connections is lost. The TCP layer answers with a RST message to all incoming messages received

at the end of the first phase (when the connections are closed), or after the third phase has started.

Figure 3.6 displays the various stages that a connection can experience after a reboot fault.

Following the reception of the FIN message, the connection goes to one of the first four states; the

specific state depends on the condition of the send and receive queues, as was explained for the

52



W_Block, BP

W_Block, BP

R, 0

W, ok

R_Block

RST  | T OUT

W, ok

W, ok

R, ok | W, ok

R, ok

W, SBP

W, SBPR, CT

RQ!=0&
SQ=0

RQ=0&
SQ=0

RQ=0&SQ!=0

RQ!=0&SQ!=0

OK

1

2

3

4

5 F

R_Block, CT |
R_Block, CRP

RB
R, CRP

T OU T /
R S TRQ=0

RQ=0

RST  | T OUT

Figure 3.7: State diagram for crash & boot fault on Solaris.

kill fault. There is a transition from state � or � to state RST, if TCP receives a RST in response to

a sent message. Once in state RST, the fault is detected by the next read or write. The connection

can also go from state � or � to the state TOUT if no messages were transmitted in the first phase of

the reboot that resulted in a RST, and if the second phase of the reboot takes longer than the time

out period. This situation usually does not occur; however, it was added for completeness. A read

or write after the connection has reached the TOUT state produces an error.

3.3.4 Crash & boot

With a crash & boot fault the machine crashes, terminating all processes, and then boots. As

with crash faults no FIN messages are transmitted. Therefore, detection is only possible if the

remote TCPs try to send messages to the failed TCP. During the booting of a machine, there

is an initial period where incoming messages are not acknowledged; then, in a second phase,

communication is restarted. Messages belonging to previous connections that are received in the

second phase are answered with a RST. The reception of the RST closes the connection of the

remote TCP.

53



Table 3.1: Summary of the Conditions and Errors for the Stream Sockets on Solaris.

Condition Function Error

Kill FIN arrived & Receive queue empty read 0
message send & RST arrived read/write CRP / BP, SBP

Crash message send & Time out read/write CT / BP, SBP

Reboot FIN arrived & Receive queue empty read 0
message send & (RST arrived or Time out) read/write CRP, CT / BP, SBP

Crash & boot message send & (RST arrived or Time out) read/write CRP, CT / BP, SBP

The state diagram for the crash & boot fault is represented in Figure 3.7. This fault can be seen

as a special crash fault, for which detection can be accomplished earlier if a RST is received before

the time out occurs. The rest of the diagram should be interpreted like the one for the crash fault.

3.3.5 Summary

The previous four subsections explain, for each type of fault, in which circumstances the stream

sockets generate errors. Failures are located using basically two methods: in the first, the TCP

from the machine affected with the fault sends a FIN message informing the other TCPs about the

process termination; in the second, one of the surviving TCPs attempts to send a message to the

failed TCP, and then either receives a RST as response or receives no answer until the connection

times out. When TCP determines that there was a failure, it informs the socket layer, which

subsequently returns an error to the application. Table 3.1 presents a summary of the conditions

for fault detection and the errors reported by the stream sockets on a Solaris machine. On a SunOS

machine the error invalid argument also has to be considered.

54



3.4 Fault Injection Results

3.4.1 Applications and Environment

To assess the coverage and latency of the fault detection mechanism, faults were injected during

the execution of a particle simulator and a raytracer. These applications were chosen because they

represent two of the most common parallel programming models. These applications also have

different communication frequencies and are sufficiently large to be considered complete parallel

applications. The particle simulator, ising, simulates in two dimensions the spin changes of Spin-

glass particles at different temperatures [87]. Ising is a geometric decomposition application

where each process solves a sub-region of the total particle surface. In each step, a process first

calculates the new spin values of its particles, and then exchanges the boundary particles with two

other processes. The second application is a parallel implementation of the raytracer POVRAY

2.2 [88]. Povray is programmed using a master-slave model. The slaves receive from the master a

certain number of pixels of the image, then compute the color of each pixel, and return the results

to the master. The master distributes the pixels and saves the results on disk.

The experiments were performed on two machines running SunOS 4.1.3, a SPARCstation ELC

and a SPARCstation IPC, and on a third machine running Solaris 2.5, an UltraSPARC 1. Faults

were injected on the process executing on the SPARCstation ELC, which left two processes, one

on the SunOS machine and another on the Solaris machine, to detect the faults. The master process

of the povray application always ran on the SPARCstation ELC, which means that the slaves did

the fault detection. The network and machines were lightly loaded when the experiments were

done.

55



KILL

0

2

4

6

8

10

12

14

[0,20] [20,40] [40,60] [60,80] [80,100] [100,120] [120,140] More

Latency [ms]

REBOOT

0

5

10

15

20

25

[3.7,3.8] [3.8,3.9] [3.9,4.0] [4.0,4.1] [4.1,4.2] [4.2,4.3] [4.3,4.4] [4.4,4.5] More

Latency [s]

CRASH & BOOT

0

5

10

15

20

25

30

35

40

[90,95] [95,100] [100,105] [105,110] [110,115] [115,120] [120,125] [125,130]

Latency [s]

CRASH

0

5

10

15

20

25

Less [480,485] [485,490] [490,495] [495,500] [500,505] [505,510] [510,515]

Latency [s]

Figure 3.8: Histograms of the fault injection results on ising.

3.4.2 Coverage and Latency

The histograms of fault detection latencies collected in the experiments are shown in Fig-

ures 3.8 and 3.9. The values displayed correspond to the latencies observed by the first process

that discovered the fault. In most cases, the Solaris machine detected the faults since it is faster than

the SunOS machine. From the total number of faults that were injected, only three of them were

undetected, all in the povray application. The detection latencies ranged from a few milliseconds

for the kill faults to 511 seconds for the crash faults.

As was explained in Section 3.3, kill faults can be located rapidly because surviving machines

are informed about the failure. Typically, they are detected as soon as the surviving processes had

56



KILL

0

2

4

6

8

10

12

14

16

18

[0,200] [200,400] [400,600] [600,800] [800,1000] More

Latency [ms]

REBOOT

0

5

10

15

20

25

30

[3.7,3.8] [3.8,3.9] [3.9,4.0] [4.0,4.1] [4.1,4.2] [4.2,4.3] [4.3,4.4] More

Latency [s]

CRASH&BOOT

0

5

10

15

20

25

30

35

40

45

50

[86,88] [88,90] [90,92] [92,94] [94,96] [96,98] [98,100]

Latency [s]

CRASH

0

5

10

15

20

25

30

35

40

[489,490] [490,491] [491,492] [492,493] [493,494]

Latency [s]

Figure 3.9: Histograms of the fault injection results on povray.

to exchange data with the failed one. On the ising application, the Solaris process sent its particles

15 ms after the beginning of the step, and then it waited on a receive. The SunOS process, which is

slower, exchanged particles every 150 to 330 ms (computation time is smaller when the spins start

to converge). On the povray application, slaves communicated with the master every 850 ms to

4.1 s in Solaris, and 11.5 s to 35 s in SunOS (certain parts of the image require more computation

than others). Faults were detected with random latencies because they were injected at random

times. However, the maximum latency was limited by the largest period without communication.

The observed minimum and maximum latencies for ising were 2 and 195 ms, and for povray

were 9 and 2443 ms. In both applications, the error reported most frequently was read returned 0

57



bytes. Other returned errors were connection reset by peer with 6 cases for ising, and 2 cases for

povray; and signal broken pipe with 2 cases for povray.

In the initial part of the reboot procedure, the operating system syncs the file systems and

then closes all TCP connections. Reboot faults were discovered with a latency of 3.7 to 3.8 s, in

most cases, for both applications. However, in a few other cases, fault detection took longer since

the connections were closed later because of loaded file servers. The machine where faults were

injected had several remote file systems that were mounted locally. Therefore, during the sync

operation, it had to exchange many messages with a number of servers, so that all information that

was cached in memory (e.g., modified superblocks) could be written to the remote disks. The error

used to detect all faults was read returned 0.

Crash & boot failures can only be detected if the surviving processes attempt to send messages

to the failed machine. However, the detection can not be done immediately after the crash be-

cause, during the initial part of the booting procedure, the crashed machine does not respond to the

arriving messages. Messages have to be re-transmitted several times before the RST is returned.

Consequently, faults are detected at discrete points of time, only at the end of the re-transmissions.

Re-transmissions were usually done after the following intervals (in seconds): Solaris = 0.18, 0.38,

0.75, 1.5, 3, 6, 12, 24, 48, 56.25, 56.25, ...; SunOS = 0.5, 2, 4, 8, 16, 32, 64, 64, ... The detection

latencies for ising can be divided into 3 clusters, one below 95 s, another around 96.5 s, and the

last one at 127.5 s. The faults corresponding to the second cluster were located by the Solaris

process (0.18 + 0.38 + ... + 48 = 95.81), and the faults belonging to the third cluster were found by

the SunOS process (0.5 + 2 + ... + 64 = 126.5). The SunOS process also detected the faults from

the first cluster. The SunOS machine sometimes used a different set of re-transmission intervals

that resulted in an earlier detection (1.25 + 3 + 6 + 12 + 24 + 48 = 94.25). On povray, the majority

of faults were located by the Solaris process roughly 96.5 s after fault injection. A few other faults

were found before 95 s by the SunOS process. As was mentioned previously, the SunOS process

58



had computation intervals as large as 35 s . Therefore, it could send a message to the failed process

several seconds after the crash, resulting in re-transmissions in the period between the time when

the crashed machine started to respond to incoming messages and the 96.5 s. The error reported

for all faults was connection reset by peer.

Crash faults are detected when the surviving machines quit re-transmitting messages. The

usual time out intervals for Solaris and SunOS machines are 490 s and 511 s, respectively. On the

ising application, three faults were found by the SunOS process at roughly 511 s, and the rest

were discovered by the Solaris process. Most of the faults located by the Solaris process had a

latency of 490.5 s; however, a few others were detected with latency somewhat smaller or larger.

By looking at the re-transmission times of the Solaris machine, we derived the following formula

for the re-transmission intervals: In�� � min�In � �� �����. The usual value observed for I� was

0.18, which gives 490 s for the time out. However, sometimes Solaris used a distinct I�, or one of

the first Ik was larger than expected because of a delay. These small differences in the intervals

explain the detection latencies that are smaller or larger than 490 s (e.g., I� = 0.20 results in a

time out of 501 s). On the povray application, all faults were detected by the Solaris process at

approximately 490.5 s. The error reported for all faults was connection reset by peer.

3.5 Integration and Related Work

The fault detection problem in distributed systems has been usually solved either using a pro-

cess membership service, or a distributed system-level diagnosis protocol. Process membership

services have been developed in the context of group-based systems, and their main objective is

to provide a consistent view of which processes are currently members of a group, despite process

joints, departures or failures [61, 62, 89–95]. Distributed system-level diagnosis protocols locate

process failures, and then distribute this information in such a way that each node can indepen-

dently determine the set of failure-free processes [63, 96–101]. Membership services normally

59



assume that processes fail by crashing, and that the communication subsystem can suffer from

performance or omission failures. Failures of this type lead to detection mechanisms based on

watch-dogs. On the other hand, distributed diagnosis uses a polling-based mechanism, since the

assumed failure model requires explicit testing to detect failed processes [102, 103].

The specification of a membership or a diagnosis protocol can usually be divided in two parts.

In the first part, the protocol uses the watch-dogs or polling techniques to determine which pro-

cesses are functioning correctly. After a failure is detected, the second part of the protocol ensures

that live processes are informed about the failure within a limited amount of time. The detection

mechanism described in this chapter can be used together with the watch-dogs and polling imple-

mentations since they require the exchange of messages among the processes. If the messages are

sent through stream sockets, then the errors will be generated as previously described. Errors that

result from the normal reads and writes during the application execution can be used to initiate the

second parts of the protocols.

60



Chapter 4

The RENEW Tool

This chapter describes the design and implementation of RENEW - REcoverable NEtwork of

Workstations, a run-time system that facilitates the development and testing of checkpoint proto-

cols for parallel computing in clusters of workstations [104]. RENEW has a flexible set of oper-

ations that provide for a protocol to be integrated into the system with a reasonable programming

effort. The result is a high level performance that is comparable to a system specific implemen-

tation, without requiring the knowledge of the intrinsics of RENEW. The operations provide for

a protocol to accomplish checkpointing and recovery tasks such as message tagging and logging,

storage of data and checkpoints in the local disk or remote servers, and process restart and mes-

sage replay. The application interface of RENEW is the industry endorsed MPI - Message Passing

Interface [65]. Applications conformable with MPI can either be developed in RENEW or they

can be run without modification.

4.1 Overview

RENEW is a run-time system for clusters of workstations that supports the execution of message-

passing parallel applications (Figure 4.1). The system is divided in two parts: a library that is linked

61



Application

MPI

Ckp. protocol

Job
Managem.

Fault
Detection Ckp.

Process

Message
Passing
Module

Operating System

Server
Ckp.

Computing nodes File servers

Operating System

Figure 4.1: Architecture of RENEW.

with the application, and a set of checkpoint servers. Most of the functionality of RENEW is pro-

vided by the library; it spawns processes in remote machines, guarantees message deliveries, and

recovers processes from failures. The server responsibility is to store and retrieve information from

a remote disk.

The library is composed of a set of modules with well-defined interfaces that cooperate to

supply the services required by the applications and the checkpoint protocols. The MPI module

is responsible for the external interface. It implements the various constructs necessary for the

MPI specification (e.g., groups and data types) and does some initial processing on the applica-

tion's messages before giving them to the message passing module. The job management module

spawns processes in the computing nodes both when the application starts and during recovery.

Process checkpointing and information storage are the responsibility of the checkpoint module.

This module can either save the data in the local disk or in a remote machine using the check-

point servers. The primary focus of RENEW is on checkpointing and recovery, however, basic

fault detection and injection modules are also provided. The fault detection module locates pro-

cess failures and initiates the recovery. The current implementation is based on the fault detection

62



Table 4.1: Operations of the Checkpoint Interface.

Initialization and Ending:
�up-call� void renew initCkpProt(int id, int n procs)
�up-call� void renew endCkpProt(void)

Message Tagging and Logging:
�define CKP INFO SIZE size

�up-call� void renew tagMesgR(int dest, char *ckp buf)
�up-call� void renew sentMesgR(int dest, char *head, int h size, char *msg, int m size)
�up-call� void renew recvMesgR(int source, char *ckp buf, char *head, int h size,

char *msg, int m size)

Process Checkpoint:
�down-call� int renew createCkp(char *name, int n, exclHeap *exc)

Roll back and Log Replay:
�up-call� void renew processFailure(int *ids, char **ckps)
�up-call� int renew replayMesg(int source, char *head, int h size, char *msg, int m size)

mechanism described in the previous section. RENEW currently only provides minimal support

for fault injection.

When a new request arrives, the checkpoint server starts a new process that handles all the

communication with the checkpoint module. There are three main reasons why the servers are

used in RENEW; First, they let the checkpoint module store data in remote nodes without requir-

ing the disks to be exported with a network file system. Second, the load on the servers can be

spread across multiple machines. Third, the specialized checkpoint server has significantly better

performance than a network file system like NFS.

4.2 Checkpoint Interface Specification

The current checkpoint interface takes into consideration the different requirements of the three

basic classes of protocols: uncoordinated, coordinated, and message logging. It exports several

groups of operations: message tagging and logging, checkpoint creation and data storage, roll back

63



and log replay, message passing, and timers. Moreover, it supports the most common assumptions

that are made about the communication system; reliable and unreliable channels. The operations

are divided in up-calls and down-calls. Up-calls are operations from the checkpoint protocol that

are invoked by the RENEW modules. Down-calls are operations belonging to RENEW. Up-calls

not necessary to the implementation of the protocol can be defined as empty macros, to ensure that

they are removed when RENEW is compiled.

4.2.1 Initialization and Ending

RENEW calls renew initCkpProt when the initialization of the various modules is com-

pleted (see Table 4.1). The protocol can use this function to start the checkpoint timers and to

initialize data structures. The function arguments are the total number of processes that are exe-

cuting the application, n procs, and a process identifier, id, with a value ranging between 0 and

n procs � �. RENEW assigns virtual identifiers to processes to make the physical location trans-

parent to the protocol. During recovery, the process can be restarted on a different node without

consequences to the protocol. The operation renew endCkpProt is invoked when the application

completes execution.

4.2.2 Message Tagging and Logging

A message is composed of a fixed sized header and data. The header contains a few fields (e.g.,

group identifier) that let the MPI module associate the sends with the corresponding receives. The

data can be of any size, including 0 bytes. Most checkpoint protocols only add to the application

messages fixed sized amounts of data. For this reason, it was decided to allocate a region in the

header to hold the checkpoint tag, with a size specified by the CKP INFO SIZE macro. Since this

number of bytes is sent on every message, its value should be carefully chosen. Otherwise, network

bandwidth is wasted and performance is affected.

64



RENEW calls renew tagMesgR before sending a message. Its arguments are the destination

of the message, dest, and a pointer to the buffer where the checkpoint data should be added,

ckp buf . The message can be copied to a log, by a sender-based message logging protocol, when

renew sentMesgR is invoked. This operation is only executed when the message has been sent,

and it has as arguments the header, head, and the message contents, msg. Performance is improved

by separating the tagging from the logging since the copy is removed from the transmission crit-

ical path. This optimization, however, can not be done on the receive side since the copy has

to be performed after the message arrival and before the delivery to the application. Operation

renew recvMesgR is called to allow the inspection of the tag and the logging at the receiver.

A protocol that uses the previous three operations sees a reliable FIFO ordered flow of mes-

sages. RENEW also provides an equivalent set of functions for protocols that assume unreliable

communication channels. The main difference between the two sets is that the unreliable op-

erations are also called when acknowledgments are sent or received. Furthermore, they may be

invoked more than once for the same message, since there can be re-transmissions or duplicates.

The unreliable functions have two extra arguments that are used to optimize the implementation of

message logging protocols. The first is a sequence number that lets the protocol determine if the

message has or has not already been logged. The second argument indicates if the message is from

the application or an acknowledgment.

4.2.3 Process Checkpoint

The operation renew createCkp lets the protocol create process checkpoints. The first argu-

ment, name, specifies the name of the checkpoint file. The file can be stored in the local disk or

in a remote server. The choice is implemented at compile time. The other two arguments can be

used to exclude memory regions from the process checkpoint. If n is set to zero, all memory of

the process is saved in the checkpoint. renew createCkp returns three kinds of values: � 	 if the

65



checkpoint was stored correctly, � 	 if the process is being restarted from a checkpoint, and � 	

to indicate an error.

4.2.4 Roll back and Log Replay

The operation renew processFailure is invoked when the fault detection module locates

one or more process failures. This operation has two purposes; it notifies the protocol about the

failures, and it lets the protocol specify which processes have to roll back. The arguments ids and

ckps are arrays with an entry for each process in the system. If ids�proc� has a value different than

zero, it indicates that process proc has failed. Using the information in ids, and possibly with the

cooperation of the other live processes, the protocol must determine the checkpoint names from

which the processes should be restarted. If process proc has to roll back, the entry ckps�proc�

should be set with the name of the checkpoint file. Otherwise, the entry should be set to zero.

After roll back, a process restarts the execution from the same state it had at the time of the

checkpoint. Consequently, the protocol starts to re-execute from the last operation it called before

checkpointing, which was renew createCkp. Using the return value from the function, it can

determine that the process is in recovery mode. The process stays in this mode until the protocol

informs RENEW that recovery is completed. This is done by returning the value 0 when the

operation renew replayMesg is called. In recovery mode, RENEW continues to transmit the

messages sent by the application. However, when the application attempts to receive a message,

RENEW calls renew replayMesg, instead of trying to read it from the network. The protocol

should then copy a header and the contents of a message to head and msg, respectively. Messages

must be returned in the same order that were logged, otherwise recovery may be incorrect.

66



Application

UDP/IP

Reordering

Fragmentation
Flow control

Re-transmission

Application

Reordering

Re-construction

Acknowledgments

UDP/IP

renew_tagMesgR

renew_sentMesgR
renew_recvMesgR

renew_tagMesgU

renew_sentMesgU
renew_recvMesgU

Process 1 Process 2

Layer 1

Layer 2

Figure 4.2: Message tagging and logging implementation.

4.2.5 Communication, Data Storage, and Timers

RENEW also exports operations for communication, data storage and retrieval, and timers.

The communication functions let the protocol exchange data between processes in a FIFO ordered

reliable manner. There are two sets of functions; one where sends have to be explicitly matched

with receives, and another where sends result in an up-call executed at the receiver. The operations

for data storage and retrieval are similar to the Unix file functions. Their usage is recommended

since they allow data to be saved in the remote servers. In Unix, only one timer can be active per

process at a given time. Since the message passing module and the fault detection mechanism need

to have timers simultaneously, RENEW implements a queue of timers on top of the system timer.

4.3 Implementation

This section will focus mainly on two aspects of RENEW implementation; the reliable and

unreliable message tagging and logging operations and the recovery of processes.

67



4.3.1 Message Tagging and Logging

A message sent by an application traverses two software layers in RENEW before it is written

to a datagram socket (see Figure 4.2). The first layer, reordering, is necessary due to the require-

ments for message progress and ordering from the MPI specification. MPI defines several types of

send operations with blocking and non-blocking semantics. With non-blocking operations, a pro-

cess can, for example, post a number of message sends on the system which can then be received

in reverse order. To address this problem, RENEW uses two communication protocols; a short

protocol for small messages and a long protocol for large messages [65].

The short protocol attempts to send a message as soon as there are no other messages waiting

to be transmitted to the same process. When the message arrives at the process, it is saved in a

queue until the application posts the matching receive. The receive queue can become potentially

very large if the short protocol is also used for large messages. This problem can be especially

important if many processes are utilized in the computation, with the adverse effect of increasing

the process's checkpoint size. The long protocol starts by transmitting a req� to� send message

containing all information necessary to match receives to sends. On the receive side, req�to�send

is queued like a normal message until the matching receive is executed. When this happens, the

receiver transmits a ready message back to the sender, and then the application's message is sent.

Throughout the message transmission path, the only point where reliable FIFO order is guar-

anteed is between the two software layers. The message passing module calls renew tagMesgR

when it passes a message to the second layer. The message can belong to the application or it

can be one of the auxiliary messages from the long protocol. Since req � to � send and ready

are only 16 bytes in size, they do not create performance problems for message logging protocols.

When the message is sent or queued for transmission, the module invokes renew sentMesgR. On

the receive side, renew recvMesgR is executed when the message is transferred from the second

to the first layer.

68



Ckp protocol

node 1 node 3

node 2

P1

P2

P3

H

1

1

2

34, 5, 7

6

7

Local disk or
ckp server

5, 7

Figure 4.3: Recovery of process P�.

RENEW uses datagram sockets, based on the UDP transport protocol, for communication.

Since UDP provides an unreliable communication service, the second layer implements message

fragmentation, flow control and packet loss recovery. Stream sockets based on TCP were used in

one of the earlier versions of RENEW. We decided to change because much of the functionality

of TCP had to be replicated in RENEW. The operations renew tagMesgU and renew sentMesgU

are called before and after the execution of the send. The renew recvMesgU operation is invoked

when a message arrives.

4.3.2 Process Recovery

RENEW relies on the fault detection module to locate process failures and initiate the recovery.

In the current implementation, the module keeps a ring of stream sockets connecting all processes.

Periodically, each process forwards a message along the ring and expects to receive a message from

the ring. A failure condition is triggered if no message arrives for two intervals or if an error is

returned from one of the two sockets. The fault detection module then runs an agreement protocol

to determine which processes need to be recovered and to guarantee that all live processes agree

69



on the failures. Next, process recovery is executed: first, new processes are started in the available

nodes; second, the processes' states are restored using the checkpoints; and last, message replay is

performed if necessary. The remainder of this section explains in greater detail the steps of fault

recovery, using the example from Figure 4.3.

The first phase of recovery begins by selecting a coordinator, the live process with smallest

identifier (process P�). The main responsibility of the coordinator is to ensure that all steps of

recovery are completed properly. Then, the operation renew processFailure of the checkpoint

protocol is called to determine which processes have to be restarted. The protocol, either individ-

ually in each process or with the cooperation of all processes, should provide a list of checkpoint

names, one for each failed process and possibly other names for processes that need to roll back.

The coordinator then spawns a helper program in one of the available nodes (process H). By

default, an attempt is made first to start the helper in the same node where the failed process was

executing because checkpoints might have been stored in the local disk. This attempt is assumed

to have failed if the helper does not contact the coordinator within a specified interval of time. In

this case, a new helper is spawned in another node. The arguments of the helper include an address

of a coordinator socket and an identifier. The identifier is used to recognize helpers that take more

than the specified interval to transmit the first message. These helpers are required to exit since

they are no longer needed.

The main function of the helper is to guarantee that all information necessary for recovery is

available in the local node. It receives from the coordinator the program and checkpoint names,

a set of pathnames where the program might be found, and some environmental variables. The

helper then checks if the checkpoint and program files can be accessed, and it initiates the new

process (process P�). In the environment of the process, one variable is set with the checkpoint

name to indicate that recovery is being performed. At this moment, the new process contacts

the coordinator, and then the helper can terminate its execution. The coordinator next collects a

70



socket address from each of the processes, and then distributes the addresses to allow independent

communication among the processes (step �).

In the second phase of recovery, processes roll back using the information saved in the check-

points. The checkpoint file can be stored in the local disk or in a remote server. In the second case,

the server is requested to transmit the checkpoint. When the processes' state is reconstructed, new

connections are established to prevent the reception of messages that might still be in the network

(step �). Processes also exchange the current send sequence numbers to purge the receive queues

from messages with sequence numbers larger then their senders. These messages could cause live

lock problems in the checkpoint protocols [12]. RENEW then returns to the renew createCkp

operation, letting the protocol and application restart their execution.

During the last phase of recovery, the application program is unaware of the failure. Whenever

it tries to receive a message, RENEW calls the renew replayMesg operation of the checkpoint

protocol. This operation should return the next message that was received during the failure-free

period. This phase finishes when all messages have been replayed.

4.4 Related Work

Checkpointing and roll back recovery techniques have been proposed for a wide range of ap-

plications, including shared-memory systems [37, 105], distributed debugging [106], and mobile

computing [42, 69]. OTEC is an object-oriented simulator designed for the analysis of checkpoint-

ing and recovery techniques [107]. It uses DEPEND [108] and SIMPAR [109] for dependability

and reliability evaluation in multicomputer systems. OTEC has a set of predefined classes for

checkpointing, error detection and recovery, which can then be reused and composed to build new

checkpoint protocols. The evaluation of the protocols can be done by varying parameters like

checkpoint size and message rates.

71



Fail-safe PVM [110] and MIST [111] are enhanced versions of PVM capable of restarting

distributed applications from failures. In both cases, the Chandy and Lamport [2] checkpoint

protocol was implemented in the PVM run-time system to allow transparent recovery. During

the checkpoint creation, processes are first stopped, then the communication channels are flushed

from messages, and finally the checkpoints are independently saved. CoCheck [112] provides

migration and checkpointing of parallel applications on a MPI environment. The solution adopted

for recovery is similar to MIST.

RENEW has attributes of both a run-time system like MIST and a simulator like OTEC. It sim-

plifies the development of parallel applications in distributed systems, with support for transparent

recovery. It also provides a framework where checkpoint protocols can be designed and analyzed.

Since RENEW is entirely implemented at user-level, it can be ported to any Unix-based system

and tested in any network with TCP/IP�. This characteristic together with the support for standard

benchmarks makes RENEW an environment where checkpoint protocols can be evaluated under

realistic conditions.

Some checkpointing protocols have been implemented and evaluated in distributed systems [3,

16, 66, 113–115]. Most implementations have been performed in specialized kernels or hardware

systems making the accurate comparison between the protocols difficult. RENEW solves this

problem since checkpointing and recovery schemes are analyzed in a common general purpose

system.

�The current version of RENEW has been ported to HP workstations with HP UX, Sun workstations running
SunOS and Solaris, and PCs with Linux. RENEW has also been tested with 10 and 100 Mbit/s Ethernets and 155
Mbit/s ATM.

72



Chapter 5

Evaluation

This chapter presents three sets of experimental values. The first set shows the performance

of the time-based protocol with no-logging and compares some of the overheads that are present

in most coordinated protocols. Our results indicate that the most important overheads are the

storing of the in-transit messages and the addition of information to messages. The less important

overhead is the exchange of messages during the checkpoint creation. These values were obtained

on the CM5 multiprocessor of the National Center for Supercomputer Applications. In second set

of experiments, the performance of the time-based protocol with logging at the sender is analyzed

when checkpoints are written to local and remote disks. These tests were performed on the cluster

of Sun workstations connected by a 155 Mbit/s ATM.

The last set of experiments compare the performance of the adaptive protocol with an optimistic

sender-based message logging protocol [5], and a communication-induced protocol [43]. It was

observed that communication-induced protocol behaves in a manner that is very similar to the

coordinated protocol, but with the cost of loosing most of its flexibility. The message logging

protocol performed worst with impact not only on the execution time but also on the amount of

disk space that has to be allocated. The recovery results reveal that all the protocols take roughly

73



the same time to restore an application to the pre-failure state, even though the message logging

protocol has performed numerous additional tasks.

5.1 Time-Based with No-Logging

This section describes experiments made on a 32-node partition of a CM5 [116]. Two versions

of a two-phase protocol and the time-based protocol were implemented in the RENEW tool. The

RENEW library was built on top of the CM5 communication library, CMMD, instead of the usual

Unix sockets. Whenever an application attempted to send a message, it first passed the message

to the library, which would execute all the steps required by the checkpoint protocols. Then, the

message was transmitted using one of the CMMD operations. The inverse procedure occurred on

the receive side.

The experimental results were obtained using the average of 3 to 5 runs of the benchmarks. The

execution times were on the order of 10 minutes and the checkpoint period was set to 1 minute.

The execution times were kept short because there was limited amount of CM5 time that had to be

used for both the code development and experiments. This limitation, however, does not interfere

with our conclusions, because they are mainly comparisons between different types of overheads.

These results do not include the time to write the processes' checkpoints.

5.1.1 Two-Phase Implementation

The two-phase protocol utilized in the tests is similar to the protocol that was used in a previous

study on coordinated checkpoint protocols [3]. With the exception of the bounded delivery times,

the time-based and the two-phase protocols make similar assumptions about the communication

channels.

74



The two-phase protocol maintains in each process a checkpoint counter, CN . Whenever is

time to create a new global state, a coordinator increments its counter and broadcasts a special start

message � START�CN �. After receiving the start message, a process updates the local CN

and writes its checkpoint. Then, it returns a � SAV ED�CN � message. The coordinator, after

saving its state and collecting all � SAVED�CN � messages, broadcasts the � END�CN �

message to conclude the checkpoint procedure. To detect in-transit messages, the protocol tags

each application message with the value of the local CN . A process stores in stable storage all

messages that arrive with a CNm smaller than the current CN . A process initiates the creation of

a checkpoint if a message has a CNm larger than the current CN . This last scenario can occur

because communication channels are not FIFO.

Two versions of two-phase checkpoint protocol were implemented. The first version follows

exactly the procedure just described. In that version, the checkpoint library has to make an extra

copy of each message passed by the application in order to add or remove theCN tag. The CMMD

library does not provide a gather send function for noncontiguous buffers with different sizes. If

this function was available, the copy could be avoided by saving in one buffer the CN tag and in

another the message supplied by the application. In general, the extra copy has to be made in any

system in which gather send functions are not available.

The second implementation avoids the copy in most cases, at the cost of making the protocol

less general and less transparent. This implementation uses two bits of the application message

tags to piggyback the CN . In this case, CN can only take four different values, 0 through 3. This

optimization could only be used in the communication operations that had a tag. In the other cases,

it was necessary to make a copy. This restriction to the CN values requires the assumption that

message delivery times are bounded and less than three times the checkpoint period

75



5.1.2 Time-Based Implementation

The time-based protocol with no-logging makes the assumption that delivery times are bounded.

This assumption can not be guaranteed in a system like the CM5, although it can be approximated.

Our implementation uses two characteristics of the CM5 to approximate bounded delivery times;

the minimum I/O bandwidth guaranteed to each node and the small number of processes that

execute concurrently in each node. The following formula was used to calculate the maximum

delivery time:

tdmax � maxMesgSize

�M
� extraT ime

The first term in the formula corresponds to the maximum time that a message takes to be

transmitted through the network. It depends on the size of the largest message that is sent by the

application, maxMesgSize, and on the minimum bandwidth that is guaranteed by the network

between two nodes, 5 Mbytes/s. The second term is an upper bound on all the other delays that

a message can experience. On some machines, it is difficult to determine this bound, because of

the scheduling delays (e.g., a message can be received by the operating system, but the process is

only scheduled after a long period of time). However, in the CM5 this problem is less important,

because only a small number of processes are executed concurrently in each processor (usually

only one or two processes). In the experiments, the value of tdmax was set to 65 ms (25 ms to send

the largest message and 40 ms for the extra time).

5.1.3 Applications

Six compute-intensive applications were used in the experiments (see Table 5.1). These appli-

cations are either kernels of larger programs, or complete programs. Each application has different

characteristics in terms of frequency of communication, amount of information exchanged, or pat-

tern of communication. The applications were the following:

76



Table 5.1: Applications Used in the Experiments on the CM5.

Problem Description Messages
Mesg/sec KBytes/sec Max Bytes

lu 50 512x512 matrices. 1763.1 3871.5 36864
mult 40 512x512 matrices. 6.0 200.8 34816
sor 3000 iterations 1024x1024 points. 748.6 3080.5 135432
tsp 10 problems with 20 cities. 143.2 586.6 4096
ga popul. 1600, 4x�	� funct. evaluations 19.3 79.6 4096
ising 1200 iterations 1024x1024 grid. 329.2 1348.6 4096

� lu: Performs the LU factorization of a matrix using the Gaussian elimination with partial

pivoting. In each step, a node computes a column's multipliers and broadcasts them to the

other nodes. Next, all nodes update the remaining columns.

� mult: Multiplies several matrices by the same initial matrix A (A � Bi � Ci, i � �� �� ���).

Each node starts with the same copy of a matrix, and calculates a few contiguous rows of the

result matrix.

� sor: Uses the red-black successive overrelaxation iterative method to solve the Laplace

equation. The problem is parallelized by giving to each node a certain number of contiguous

rows of the resulting linear system of equations. In each iteration, a node calculates its

points, and then exchanges the two boundary rows with two other nodes.

� tsp: Solves the traveling salesperson problem. A master node keeps a queue with a number

of tours that still have to be evaluated. The other nodes request tours from the master and try

to find a minimum length tour.

� ga: Is a parallel implementation of the genetic algorithm system GENESIS 5.0 [117]. ga

solves a non-linear optimization problem. This application divides the initial population

among the nodes. A node executes the genetic algorithm on its individuals, and after a

77



Table 5.2: Experimental Results on a 32-Node Partition of the CM5.

No Ckp. Time-Based Two-Phase
sec # sec % # sec %

lu 451.5 7 455.5 0.9 8 510.6 13.1
mult 418.1 7 420.3 0.5 7 440.7 5.4
sor 497.5 8 499.6 0.4 9 547.7 10.1
tsp 449.3 7 450.3 0.2 7 462.9 3.0
ga 418.0 6 419.1 0.3 7 424.4 1.5
ising 467.0 7 471.8 1.0 8 492.4 5.4

few generations, it sends a few individuals to one node, and receives a small number of

individuals from another node.

� ising: Is a parallel simulation model of physical systems, such as alloys and polymers [87].

ising simulates in two dimensions the spin changes of Spin-glass particles at different tem-

peratures. In each step, a node computes the spin values of a sub-region of the total particle

surface, and then exchanges the boundary particles with two other nodes.

5.1.4 Individual Overheads

Table 5.2 presents the various results for executions with and without the checkpoint protocols.

It is possible to observe that the time-based protocol performs better than the two-phase protocol

in all applications. The time-based protocol shows overheads smaller than 1%, and the two-phase

protocol has overheads between 1.5% and 13.1%. It is also possible to notice that in most ap-

plications the two protocols took different numbers of checkpoints (due to the periodicity of the

checkpoint creation). However, even if we calculate the overhead per checkpoint�, the time-based

protocol outperforms the two-phase protocol.

�The reader should notice that this measure has to be used with caution, since the overhead of the checkpoint
protocol does not occur only during the checkpoint creation, but also while the application is executing. In fact, a
reasonable part of the overhead of the two-phase protocol occurs between the creation of the checkpoints.

78



The time-based protocol achieves good results because it avoids most overheads while the

application is executing. The major cost of the protocol occurs only when the application is about

to take its checkpoint. At checkpoint time, there is one interval in which processes can not send

any messages. However, there is no blocking if the checkpoint happens to be taken in a computing

phase of the process execution. The experiments show that in most cases only a small number of

processes had to block, usually less than 10%. Also, the amount of blocking depends on the instant

when the process attempts to communicate. If the message is sent at the end of the interval, the

process experiences almost no blocking.

The size of the blocking interval is proportional to clock drift and the maximum message

delivery time. Since clock drifts are small, their contribution to the interval is usually modest.

However, the term corresponding to the clock drift grows with time. As was mentioned previously,

timers can be re-synchronized to solve this problem. It is more difficult to guarantee that the

maximum delivery time will always be small. For instance, it depends on the size of the largest

message sent by the application and on the network bandwidth. The size of the messages can be

kept within reasonable bounds if the checkpoint library implements message fragmentation. The

applications that were used did not send messages larger than 135432 bytes, so there was no need

to implement fragmentation in this early version of RENEW.

The performance costs introduced by the two-phase protocol can be divided mainly into mes-

sage coordination, addition of information to messages, and in-transit message storage. Figure 5.1

presents, for each application, four bars showing how the costs have been sub-divided. The first bar

shows the total overhead of the time-based protocol. The bar “No Copy, No In-transit” corresponds

to the executions of the two-phase implementation with the no-message-copy optimization. This

bar does not contain the time spent to save the in-transit messages (the function where the write

occurs was removed), which means that it mainly shows the performance costs associated with the

message coordination. It is possible to notice that this overhead is relatively small. The CM5 has

79



No Copy, No In-transit

Time-based

Copy, No In-transit

Copy, In-transit

Overh.
[sec]

lu

59.1

54.5

4.0

33.8

19.9

2.3

22.6

2.2

sor

50.2

41.8

2.4
2.1

6.4
3.0

2.0

ga

1.1

mult tsp

12.6
13.6

1.5
1.0

4.9
5.9

25.4

20.6

ising

Figure 5.1: Distribution of the overheads.

a fast network, and we have implemented a message coordination completely asynchronous, that

removes most of the costs, since no process is required to block while waiting for the messages

from the other processes. lu is the only application that shows a high overhead because it was

not possible to remove all message copies. lu distributes the matrix multipliers through the nodes

using the broadcast primitive of the CMMD. The broadcast function is synchronous and does not

associate a tag with the messages. In this case, it was necessary to make a message copy to add the

CN number. The lu bar contains copying overheads in addition to the message coordination.

The bar “Copy, No In-transit” corresponds to executions of the two-phase implementation that

makes a message copy. This bar does not include the time taken to save the in-transit messages.

It mainly shows the elapsed time required to make the message copies and to coordinate the pro-

cesses. The difference between the third and the second bar should be roughly equal to the time

wasted while copying the messages. This time depends heavily on the application; applications

80



Table 5.3: In-Transit Messages.

lu mult sor tsp ga ising

Number 27 11 40 9 18 45
Kbytes 393 405 325 74 150 370

that exchange many and large messages have a higher copying overhead (see Table 5.1). The time

also depends on the communication pattern that is used by the application. tsp sends more infor-

mation per second than mult, but it has a smaller copy overhead. In the mult application, nodes

send to the master the computed rows, and then wait for new rows of another matrix. The master

only distributes new work after receiving all the previous rows. Therefore, each message copy

made by the master not only makes the receiving process wait, but also all the other processes that

are expecting new rows. Communication is less synchronous on tsp. A node sends its results to

the master, and then receives new work without having to wait for the other nodes.

The last bar adds to the third bar the time required to save the in-transit messages. These values

are the average of the 3 best execution times of 5 experiments. The number of in-transit messages

that have to be stored can change dramatically from one run to the next. For instance, with the ga

application, there was an execution for which it was necessary to save 207 messages with a total

size of 1.7 Mbytes. These values are quite different from the averages shown in Table 5.3. The in-

transit storage overhead depends on several factors, such as the number of in-transit messages, the

size of the messages, and disk contention while the writes are being done. It also depends on the

type of communication that is used by the applications. As was mentioned previously, if several

nodes are expecting to receive a message from the same node at the same time, a disk access made

by the sender can make several nodes wait. The use of different communication primitives can

change the probability that in-transit messages will occur. For instance, lu sends more messages

than sor, but has a smaller number of in-transit messages (see Tables 5.1 and 5.3). This is because

lu uses a synchronous broadcast primitive.

81



Table 5.4: Description of the Applications Used in the Experiments.

Problem Description

ga 1600 individuals, 10x�	� function evaluations
ising 1500 iterations 2500x2500 grid
povray 400x400 pixels, music.pov image

5.2 Time-Based with Logging at the Sender

The implementation of the protocol was done on the RENEW run-time system, and was based

on the procedures presented in the second chapter of the thesis. The values of the maximum clock

drift rate and minimum message delivery time were set to �	�� and 0, respectively. The reader

should notice that setting tdmin equal to zero is a conservative assumption since it increases the

size of critical interval. The value of D was set to 10 ms and the checkpoint period to 5 minutes.

The experiments were performed on a cluster of four Sun UltraSparc workstations running the

Solaris 2.5 operating system. Each machine had 512 MBytes of main memory and 4 GBytes of

local disk. The interconnection network was an 155 Mbits/s ATM. The processes' checkpoints

were either saved in the local disk or in a remote HP workstation (also connected to the ATM

network). All experiments were done during the night when the load in the network and machines

was light.

5.2.1 Applications

Three compute-intensive applications were used in the experiments (see Table 5.4): ga and

ising are the same applications that were used in the CM5 tests; povray is a parallel implementa-

tion of the raytracer POVRAY 2.2 [88]. This application uses a master-slave programming model.

The main responsibility of the master is to distribute pixels of the image to the slaves. The slaves

82



Table 5.5: Performance Results on a Cluster of Workstations.

No Ckp Checkpoint Time-Based
Local Remote Local Remote

sec # KBytes sec sec sec % sec %

ga 2872 9 858/681 0.2/0.3 0.7/0.8 2972 3.5 2904 1.1
ising 3198 10 6828 1.5 3.3 3224 0.8 3232 1.1
povray 3091 10 683/22715 0.2/4.5 0.8/11.1 3120 0.9 3156 2.1

repeat the following steps: receive a number of pixels, calculate the color of the pixels, and return

the results to the master.

5.2.2 Failure-Free Results

Table 5.5 displays the values obtained during the execution of the applications. The second

column of the tables displays the execution times without the checkpoint protocol. In the column

size is shown two checkpoint sizes for the ga and povray applications. The process that starts

the ga application has a larger checkpoint size than the other processes because it allocates some

extra data structures during initialization. The master of the povray application does not have to

parse the image description file resulting in a smaller checkpoint size. In the column Ckp Time

are presented the average elapsed times necessary to store a process checkpoint in the local disk

or remote file server. These values correspond to execution of the instruction saveProcessState

in the procedure. As expected, it takes more time to write the checkpoints in a remote disk than

in a local disk. However, since the network is fast and only a small number of processes execute

concurrently, the difference between the two write times is not too large (it doubles). It is possible

to observe in all cases that the overhead introduced by the checkpoint protocol is very small, less

than 3.5�. During the failure-free operation, the protocol only needs to create process checkpoints

periodically, and to adjust the timers. All the other overheads were removed from the protocol.

83



5.3 Adaptive Protocol

Three types of checkpoint protocols were utilized in the experiments: a coordinated, an op-

timistic sender-based message logging, and a communication-induced. The coordinated protocol

was the adaptive time-based protocol described for mobile environments. All the tests were done

on the same cluster of workstations as the previous experiments. The values reported in the next

section were obtained by averaging the five best results of at least ten experiments. More exper-

iments were run in some cases to ensure that the confidence intervals were in the order of one

percent of the mean values.

5.3.1 Other Checkpoint Protocols

The communication-induced protocol coordinates the creation of the checkpoints in a lazy

fashion, by piggybacking a checkpoint sequence number in the messages [43]. If a process receives

a message with a sequence number larger than the local one, it has to take a forced checkpoint. To

avoid having to increase the sequence number, and consequently to reduce the number of forced

checkpoints, the protocol tries to determine if new checkpoints are equivalent to previous ones with

respect to the current recovery line. To track the equivalence between checkpoints, the protocol

also needs to associate an equivalence number with the checkpoints, and it has to piggyback an

array of equivalence numbers in the messages.

The optimist sender-based message logging protocol saves the application's messages in the

volatile memory of the sender processes [5]. When a message is received, the protocol associates

with it a sequence number, and then piggybacks the number in the next message returned to the

sender. The log is saved to disk every time a checkpoint is created or when the allocated space is

exhausted. During recovery, a process uses the sequence numbers to replay in the correct order

the messages stored by the senders. Compared with more recent sender-based protocols, such as

the one from Alvisi et al. [52], our implementation performs equally well since no extra messages

84



Table 5.6: Applications Used in the Experiments.

Problem Description Messages Ckp Mesg Log
Mesg/sec KBytes/sec MBytes sec MBytes sec

BT Class A, 500 iterat. 49.1 1053.3 81.2 17.7 75.1 15.7
LU Class B, 250 iterat. 124.3 448.8 50.2 11.8 31.7 4.3
SP Class B, 400 iterat. 74.4 1695.2 92.6 20.2 103.0 21.6
Seismic1 Small, 0.1 0.0 1.2 0.4 0.9 0.1
Seismic4 512 samples/trace 1.2 13.9 7.2 1.8 1.8 0.1
PCCM2 T42 resol., one day 32.6 454.6 82.5 18.5 31.9 5.4

are sent and no blocking is done at the receiver while it waits for the sequence numbers to be

logged. The negative side is that receivers might transmit new messages before sequence numbers

are stored, and consequently, a failed process might not be able to completely recover its state.

5.3.2 Applications

Five long-running parallel applications were used in the experiments. Table 5.6 presents, for

each application, a description of the problem solved, communication rates and average values for

checkpoint size and time. The values shown in the last two columns correspond to average log

overhead incurred by a process using the message logging protocol, when the checkpoint period is

5 minutes.

� BT, LU, and SP are applications from the NAS benchmarks, developed by the Numerical

Aerodynamic Simulation program, located at NASA Ames Research Center [118]. These

applications reproduce much of the data movement and computation found in computational

fluid dynamics codes.

� Seismic is an application from the high-performance computing SPEC benchmarks [119].

This application is used for seismic data processing, and reflects the current technology

trends in the oil industry. One benchmark run consists of four executions of the Seismic

85



Table 5.7: Failure-Free Results (Ckp. Period 5 min.)

No Ckp Coordinated Comm.-Induced Message-Logging
sec # sec % # sec % # sec %

BT 2530 (9) 8 2661 ( 4) 5.2 8 2671 ( 5) 5.6 9 2873 (10) 13.6
LU 2712 (3) 9 2805 ( 6) 3.4 9 2806 (19) 4.1 9 2902 (20) 7.0
SP 2841 (7) 10 3092 ( 5) 8.8 10 3082 ( 8) 8.5 11 3525 (22) 24.1
Seismic1 1379 (4) 4 1406 (24) 2.0 4 1405 (19) 1.9 4 1405 (10) 1.8
Seismic4 2147 (5) 7 2202 ( 5) 2.5 7 2296 ( 2) 6.9 7 2187 ( 2) 1.9
PCCM2 3582 (7) 12 3796 (12) 6.0 12 3813 (13) 6.4 13 3905 (26) 9.0

program with different arguments. Since the second and third executions take less than one

checkpoint period to run, they were not considered in the experiments.

� PCCM� is a parallel version of the NCAR Community Climate Model, developed by the

CHAMMP program at the Oak Ridge and Argonne National Laboratories and the National

Center for Atmospheric Research [120]. This application is a comprehensive three dimen-

sional global atmospheric model that has been improved over the past 15 years.

Using the reported values for the NAS benchmarks, the current version of RENEW shows, for

the same number of nodes, better performance than an Intel Paragon or the UC Berkeley's NOW

project, and worse performance than an IBM RS/6000 SP [121].

5.3.3 Performance Results

In the experiments, the applications were executed by four processes, each running on a dif-

ferent workstation. The checkpoints were saved in the local disk once every five minutes. The

memory exclusion optimization was utilized only on the message logging protocol, to avoid writ-

ing the unused parts of the log. The memory size allocated for the log was 50 MBytes per process.

Table 5.7 presents the failure-free execution times for the three protocols, together with the 95%

confidence intervals.

86



The coordinated and communication-induced protocols displayed approximate performance,

with overheads smaller than 9 % in all applications. This conclusion was confirmed using the t-

test [122]: on the LU and Seismic� the protocols showed equivalent performance; on BT, Seismic�

and PCCM� the coordinated protocol was better; and on SP the communication-induced protocol

was better. Both protocols introduce primarily two performance penalties, the checkpoint stor-

age and message tagging. The first one is the most important, and it accounts for the majority of

the difference between the times with and without checkpointing. For instance, on the SP appli-

cation the total overhead is 241 seconds, from which 202 seconds were spent on the writes (see

Table 5.6). In practice, this penalty can be even higher since writes were asynchronous�. Even

though the communication-induced protocol has a more complex tagging scheme than the coordi-

nated, its influence on performance was not perceptible. In experiments with more processes, the

communication-induced protocol would not scale as well since its tag includes an array with size

proportional to the total number of processes.

During the execution of the communication-induced protocol, no forced checkpoints were ob-

served since processes saved their states at similar times. To study the behavior of the protocol with

un-synchronized timers, tests were performed where processes would start to store their states one

minute apart. It was observed that after the first process terminated its checkpoint, it would induce

a checkpoint in the other processes almost immediately. Then, the other processes would skip the

scheduled checkpoint when the timers expired. The protocol incorporates several optimizations,

and one of them skips a basic checkpoint if a forced checkpoint was already taken in the same

interval. This optimization removed all the extra checkpoints, and as a result the failure-free over-

heads were much smaller. The cost of using this type of optimization is that processes loose their

autonomy to schedule their own checkpoints.

�When a process attempts to store the memory contents to disk, the operating system only initiates the operation,
and the actual writes are performed while the process continues to execute.

87



Overhead (sec)

0

100

200

300

400

500

600

700

BT LU SP Seismic1 Seismic4 PCCM2

Coordinated: 5 min.

Coordinated: 10 min.

Mesg-Logging: 5 min.
Mesg-Logging: 10 min.

Figure 5.2: Failure-free overheads.

The message logging protocol showed the worst performance due to the high message traffic of

some applications (see Table 5.6). In two of the applications, BT and SP, the log had to be written

to disk more than once between checkpoints. Since the log size is 50 MBytes, the performance

costs due to the log and checkpoints were in the same order of magnitude. For longer checkpoint

intervals the importance of log handling becomes even more significant, not only in terms of ex-

ecution time, but also in terms of disk space. For instance, with an interval of one hour, the SP

application would require more than 4.5 GBytes to hold the log. Figure 5.2 displays the overheads

for checkpoint intervals of five and ten minutes. As expected, in the coordinated protocol the over-

heads were reduced close to half when the interval doubled. In the message logging protocol the

performance was not improved as much, since the logging costs stayed the same.

Elnozahy and Zwaenepoel have analyzed the performance of message logging and coordinated

protocols [113]. Even though many characteristics distinguish the two studies, e.g., hardware and

applications, we reached the same basic conclusion that coordinated protocols introduce smaller

88



Table 5.8: Recovery Times for the Coordinated and Message Logging Protocols (values in sec).

Phase 1 Phase 2 Phase 3 / Total
Coord Mesg-L Coord Mesg-L Coord Mesg-L

BT 1.4 (0.3) 1.1 (0.3) 3.1 (0.3) 3.1 (0.2) 289.7 ( 3.8) 298.2 ( 1.3)
LU 0.8 (0.2) 1.1 (0.5) 2.1 (0.4) 2.4 (0.5) 308.1 (21.8) 285.4 (12.0)
SP 1.4 (0.6) 1.2 (0.5) 4.4 (2.1) 3.5 (0.5) 290.7 (11.8) 296.8 ( 8.1)
PCCM2 0.7 (0.0) 1.1 (0.5) 2.5 (0.0) 3.2 (0.5) 272.8 ( 7.7) 293.3 (16.7)

overheads than message logging protocols. Our experiments, however, show that the performance

gap between protocols has become wider.

Table 5.8 displays the recovery times for the coordinated and message logging protocols. No

values are presented for the communication-induced since it emulated the coordinated protocol. In

the experiments, processes were allowed to create their first checkpoint, and then, when they were

about to save their second checkpoint, one of the processes would exit. Next, the fault detection

would initiate recovery. The values for Phase 1 correspond roughly to four operations: ask the

checkpoint protocol which processes have to roll back, spawn the helper program, start the new

process, and exchange configuration information. With the coordinated protocol, the first operation

is accomplished relatively fast since all process are required to roll back. The message logging

protocol takes a little longer since processes have to determine if roll back is possible. Phase 2

corresponds to the interval starting from the fault detection until the application restarts execution.

Coordinated protocols can tolerate new failures when this phase finishes. The last columns display

the total time until the application has re-executed all the lost work or the time until the end of log

replay.

89



Chapter 6

Conclusions

6.1 Summary

The thesis describes two variations of a new checkpoint protocol that uses time to coordinate

the creation of application checkpoints. The protocol is optimal in the sense that all types of direct

coordination, extra message exchanges and application's message tagging, have been removed.

The protocol also does a minimal number of accesses to stable storage, since it only executes

one write per process in each application checkpoint. Two procedures are used to implement

the protocol, one that saves the process states, and another that keeps the timers approximately

synchronized. The checkpoint creation procedure is executed locally by each process whenever a

timer expires. The re-synchronization procedure requires the cooperation of the processes, but is

executed infrequently. This procedure is also used to detect failures in the processor clocks that

might lead to incorrect behavior of the protocol.

Both protocol variations have their own advantages; the protocol with no-logging prevents the

existence of in-transit messages, avoiding the storage of this type of messages. This is accom-

plished by disallowing message sends during an interval before the checkpoint time. The size of

the interval is proportional to the maximum message delivery time. The protocol with logging

90



at the sender is more general since it does not require the assumption of small bounded message

deliveries. However, it needs to include all potential in-transit messages in the sender's checkpoint.

The thesis also presents a coordinated checkpoint protocol well adapted to the characteristics

of mobile environments. The protocol is able to save consistent recoverable global states even

when mobile hosts are disconnected, because processes create new checkpoints whenever a local

timer expires. A simple message tagging mechanism is used to keep the checkpoint timers approx-

imately synchronized. Two types of process checkpoints are kept by the protocol; soft checkpoints

are stored locally in the mobile host, and hard checkpoints are saved in stable storage. The proto-

col adapts its behavior to networks with different qualities of service by changing the number of

soft checkpoints that are created per hard checkpoint. When the mobile host is disconnected, the

protocol creates soft checkpoints to be able to recover from soft failures.

The thesis introduces and examines the effectiveness of a fault detection mechanism based on

the errors from the stream sockets. It explains in which circumstances the errors can be used to

locate four types of process failures, and it shows that all faults are detected as long as the live

processes try to communicate with the failed ones. Failures are found mainly due to two reasons:

first, in some cases, the faulty machine transmits a message informing the other TCPs about the

process termination. Second, if a live machine attempts to send a message to the failed one, then

it either receives a RST as response or it receives no answer until the connection times out. Fault

injection experiments were made during the execution of two parallel applications to determine the

coverage and latency of the fault detection mechanism. It was observed that most faults could be

found using only the errors from the socket layer. Depending on the type of fault that was injected,

detection occurred in an interval ranging from a few milliseconds for the kill faults to less than 9

minutes for the crash faults.

The thesis describes the design and implementation of RENEW, a tool that facilitates the de-

velopment and testing of checkpoint protocols on clusters of workstations. RENEW offers a

91



simple but powerful set of operations that allow the implementation of protocols with reduced

programming effort. To support a broad range of applications, RENEW exports, as its external

interface, the industry endorsed MPI interface. Several types of protocols were evaluated on the

RENEW environment using a variety of benchmarks. Two coordinated protocols, a two-phase

and the time-based with no logging, were compared on a 32-node partition of a CM5. It was

observed that the time-based protocol outperformed the other protocol. On a network of worksta-

tions connected by ATM, three protocols were tested: the time-based for mobile environments,

a communication-induced and an optimistic sender-based message logging. The experiments

showed that the communication-induced protocol emulated the behavior of the coordinated pro-

tocol, with comparable performance. The message logging displayed significant overheads for a

few applications because of the high traffic rate. Failure recovery experiments indicate that both

the coordinated and message-logging protocols require approximately the same amount of time to

restore the state of the applications.

6.2 Future Directions

Most of the performance studies on checkpointing that have been described in the literature,

including our experiments, use complete or kernels of parallel applications. This type of applica-

tions has significant requirements in terms of computing power and a wide range of frequencies

and types of communication patterns, but has modest interactions with the outside world�. Parallel

applications usually read some configuration parameters at the beginning, then do some computa-

tion, and at the end write the results. Nowadays, a large number of applications are appearing, for

example web-based or cooperative applications, that have many and different types of exchanges

with the outside world, but much less requirements on the machines or network. These applica-

�The outside world is all systems and processes that do not belong to the application.

92



tions are not likely to be well supported by traditional checkpoint protocols or characterized by the

previous performance studies.

Applications are also changing in the way they are implemented and on the systems where

they are being run. Multi-threading is becoming common, which poses several difficulties to mes-

sage logging protocols. The number of non-deterministic events will rise considerably since the

outcome of interactions among the threads, for instance contention for a lock, will also have to

be replayed during recovery. Multiple types of communication paradigms will be used by the ap-

plications, for example message passing and shared memory. Current clusters of workstations are

starting to include both uniprocessors and shared-memory multiprocessors. In this type of environ-

ment, processes located in different machines will continue to exchange data using messages, but

processes executing in the same multiprocessor will tend to communicate using shared memory

because it is faster. Checkpoint protocols will also have to be adapted to support more dynamic

environments like mobile systems.

93



References

[1] S. J. Mullender, Distributed Systems, Addison-Wesley, 1993.

[2] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of dis-
tributed systems”, ACM Transactions on Computer Systems, vol. 3, no. 1, pp. 63–75, Febru-
ary 1985.

[3] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance of consistent check-
pointing”, in Proceedings of the 11th Symposium on Reliable Distributed Systems, October
1992, pp. 39–47.

[4] J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent checkpointing under
unix”, Usenix Winter 1995 Technical Conference, pp. 213–233, January 1995.

[5] D. B. Johnson and W. Zwaenepoel, “Sender-based message logging”, in Proceedings of the
17th International Symposium on Fault-Tolerant Computing, July 1987, pp. 14–19.

[6] N. H. Vaidya, “On checkpoint latency”, in Proceedings of the Pacific Rim International
Symposium on Fault-Tolerant Systems, December 1995, pp. 60–65.

[7] N. H. Vaidya, “Another two-level failure recovery scheme: Performance impact of check-
point placement and checkpoint latency”, Texas A&M University, Tech. Rep. 94-068 (re-
vised), January 1995.

[8] G. Barigazzi and L. Strigini, “Application-transparent setting of recovery points”, in Pro-
ceedings of the 13th International Symposium on Fault-Tolerant Computing, June 1983, pp.
48–55.

[9] F. Chao and J. R. Kenevan, “A non-fifo checkpointing protocol for distributed systems”, in
Proceedings of the 1991 Symposium on Applied Computing, April 1991, pp. 266–272.

[10] F. Cristian and F. Jahanian, “A timestamp-based checkpointing protocol for long-lived dis-
tributed computations”, in Proceedings of the 10th Symposium on Reliable Distributed
Systems, September 1991, pp. 12–20.

[11] J. L. Kim and T. Park, “An efficient protocol for checkpointing recovery in distributed
systems”, IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 8, pp. 231–
240, August 1993.

94



[12] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems”, IEEE
Transactions on Software Engineering, vol. SE-13, no. 1, pp. 23–31, January 1987.

[13] S. Krishnan and L. Kale, “Efficient, language-based checkpointing for massively parallel
programs”, Parallel Programming Laboratory, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, Tech. Rep. TR94-2, 1994.

[14] P.-J. Leu and B. Bhargava, “Concurrent robust checkpointing and recovery in distributed
systems”, in Proceedings of the Fourth International Conference on Data Engineering,
February 1988, pp. 154–163.

[15] P.-J. Leu and B. Bhargava, “A model for concurrent checkpointing and recovery using
transactions”, in Proceedings of the 9th International Conference on Distributed Computer
Systems, 1989, pp. 423–430.

[16] K. Li, J. F. Naughton, and J. S. Plank, “An efficient checkpointing method for multicomput-
ers with wormhole routing”, International Journal of Parallel Programming, vol. 20, no. 3,
pp. 23–31, 1991.

[17] L. Lin and M. Ahamad, “Checkpointing and rollback-recovery in distributed object based
systems”, in Proceedings of the 20th International Symposium on Fault-Tolerant Comput-
ing, June 1990, pp. 97–104.

[18] P. Ramanathan and K. G. Shin, “Use of common time base for checkpointing and rollback
recovery in a distributed system”, IEEE Transactions on Software Engineering, vol. 19, no.
6, pp. 571–583, June 1993.

[19] L. M. Silva and J. G. Silva, “Global checkpointing for distributed programs”, in Proceedings
of the 11th Symposium on Reliable Distributed Systems, October 1992, pp. 155–162.

[20] S. H. Son and A. K. Agrawala, “A non-intrusive checkpointing scheme in distributed
databases systems”, in Proceedings of the 15th International Symposium on Fault-Tolerant
Computing, June 1985, pp. 99–104.

[21] S. H. Son and A. K. Agrawala, “Distributed checkpointing for globally consistent states of
databases”, IEEE Transactions on Software Engineering, vol. 15, no. 10, pp. 1157–1167,
October 1989.

[22] Y. Tamir and C. H. Séquin, “Error recovery in multicomputers using global checkpoints”,
in Proceedings of the International Conference on Parallel Processing, August 1984, pp.
32–41.

[23] Y. Tamir and T. M. Frazier, “Application-transparent process-level error recovery for multi-
computers”, in Proceedings of the Twenty-Second Annual Hawaii International Conference
on System Services, January 1989, pp. 296–305.

95



[24] Z. Tong, R. Y. Kain, and W. T. Tsai, “A low overhead checkpointing and rollback recov-
ery scheme for distributed systems”, in Proceedings of the 8th Symposium on Reliable
Distributed Systems, October 1989, pp. 12–20.

[25] K. Venkatesh, T. Radhakrishnan, and H. F. Li, “Optimal checkpointing and local recording
for domino-free rollback recovery”, Information Processing Letters, vol. 25, pp. 295–303,
July 1987.

[26] Z. M. Wójcik and B. E. Wójcik, “Fault tolerant distributed computing using atomic send-
receive checkpoints”, in Proceedings of the Second IEEE Symposium on Parallel and Dis-
tributed Processing, December 1990, pp. 215–222.

[27] L. M. Silva and J. G. Silva, “On the optimum recovery of distributed systems”, in Proceed-
ings of the EUROMICRO Conference, September 1994, pp. 704–711.

[28] B. Bhargava and S.-R. Lian, “Independent checkpointing and concurrent rollback for recov-
ery in distributed systems – An optimistic approach”, in Proceedings of the 7th Symposium
on Reliable Distributed Systems, October 1988, pp. 3–12.

[29] D. Briatico, A. Ciuffoletti, and L. Simoncini, “A distributed domino-effect free recovery
algorithm”, in Proceedings of the 4th Symposium on Reliable Distributed Systems, October
1984, pp. 207–215.

[30] B. Janssens and W. K. Fuchs, “Relaxing consistency in recoverable distributed shared mem-
ory”, in Proceedings of the 23rd International Symposium on Fault-Tolerant Computing,
June 1993, pp. 155–163.

[31] K. H. Kim, J. H. You, and A. Abouelnaga, “A scheme for coordinated execution of indepen-
dently designed recoverable distributed processes”, in Proceedings of the 16th International
Symposium on Fault-Tolerant Computing, July 1986, pp. 130–135.

[32] D. L. Russell, “State restoration in systems of communicating processes”, IEEE Transac-
tions on Software Engineering, vol. SE-6, no. 2, pp. 183–194, March 1980.

[33] N. A. Speirs and P. A. Barrett, “Using passive replication in Delta-4 to provide depend-
able distributed computing”, in Proceedings of the 19th International Symposium on Fault-
Tolerant Computing, June 1989, pp. 184–190.

[34] G. Suri and B. Janssens W. K. Fuchs, “Reduced overhead logging for rollback recovery
in distributed shared memory”, in Proceedings of the 25th International Symposium on
Fault-Tolerant Computing, June 1995, pp. 279–288.

[35] Y.-M. Wang and W. K. Fuchs, “Lazy checkpoint coordination for bounding rollback prop-
agation”, in Proceedings of the 12th Symposium on Reliable Distributed Systems, October
1993, pp. 86–95.

96



[36] W. G. Wood, “A decentralised recovery control protocol”, in Proceedings of the 11th
International Symposium on Fault-Tolerant Computing, June 1981, pp. 159–164.

[37] K.-L. Wu and W. K. Fuchs, “Recoverable distributed shared virtual memory”, IEEE Trans-
actions on Computers, vol. 39, no. 4, pp. 460–469, April 1990.

[38] B. Randell, “System structure for software fault tolerance”, IEEE Transactions on Software
Engineering, vol. SE-1, no. 2, pp. 220–232, June 1975.

[39] A. Acharya and B. R. Badrinath, “Checkpointing distributed applications on mobile com-
puters”, in Proceedings of the Third International Conference on Parallel and Distributed
Information Systems, September 1994, pp. 73–80.

[40] D. B. Hunt and P. N. Marinos, “A general purpose Cache-Aided Rollback Error Recov-
ery (CARER) Technique”, in Proceedings of the 17th International Symposium on Fault-
Tolerant Computing, July 1987, pp. 170–175.

[41] K.-L. Wu, W. K. Fuchs, and J. H. Patel, “Error recovery in shared memory multiprocessors
using private caches”, IEEE Transactions on Parallel and Distributed Systems, vol. 1, no.
2, pp. 231–240, April 1990.

[42] D. K. Pradhan, P. Krishna, and N. H. Vaidya, “Recovery in mobile environments: De-
sign and trade-off analysis”, in Proceedings of the 26th International Symposium on Fault-
Tolerant Computing, June 1996, pp. 16–25.

[43] R. Baldoni, F. Quaglia, and P. Fornara, “Index-based checkpointing algorithm for au-
tonomous distributed systems”, in Proceedings of the 16th Symposium on Reliable Dis-
tributed Systems, October 1997, pp. 27–34.

[44] D. Manivannan and M. Singhal, “A low-overhead recovery technique using quasi syn-
chronous checkpointing”, in Proceedings of the International Conference on Distributed
Systems, May 1996, pp. 100–107.

[45] R. E. Strom, D. F. Bacon, and S. A. Yemini, “Volatile logging in n-fault-tolerant distributed
systems”, Proceedings of the 18th International Symposium on Fault-Tolerant Computing,
pp. 44–49, June 1988.

[46] M. L. Powell and D. L. Presotto, “Publishing: A reliable broadcast communication mech-
anism”, in Proceedings of the Nineth ACM Symposium on Operating System Principles,
October 1983, pp. 100–109.

[47] A. Borg, J. Baumbach, and S. Glazer, “A message system supporting fault tolerance”, in
Proceedings of the Nineth ACM Symposium on Operating System Principles, October 1983,
pp. 90–99.

[48] A. Goldberg, A. Gopal, K. Li, R. Strom, and D. Bacon, “Transparent recovery of Mach
applications”, in Proceedings of the Usenix Mach Workshop, July 1990, pp. 169–184.

97



[49] G. Richard III and M. Singhal, “Using logging and asynchronous checkpointing to imple-
ment recoverable distributed shared memory”, in Proceedings of the 12th Symposium on
Reliable Distributed Systems, October 1993, pp. 86–95.

[50] R. E. Strom and S. Yemini, “Optimistic recovery in distributed systems”, ACM Transactions
on Computer Systems, vol. 3, no. 3, pp. 204–226, August 1985.

[51] Y.-M. Wang, Y. Huang, and W. K. Fuchs, “Progressive retry for software error recovery in
distributed systems”, in Proceedings of the 23rd International Symposium on Fault-Tolerant
Computing, June 1993, pp. 138–144.

[52] L. Alvisi, B. Hoppe, and K. Marzullo, “Nonblocking and orphan-free message logging pro-
tocols”, in Proceedings of the 23rd International Symposium on Fault-Tolerant Computing,
June 1993, pp. 145–154.

[53] E. N. Elnozahy and W. Zwaenepoel, “Manetho: Transparent rollback-recovery with low
overhead, limited rollback and fast output commit”, IEEE Transactions on Computers, vol.
41, no. 5, pp. 526–531, May 1992.

[54] N. Neves, M. Castro, and P. Guedes, “A checkpoint protocol for an entry consistent shared
memory system”, in Proceedings of the Thirteenth Annual Symposium on Principles of
Distributed Systems, August 1994, pp. 121–129.

[55] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Castro, “Lightweight logging for lazy
release consistent distributed shared memory”, in Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation, October 1996.

[56] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, “Fault tolerance under UNIX”,
ACM Transactions on Computer Systems, vol. 7, no. 1, pp. 1–24, February 1989.

[57] D. B. Johnson and W. Zwaenepoel, “Recovery in distributed systems using optimistic
message logging and checkpointing”, Journal of Algorithms, vol. 11, no. 3, pp. 462–491,
September 1990.

[58] S. L. Peterson and P. Kearns, “Rollback based on vector time”, in Proceedings of the 12th
Symposium on Reliable Distributed Systems, October 1993, pp. 86–95.

[59] A. P. Sistla and J. L. Welch, “Efficient distributed recovery using message logging”, in Pro-
ceedings of the Eighth Annual Symposium on Principles of Distributed Computing, August
1989, pp. 223–238.

[60] S. W. Smith, D. B. Johnson, and J. D. Tygar, “Completely asynchronous optimistic recovery
with minimal rollbacks”, in Proceedings of the 25th International Symposium on Fault-
Tolerant Computing, June 1995, pp. 361–370.

[61] F. Cristian, “Reaching agreement on processor group membership in synchronous dis-
tributed systems”, Distributed Computing, vol. 4, pp. 175–187, 1991.

98



[62] F. Jahanian, R. Rajkumar, and S. Fakhouri, “Processor group membership protocols: Spec-
ification, design and implementation”, in Proceedings of the 13th Symposium on Reliable
Distributed Systems, October 1993, pp. 2–11.

[63] R. Bianchini and R. Buskens, “An adaptive distributed system-level diagnosis algorithm and
its implementation”, in Proceedings of the 21st International Symposium on Fault-Tolerant
Computing, June 1991, pp. 222–229.

[64] E. Elnozahy, D. Johnson, and Y.-M. Wang, “A survey of rollback-recovery protocols in
message-passing systems”, School of Computer Science, Carnegie Mellon University, Tech.
Rep. CMU-CS-96-181, October 1996.

[65] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The complete refer-
ence, MIT Press, 1996.

[66] N. Neves and W. K. Fuchs, “Using time to improve the performance of coordinated check-
pointing”, in Proceedings of the International Computer Performance & Dependability
Symposium, September 1996, pp. 282–291.

[67] N. Neves and W. K. Fuchs, “Coordinated checkpointing without direct coordination”,
in Proceedings of the International Computer Performance & Dependability Symposium,
September 1998.

[68] N. Neves and W. K. Fuchs, “Adaptive recovery for mobile environments”, in Proceedings
of the IEEE High-Assurance Systems Engineering Workshop, October 1996, pp. 16/1–16/8.

[69] N. Neves and W. K. Fuchs, “Adaptive recovery for mobile environments”, Communications
of the ACM, vol. 40, no. 1, pp. 68–74, January 1997.

[70] F. Cristian and C. Fetzer, “Probabilistic internal clock synchronization”, in Proceedings of
the 13th Symposium on Reliable Distributed Systems, October 1994, pp. 22–31.

[71] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.

[72] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger,
“Distributed fault-tolerant real-time systems: The Mars approach”, IEEE Micro, pp. 25–41,
1989.

[73] M. Chér�eque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron, “Active replication in
Delta-4”, in Proceedings of the 22nd International Symposium on Fault-Tolerant Comput-
ing, July 1992, pp. 28–37.

[74] G. H. Forman and J. Zahorjan, “The challenges of mobile computing”, Computer, vol. 27,
no. 4, pp. 38–47, April 1994.

[75] M. Nemzow, Implementing wireless networks, McGraw-Hill Series on Computer Commu-
nications. McGraw-Hill, Inc., New York, 1995.

99



[76] R. Katz et al., “The Bay Area Research Wireless Access Network (BARWAN)”, in Pro-
ceedings of the Spring COMPCON Conference, 1996.

[77] C. Perkins, “IP mobility support”, Internet Engineering Task Force, Internet Draft (work in
progress), February 1996.

[78] T. H. Lai and T. H. Yang, “On distributed snapshots”, Information Processing Letters, vol.
25, pp. 153–158, May 1987.

[79] V. Bharghavan, “Challenges and solutions to adaptive computing and seamless mobility
over heterogeneous wireless networks”, International Journal on Wireless Personal Com-
munications, 1996.

[80] Y.-M. Wang and W. K. Fuchs, “Optimistic message logging for independent checkpointing
in message-passing systems”, in Proceedings of the 11th Symposium on Reliable Distributed
Systems, October 1992, pp. 147–154.

[81] J. S. Plank, Efficient checkpointing on MIMD architectures, PhD thesis, Princeton Univer-
sity, June 1993.

[82] N. H. Vaidya, “A case for two-level distributed recovery schemes”, in Proceedings of the
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, May
1995, pp. 64–73.

[83] N. Neves and W. Kent Fuchs, “Fault detection using hints from the socket layer”, in
Proceedings of the 16th Symposium on Reliable Distributed Systems, October 1997, pp.
64–71.

[84] K. P. Birman and B. B. Glade, “Consistent failure reporting in reliable communications
systems”, Dept. of Computer Science, Cornell University, Tech. Rep. CS TR 93-1349, May
1993.

[85] W. R. Stevens, Unix Network Programming, Prentice Hall Software Series, 1990.

[86] J. Poster (ed.), “Transmission control protocol”, RFC 793, September 1981.

[87] J. G. Silva, J. Carreira, H. Madeira, D. Costa, and F. Moreira, “Experimental assessment
of parallel systems”, in Proceedings of the 26th International Symposium on Fault-Tolerant
Computing, June 1996, pp. 415–424.

[88] POV-Ray Team, Persistency of vision ray tracer (POV-Ray): User's Documentation, 1993,
http://povray.org.

[89] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A communication sub-system for
high availability”, in Proceedings of the 22nd International Symposium on Fault-Tolerant
Computing, July 1992, pp. 76–84.

100



[90] F. Cristian and F. Schmuck, “Agreeing on processor group membership in asynchronous
distributed systems”, Dept. of Computer Science and Engineering, University of California,
San Diego, Tech. Rep. CSE95-428, 1995.

[91] C. Fetzer and F. Cristian, “Agreeing on who is present and who is absent in a synchronous
distributed system”, in Proceedings of the 16th Symposium on Reliable Distributed Systems,
October 1997, pp. 157–164.

[92] K. H. Kim, H. Kopetz, K. Mori, E. H. Shokri, and G. Gruensteidl, “An efficient decentral-
ized approach to process-group membership maintenance in real-time LAN systems: The
PRHB/ED scheme”, in Proceedings of the 11th Symposium on Reliable Distributed Systems,
October 1992, pp. 74–83.

[93] A. Mishra, L. L. Peterson, and R. D. Schlichting, “Consul: A communication substrate for
fault-tolerant distributed programs”, Distributed Systems Engineering Journal, vol. 1, no.
2, pp. 87–103, 1993.

[94] A. M. Ricciardi and K. P. Birman, “Using groups to implement failure detection in asyn-
chronous environments”, in Proceedings of the 10th Annual ACM Symposium on Principles
of Distributed Systems, August 1991, pp. 341–351.

[95] L. Rodrigues, P. Verissimo, and J. Rufino, “A low-level processor group membership pro-
tocol for LANs”, in Proceedings of the 13th International Conference on Distributed Com-
puting Systems, May 1993, pp. 541–550.

[96] S. H. Hosseini, J. G. Kuhl, and S. M. Reddy, “A diagnosis algorithm for distributed comput-
ing systems with dynamic failure and repair”, IEEE Transactions on Computers, vol. C-33,
no. 3, pp. 223–233, 1984.

[97] R. Bianchini, K. Goodwin, and D. S. Nydick, “Practical application and implementation of
distributed system-level diagnosis theory”, in Proceedings of the 20th International Sympo-
sium on Fault-Tolerant Computing, June 1990, pp. 332–339.

[98] R. Bianchini, M. Stahl, and R. Buskens, “The Adapt2 on-line diagnosis algorithm for gen-
eral topology networks”, in Proceedings of GLOBECOM, December 1992, pp. 610–614.

[99] G. Masson, D. Blough, and G. Sullivan, “System diagnosis”, in Fault-Tolerant Computer
System Design, D. Pradhan, Ed., chapter 8, pp. 478–536. Prentice-Hall, 1996.

[100] S. Rangarajan, A. T. Dahbura, and E. A. Ziegler, “A distributed system-level diagnosis
algorithm for arbitrary network topologies”, IEEE Transactions on Computers, vol. 44, no.
2, pp. 312–334, 1995.

[101] E. P. Duarte and T. Nanya, “Hierarchical adaptive distributed system-level diagnosis applied
for SNMP-based network fault management”, in Proceedings of the 15th Symposium on
Reliable Distributed Systems, October 1996, pp. 98–107.

101



[102] M. A. Hiltunen, “Membership and system diagnosis”, in Proceedings of the 14th Sympo-
sium on Reliable Distributed Systems, September 1995, pp. 208–217.

[103] F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assignment problem on
diagnosable systems”, IEEE Transactions on Electronic Computing, vol. EC-16, no. 12, pp.
848–854, 1967.

[104] N. Neves and W. K. Fuchs, “RENEW: A tool for fast and efficient implementation of check-
point protocols”, in Proceedings of the 28th International Symposium on Fault-Tolerant
Computing, June 1998.

[105] A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and I. Puaut, “A recoverable dis-
tributed shared memory integrating coherence and recoverability”, in Proceedings of the
25th International Symposium on Fault-Tolerant Computing, June 1995, pp. 289–298.

[106] R. Netzer and J. Xu, “Adaptive message logging for incremental program replay”, IEEE
Parallel and Distributed Technology, vol. 1, no. 4, pp. 32–39, November 1993.

[107] B. Ramamurthy, S. Upadhyaya, and R. Iyer, “An object-oriented testbed for the evaluation of
checkpointing and recovery systems”, in Proceedings of the 27th International Symposium
on Fault-Tolerant Computing, June 1997, pp. 194–203.

[108] K. Goswami, R. Iyer, and L. Young, “Depend: A simulation-based environment for system
level dependability analysis”, IEEE Transactions on Computer, vol. 46, pp. 60–74, January
1997.

[109] A. Hein and K. Bannsch, “Simpar - A simulation environment for performance and depend-
ability analysis of user-defined fault-tolerant parallel systems”, University of Erlangen-
Nurnberg, Tech. Rep., 1995.

[110] J. Leon, A. L. Ficher, and P. Steenkiste, “Fail-safe PVM: A portable package for distributed
programming with transparent recovery”, School of Computer Science, Carnegie Mellon
University, Tech. Rep. CMU-CS-93-124, February 1993.

[111] J. Casas, D. Clark, P. Galbiati, R. Konuru, S. Otto, R. Prouty, and J. Walpole, “MIST: PVM
with transparent migration and checkpointing”, in 3rd PVM Users' Group Meeting, May
1995.

[112] G. Stellner, “CoCheck: Checkpointing and process migration for MPI”, in Proceedings of
the International Parallel Processing Symposium, April 1996.

[113] E. N. Elnozahy and W. Zwaenepoel, “On the use and implementation of message logging”,
in Proceedings of the 24th International Symposium on Fault-Tolerant Computing, August
1994, pp. 298–307.

102



[114] J. Plank, “Improving the performance of coordinated checkpointers on networks of work-
stations using RAID techniques”, in Proceedings of the 15th Symposium on Reliable Dis-
tributed Systems, October 1996, pp. 76–85.

[115] Y.-M. Wang and W. K. Fuchs, “Scheduling message processing for reducing rollback propa-
gation”, in Proceedings of the 22nd International Symposium on Fault-Tolerant Computing,
July 1992, pp. 204–211.

[116] Thinking Machines Corporation, Connection machine CM-5 technical summary, November
1993.

[117] N. Neves, A.-T. Nguyen, and E. L. Torres, “A study of a non-linear optimization problem
using a distributed genetic algorithm”, in Proceedings of the International Conference on
Parallel Processing, August 1996, vol. II, pp. 29–36.

[118] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow, “The NAS
Parallel Benchmarks 2.0”, NASA Ames Research Center, Tech. Rep. NAS-95-020, Decem-
ber 1995.

[119] C. Mosher and S. Hassanzadeh, “ARCO Seismic Processing Performance Evaluation Suite:
Seis 1.0 User's Guide ”, Tech. Rep., October 1993.

[120] J. Drake, R. Flanery, B. Semeraro, P. Worley, I. Foster, J. Michalakes, J. Hack, and
D. Williamson, “Parallel Community Climate Model: Description and User's Guide”, Oak
Ridge National Laboratory, Tech. Rep. ORNL/TM-12285, May 1996.

[121] NASA Ames Research Center, NPB 2 Detailed Results: Graphs and Raw Data, November
1997, http://science.nas.nasa.gov/Software/NPB2Results.

[122] R. Jain, The art of computer systems performance analysis, John Wiley and Sons, 1991.

103



Vita

Nuno F. Neves was born in Lisbon, Portugal, on March 13, 1969. He received a licenciatura

(5 year degree) and a Mestrado in Electrical and Computer Engineering in 1992 and 1995 from

the Universidade Técnica de Lisboa. In 1991 he joined INESC - Instituto de Engenharia, Sistemas

e Computadores where he worked in the Distributed Systems Group. Throughout his doctoral

studies he was supported with a Fulbright Scholarship and a PRAXIS XXI Fellowship, and from

1996 he was a research assistant at the Center for Reliable and High-Performance Computing at

the University of Illinois. During 1997 and 1998 he worked as a research consultant at the Elec-

trical and Computer Engineering Department at Purdue University. His research was recognized

with the William C. Carter award at the 1998 IEEE International Fault-Tolerant Computing Sym-

posium. His research interests include fault-diagnosis and recovery techniques, and tools for the

development of distributed applications. After completing his doctoral dissertation, he will return

to Portugal for a faculty position.

104


