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DEPARTAMENTO DE INFORMÁTICA
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Resumo

Com a evolução da era digital, garantir que o software seja robusto e seguro contra ameaças tornou-se

um desafio. Para abordar este assunto, é importante não só detetar, mas também mitigar eficazmente as

vulnerabilidades que este possa conter.

As ferramentas de análise estática, ou Static Analysis Tools (SATs) em inglês, podem ser conside-

radas uma solução viável, sendo capazes de realizar uma análise de baixo custo e também de rápida

execução, mas trazem consigo um incoveninente: produzem, de uma forma frequente, uma elevada

percentagem de falsos positivos e falsos negativos, o que leva a que os utilizadores não tenham muita

confiança nestas.

As técnicas tradicionais de análise estática baseiam-se num conjunto de regras pré-definidas elabo-

radas por peritos de segurança onde são incluı́das caracterı́sticas ou padrões associados às classes de

vulnerabilidades a detetar. Estas regras podem ser vistas como um conjunto de diretrizes que a ferra-

menta utiliza para examinar o código. Por exemplo, uma regra pode ser uma diretriz que obriga todas as

entradas que recebem dados de um utilizador a serem sanitizadas, exigindo assim que a ferramenta noti-

fique sempre que esta regra for violada. Apesar do elevado grau de conhecimento que um programador

ou profissional de cibersegurança possa ter sobre linguagens de programação, a tarefa de elaborar uma

ferramenta de análise estática não se torna menos propı́cia a erros ou menos complexa, o que faz com

que esta técnica possa ter limitações práticas. Para além disto, tal tarefa envolve um trabalho exaustivo

que normalmente resulta num elevado número de falsos negativos e falsos positivos.

Estudos recentes sugerem que as técnicas de Aprendizagem Automática (AA), ou, em inglês, Ma-

chine Learning (ML) podem ser utilizadas aquando da construção destas ferramentas, aumentando a

sua eficácia. Estas, ao contrário da análise estática tradicional, não dependem inteiramente de regras e

especificações pré-definidas pelos programadores. Em vez disso, a AA torna possı́vel uma aprendiza-

gem mais autónoma dos padões contidos nos dados e associados a vulnerabilidades, que é um processo

conseguido através do uso de algoritmos que podem identificar e aprender esses padrões. Estes padrões

são frequentemente extraı́dos de grandes bases de dados que incluem blocos de código potencialmente

vulneráveis, sendo utilizados pelo modelo de AA durante a sua fase de treino. Em vez de ser o perito de

segurança a criar as regras, a aprendizagem automática, juntamente com os dados, encarrega-se da tarefa.

Isto não só simplifica o processo, como também elimina a necessidade de os programadores criarem ou

atualizarem constantemente as regras.

A Aprendizagem Profunda (AP), ou em inglês, Deep learning (DL), um subconjunto da AA, conse-

gue ainda aumentar o nı́vel de automatização da aprendizagem dos dados. Esta metodologia também tem

vindo a crescer e baseia-se na utilização de várias camadas de redes neuronais artificiais, que consistem

numa estrutura de nós ou neurónios interligados que se assemelham ao cérebro humano. Esta estrutura é
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responsável pelo reconhecimento de padrões e pela interpretação de dados sem qualquer trabalho prévio,

incluı́ndo texto, imagem e, evidentemente, blocos de código. Em contraste com os métodos tradicio-

nais e abordagens de AA, a AP é capaz de eliminar completamente a necessidade de trabalho manual

efetuado pelos especialistas, uma vez que esta metodologia é capaz de extrair caracterı́sticas mais sig-

nificativas dos dados quando comparada com a AA. De maneira a conseguir obter o máximo proveito

destas estratégias, são necessárias bases de dados fiáveis para treinar os modelos de AA.

Esta dissertação tem por objetivo fornecer uma metodologia que permita obter estas bases de dados

robustas de maneira a que, por sua vez, possam ajudar no desenvolvimento de modelos de AA capazes

de identificar vulnerabilidades em programas. Para tal, criámos uma nova abordagem para a construção

destas bases de dados, que consiste na construção de uma aplicação web – o BugSpotting. Através

desta plataforma, conseguimos reunir classificações de excertos de código efetuadas por um elevado

número de pessoas. Esta metodologia de contribuição coletiva, chamada em inglês de crowdsourcing,

consiste num processo de resolução de um dado problema ou obtenção de serviços recorrendo ao uso da

inteligência humana para executar uma dada tarefa. Após a conclusão da tarefa em causa, a pessoa que a

completou pode receber algum tipo de compensação, como por exemplo, um pagamento monetário. Isto

nem sempre acontece, visto que os motivos que estão por detrás da execução de tais tarefas podem ir para

além da compensação monetária. Outras motivações podem ser a obtenção de reconhecimento social,

a contribuição para grandes projectos ou mero entertenimento. No caso da nossa solução, o objetivo

é obter classificações de excertos de código que possam conter vulnerabilidades web no contexto da

linguagem de programação PHP.

A razão para o uso desta metodologia prende-se com o facto de as SATs, como já mencionado anteri-

ormente, gerarem muito falsos positivos e negativos. Através da opinião de várias pessoas, pretendemos

mitigá-los de forma a que os resultados obtidos sejam de confiança. A plataforma do BugSpotting per-

mite aos os utilizadores classificar blocos de código, indicando se estes são (ou não) vulneráveis para

um dado conjunto de classes de vulnerabilidades. Estes ainda podem confirmar as suas classificações

efetuadas no passado, assim como consultar a sua reputação dentro do sistema.

Visto que esta plataforma se trata de uma aplicação web, esta pode ser dividida em dois componentes

principais: o frontend e o backend. Enquanto o primeiro pode ser entendido como a parte visual de uma

aplicação, a segunda, pelo contrário, não é visı́vel para o utilizador e é responsável pelo processamento

e armazenamento de dados, bem como pela comunicação com sistemas externos. Para a construção do

BugSpotting utilizámos diversas tecnologias tanto de frontend como de backend. A nı́vel de prototipa-

gem das páginas e secções do website, foi escolhido o Figma, que consiste numa ferramenta que permite

o design e teste de interfaces gráficas de aplicações; o React foi selecionado como biblioteca de frontend,

permitindo a implementação a nı́vel de código do design criado através do Figma. Utilizámos também o

.NET como framework de backend. Esta permitiu a implementação de uma API que é responsável por

responder aos pedidos provenientes do frontend. Por fim, optámos por utilizar a base de dados relacional

MySQL para a gestão dos dados.

O BugSpotting foi construı́do tendo em consideração várias boas práticas e princı́pios de desenvol-

vimento web. Uma das caraterı́sticas centrais nesta aplicação foi o desenvolvimento de dois algorit-

mos: primeiro, um algoritmo dedicado à filtragem de um bloco de código (com base num conjunto de

critérios). Uma vez obtidas classificações suficientes (de acordo com um limiar pré-definido), um se-
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gundo algoritmo é executado, responsável por determinar, através de consenso entre as classificações, a

classificação final do excerto de código.

Para avaliar a qualidade do BugSpotting, foi elaborado um questionário para recolher informação

sobre os vários aspectos da aplicação Web relacionados com a UI e a UX. A avaliação foi dividida em

duas partes: uma quantitativa e outra qualitativa. A primeira consistiu numa série de questões sobre a

aplicação em termos de UI e UX, as quais foram avaliadas pelos utilizadores numa escala de um a dez,

onde um indicava que os utilizadores discordavam veemente da afirmação e dez significava concordância

plena para com a afirmação. O feedback geral dos utilizadores tanto a nı́vel de UX como de UI foi ampla-

mente positivo, confirmando a usabilidade da plataforma, apesar de haver espaço para melhorias futuras

em certas áreas. Um exemplo de uma possı́vel melhoria que foi referida com alguma regularidade tanto

a nı́vel de UI como de UX foi a tabela de reputação do utilizador. Os participantes tinham dúvidas sobre

o funcionamento da reputação, alguns referindo que não conseguiram perceber bem como funcionava o

sistema de pontos.

Embora o nosso estudo não tenha sido capaz de chegar a um consenso sobre a classificação final de

cada fragmento de código devido a várias limitações, como a falta de participação dos utilizadores e o

atraso na disponibilização da aplicação ao público, é essencial referir que o objetivo principal de construir

uma plataforma funcional foi atingido com sucesso. O sistema está a funcionar corretamente, com poten-

cial para melhorias futuras. Ainda assim, com os dados que obtemos até ao momento, tiramos algumas

conclusões sobre as classificações dos excertos de código que se revelaram bastante promissoras.

Palavras-chave: vulnerabilidades em aplicações web, deteção de vulnerabilidades, análise estática,

aprendizagem automática, contribuição coletiva
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Abstract

With the evolution of the digital era, guaranteeing the robustness and security of software has become

a major concern. In order to address this subject, it is important to effectively not only detect, but also

mitigate software vulnerabilities. Static Analysis Tools (SATs) present a cost-effective solution to this,

being able to achieve a cheap and fast analysis, but often incur in a high percentage of false positives and

negatives. Recent studies suggest that machine learning (ML) techniques could enhance the effectiveness

of these tools, but this requires trustworthy and reliable datasets to train the ML models.

This dissertation aims to provide a way of create the aforesaid datasets that can help with the de-

velopment of ML models capable of identifying vulnerabilities in computer programs. To achieve this,

we propose a novel approach to construct these datasets, which consists in collecting inputs from the

crowd as a way of mitigating the false positives and negatives generated by the SATs, but at the same

time leverage from their deterministic classifications. This approach is applied within the context of

web vulnerabilities that appear in applications built with the PHP programming language. To facili-

tate crowdsourcing, we developed a user-friendly website called BugSpotting where users can classify

PHP code snippets, indicating whether these are vulnerable (or not vulnerable) to a set of vulnerability

classes. With the results obtained both from the crowd and the SATs, we are able to obtain a reliable and

trustworthy dataset comprised of accurately classified PHP code snippets.

We evaluated BugSpotting in terms of UI and UX and the results obtained were very satisfactory.

Moreover, although we were not able to reach a consensus about the code snippet’s final label, we still

manage to analyse the data we have collected until the moment, showing promising results.

Keywords: web application vulnerabilities, vulnerability detecion, static analysis, machine learning,

crowdsourcing
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Chapter 1

Introduction

Over the last few years, society has become more dependent on the digital world than ever. It is a known

fact that the reliance on the Internet and technology has immensely grown due to their ease of access

and usefulness. Along with this increase, cyberattacks have seen their numbers rise [34], and therefore,

there is an urgent need to prevent and detect these malicious actions. A dominant cause of this issue

is the poorly designed software that is often released for production environments without being tested

properly for security, leaving various kinds of vulnerabilities in their code. These vulnerabilities can

have different flavours, such as coding errors, flaws in the implemented logic or failure to comply with

good programming practices. All the aforementioned issues can contribute to an attacker conducting

malicious activities that can lead to serious consequences for the victim. For instance, an individual can

face identity theft and fraud, and companies can incur major financial losses. Taking it even further, it

can lead to a public lack of trust in digital systems. Hence, it is safe to admit that addressing software

vulnerabilities is a crucial aspect of cybersecurity and by identifying and emending these, it becomes

possible to significantly reduce the chances of successful cyberattacks.

In this sense, it is possible to detect and prevent vulnerable code by resorting to several techniques.

These can be divided into three main categories: static analysis, dynamic analysis, and hybrid analysis

[42]. The first one mentioned is a type of analysis that consists in the inspection of the source code or

bytecode without the actual execution of the program. Dynamic analysis is the testing and evaluation of

a program by executing the latter in real time. It can be beneficial since it is able to find vulnerabilities

that might not be visible in a static analysis but can be detected when a specific input is used to run

the program. Finally, the hybrid analysis technique is a combination of the both already mentioned. It

leverages the strengths of each one to provide a more comprehensive analysis of the code.

Furthermore, recent studies show that it is also possible to locate vulnerabilities in programs through

the use of machine learning (ML) strategies [26]. These ML techniques learn from patterns in data and

based on these, they are capable of predicting vulnerabilities in new or unseen code snippets (i.e., small

programs) – without the need of being explicitly programmed to. Moreover, these ML techniques often

have an algorithm behind: it is the algorithm that will learn from these patterns and will be able to discern

whether a given code snippet is indeed vulnerable or not.

In order to achieve the above stated, ML strategies typically use a dataset containing code snippets

to train the model [12]. The quality and reliability of these datasets significantly impact the ML model’s

performance. For instance, if the dataset contains a high percentage of bias in the data and the labeling

1
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is mostly inaccurate, it becomes obvious that the quality of the derived ML model will be deteriorated,

resulting in imprecise predictions. Therefore, the reliability and accuracy of a dataset are crucial for

achieving accurate vulnerability detection results. The more reliable and unbiased the dataset, the more

likely the ML model will effectively identify vulnerabilities in code snippets.

Furthermore, a current problem is the lack of well founded and dependable datasets, since the existing

ones often suffer from wrong labels and poor vulnerability descriptions [31]. Despite the aforementioned,

it is still possible to take advantage of the available datasets, since this contain code snippets that can

be analysed in order to derive new datasets. In this regard, one widely used dataset in this domain is

the Software Assurance Reference Dataset (SARD) [14], a project supported by the National Institute of

Standards and Technology (NIST). This dataset ranges from simple code snippets to production software

and contains more than 450,000 test cases. It supports many programming languages, including JAVA,

C, C++, C# and PHP, being able to cover more than 150 classes of weaknesses. As such, it has been

widely used as a benchmark to test vulnerability detection methods.

Although there are some real-world examples of code snippets in SARD, it is worth mentioning that

the majority of these programs are synthetic [15], i.e., they do not correspond to real-world software.

Such a synthetic dataset can become less valuable in terms of data representation. For instance, there is

the risk that the ML model will be less general as it will be restricted to basic and impracticable code

snippets which often do not occur in real-world software, ending up being trained for those patterns

only [19]. Although, at a first glance, this may pose a potential disadvantage, there are several benefits

that SARD offers. SARD ensures that the vulnerabilities are self-contained within the code snippets

and each one of these only possesses relevant lines of code, thereby making the learning process more

efficient. Moreover, the examples provided by SARD are often specifically tailored for evaluating the

effectiveness of analysis tools. It provides both vulnerable and non-vulnerable code snippets in order to

preserve a balanced dataset. As already mentioned before, with a vast universe of code examples from

many programming languages, SARD supplies researchers and developers with the opportunity to select

and adapt their testing to meet the intended requirements.

1.1 Motivation

The aforementioned observations converge to the necessity of a novel strategy for building reliable and

accurate datasets. Hence, this project proposes the construction of an infrastructure (website) that will

support the creation of vulnerability datasets with code snippets, which will be labeled as vulnerable (or

not vulnerable) to a certain class of vulnerability. The code snippet labeling will focus on vulnerabilities

in web applications written in PHP, such as SQL Injection (SQLi) and Cross-site Scripting (XSS). The

decision to focus on web vulnerabilities in the PHP programming language is a consequence of its major

prevalence in the field of web applications. More precisely, it supports more than 80% of the top ten

million websites [22], which include globally recognized platforms such as Tesla, Wikipedia, Tumblr,

among others. Despite its magnitude, PHP is far from being flawless in terms of security design. The

language is prone to numerous forms of attacks that can potentially lead to significant security breaches,

data compromise and potential manipulation of server functionality. The problems described can be

explained by PHP’s poor security design, which allows numerous entry points that attackers can leverage
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from in order to inflict harm to the web application. In fact, the language’s inconsistent and poorly

implemented APIs make it prone to programming errors that can lead to vulnerabilities like the ones

previously mentioned. Given its extensive use throughout the web and the problems above stated, these

make PHP a suitable candidate for security improvements.

Considering the problems highlighted above, it becomes clear that a fast and cost-efficient method

for identifying vulnerabilities in programs is necessary. One such approach is resorting to static analysis

tools (SATs). These tools can be a feasible and valuable option when it comes to improving security.

They have the capacity to identify potential issues early in the development process. This early detection

helps preventing costly and time-consuming debugging efforts, offering the possibility of fixing the issues

before the software goes into production. As a result, possible security breaches can be mitigated since

the developer is aware of the vulnerabilities. Also, they can be used to enforce certain policies, such as

coding standards and practices within a development team. This allows for a better control of quality and

security of the software.

Although the security improvements offered by these tools are of great value, one must be aware of

the drawbacks that arise. One of the disadvantages in the employment of these tools is the possibility

of the analysis becoming time-consuming and cumbersome. Despite the fact that the analysis itself is

automated and can quickly scan a vast code base, it still requires human interpretation of the results. This

can be time-consuming and may delay the development process. Moreover, these tools are also limited

in the sense that they can only identify possible vulnerabilities without executing the programs. The

inability of detecting runtime errors can be seen as an incomplete analysis to the application, which can

leave some undiscovered vulnerabilities. Finally, these tools often produce false positives, which can be

misleading and require extra time and effort. In addition, these tools can also produce false negatives,

meaning they fail to detect actual vulnerabilities in the program.

As previously mentioned, ML techniques offer a viable way when it comes to the discovering of

vulnerabilities. Their ability to make predictions on new or unseen code snippets based on trained al-

gorithms makes them a powerful option in terms of static analysis. However, as we already noted, the

effectiveness of ML techniques mostly depends on the quality of the datasets their models are trained

on. The reason for this is quite straightforward: ML algorithm’s prediction are based on the patterns

identified in the training data. As a result, any biases or inaccuracies that the dataset may contain will be

reflected directly in the prediction model. A simple example would be a dataset that is composed of code

snippets that are incorrectly labeled. The trained model could fail to identify real vulnerabilities (false

negatives) or even recognize harmless code as vulnerable (false positive). Furthermore, if the dataset

does not include a wide range of possible scenarios (in this case, multiple code snippets that are both

vulnerable and not vulnerable to various vulnerability types) will result in an algorithm that performs

well on some data but poorly on other. For instance, if the dataset is mostly composed of code snip-

pets containing XSS vulnerabilities, it is natural that the algorithm will under perform when it comes

to other vulnerability types. Hence, the necessity of accurate, unbiased and sound datasets is of critical

importance for an ML model predict in a precise and trustworthy manner.

As earlier discussed, the PHP code samples will have to be labeled. However, due to the frequency

of false positives and negatives generated by SATs, the task of producing accurate and trustworthy labels

becomes less feasible, requiring an alternative strategy. Therefore, to reduce this potential errors and
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enhance the accuracy of vulnerability detection, the classification process could be complemented with

crowdsourcing. This methodology consists in using volunteers to perform a task which, in this case,

would be the labeling of PHP code snippets as vulnerable or not vulnerable for a given vulnerability

class.

To achieve such complementing and contribution of SATs, a web application will be built in order

to allow the users to classify the code snippets present in the dataset (i.e., the web application database),

by identifying the class and location of possible vulnerabilities these may (or may not) contain. Our

approach will leverage the fact that SATs can, in a quick and inexpensive way, identify the class and

location of a possible vulnerability in a code snippet, while combining the efforts of a large group of

volunteers to further label the code snippets in order to ensure that the false positives and negatives

produced by the SATs are mitigated.

1.2 Proposed Goal

As described in the previous section, the need for a robust, trustworthy and accurate dataset is crucial to

train the ML models so that vulnerabilities present in PHP code are discovered in an accurate way. Thus,

the primary goal of this project is to develop a novel strategy to create reliable datasets, with accurately

labeled code snippets.

In order to accomplish the latter, we will base ourselves in two methodologies: the use of SATs

and crowdsourcing. More specifically, we aim to create a new strategy for building datasets which will

be further used to train ML models, with the ultimate goal of identifying vulnerabilities in PHP code

more accurately. We leverage the fact that SATs are able to provide, in a rapid and cost-effective way,

classifications for the code snippets present in the database (labeling them as vulnerable or not vulnerable

for a given vulnerability class) and, to mitigate the possible false positives and false negatives that these

tools may generate, we resort to crowdsourcing, where we take advantage of the collective intelligence

to also classify the code snippets. By following this procedure, we expect to reduce the percentage of

errors produced by the SATs.

The incorporation of these two strategies will not only enhance the trustworthiness of the dataset

but will also allow a more effective machine learning model capable of pinpointing vulnerabilities with

higher precision.

The construction of a web application – BugSpotting – allows the employment of both aforemen-

tioned strategies. On the one hand, users will be able provide their classifications about the code snip-

pets. On the other hand, the platform itself will also be responsible for executing an SAT and combine

the results from both methodologies, being able to achieve more precise labels.

The results obtained about the labels, although not concrete, show promising indicators that the

platform is working correctly. Also, most of the opinions obtained from the users about the website’s UI

and UX components were very positive, verifying the effectiveness and credibility of BugSpotting.

1.3 Contributions

Taking into consideration what has been stated, this project offers the following contributions:
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1. A web application that lets the user classify PHP code snippets, indicating whether they are vul-

nerable or not. The user will have a reputation associated that reflects the level of his expertise

when performing the classification, which will be taken into consideration and have more or less

an impact on the code snippet’s final labeling result.

2. An algorithm that will choose the code slice to be sent to the user based on a set of criteria (e.g.,

number of total classifications). The algorithm will also be able to reach a consensus in order to

determine the PHP code snippet’s final label by merging the classifications obtained from the tools

and the workers.

3. A data model, representing the entities that constitute the system’s database (and how they relate

to one another), which will record all the classifications and information of the code snippets.

1.4 Document Structure

The document is organized in the following structure:

• Chapter 2 – Background and Related Work: This chapter provides necessary background infor-

mation and key concepts related to vulnerabilities in code, static analysis tools, datasets, machine

learning and crowdsourcing. It also presents related works in the field of vulnerability detection,

static analysis tools and existing datasets.

• Chapter 3 – Bugspotting: This chapter describes the proposed web application – BugSpotting –

focusing on its requisites and both system’s modelling and data model.

• Chapter 4 – Implementation: This chapter delves into the details of the implementation process

of BugSpotting, discussing the technical aspects of the web application.

• Chapter 5 – Evaluation: This chapter presents the methods and metrics used to evaluate the

performance and reliability of BugSpotting.

• Chapter 6 – Conclusion: This chapter concludes the dissertation by summarizing the findings,

discussing the limitations, and suggesting future improvements and features.





Chapter 2

Background and Related Work

This chapter provides the concepts required to understand the problem addressed in this thesis and thus,

the proposed solution. It starts by presenting the definition of vulnerability along with the comprised

vulnerability classes in Section 2.1. Next, in Section 2.2, static analysis is defined followed by an ex-

planation of crowdsourcing in Section 2.3. In Section 2.4, we tackle the dataset construction topic,

presenting the use case of the SARD dataset. Finally, in Section 2.5, we present the related work.

2.1 Vulnerability Classes

In accordance with NIST [38], a vulnerability is a weakness in an information system, system security

procedures, internal controls, or implementation that could be exploited by a threat source. From this

definition, it is possible to derive that if left unattended, vulnerabilities can open many doors to potential

successful attacks.

The impact that may arise from vulnerabilities can lead to catastrophic consequences. For instance,

vulnerabilities can grant an intruder unauthorized access to sensitive information, disrupt the system’s

usual operations and, in extreme situations, concede full control of the system to the attacker. Conse-

quently, problems like financial loss, reputation damage, and even psychological effects can escalate,

posing a serious threat to the organizations [23].

Hence, it becomes critical to take action and identify the vulnerabilities in the system in order to

prevent and mitigate them. To develop effective solutions, it is first necessary to understand in what the

vulnerabilities consist of. In the next subsections, we will focus on eight particular types of vulnerabilities

that our solution targets. These are specifically related to web vulnerabilities that are present in web

applications developed in the PHP programming language.

2.1.1 SQL Injection

An SQL Injection (SQLi) is described as a type of attack where the opponent manipulates SQL queries

by placing malicious input in the statements (by using SQL keywords, operators or metacharacters). This

type of attack can have serious consequences if well executed by the attacker. It provides the capability to

access sensitive information, manipulate this data through insertion, modification, or removal and even

allow the execution of administrative tasks on the database, such as shutting it down. In some cases, it

7
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might enable the attacker to read specific files on the Database Management System (DBMS) file system

or issue commands to the operating system.

It is worth mentioning that this type of attack is particularly common in the PHP programming

language. This is justified by the fact the applications powered by this language use older interfaces

that often lack protection against this type of exploit [11], as for example, the use of the mysql query

function.

In order to prevent against this type of attack, one can resort to several strategies. The most common

and effective one is the use of parameterized queries (also known as prepared statements). This approach

requires the developer to first define all SQL code, then pass each parameter to the query separately.

This separation process enables the database to discern between the actual code (the query) and the

data (inputs), making it less likely for an attacker to successfully damage the system. Another well

known and commonly used way of preventing SQL Injections is by using escaping. This strategy is

quite straightforward: it consists in adding an escape character before any special characters in the SQL

statements, preventing them from being interpreted in a dangerous manner. This strategy is employed by

sanitization functions offered by PHP, e.g., mysqli escape string function.

1 <?php
2 // Connect to database
3 $conn = new mysqli("localhost", "username", "password", "database");
4

5 // Unsafe SQL query
6 $user_id = $_GET['user_id'];
7 $sql = "SELECT * FROM users WHERE id = $user_id";
8

9 $result = $conn->query($sql);
10 ?>

Figure 2.1: Example of a PHP code snippet vulnerable to SQL

The code snippet in Figure 2.1 depicts the scenario of an SQL injection attack. The main issue here

is the direct use of a value supplied by the user ($ GET[’user id’]) in the SQL query. This allows the

manipulation of the user id parameter in the URL to execute malicious SQL commands.

2.1.2 Cross-Site Scripting

Cross-site Scripting (XSS) is depicted as a type of web attack where malicious code is sent to the victim’s

computer and executed in the browser (in the form of a script), as part of an interaction with a vulnerable

web application. This type of attack can have severe consequences, allowing the attacker to steal sensitive

data such as session cookies, perform actions on behalf of the victim and even rewrite contents of the

webpage. There are three variants of XSS attacks: reflected XSS (or non-persistent), stored XSS (or

persistent), and finally, DOM-based XSS.

The first one mentioned can occur when the malicious script is part of an HTTP request that is

reflected back to the user, triggering the script to execute. This happens when a user is tricked into

clicking a malicious link. To prevent reflected XSS, one of the most sound techniques is to validate

the user inputs. User input should be treated as untrusted no matter the source and a mechanism that

checks against grammatical and semantic requirements should be implemented. Another good technique

is output encoding or escaping, which ensures that any user input data is safely rendered in the browser,
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preventing it from being interpreted as malicious code. Additionally, the formulation of a content security

policy can be beneficial. These policies are defined in the HTTP response headers and instruct the

browser on trusted content sources, for instance, to block the execution of scripts for specific domains.

Stored XSS is a type of XSS vulnerability where the malicious script is permanently stored on the

target server (e.g., blog, database). This means that the server, at certain points, delivers the malicious

script to any user who accesses the relevant application page or section (e.g., a blog post application).

The script is not injected directly by the attacker into the victim’s browser but instead stored on the server

and delivered to users in the course of normal browsing, and thus executed in the victim’s browser. The

techniques used to prevent this type of attack are similar to the ones used in reflected XSS: it is crucial

to inspect the user’s input. User input should always be treated as untrusted and should be validated or

sanitized. Moreover, output encoding and escaping also helps guaranteeing malicious content (in this

case, the scripts stored in the server) is not executed in the victim’s browser. Finally, the implementation

of content security policies is also useful: they can prevent the attacker from injecting malicious scripts

from external sources.

Finally, there is DOM-based XSS, a type of attack in which the malicious script is part of a web

page’s client-side script and is executed due to improper user input validation. In this attack, the payload,

or malicious code, is executed as a result of modifications to the Document Object Model (DOM) en-

vironment in the victim’s browser. A common form of DOM-based XSS involves manipulating a URL

parameter in such a way that the DOM is deceived into executing a malicious script injected as part of

the URL. Counter measures include the ones previously mentioned for other XSS types, with additional

focus on the use of safer JavaScript APIs.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Welcome Page</title>
5 </head>
6 <body>
7 <form method="post" action="">
8 <label for="username">Enter your username:</label>
9 <input type="text" id="username" name="username">

10 <input type="submit" value="Submit">
11 </form>
12 <?php
13 $username = $_GET['username'];
14 echo "Welcome, " . $username;
15 ?>
16 </body>
17 </html>

Figure 2.2: Example of a PHP code snippet vulnerable to XSS

The code snippet in Figure 2.2 is vulnerable to a XSS attack. This example shows that the web page

includes a form that will be completed by the user. The issue is the lack of sanitization of the user input.

The PHP script dynamically outputs a welcome message that is dependent on the user’s input, without

proper validation. A malicious user could inject JavaScript code in the place of a valid username, which

would end up being executed in the browser of someone visualizing the page.
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2.1.3 Remote File Inclusion

A Remote File Inclusion (RFI) is an attack in which the attacker takes advantage of dynamic file include

mechanisms in web applications. The objective is to deceive the vulnerable web application into includ-

ing malicious remote files, which often take the form of harmful code. For instance, the adversary could

include, in the URL of the vulnerable application, the address where the malicious code is located and

since there will be no input sanitization, the vulnerable application will end up fetching (including) the

file and consequently executing it.

To prevent this type of vulnerability, one can resort to various techniques. The most common and

effective one is the sanitization and validation of input. This ensures that the data received conforms with

the expected format. Moreover, it is also possible to apply a simple strategy which consists of disabling

file inclusions. This can be done at language level. In addition, permission restrictions can be enforced

in the application itself. By employing these, the attacker can not force some operations, such as the

downloading and executing remote files.

2.1.4 Local File Inclusion

A Local File Inclusion (LFI) is very similar to the RFI vulnerability explained above. The logic is the

same but the difference resides in the fact that the attacker can only include files in the local machine.

For example, instead of relying in a URL (the remote location of the malicious file), this technique will

leverage on the path to the harmful file as input. This attack can potentially enable an attacker to execute

code, access sensitive information, or manipulate files on the server, depending on the permissions and

type of file that is included.

In order to prevent this exploit, one can apply the same counter measures that were listed in the RFI

case.

2.1.5 Directory Traversal

A Directory Traversal (DT), also known as Path Traversal, has its basis on the Remote and Local File

Inclusion attacks. Although there will be no execution of malicious code, the attacker can still compro-

mise the system. The attacker will manipulate the URL of the request by inserting the path of some

critical local file, tricking the vulnerable application into returning its contents. The sensitive content

that could be exposed by such an attack can vary, including source code files, logs, the server’s list of

users, amongst others. This type of attack, although it may seem less dangerous due to the absence of

code execution, can still cause serious damage by leaking confidential information.

To prevent this threat, it is crucial to validate the user input. It should conform to the expected format

and, most importantly, length. Another technique that can be use to mitigate this attack is the use of safe

APIs. Some programming languages help the developer with the management of file paths and names in

a safer manner. Another strategy would be the sanitization of user input. This includes the removing or

encoding of special characters that could be used to traverse directories (e.g., ”..”, ”/” and ”.”).
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2.1.6 Source Code Disclosure

A Source Code Disclosure (SCD) attack consists in obtaining the vulnerable web application’s source

code. This type of vulnerability allows the adversary to inspect the source code and thus, get a better

understanding of the server’s logic. This allows the preparation of a more dangerous posterior attack. As

mentioned before, one of the techniques for obtaining the code is through a Directory Traversal attack

but this exploit can also occur due to server misconfigurations or vulnerabilities that result in the source

code being returned as plain text rather than being processed by the server.

There are several ways for one to prevent this type of vulnerability. A common practice is proper

server configuration. This means that the developer needs to ensure that it does not send back source

code files. To achieve this, it is often necessary to configure the server in terms of which files should be

processed. Another common technique is the limitation of permissions. This allows to specify which files

can be accessed and which should not be disclosed. And, similarly to the vulnerability classes referred

until this point, input validation also plays an important role to prevent this threat. This can include the

escaping or encoding of special characters, preventing the adversary from traversing directories.

2.1.7 PHP Code Injection

A PHP Code injection (PHP CI) is a type of attack where the adversary injects custom code into the

vulnerable web application. In the case of PHP, this often occurs with the execution of an eval function

call, in which the attacker controls the input string that is fed to the function. It is worth noting that

the impact of this type of attack can be severe, potentially allowing the adversary to steal sensitive data,

manipulate data, or even gain full control of the web application.

To avoid this threat, there are various counter measures that can be employed. The most straightfor-

ward one, and in the context of the given definition above, is to avoid the use of the eval function, since it

can execute PHP code from a string, which can be dangerous if the string is controlled by the opponent.

Moreover, it is important to validate the user input to guarantee that the data received is in conformity

with the expected format, length, type and range. Escaping the data from the user is also worth having

into consideration. As already mentioned, XSS can be seen as the injection of malicious code in the

victim’s browser. In the context of this vulnerability class, this type of attack be leveraged to induce a

PHP Code injection. If the attacker can modify the user’s input through a XSS exploit, he can create a

payload that when evaluated by the server, will execute arbitrary PHP code (by means of the infamous

eval function). The latter description shows the importance of properly validating and sanitizing user

inputs.

2.1.8 OS Command Injection

An OS Command Injection (OS CI), also known as Shell Injection, is a type of web vulnerability which

lets an adversary to execute Operating System commands on the server that hosts the web application.

This can be achieved by the fact that the application relies on the execution of a shell command to,

for instance, retrieve some information the user asked. The attacker leverages on this, injecting shell

commands to compromise the operation of the server.

To prevent this attack, it is no surprise that proper input validation is a must. More precisely, one
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should guarantee that the inputs received should not be interpreted as commands. Also, the use of

shell commands should be avoided. Since this is the core of the vulnerability, the developer should

find alternatives to this, such as resorting to safer, language-specific functionalities. In the case of shell

commands being mandatory to perform some action, then one should escape special characters. This

will help mitigating potential user commands that can be interpreted as shell commands.

2.2 Static Analysis

As the name suggests, static analysis consists in the analysis of the application’s code without its execu-

tion [37]. Often, this technique is applied in two major phases: (i) the transformation of the code into

an internal representation that facilitates the analysis (e.g., an Abstract Syntax Tree (AST)) and (ii) the

checking of rules to find potential issues.

In the first phase, the code will be initially divided or broken into individual parts, also called tokens.

This task is conducted by a program that is called a lexer (or tokenizer). These tokens correspond to

the lexical elements of the input text, which, in practical terms, represent the programming language’s

syntax components, such as variable names, operators, keywords, among others. At this moment, the

produced stream of tokens will be processed by a parser. The parsing process consists in rearranging

the tokens into a hierarchical structure according to the rules of the programming language’s grammar

(it is the grammar that dictates how the statements in the language should be structured in order to make

them valid). At the end of this first phase, the output is typically an AST, which consists of a tree-like

representation of the program’s source code where each node represents an element, such as a function,

loop or conditional statement.

At this moment, the second phase takes place. After the AST is created, an analysis of this tree is

carried out. The analysis may vary, including several techniques such as dataflow analysis, path-sensitive

dataflow analysis, among others, in order to find potential vulnerabilities within the code. It is worth

noting that the type of analysis employed may vary between tools. This second phase is determining for

discovering and identifying possible exploits in the code that an attacker may leverage from. Thus, it

allows developers to become aware of these vulnerabilities and secure them before the code is deployed.

It is commonly understood that when developing software, despite the best intentions and practices,

developers can (and frequently) make mistakes. These mistakes often take the form of bugs which,

under certain circumstances, can be manifested as security vulnerabilities in the code. The severity of

the situation increases when these faults pass unnoticed and software goes into production. Hence, the

system may be attacked and then compromised, and such exploits often lead to data breaches, disclosure

of sensitive data and a loss of performance. Static analysis tools (SATs) are able to provide, in a timely

and cost-effective fashion, a way of discovering these vulnerabilities in code, finding potential problems

in an early software development stage. In addition, they also contribute to enhance the quality of the

code in several ways [43], such as eliminating redundant code, supporting refactoring tasks and even

optimize the code. It is thus possible to conclude that the examination of either the source code or the

binary code of a program before its deployment is a great form of finding errors and maintaining quality,

allowing the software to become more trustworthy and less prone to vulnerabilities (since the developer

is able to detect and correct the vulnerability by obtaining the location and nature of the bug by the tool).
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Another great advantage that SATs bring can be observed at an industry level, more precisely, a

software management cost reduction: according to a study conducted by Baca et al. [13], with the use

of a static analysis tool, a decrease of 17% in software cost is possible in terms of security code issues.

The authors even go further and affirm that the sooner the issue is discovered, the lesser will be the cost

of the correction.

Although, until this point, the static analysis methodology may look quite captivating, it also comes

with some drawbacks: static analysis tools can produce many false positives and false negatives [25].

Even when complementing it with manual code analysis [25], this methodology by itself does not suffice

for a secure and highly trustworthy code. Moreover, although SATs are automated tools, the results they

provide must still be interpreted by the developers. This human labour task can become time consum-

ing if the analysis is executed in a large code base. Besides this, since, as mentioned above, they often

produce false positives and negatives, the developer must decide if the flagged issues are in fact a vul-

nerability or not. Furthermore, the employment of SATs do not concede a total analysis of the code in

the sense that this type of technique does not detect any runtime issues that may arise, since the analysis

is made without the execution of the code. The aforementioned can be seen as some of the reasons that

development teams opt for not using static analysis tools. Often, the lack of trust and the time consuming

task of interpreting the results obtained by the SATs may not seem appealing or worthwhile.

2.3 Crowdsourcing

In 2006, the term crowdsourcing was introduced by Jeff Howe in his article ”The rise of Crowdsourcing”

[27]. According to the article, crowdsourcing could be understood as the act of a company or institution

taking a function once performed by employees and outsourcing it to an undefined (and generally large)

network of people in the form of an open call. In other words, this methodology can be seen as the process

of solving a problem or obtaining needed services by relying on the crowd, which after completing the

task at hand, some kind of compensation is often received, such as a small monetary payment. Actually,

this may not always be true, in the sense that the motives behind executing such tasks could go beyond

monetary compensation. Other motivations could be to obtain social recognition, contribute to large

projects, or merely entertainment.

The proliferation of this methodology can be explained by the growth of the Internet and advances in

technology. The birth of Web 2.0 and the social media revolution allowed the development and increase

of online platforms which would then serve as the place where organizations and the crowd would interact

with one another. These platforms are often divided into two classes of users: the requesters and the

workers [47]. A crowdsourcing website usually presents a set of tasks that are posted by the requesters. A

worker will execute the task at hand and, as already mentioned before, may get rewarded for completing

it. Besides the payment, the worker also increases his credibility and reputation if the task was correctly

executed.

One thing that must be taken into consideration is the fact that crowdsourcing differs from open-

sourcing. The difference between them relies on the fact that in crowdsourcing, although the crowd

performs the tasks willingly, the product that originates from their conclusion is not free. On the other

hand, in open-sourcing, the crowd contributes to a product that is already free and stays like that in the
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future, so the community is mainly enhancing it [45].

By employing crowdsourcing, the amount of benefits that an organization can gather is quite visible.

In fact, it allows an organization that has a problem at hand to scale its resources by letting the problem

be shared with an online community. The problem often takes the form of designing a product, solving

a scientific issue, achieving consensus in some theme or process data by resorting to human intelligence

[17]. Instead of solving these problems internally, the organization exposes them to the crowd, avoiding

the costs of hiring, training, and supervising employees, and thus, a pay-per-task model is employed.

This means that a company will only pay for the required task that it demanded. Besides reducing costs,

it brings, at the same time, a whole new set of skills, ideas, and tools that effectively help to reach a

solution for the problems. In spite of the benefits, it is important to know when this methodology should

be employed. Crowdsourcing brings advantages when tasks require humans. More precisely, when

machines can not complete or execute them in a more efficient way. For instance, it should be used when

the problem is divisible into smaller tasks, the solution is objective and verifiable or the problem at hand

does not require a vast knowledge about the theme [45].

The data collected from the crowd can be useful in many situations. One particularly relevant exam-

ple is related to Machine Learning. Computers have difficulty when it comes to perceiving or identifying,

for instance, the content of images or videos. By contrast, humans can easily conceptualize, discern and

apply common sense to a certain labeling task. In this sense, by recruiting data annotators at a large

scale, a dataset can be obtained as output and then be used to train ML models for various tasks [24]. A

study conducted by Buecheler et al. [18] foresaw a 97.7% probability of obtaining an accurate answer

within a universe of a million persons. Although in practice such a crowd is hard to achieve, it offers

more trust and entices the use of this technique.

Despite the fact that crowdsourcing offers numerous benefits, it is important to also acknowledge its

challenges and caveats. One of the main concerns is the quality and accuracy of the results obtained.

A thorough research carried out by Daniel et al. [21] revealed that the quality of a crowdsourced task

can have several factors on which its quality depends. These include the expertise of the workers that

execute the tasks, the quality of the tasks itself (which is thereby dictated by the quality of the process that

generates them), amongst others. The authors also affirm that previous empirical studies have reached

the conclusion that a vast majority of the existing crowdsourcing platforms do not possess an effective

strategy to control the quality of the crowdsourced tasks. For example, to protect themselves against

cases of results manipulation, cheating or extracting sensitive information from these systems. Moreover,

there are other factors that have a considerable weight in the quality of the crowdsourcing process. A

user-friendly and intuitive UI can substantially make a difference and increase the quality of the results

obtained, as well as improve the learnability of the task, making it easier to execute in the long run [46].

In addition, the usability of the crowdsourcing platform also plays a significant role in obtaining more

accurate results from the tasks, meaning that more skilfully elaborated tasks also generate better output

quality.

It is worth mention that there might be cases where the tasks do not possess an objective answer

or, as referred earlier, the worker has malicious intention. This can be reflected in the task’s results,

which may incur in the risk of becoming manipulated or incorrect. One strategy to reduce uncertainty

is by increasing the number of humans that perform the task and reach the final result by the majority
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of responses [24]. This way, it is possible to have more feasible and reliable control over the results,

since the users with malevolent intent become outnumbered. Furthermore, algorithms have already been

created with the objective of minimizing the impact of malicious workers by assigning them a reputation

[28], meaning that the less reputation a worker has, the less of an impact he will have on the on the task

and vice-versa.

2.4 Dataset Construction

The importance of having reliable and trustworthy datasets is central in many areas of computer science,

including ML and software testing. In the case of ML, datasets are the basis for training ML models.

The robustness of the models substantially relies on the quality of the data they are trained on. It is safe

to affirm that the more sound and dependable the dataset is, the more accurate and valid the model will

be when predicting results on unseen data. The same can be applied to software testing, more precisely,

when employing static analysis tools. The validity of the tool can increase (or decrease) after being

tested on a dataset, since these, by being composed of several test cases, allow a thorough examination

of the tools, serving as a benchmark and indicating whether it needs further refinement or is accurately

discovering vulnerabilities in the code.

In the following subsection, we present the Software Assurance Reference Dataset (SARD) dataset

construction method in the context of the PHP programming language. The code examples extracted

from SARD constitute the foundation of our work, as they are used to populate our database, being

subsequently evaluated by the users and tool.

2.4.1 SARD Use case

SARD is a repository that encompasses thousands of test cases of different programming languages,

consisting in code snippets that may contain vulnerabilities. It is managed by the National Institute

of Technologies (NIST), more precisely, it is an output of a project known as the Software Assurance

Metrics and Tool Evaluation (SAMATE). This project aims to enhance and improve software assurance

by developing several materials, standards, and methodologies. SAMATE’s key goal is to evaluate and

measure the effectiveness of various tools and techniques used in software assurance.

In this document, we focus on web vulnerabilities associated with the PHP programming language.

Given the several programming languages covered by SARD, we will particularly emphasize on its PHP

test case generator. It is a subset within SARD that is used in our work, so it becomes important to have

a solid grasp of how the code snippets were generated.

The method for generating such test cases of SARD is thoroughly explained in the scientific article

”Large Scale Generation of Complex and Faulty PHP Test Cases” [41]. The reason for the authors to

develop this test case generator was self-evident: at the moment they started the project, there were

only 15 known vulnerable PHP test cases. It was clear that more were needed to properly evaluate the

effectiveness of PHP analyzers. Moreover, for the specific situation of PHP, most of the tests conducted

on web applications were focused on the dynamic aspect, that is, the static analysis counterpart did not

receive enough attention.

Their solution was designed to target three different types of audience: the SATs developers, so they
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could test their products and (potentially) enhance them; secondly, so that users of these tools could run

the trial versions, making it possible to ensure that they were buying quality software; and lastly, security

researches could use the test suite to check how their tools were performing, also allowing them to

compare with the tools that already existed. According to the authors, the testing and further comparison

between different static analyzers would result in a more competitive environment, which subsequently

would end up in an improvement of the tools.

A major concern was to create a dataset that was both versatile and would contain most common

weaknesses. In order to accomplish this, the authors decided to follow the Open Web Application Secu-

rity Project (OWASP) Top 10 most common weaknesses [8]. To achieve versatility, the PHP vulnerability

test suite generator, had a modular and reusable design, which allowed the addition of custom rules and

classes of weaknesses. The interface was user-friendly – the user only had to insert the desired command

with the available options to generate the entire test suite.

In order to represent common vulnerabilities, the generator is composed of 3 XML files: Input.xml,

which stores functions that receive some input; Filtering.xml, which lists the methods used for filtering

the inputs; and finally Sink.xml, which contains the source code where the vulnerabilities can be ex-

ploited. When the user executes the generator, thousands of test cases are created in a short time period.

These test cases are stored in categorized directories, being sorted by their vulnerability category and

CWE identifier (which consists in a unique identifier assigned to each entry of the Common Weakness

Enumeration (CWE), a list of common software and hardware weakness types).

There are several benefits that result from the employment of this tool, such as the increase of pro-

ductivity, better coverage, less probability of human error, amongst others. Despite these positives as-

pects aforementioned, it is important to be aware that these are synthetic test cases that only target one

weakness each and do not correspond to real world case scenarios. It is also worth noting that not all

vulnerability categories present in OWASP Top 10 could be addressed. Nonetheless, in the overall, the

PHP test case generator is able to produce thousands of test cases with various complexities and vulner-

abilities in a short time, making it a significant resource for enhancing the reliability and robustness of

static analysis tools for PHP.

2.5 Related Work

It is our objective to use static analysis tools as an automatic way to label a piece of PHP code and since

these can produce a high rate of false positives and false negatives, we intend to supplement their results

with feedback from the crowd, more precisely, with the classifications that workers provide about the

code slices. Our expectation is that this approach leads to a more accurate and reliable classification.

In this section, we will mainly focus on static analysis tools that are based on machine learning

mechanisms, more specifically, deep learning (DL) algorithms that allow the detection of software vul-

nerabilities, although some examples of SATs based on traditional approaches will also be presented. We

will also center our study on the datasets used for their model training phase.
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2.5.1 Traditional Static Analysis

Traditional static code analysis is based on a set of pre-defined rules elaborated by experts that comprise

features or patterns associated with vulnerability classes. These rules can be seen as a set of guidelines

that the tool uses to examine the code. For instance, a rule could be a guideline that requires all inputs to

be sanitized, thereby requiring the tool to notify whenever this rule is violated.

As state above, these rules are elaborated by cybersecurity experts or developers who possess the

knowledge to identify common pitfalls and weaknesses that a certain programming language may have.

This constitutes one of the reasons why these rules are hard to create, since the amount of knowledge

about both the vulnerabilities and programming language must be quite extensive in order to produce a

quality tool.

Despite the amount of knowledge a developer or cybersecurity professional may have about pro-

gramming languages and its concepts, the task of elaborating a traditional static analysis tool does not

become less error-prone or complex, which causes this technique to have limitations. In fact, the for-

mulation of these rules leads to exhaustive and cumbersome work that often results in a high number of

false negatives and false positives. Having into account that this pre-defined specifications are designed

to catch specific patterns, they may incur in the situation of not being able to identify or detect more

complicated vulnerabilities that do not match the established principles. This is the core reason why

SATs often produce erroneous reports, since some weaknesses are hidden and subsequently missed or in

fact the weakness may not be a genuine vulnerability, giving rise to a false positive.

Moreover, it is relevant to mention that these rules must be constantly enhanced and updated. The

cybersecurity field is an ever-changing realm. New cyberattacks are frequently conducted which often

give birth to new vulnerabilities and attack vectors. Thus, it becomes easy for such rules and guidelines

to become obsolete if not updated systematically.

Given that our research’s focus is centered on addressing issues in web vulnerabilities present in the

PHP programming language, the traditional static analysis tools discussed below have been chosen due

to their ability to examine and analyze PHP codebases.

Pixy [29] is a static analysis tool developed in Java with the purpose of detecting web vulnerabilities

in the PHP programming language. It makes use of taint analysis, which consists of examining the user’s

input in the application by tracing the flow of the data until a sensitive sink is reached. This process helps

to find a possible vulnerability. To enhance the accuracy of its taint analysis, Pixy integrates supplemen-

tary alias analysis (when two different variable names might refer to the same location in memory) and

literal analysis (the literal values in the code). In addition, Pixy offers a robust vulnerability detection,

thus maintaining a manageable number of false positives. In its experimental phase, Pixy was able to

identify 15 previously unknown vulnerabilities and could reconstruct 36 known ones. Nonetheless, Pixy

has some drawbacks. It only supports two vulnerability classes, SQL injection and Cross-Site Scripting.

Moreover, it does not support PHP’s object oriented features and does not scan files.

Another tool worth mentioning is WAP [36]. Similarly to Pixy, WAP also employs taint analysis and

combines it with data mining. The combination of these two techniques, although not common, enables

WAP to initially detect potential vulnerabilities via taint analysis and subsequently, by resorting to data

mining, it is able to predict the likelihood of the detected vulnerabilities being false positives. Further-

more, WAP operates by analyzing the source code for input validation weaknesses. When detected, its
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code corrector proceeds to adjust the code so it is no longer vulnerable. Generally, the corrections em-

ployed by this tool consist in invoking a function that sanitizes the data before it arrives to the sensitive

sink, ensuring the application’s intended execution remains unchanged. It is capable of supporting 8

different types of vulnerability classes, which are the ones addressed in this document.

KAVe [39] is another SAT able to detect web vulnerabilities in the PHP programming language.

The approach KAVe employs is quite effective: it creates several ”code property graphs” which in turn

provide information about the behaviour and flow of the code. Then, these graphs are converted into a

knowledge graph. The latter consists in a structure that represents the application’s code. In order to

optimize the analysis, KAVe prunes the knowledge graph, obtaining only the essential details, enhancing

the vulnerability discovery process. Finally, similarly to the aforementioned tools, it also resorts to

tainted analysis: a multi-agent system capable of analyzing the knowledge graph making use of the

mentioned technique, thus being able to discover vulnerabilities in PHP programs. KAVe has been able

to find 169 vulnerabilities in 12 open-source web applications with an accuracy of 98.81%. It is able to

detect two types of vulnerabilities: XSS and SQLI.

2.5.2 Machine Learning based Static Analysis

Over the last years, the field of ML has been growing at a fast pace. Through these advances and

improvements, the previously stated intense manual labour that researches had to go through to create

such rules and principles (in order to identify weaknesses in code) has been decreasing, since it is no

longer required to heavily define the features of the ML models that will detect the vulnerabilities.

ML techniques, unlike traditional static analysis, do not rely heavily on pre-defined rules and speci-

fications set by the developers. Instead, ML makes possible a more autonomous learning of patterns in

data associated with vulnerabilities, which is a process achieved through the employment of algorithms

that can identify and learn from these patterns. This data often comes in the form of large datasets that

contain both secure and insecure code snippets. The datasets are thus used by the ML model during

the training phase. Rather than being the expert creating the rules, machine learning, together with the

data that is fed from the dataset, will take care of the task. This not only simplifies the process but also

removes the need for developers to constantly create or update rules.

Deep Learning (DL), a subset of machine learning, takes it a step further. This methodology has

also been growing rapidly and is even more automated. It works by using multiple layers of artificial

neural networks, which consist in a structure of interconnected nodes. This structure is responsible

for pattern recognition and raw data interpretation, including text, image and, evidently, code snippets.

In contrast with traditional methods and ML approaches, DL is capable of completely eliminate the

need for manual work carried out by experts, as this methodology should be capable of extracting more

meaningful features from data when compared to ML.

It is important to mention that for both methodologies, DL and ML, the quality and amount of data

they are trained on are crucial factors for the accuracy and performance of the models. Higher quality

data ensures that the model is learning the patterns correctly, while a greater amount of data guarantees

that more scenarios can be tackled. Together, these factors directly influence the model’s capability in

detecting vulnerabilities in an accurate way.

Tools like Vuldeepecker [33] and µVuldeepecker [48] follow the approach of Deep Learning de-
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scribed above. Vuldeepecker uses a specific type of neural network that allows it to understand short

and long term dependencies in code, which becomes crucial in identifying vulnerabilities. This can be

exaplained by the fact that, in order to understand the context of a certain line of code, it becomes use-

ful to have information from both preceding and following lines. This way, Vuldeepecker is thus able

to recognise patterns in source code associated with software weaknesses, more specifically, and based

on what was already mentioned, it employs code gadgets to represent programs which are subsequently

transformed so the neural network can process them.

Vuldeepcker was able to identify 4 vulnerabilities that were not listed in the National Vulnerability

Database (NVD) [16] (which is considered an industry standard dataset). However, this tool possesses

some downsides. For instance, it can only run C/C++ programs. Moreover, the dataset where it was

trained only comprises a limited amount of vulnerabilities.

Based on what was mentioned about Vuldeepecker, a new (and enhanced) version of it was devel-

oped: the µVuldeepecker. Similarly to Vuldeepcker, this tool is also based on neural networks. Amongst

several improvements when compared to its prior version, one of the most significant is the ability of not

only classifying the code as vulnerable or not (as Vuldeepecker was capable of) but it also pinpoints the

type of vulnerability.

µVuldeepecker was evaluated in a dataset containing thousands of code gadgets from different pro-

grams (including both vulnerable and not vulnerable code gadgets that comprised 40 types of vulnerabil-

ities). According to the authors, the results obtained were promising, as they were able to conclude that

µVuldeepecker was, in the overall, better than the Vuldeepecker. Nevertheless, this tool still possesses

some drawbacks. While it is able to detect the type of vulnerability, it is not able to output the exact

location of the weakness. Moreover, and similarly to its older version, it can only be applied to C/C++

programs. In addition, in terms of performance, it is not as performant as the Vuldeepecker, as it was

concluded that it took slightly more time to execute.

Table 2.1 shows a set of state-of-the-art works in Deep Learning solutions along with the program-

ming language, the vulnerability classes they focused on, and the datasets used. As it is possible to

observe, the majority of the programming languages tackled by researchers are C and C++. Moreover,

the most used datasets for either training or evaluation of the developed frameworks are either SARD

or National Vulnerability Database (NVD). The vulnerabilities assessed do not comprise, in their vast

majority, web vulnerabilities such as SQL Injection and Cross Site Scripting. The major part of these is

related to buffer errors, like buffer overflows. This shows that there is a lack of study and research when

it comes to web vulnerabilities. Furthermore, the widely datasets aforementioned possess a number of

issues and limitations.

As referred before, SARD is currently one of the most used datasets and, undoubtedly, a starting

point in vulnerability detection research, containing an extensive amount of code snippets (for several

languages, including secure and unsafe samples). However, in its vast majority, it is composed of syn-

thetic code examples. Although these synthetic examples can be useful in creating controlled testing

environments for testing static analysis tools and training machine learning models, they lack the ca-

pacity of fully capture the complexity of realistic scenarios. This constitutes a drawback when training

the models, since the diversity and authenticity of these code snippets will impose limitations on their

capacity for vulnerability detection when it comes to real-world applications.
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Table 2.1: A set of State-Of-The-Art Publications of Deep Learning based Vulnerability Detection solutions

Publication Programming Language Vulnerabilities
Assessed Dataset/Collection

Automated vulner-
ability detection in
source code using
deep representation
learning [40]

C/C++

Buffer Overflow, Im-
proper Restriction of
Operations within the
Bounds of a Memory
Buffer, NULL Pointer
Dereference, Use of
Pointer Subtraction to
Determine Size, Im-
proper Input Valida-
tion, Use of Uninitial-
ized Variable, Buffer
Access with Incorrect
Value, amongst others

SATE IV Juliet, De-
bian Linux distribu-
tion, Public Git repos-
itories

Vuldeepecker: A deep
learning-based sys-
tem for vulnerability
detection [33]

C/C++
Buffer error, Resource
Management Error

NVD, SARD

Sysevr: A framework
for using deep learn-
ing to detect software
vulnerabilities [32]

C/C++

Vulnerabilities,
such as Buffer er-
rors. CWE [1]
IDs available at
https://github.com/
SySeVR/SySeVR

NVD, SARD

Combining graph-
based learning with
automated data
collection for code
vulnerability detec-
tion [44]

C, Java, Php and Swift
Top five to top thirty
vulnerabilities in
CWE 2019

SARD, NVD and
Github Projects

Software vulnerability
discovery via learning
multi-domain knowl-
edge bases [35]

C/C++
Buffer error, Numeric
Error

SARD, Real-world
Open source projects
(FFmpeg, LibTIFF,
LibPNG, Pidgin,
VLC media player)

Another important consideration in using SARD is the potential wrongly labeled data. This problem

has been proved in certain instances where the code snippets were inaccurately classified. In the context

of our research, while we have made use of code snippets from the SARD dataset, we mitigate these

inconsistencies. Our approach makes use of the output from static analysis tools along with the feedback

from the crowd. It is expected, with our novel approach, to enhance and improve the classifications

of such labels, providing more accurate and reliable results, particularly tackling the detection of web

vulnerabilities in PHP, an area that has not been the main focus of many research efforts to date. Future

researches in the topic can thus use and derive our dataset.

Concerning the NVD, although this latter comprises real-world code excerpts, it does not contain the
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code examples directly. To obtain them, the user must access the link provided by the NVD’s platform

in order to access the vulnerable code from the application repository. In addition, these links often

incur the need of downloading the application and, in most cases, it does not pinpoint the exact location

of the vulnerable code. This process of searching for the intended vulnerability becomes tedious and

time-consuming.

Regarding PHP code snippets presented in these two datasets, the same issues above-stated can be

applied. Taking into account that PHP is a widely known and used programming language for web de-

velopment, the lack of resources in terms of security flaws and vulnerabilities can be daunting. This

represents the motivation of our proposed solution: the construction of a novel dataset that comprises

unique, correctly classified PHP code excerpts that will allow the training and evaluation of Deep Learn-

ing models in order to detect software vulnerabilities. It is worth mentioning that, to the best of our

knowledge, none of the datasets aforementioned were constructed using the combination of static analy-

sis tools and crowdsourcing methodologies.





Chapter 3

BugSpotting

In this Chapter, we present BugSpotting, a platform with the objective of creating a dataset composed of

well classified PHP code snippets. First, in Section 3.1, an overview of BugSpotting is presented, where

we provide the motivation for its development as well as its main purpose. Next, in Section 3.2 a set

of requisites is described, detailing the solution’s requirements that are important. Then, in Section 3.3,

we explain the system modeling with three diagrams, each one displaying the solution in more detail.

Finally, in Section 3.4, we present the system data model, which characterizes the logical representation

of the solution’s database.

3.1 Overview

The quality of ML models is fundamentally related to the datasets they are trained on. In fact, without

high-quality datasets, even the most efficient ML algorithms will fail to perform regardless of the con-

text they are applied, since these models are as effective as the datasets they learn from. To mitigate

these challenges, we propose a platform for creating robust datasets consisting of PHP code snippets –

BugSpotting. We focus on PHP due to its frequent use in web development.

This platform employs two different methodologies for classifying code snippets: first, we resort

to the use of static analysis tools, which, as already referred in this document, provide deterministic

but potentially erroneous classifications (due to the amount of false positives and false negatives they

produce). Second, we make use of crowdsourcing, which contributes with human judgment. Although

the latter can be valuable, due to its nature, it can lead to biased classifications. Furthermore, each of

these classifiers – tools and humans – possess an associated weight or reputation that influences the final

classification of the snippet. A specially tailored algorithm integrates the inputs from the aforementioned

classifiers to arrive at a consensus label for each code snippet (which can be vulnerable or not vulnerable

to a certain vulnerability class). The end goal is a comprehensive dataset of well-classified PHP code

snippets, from which other datasets can be derived.

Although the employment of static analysis tools is a good practice in the context of software de-

velopment, by itself it is not enough to guarantee highly accurate labels when it comes to the detection

of vulnerabilities in code [20], hence the need for resorting to crowdsourcing. The integration with

crowdsourcing will mitigate this issue and thus, provide more reliable and accurate classifications. Our

expectation is that this hybrid approach will yield a more sound system for vulnerability detection.

23
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3.2 Requisits of BugSpotting

Developing a robust and efficient platform is not an easy task. The system should be able to meet certain

requisits in order to function correctly. A core component is the User Interface (UI). The UI is not just

about the visual components of the website – it is also about allowing a simple and intuitive experience.

Moreover, the User Experience (UX) also plays a central role – it enables the user to interact with the

system effectively and understand its functionalities. In the following subsections, we emphasize the

core requisits for the proposed solution, giving special importance to factors like the UI, UX, accuracy,

extensability and specificity.

Easy to Use

Both UI and UX are important when it comes to having an intuitive and uncomplicated system. On one

hand, the UI will require, in the context of the proposed solution, a website visually appealing and easy to

navigate. On the other hand, when it comes to UX, the website must be fast, accessible, and functional.

A good UI/UX is a mandatory aspect for obtaining the desired results since part of the BugSpotting

success is based on the feedback obtained from the users. This means that not only providing the code

snippets to the user but also the classification processes must be straightforward.

Precision and Sensitivity

One of the main goals of the proposed solution is to have precision in the results. We accomplish this by

combining the use of static analysis tools with the feedback given by the users. The website’s backend

server will take care of the business logic: an algorithm should be implemented to take into account the

users’ and tools’ classifications. Then, with the associated weight of each one, a consensus is reached so a

final label can be given to a code snippet. Our expectation is that the precision of the system will increase

with the number of classifications obtained: even in the case of the tool generating, for instance, a false

positive or a false negative, the multiple opinions from the crowd (and their weight) will contribute to

diminishing the divergence, allowing the system to end up with a much more accurate and reliable label.

Extensible

The BugSpotting will be built to facilitate the inclusion of novel features and functionalities throughout

time. For instance, at its initial phase, it will not be operating with many static analysis tools so a more

obvious decision about the code snippet’s label can be formulated. The number of users will increase

from time to time, but in the beginning, it is natural that only a few will exist in the system. Nonetheless,

we intend that our solution can accommodate growth. This means that in a later development phase or

after the core implementation is concluded, it should be relatively uncomplicated to add a new tool for

future classifications or even make changes to some components or include other features. We intend to

implement a solution that can be compatible with new adjustments and thus be easily extensible.
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Real and Synthetic Code Snippets Support

While real-world code snippets offer use-cases similar to authentic applications, the use of synthetic

examples aims to provide a more controlled dataset. In other words, the employment of synthetic code

snippets can bring a lot of advantages, for instance, each code snippet can be created to represent a

specific vulnerability class, which in turn ensures that the ML models that will use this dataset are tested

against properly defined examples. Furthermore, this type of test cases avoid incurring in noisy data.

The reason is straightforward: real-world code samples often include comments or functionalities that

are not relevant for the vulnerability being tested. On the other hand, synthetic examples are cleaner and

allow a more focused evaluation. Nonetheless, real-world code snippets can still provide sound results,

since this are extracted from real software and thus, are more representative of the complexities that ML

models may encounter when detecting vulnerabilities. BugSpotting is designed to accommodate both

synthetic and real-world code snippets.

3.3 System Modelling

Figure 3.1 depicts the Data Flow Diagram (DFD) level 0 (or context diagram) of the proposed solu-

tion. It contains a high-level overview of how the system is modeled in the form of multiple processes

represented by a single double circle, along with its relationships with external actors.

Figure 3.1: Representation of the system’s context diagram
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The system can be partitioned into two parts: the client side and the server side. The server side

consists in the web application process, which contains a database where the code snippets are stored

(which is not represented in the context diagram). The web application accommodates the tools that will

classify these code examples as well as the business logic that will be responsible for determining the

associated label based on the feedback from the crowd and tools.

The client side is composed of three entities: administrator, users, and tools. Although the tools

will be included in the web application, in the system modeling they are viewed and act as actors. The

administrator of the system has the purpose of manually populating the system’s database with code

snippets. Besides this, he also possesses privileges for adding and removing users and tools to/from the

system. The users of the system are responsible for classifying the code snippets. They have a reputation

associated which will be translated in a weight when the algorithm reaches a consensus about the final

label of the code snippet: a more experienced user who has a history of correct labels will have a higher

weight than a user that lacks accuracy in labeling. Finally, the tools have similar functionality to users,

i.e., they analyze code snippets (inserted in the database by the administrator) and output their labeling.

As we previously mentioned, the results of the tools are deterministic and may be incorrect. Therefore,

as users, they will have a weight associated based on their results’ precision.

As represented in Figure 3.1, the interactions between the actors and the system are straightforward:

the administrator will send requests to the system to either authenticate himself, populate the database

with new code excerpts, add/remove users/tools or execute any other privileged task. The users will be

able to perform authentication, classify code snippets (by identifying possible vulnerabilities and their

location in the code samples presented to them), track their own history of classifications and consult

their reputation. Finally, the tools interact with the system by giving feedback about a code snippet the

same way users do – by providing the class of vulnerability and the corresponding lines where it occurs.

With the notions given above, one is able to dig deeper into the system and understand some more

complex data flows that it contains. Figure 3.2 depicts the system in more detail by representing the DFD

level 1. As it is noticeable, the main difference of this one when compared to the context diagram is the

decomposition of the single multi-process into the main processes that together form the system. These

are represented by the circles in the figure. Furthermore, the inter-process relationships are also visible,

being more explicit and meaningful. Although there are other actions that can be executed by the system,

since it is a data flow diagram level 1, only the most important ones are illustrated. As we can observe,

process 4.0 is responsible for the insertion of code snippets in the system’s database (illustrated by entity

9.0), which is an action triggered by the system’s administrator. The administrator also has the privilege

of adding or removing classifiers (i.e., tools and users), represented by process 5.0.

Moreover, there is the process of filtering the slices according to a set of criteria (process 6.0), before

sending them to be classified by the user or the tool. After the classifications from both actors are

obtained, they are merged – this is performed by the Slice classification process (process 7.0). This

classification process, when finished, will result in the update of the classified code snippets’ label in the

system’s database. A more detailed explanation of how these processes work altogether along with the

actors is illustrated in Figure 3.3.

Figure 3.3 represents the flowchart of the system, depicting the whole process of labeling a code

snippet: from being stored in the database until a final label is assigned to it. The data flow is described
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Figure 3.2: Representation of the system’s data flow diagram level 1

as follows: initially, the application’s database is empty. The administrator of the system will populate

the database with the code snippets to be classified. When all the code slices in the database are already

classified, there is the possibility to add more. Next, the user will ask for a slice to be classified according

to one of the vulnerability classes addressed by the solution. For instance, a user could ask the system

for slices to be classified for the SQL injection vulnerability class, regardless they contain or not such

vulnerability. Before the slice is handed over to the user, two events occur: a filtering process and a tool

classification.

Regarding the first event, a filtering of code slices is employed based on some criteria: first, the

algorithm will choose a slice based on the fact of whether it has been classified yet or not. Slices that

have not yet been classified have priority. If all the slices of the database have already been classified,

then more criteria are applied: first, a check on the number of classifications will be conducted in order

to prioritize and choose those slices that have fewer classifications. The tie-breaker criterion in the case
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Figure 3.3: Flowchart of the system

that all slices have the same number of classifications is their divergence degree. The divergence degree

of a slice represents the level of disagreement among the classifications made for the slice towards a

vulnerability class. This means that the higher the degree, the more disagreement in the classifications

(either by the tools or the users). Hence, code examples that have a higher divergence degree have priority
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and will be sent to users that have a higher reputation (revealing more expertise). This way, the degree

can be lowered and it is easier for a labeling consensus to be achieved.

After the slice filtering event and getting the slice for classification, the tool event takes place (the

second event). Right before the code slice is sent to the user, a verification is executed: if the code slice

chosen has not yet been evaluated by the tools, it is immediately evaluated by them. Here, a pseudo-

label is assigned to the code snippet, in which the slice is labeled as vulnerable (or not) towards the

initial vulnerability class the user chose to classify. Otherwise, in the case of the slice has already been

classified by the tools, it is just sent to the user.

After the user submits the classification, a verification is performed to determine whether the slice

must continue being classified or not. For this, the system is (previously) configured with a threshold

value that represents the total number of classifications (by users and tools). If this threshold is reached,

then the algorithm will calculate the final label of the code snippet towards a certain vulnerability class

based on all the classifications made by tools and users and their respective weights. In the exceptional

case of a tie after the algorithm calculations, a label verification by software security experts is conducted

in order to reach a final decision.

3.4 System Data Model

A data model can be understood as the logical representation of a system’s database, which includes not

only the entities that are part of it but also the relationships they have with each other. Figure 3.4 depicts

the proposed solution’s data model, more specifically, in the form of an Entity-Relationship (ER) model.

This type of data model maps the entities that form the database, including their attributes that form their

domains, cardinality, and relations with one another.

The ER model is composed of nine entities. An explanation of what they represent and how they

relate to each other can be understood below.

Classifier, Tool Classifier, and Manual Classifier

The Classifier entity can represent either a Tool Classifier, which is a static analysis tool that will execute

a static code analysis on the code snippets; or a Manual Classifier that is a user in the system that will

classify a code excerpt. It is worth mentioning that the Classifier entity itself can not exist without

these two (children) entities. They establish a one-to-one relationship where the obligation belongs to

the children entities and thus, records of both children will be presented in the Classifier entity. More

specifically, a record will only exist in the Classifier entity if a record of one of the child entities is

created.

VulnerabilityClass

The VulnerabilityClass entity represents the vulnerability classes considered in the solution. Besides its

primary key, the field vuln class name stands for the name of the vulnerability class itself, and the field

vuln class acronym stands for its acronym, for example, SQLi.
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Figure 3.4: Representation of the system’s data model

ClassifierVulnWeight

With the notions given above about the Classifier and VulnerabilityClass entities, one is able to under-

stand the ClassVulnWeight entity. On one hand, a classifier can be associated with many vulnerability

classes. For instance, a user (Manual Classifier) can classify a code snippet and assign it to more than

one vulnerability class. On the other hand, a vulnerability class can be associated with many classi-

fiers. For example, a SQL injection can be a possible vulnerability class associated with more than one

tool classification and be shared among various users’ classifications as well. From this many-to-many

relationship, the ClassifierVulnWeight is created. Besides keeping a record of these mappings, it also

contains a relevant field: the weight. The latter represents the impact that each user and tool will have in

the final labeling of the code snippet towards a certain vulnerability class. For instance, a user may have

higher weight (which translates into more expertise) classifying SQL injections than Cross-Site Script-

ing vulnerabilities. It is worth noting that this weight has a default initial value of fifty points (which is

assigned the moment the user classifies a slice to a certain vulnerability class) and is updated according

to the user’s correct classifications. If, after consensus was reached, the classification (label) provided

by the user matches the label reached by the consensus algorithm, the user’s weight for that specific

vulnerability class is increased five points. Otherwise, it is decreased five points.
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Slice

It represents a PHP code snippet. It establishes a one-to-many relationship with the Classification entity,

meaning that a slice can have multiple classifications, either from the users or the tools. Furthermore,

the Slice entity has some relevant fields, namely, the slice origin, slice source code and num lines that

represent the path (or location) of the slice in the application, the slice’s code itself and the total number

of lines of the slice, respectively.

SliceVulnLabel

The SliceVulnLabel derives from a many-to-many relationship between the VulnerabilityClass and Slice

entities. A vulnerability class can be associated with many or none slices and the opposite also can also

occur, i.e., a slice can be associated with many or none vulnerability class. In other words, a slice with

no vulnerability class means that it is not vulnerable to any vulnerability class assessed in the solution.

It can also happen, for instance, that a slice associated with the vulnerability classes of RFI (Remote File

Inclusion) and SQLi (SQL Injection) is vulnerable to both of these. The SliceVulnLabel table, besides

keeping a record of the mappings between the two aforementioned entities, is also an aggregation table.

More precisely, some of its fields get updated from time to time (being those the ones that do not belong

to the composite primary key in bold). This update depends on the classification records that will be

added to the classifications Table. As already mentioned, the label is an updatable field that represents

the label of a certain slice with a certain vulnerability class. The value of a label is represented by an

integer that may have two values: non-vulnerable (0) or vulnerable (1). Next, there is the divergence

degree field that measures the level of disagreement between classifiers towards a slice with a certain

label. The last three attributes of the table represent the number of classifications of each type and the

total number of classifications a given slice already had. The field pos classifications is incremented

when a positive classification occurs or, in other words, when a classifier assigns the label of vulnerable

to a slice with a given vulnerability class. The same logic applies to neg classifications, but in this case,

the increment occurs when the code excerpt is classified as not vulnerable to a certain vulnerability class.

Finally, the last field is a sum of the two aforementioned, representing the total number of classifications

of that specific slice for a particular vulnerability class. It is also related to the threshold, which is a

variable in the system that indicates whether or not the slice with the vulnerability class in question will

or will not keep being classified – if the threshold is reached, no more classifications can occur for that

slice with the specified vulnerability class.

Classification

The Classification entity represents a classification done by a classifier. It has a composed primary key,

which consists of the classifier, slice, vulnerability class and the date when it was added. There is a date

in the primary key to ensure the possibility of a classifier to classify the same slice more than once, and

hence, without it, there would be no uniqueness in the primary key. It could also happen that, for the

same classifier and slice, the same class of vulnerability could appear more than once in the code excerpt.

These records would be persisted in the VulnerabilityClassification entity. Besides the composed primary

key, other important fields are worth mentioning. The entity possesses a label field, which consists of the
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evaluation or feedback obtained by the user or the tool and, unlike the label field in the SliceVulnLabel

entity, this one is not updatable. Besides this, the field comment allows the user to provide a commentary

on the code excerpt. The is active field indicates to the system if the slice is still being classified or

has reached the threshold and it no longer evaluated. Finally, the confidence degree field indicates how

confident the user is when he classified the slice as vulnerable or not vulnerable.

VulnerabilityClassification

The VulnerabilityClassification entity keeps all the records of the classifications provided by the users

and the tools. It contains the slice, the classifier, the vulnerability class, the date of classification, and

the lines where the user or tool found the vulnerability. It establishes a one-to-many relationship with

the Classification table. This is due to the fact that a slice under classification can have one or more

vulnerabilities of the same class and, consequently, in different lines within the code snippet. On the

other hand, the VulnerabilityClassification can only be associated with one Classification entity record

since each classification is unique (a condition granted by the date field).
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Chapter 4

Implementation

In this chapter, a thorough explanation of the BugSpotting’s implementation details will be presented.

Throughout Sections 4.1 to 4.3, we will introduce the technologies used to build the solution, its archi-

tecture and core functionalities and features. Lastly, in Section 4.4 we present the deployment process.

4.1 Technologies Used

When building new software applications, a central theme that must be addressed is the technologies

that should be employed in their construction. They can influence the development speed, the system’s

performance and even the security of the final product. In addition, it is also important to consider the

aspects of both visual design and user experience, since these factors will set the user’s first impression

about the application.

When referring to web applications, it is common to break them in two main components: the fron-

tend and the backend. While the former can be understood as the visual part of an application, the latter,

on the contrary, is not visible to the user and is responsible for the processing and storing data, as well as

communicating with external systems. In the context of our solution, for prototyping the pages and sec-

tions of the website, Figma [3] was the chosen; React [9] was selected as the frontend library and .NET

[6] was the employed backend framework. Lastly, we opted to use the MySQL [7] relational database

for data management.

The rest of this section is divided between the frontend and backend technologies used in BugSpot-

ting where we provide a more in-depth description of both, which can be understood below.

4.1.1 Frontend

In simple terms, the frontend of a web application is also a synonym of client-side, or, more precisely,

the part which the user interacts with. Thus, it comprises everything the client can see, ranging from

the design, buttons, navigation menus, etc. In order to better grasp and conceptualize the term (and

subsequently, the technologies used in the implementation of the solution), it is essential for one to be

familiarized with the foundational technologies it is built upon. These are discussed next.

35
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Frontend Foundations: HTML, CSS and JavaScript

HTML [4] stands for ”HyperText Markup Language”. It is considered a standard markup language

in the context of web development, more specifically, for the creation of web pages. HTML’s main

responsibility is the structuring of the page. It accomplishes the latter by using predefined tags and

elements which tell the browser how to properly display the content. For instance, to make text bold, this

can be simply achieved by wrapping the desired text between the <b> and <\b> tags. With more recent

versions of HTML, it is also possible to add meaning (semantic tags) to the page, allowing a better content

organization and accessibility. These semantic tags, such as <footer> and <article>, provide

context to both developers and browsers, ensuring that content is organized and easier to interpret.

Although HTML can be viewed as the ”skeleton” of web pages, on its own, it can not accomplish

more than structuring the content included in them. In order to make web pages visually appealing, one

must employ Cascading Style Sheets (CSS) [2]. CSS consists in a language that allows the developer to

specify how web pages are presented to the user in terms of graphical design, i.e., how they are styled.

This language is defined by rules and goes hand-in-hand with HTML: the developer creates the rules,

which can be seen as a set of styles (for example, defining the background color of the page) that will be

applied to the aforementioned HTML elements.

Despite the last two technologies already allow to have an enhanced UI, the content of the page is still

static. In other words, there is no behaviour when a user interacts with it (for instance, when a button is

clicked). In order to have interactive web pages, another technology must come into play: JavaScript [5].

With JavaScript, developers can create dynamic content that responds to user inputs, fetch and display

new data, show animated 2D/3D graphics, amongst many other features and functionalities. It makes

web applications feel responsive and alive.

The three technologies above stated — HTML, CSS, and JavaScript — constitute the foundation to

web development and as such, we employ them in our implementation.

JavaScript Library: React

With the aforementioned concepts understood, one can now understand what is React and how it works.

React.js or ReactJS, often referred as just React, is a JavaScript library developed by Facebook. The goal

of React is to build user interfaces as Single Page Applications (SPAs). SPAs dynamically update and

render content without the need of a full page reload by the browser. On the contrary, when it comes

to traditional websites or Multi Page Applications (MPAs), the browser typically reloads the entire page

when content changes.

A fundamental trait of this library is its component-based architecture. When building web applica-

tions with React, these are based on reusable components that can have their own state and logic. This

strategy of ”divide and conquer” not only helps to maintain a clean and understandable code base but

also allows developers to build more complex UIs (from small building blocks) and avoid code dupli-

cation. Another positive feature that React offers is its fast UI re-renders and updates. Traditional web

applications often stall or become less performant because whenever a small change occurs, the browser

needs to reload the entire page, making them less efficient. More precisely, this happens because the
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Document Object Model (DOM) 1 needs to be updated or rebuilt whenever a change occurs, which often

incurs in the page lagging or slowing down. React is built in way that it only updates or re-renders the

parts that change, making applications faster and smoother.

Furthermore, React also offers the possibility to use a special syntax – JavaScript Syntax Extension

(JSX). This extension allows writing JavaScript code that resembles HTML, providing developers a more

intuitive and readable UI code structure. This JSX code is then transpiled into real JavaScript. When the

JavaScript runs, React converts it into real HTML (more specifically, DOM nodes) so the browser can

interpret the transformed code. React is very flexible, allowing a seamless integration with other frontend

libraries as well as backend systems. This becomes a major advantage, since developers can incorporate

React with already existing projects and even new ones, regardless of their technologies.

In the context of our solution, it becomes evident that this library was chosen due to its efficiency,

flexibility and ease in the creation of user-friendly interfaces, making the development process faster and

cleaner.

Figma: creating the design

While having robust and efficient frontend technologies like the ones mentioned above is crucial to build

functional and performant web applications, to maximize their potential, it is also of major importance

having a visually and user-friendly interface. An application that is appealing to the eye not only makes

users more engaged but further refines the overall experience, making it more enjoyable.

Figma is a tool that has this exact purpose: to design and test interfaces for applications and other

digital products. It comes as no surprise that is vastly used by UI/UX designers. Due to its ease of use,

this tool is able to easily convey the ideas of the designers into the digital form in a rapid and effortless

way. Moreover, by allowing the creation of prototypes, the developers of the web application’s frontend

are fully aware of how the pages should look like and behave.

The same approach was used in the initial development phase of our web application: we resorted

to Figma to create the web pages so a more smoother and more organized implementation could be

followed. By adopting this methodology, not only the implementation process was indeed faster as

it was less error prone. Figure 4.1 illustrates one of the pages of the web application. The example

shown corresponds to the ”Sign Up” page created with Figma, responsible for the user registration in the

platform.

4.1.2 Backend

The backend of a web application refers to the server-side, or more precisely, the part of the application

that runs ”under the hood”. This means that the users do not interact directly with the backend, but it

does not imply that it is of less importance. It is the backend that manages and stores user data in the

database, executes the business logic and communicates with other systems, such as the frontend, so that

data can be exchanged. The database is also a crucial part of the backend, as it serves of repository for

1The DOM can be seen as a blueprint or map of a web page (a structure containing all HTML elements)
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Figure 4.1: Sign up page of the web application

any information the application may need, ranging from sensitive data such as user credentials to less

important content, for instance, application settings or content logs.

Below, we give an explanation of the technologies used in our web application’s backend.

.NET Framework

Before delving into the perks and details of the .NET framework, it is important to, in a first instance,

understand what is a framework. In software development, a framework can be seen as a structure of a

project or system. It is used to help with the implementation of the software and provides a template that

allows the developers to modify and add additional features to create a complex solution. It worth noting

a fundamental aspect of a framework: while in traditional programming the code invokes functionalities

and controls a library, with a framework, it is the other way around. This is called Inversion of Control

(IoC) and it is the actual framework that controls the developer’s code. In addition, a framework may

also contain libraries.
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Having into account the above stated, the .NET framework is a cross-platform software development

framework for building and running applications on Windows, Linux and macOS operating systems.

This framework is composed of two central parts: the Common Language Runtime (CLR) and the Class

Library. The first one is the execution engine. More specifically, it provides a runtime environment

where .NET programs can be executed and offers a variety of services such as thread management,

garbage collection, exception handling, amongst others. It is the CLR that also handles the compilation

to machine code in order to run the .NET programs. The Class Library is responsible for providing a set

of APIs and built-in classes for the various development tasks. The functionalities are quite extensive

and include, for example, reading and writing to files, connecting to databases, security features, amongst

many more. These enrich the .NET framework, making it a very powerful development tool.

Furthermore, the .NET framework supports multiple languages such as C#, VB.NET and F#. This

constitutes a major advantage since the developer can choose the language that he is more comfortable

with. Finally, the framework is supported by Microsoft which ensures that .NET always stays updated

and receives the latest bug fixes and improvements, thereby offering organizations and developers trust-

worthiness.

Backend’s Database System: MySQL

MySQL is a widely used, open-source Relational Database Management System (RDBMS). In other

words, it is a piece of software that enables users to persist, organize and retrieve data. It is considered

a very powerful and flexible database, being able to support almost any amount of data, be run on cloud

platforms or on-premises servers and is known for its superior performance. Moreover, MySQL is able

to provide a higher level of security by using encrypted passwords. In addition, since it is an open-source

project, it lets a large community to contribute and enhance its efficiency.

4.1.3 An enhanced Web Application

The combination of these technologies greatly benefits the implementation of BugSpotting. The user’s

interface built with React, aligned with the design crafted with Figma, provides a dynamic and visually

appealing experience. Additionally, due to React’s ease of use and flexibility, it enables a seamless

integration with the .NET framework. The latter enforces a greater level of performance and security

with always up-to-date software. Finally, the MySQL database, known for its speed and capacity to

handle large amounts of information, provides the backbone for the application’s data storage.

4.2 BugSpotting Architecture

In this section, we present the architecture. To better understand the design of the solution’s architecture,

it is important to be aware of the design principles that constitute its foundation.

When designing the architecture of a web application, one should ideally strive for separation and

modularity of the components that together form the software. The concept that lies underneath is called

Separation of Concerns (SoC). SoC enforces the developer to think in terms of modules or individual

units that have minimum overlapping between them. This methodology allows a decoupling of these

modules, ensuring that each one of them has a distinct responsibility. This subsequently translates into a
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more controlled environment, where changes in some part of the application do not interfere with others.

In addition, it concedes a more readable and cleaner code, where the organization and structure are made

easy to understand.

This approach has been vastly used in enterprise applications and has been conceptualized into the

three-tier architecture. A description of the latter can be understood below.

4.2.1 Three-Tier Architecture

The three-tier architecture, widely used in the software industry, divides an application into three logical

layers: presentation layer, business logic layer and the data access layer. Figure 4.2 depicts the scheme

of this approach. The presentation layer, also referred as the user interface layer, is the tier where the

Figure 4.2: Three-tier architecture

user interacts with the application. The main goal of this layer is not only displaying but also collecting

information from the user. Often, this top layer runs on a web browser, being developed with the tech-

nologies already mentioned before, such as HTML, CSS and JavaScript. The middle tier is the business

logic layer, also known as the domain logic layer. This layer constitutes the heart of the application

and it is where all the application’s core processing happens. It is enriched with the business rules, data

transformations and other logic that is required for the application to work as expected. The data that is

used in this layer often comes from the top tier (presentation layer). Lastly, the bottom tier, commonly

called the data access layer, focuses on interacting with the underlying storage mechanism. It provides

an interface to persist and retrieve data, ensuring that it is served in a consistent manner.

Having into account the three-tier architecture, one can dive deeper into the existent patterns that are

responsible for the interaction between the user interface and the application’s logic and data. In the next

section, we describe two of the most employed patterns: the Model-View-Controller (MVC) and Model-

View-ViewModel (MVVM) and relate them to our solution, which, as it will be discussed, employs an

hybrid approach.
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4.2.2 MVC pattern

The MVC pattern [30], belonging to the MV* family, has the primary goal of developing user interfaces

by dividing the programming logic into three distinct parts: the Model, the View, and the Controller. The

first one fulfills the tasks associated with the application’s data (such as managing its state), logic and

rules of the application. The View is essentially the UI of the application and displays the data that the

Model contains. The Controller has the responsibility of handling the events from the View and conveys

them to the Model.

The interaction between the three components follows a predefined flow. It starts by the occurrence

of an event (a user interaction in the View). The View will then forward the user event (usually some

input) to the Controller, which interprets it and communicates it to the Model. As previously explained,

it is within the model that the data is processed in the context of the business logic. After the process-

ing occurs, the state may be updated and the View is notified, being synchronized with the Model and

displaying the changes based on the Model’s data.

Within an application that follows the MVC pattern, multiple Views and Controllers can exist. There

are some cases where a specific controller is bound to one or multiple Views. It is this association that

introduces MVC’s main challenge: the tight coupling between the View and the Controller. Despite the

fact that this pattern has been a pioneer in the industry by going into accordance with the principle of

separation of concerns, it is not perfect. Modifications to the user interface frequently lead to changes

in the controller (for example, when implementing a new feature). It becomes more severe when we

consider a large scale application, which may contain hundreds of views and controllers, since it becomes

an exhausting and overwhelming task to make even a minor modification to adapt the components. In

addition, there may be Views that are very similar in terms of functionalities, resulting in a lot of repeated

logic in multiple controllers.

To mitigate this tight coupling, the MVVM pattern introduced the ViewModel, which can be com-

prehended in more detail below.

4.2.3 MVVM pattern

Similarly to the MVC pattern, the MVVM pattern [30] also belongs to the MV* family and its primary

focus is to develop user interfaces. In the case of MVVM, it allows the development of more complex

user interactions and is capable of handling more UI updates. Its three components are the Model, the

View and the ViewModel.

The View is responsible for displaying the data that is fed from the ViewModel and is agnostic to

the business logic. Besides this, and similarly to MVC, it also issues commands and events that the

ViewModel will handle. The Model, although it may possess some business logic, it is not aware of how

to display it. It is mainly used for accessing the underlying data source, retrieving the raw data to the

ViewModel. It is the ViewModel that is the core of this pattern. The ViewModel acts as a bridge between

the View and the Model - this is a key difference between the two patterns. The heavy work is executed

in this component, more precisely, the majority of the business rules according to the business logic and

the processing of the data. After the processing and transformation of the data, it then can be sent to the

View which will simply display it. It is important to mention that the ViewModel is not aware of the
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View in the sense that it does not directly manipulate UI components. It simply provides properties or

commands to which the View binds to.

The flow and interaction between the three components in the MVVM pattern is based on data

binding. The View binds to the ViewModel, which means that any changes that occur in the ViewModel,

are automatically reflected in the View. When the users interact with the View, the latter simply delegates

the task of handling these events or commands to the ViewModel, which in return, may update the Model

if needed. The same happens when the Model changes: it notifies the ViewModel which consequently

updates the View.

The major advantage of the ViewModel is the decoupling between the UI (Views) and the business

logic. But it comes with a drawback: the ViewModel may become too complex since it will handle

all the business logic and data processing as well as the the communication between the Model and the

View.

4.2.4 BugSpotting: a hybrid approach

Figure 4.3: BugSpotting’s System Architecture

There is no ”one-size fits all” when it comes to the architecture of a web application and thus, the

aforementioned patterns do not have to be followed strictly. Deviations can and do exist, being driven

by the specifics of the application and technologies that support it. This is the scenario of our web

application, BugSpotting, which combines both MVC and MVVM patterns.

At the frontend, since the application was developed with React, it operates like a View-ViewModel

(VVM). React allows to have complex interfaces and logic supporting them. As it was mentioned in the

previous technologies section, React is based on components. The key takeway is that these are not only

meant to display the data they receive (like the View in the MV* patterns) but they can also manage state

and contain UI logic. These two characteristics are what makes the components align with the VVM part

of the MVVM pattern. For clarity, consider the example of displaying the user’s classifications in our
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frontend application. Not only the data is being displayed, but also the user can interact with the UI and

instruct it to sort the classifications by, for example, newest entries. This implies that there must be logic

running underneath so they can be ordered accordingly to the user’s intentions.

At the backend, the system’s architecture is more like a Model-Controller (MC). Using the .NET

framework technology, the backend does not follow the default MVC architecture because it is not con-

cerned with the visual aspect of the application (the Views), being merely an API. BugSpotting’s single

controller at the backend processes the requests, and conveys the data to the Model, in which resides

the core logic, business rules and where data management and transformation occurs. Besides this, the

Model also interacts with the database to either persist or retrieve data. Before this data is returned to the

frontend, it is firstly transformed into JSON format so the it be easily interpreted. Evidently, the task of

rendering the Views is delegated to the React frontend.

For a more lucid perspective of the interactions and flow of data within the system, Figure 4.3 depicts

the main communications between the frontend, backend and the database, emphasizing the aforemen-

tioned VVM and MC patterns. As it is possible to observe, there is a dotted line that separates the

frontend and backend. The frontend is composed of the client (the browser) and the React’s application

host, while the backend encompasses the .NET application and the database. The browser represents

the end-user interface where the React application will run. It is where the components from the ap-

plication will be rendered, managing both what the user sees (the View) and the underlying logic (the

View-Model). The client firstly communicates with the Static File Server, which consists in a Node.js.

It issues a request in order to obtain the static files provided by this host. These static files consist in all

the necessary JavaScript, CSS, images, amongst other files that are required to run the React application

in the browser. It is worth mentioning that while the server provides the needed files for the frontend, in

no way it possesses or relates to the application-specific logic, as the VVM pattern is only employed in

the browser, where the application is executed.

After obtaining the desired bundle, the browser is now able to communicate with the backend. The

.NET application is where the MC pattern becomes evident. It is typically hosted in a server like Kestrel

and its main function is to respond to the incoming requests issued by the client. It can be seen as an API

with a set of endpoints that are translated in action methods that the controller implements. The controller

will handle the requests and let the model apply the implemented business rules and data processing.

The backend also communicates with the database, persisting and retrieving data. The fact that the

information returned from the backend is in JSON format and does not deal with any sort information

visual display reinforces the MC pattern. Lastly the database is the storage mechanism that is capable of

retrieving and storing the application’s data based on the requests from the backend application.

In the next section, we go in depth about the capabilities and main functions of the BugSpotting web

application.

4.3 Core Functionalities

The heart of BugSpotting’s capabilities resides in its backend. Although the frontend is responsible for

user interaction and presentation of the data in a visually appealing and intuitive manner, the fundamental

actions and operations executed are a mirror of the capabilities offered by the backend. In fact, the
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essential business logic and data processing tasks lie within the backend. To better clarify what is meant

by core functionalities, consider the difference between the frontend’s capability of letting a user choose

between a light and a dark mode. Although it is indeed a useful feature, it is not core to the system. On

the other hand, the backend’s crucial task of reaching a consensus about the label of a code snippet is

central to the platform’s primary objective.

In this section, we will explain in detail the vital functionalities offered by the backend. In other

words, we will describe the BugSpotting’s API (endpoints), how do they work and some of the main

flows of the system that grant the user a satisfactory experience when using the platform.

4.3.1 BugSpotting’s API

Before delving into the API’s core functionalities per se, it is important to understand the principles and

guidelines in the design of the BugSpotting’s API as well as some global features.

REST Architectural Style

Representational State Transfer (REST) is an architectural style used in the design of web services. It is

based on a set of principles that an API to be considered RESTful has to comply:

1. Uniform Interface – This principle ensures that the communication between the client and the

server is standardized and consistent. The four main guidelines that define a uniform interface can

be understood below.

(a) Resource Identification with URIs: Every resource (for example, a user profile on the

BugSpotting website) should have a consistent Uniform Resource Identifier (URI) associ-

ated with it. When considering the user profile example, if a user wants to modify some

information about the account, the accessed URI is unique (enforced by the user identifier)

and remains unchanged.

(b) Manipulation of Resources through Representations: when a resource is requested by the

client (such as the information about the user profile), it is provided with a representation of

that resource rather than the resource itself. In BugSpotting’s case, this representation is a

JSON object containing the necessary details to populate the profile page. If the client wants

to alter some field, an updated version of that JSON (the representation) is sent back to the

server. This helps decoupling the way data is stored in the server from how it is presented to

the client.

(c) Self-descriptive Messages: Each message exchanged between the client and the server has

enough information to process it correctly. Often, this takes the form of defining the HTTP

method (GET, POST, PUT, etc) and the Multipurpose Internet Mail Extensions (MIME) type

(such as ”application/json”).

(d) Hypermedia as the Engine of Application State (HATEOAS): When the server sends data

to the client, it may include links (hypermedia) to related resources or possible actions. The

client, by clicking on these, is in fact changing the state of the application. For instance, in

the case of BugSpotting, when the client accesses the classifications page, by clicking on the
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”Show Code” button, a modal pop-up window is displayed, allowing the visualization of the

code snippet classified (hence, changing the state of the application).

2. Statelessness – Each request to the server (executed by the client) must be self-contained and

have enough information to be processed, meaning that the server should not rely on any previous

requests to execute future ones. For example, when accessing the user’s reputation page, the

request made to the server is independent. In other words, the server does not ”recall” any other

previous client interactions. This helps improving reliability, since even if one request fails, it does

not have an impact on further requests because they are not dependent on each other.

3. Layered System – This allows the client to communicate with authorized intermediaries between

the client layer (BugSpotting’s frontend) and the server layer (BugSpotting’s backend) while still

receiving responses from the server. Moreover, in the case of BugSpotting, a proxy server (the

intermediary system) redirects the requests for the correct application (both the frontend and back-

end applications run on a Virtual Machine (VM)). Moreover, it also provides a security layer, since

it adds HTTPS to the communication (this ensures the data exchanged is encrypted and its integrity

is protected).

4. Client-Server Architecture – The client and the server are two separate entities that act indepen-

dently. As it has already been explained, BugSpotting has a frontend application (responsible for

the user interface and user experience) and a backend application (responsible for the core logic

and data treatment). This separation enables a more modular approach, providing more room for

future changes (for instance, a modification in the backend’s database server technology). This

ensures our platform is adaptable and resilient to modifications.

5. Cacheability – Caching follows a simple principle: ”If it has been accessed in the past, it is likely

to be accessed again in the future”. This technique involves storing temporary copies of data so

that the future requests are served faster. While it is not mandatory, caching helps when it comes

to enhance performance and reduce server loading. BugSpotting does not employ any caching

mechanisms (besides the ones offered by the browser).

BugSpotting’s API was developed having into account the aforementioned principles, making it a REST-

ful API. This architectural style promotes simplicity and maintainability, while ensuring an efficient

communication between the frontend and the backend.

Global API Features

In this section, we present the global features of the BugSpotting’s API. These include the authentication

and authorization mechanisms as well as the error handling strategy.

Authentication and Authorization BugSpotting’s authentication and authorization mechanisms rely

on the use of JSON Web Tokens (JWTs). JSON Web Token is an open industry standard used to share

information between two entities, usually a client (such as the BugSpotting’s application frontend) and a

server (like the BugSpotting’s application backend). As the name implies, this information is exchanged

in JSON format.
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JWTs offer a stateless authentication: the server does not need to store any session data. All the

information needed for authentication or authorization lies within the token. The data in the token is

divided into three main modules:

1. Header, which consists of in two parts: algorithm that is being used to create a Message Authen-

tication Code (MAC), which is a string that is used to ensure the integrity and to verify the origin

of the message, and the type of token (which, in most cases, defaults to JWT).

2. Payload, that contains the user claims. Claims are statements about an entity (often, the user). In

the case of BugSpotting, two important fields are the user identifier and the role.

3. Signature, which is a crucial part of the token. To create the MAC, both the header and payload

are encoded (often using base64URL encoding) and with the specified algorithm (as already men-

tioned, from the token’s header) plus a secret key, both encoded parts are hashed (in our solution,

we used HMAC with SHA-256 hashing algorithm). This MAC is used to prevent any data tam-

pering and, since BugSpotting’s backend uses a secret key, to ensure that the sender of the JWT is

who it says it is.

Once the client is authenticated, the server generates the token, which has an expiration date (in the case

of BugSpotting, it is 7 days from the moment it was created). The client then stores this token in the

browser’s local storage, and appends it in the header of any subsequent request to the server. This is

often placed under the ”Authorization” field in the header, prefixed with ”Bearer”. Upon receiving a

request with a JWT, the server interprets the token: it takes the predefined hashing algorithm, the secret

key (known only by the server) and creates a MAC of both the header and payload of the received token.

It then compares this generated MAC with the one from the token’s MAC: if both match, the token is

valid; otherwise, it is considered invalid, and responds with an appropriate error message. In addition,

the token validity can also depend on other factors, such as its expiration date.

Another important point to mention is the fact that when using JWTs, it is essential to transfer them

through a secure channel (with the use of HTTPS with TLS) so man-in-the-middle and eavesdropping

attacks can be avoided. The reason lies in the fact that encoding is not a security measure, it is just a

form of representing the data (since anyone can decode the token and see its content). To better illustrate

the process described, Figure 4.4 shows the flow of interaction between the client and the server as well

as the creation of the JWT. The example has into consideration that a user was already registered in the

platform but is not in possession of any JWT token.

As it is possible to observe, the process starts with the client sending the authentication data to the

server (in this case, and as in BugSpotting’s platform, the email and password). Then, the server will

validate this information against the database and if correct, generates the JWT and sends it back to

the client (browser). The client will store it in its local storage. The further requests will have the token

appended in the HTTP header (under ”Authorization” followed with the prefix ”Bearer”). The server will

then check the authenticity of the token. It is worth mention that while the token may be in fact valid,

it may not allow the client to access certain resources (for example, in the case of the route accessed be

restricted to the administrator of the server and not a regular user). From now on, the token is exchanged

in future interactions, being always validated by the server.
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Figure 4.4: JWT authentication process

Error Handling Efficient error handling is crucial for guaranteeing both stability and a user-friendly

experience. By being able to anticipate possible errors and handle them in a graceful manner, a system

can instruct the user to provide the necessary corrections in order to continue using it correctly.

When it comes to BugSpotting, our strategy for error handling resides primarily in the backend. The

server has an internal middleware mechanism whose purpose is to intercept any exceptions that may

occur during the processing of the incoming request. This approach ensures that the application, instead

of crashing or responding without clear error messages, provides an informative feedback about the

issue. For instance, if the user tries to register himself with an already chosen username, the middleware

would catch this exception thrown by the application and respond with an error code of 409 (conflict)

with a convenient message description of ”The username provided is already in use”. The possible

HTTP status codes per endpoint are listed in Table 4.1 along with their descriptions. Moreover, the error

messages from the web application often follow a standardized format, consisting in an ”ErrorCode” and

an ”ErrorMessage” fields, This standardized format allows an easier interpretation of the information by

the frontend. In the explanation of each endpoint, we will evidence the specific scenarios where these

can occur in more detail.

Endpoints

Bugspotting’s API was built to be robust, secure and intuitive. It is based on the principles of REST’s

architectural style, implements the JWT authentication scheme and ensures a graceful error handling.

With the foundation set, one is now able to understand each specific endpoint, their functionalities and
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Table 4.1: Server response codes for the endpoints

Endpoint (Method) Possible Response Codes Description

/api/v1/users/create (POST) 200, 400, 409, 500
OK, Bad Request, Conflict, Internal
Server Error

/api/v1/users/userId (GET) 200, 400, 401, 404, 500
OK, Bad Request, Unauthorized, Not
Found, Internal Server Error

/api/v1/users/userId (DELETE) 200, 400, 401, 403, 404, 500
OK, Bad Request, Unauthorized, For-
bidden, Not Found, Internal Server
Error

/api/v1/users/authenticate (POST) 200, 400, 401, 404, 500
OK, Bad Request, Unauthorized, Not
Found, Internal Server Error

/api/v1/users/editProfile (POST) 200, 400, 401, 403, 500
OK, Bad Request, Forbidden, Inter-
nal Server Error

/api/v1/users/resetPassword (POST) 200, 400, 409, 500
OK, Bad Request, Internal Server Er-
ror

/api/v1/users/forgotPassword (GET) 200, 400, 404, 500
OK, Bad Request, Not Found, Inter-
nal Server Error

/api/v1/users/email (GET) 200, 400, 401, 404, 500
OK, Bad Request, Unauthorized, Not
Found, Internal Server Error

/api/v1/users/slice (GET) 200, 400, 401, 404, 500
OK, Bad Request, Unauthorized, Not
Found, Internal Server Error

/api/v1/users/vulnerabilityClass (POST) 200, 400, 401, 403, 409, 500
OK, Bad Request, Unauthorized, For-
bidden, Not Found, Internal Server
Error

/api/v1/users/tool (POST) 200, 400, 401, 403, 404, 409, 500
OK, Bad Request, Unauthorized, For-
bidden, Not Found, Internal Server
Error

/api/v1/users/classification (POST) 200, 400, 401, 404, 500
OK, Bad Request, Forbidden, Not
Found, Internal Server Error

/api/v1/users/classifications/userId
(GET)

200, 400, 401, 404, 500
OK, Bad Request, Unauthorized, Not
Found, Internal Server Error

/api/v1/users/reputation/userId (GET) 200, 400, 401, 404, 500
OK, Bad Request, Unauthorized, Not
Found, Internal Server Error

/api/v1/users/uploadCodeFile (POST) 200, 400, 401, 403, 500
OK, Bad Request, Unauthorized, For-
bidden, Internal Server Error

significance in the system. It is worth noting that all the messages exchanged (between the client and the

server) are in JSON format.

Figure 4.5 illustrates the BugSpotting’s API in detail, more specifically, the endpoints that it com-

prises. It is composed of 15 endpoints, each one serving a different purpose and providing a different

functionality. As it is possible to observe, the different color in each endpoint highlights the type of

HTTP method that is meant to be used for that particular operation. In addition, each of the endpoints’

path provides a clear hint about its functionality or resource that it targets.

It is also worth mention that each of these paths start exactly the same way (”/api/v1/...”). The

explanation for this design approach is the simple: first, it allows backward compatibility. In other

words, it is possible to have a separate ”v2” endpoint (introducing new features or making changes)

without affecting the logic of API’s ”v1” version. Clients would still be able to access the ”v1” version.

In addition, if support will no longer be given to the ”v1” endpoint, a smooth transition to the ”v2” is

granted by notifying the clients that in the future, ”v1” will eventually be deprecated.

Each of the endpoints is succinctly described below. A more thorough and detailed description
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Figure 4.5: BugSpotting’s API

(including the message’s header, body and responses) can be understood in Appendix B.

POST /api/v1/users/create – This endpoint is responsible for the creation of a new BugSpotting

account, allowing new users to register within the platform.

GET /api/v1/users/{userId} – This endpoint retrieves the complete profile information for a user

specified by their unique user identifier (userId) as well as the role and session token.
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DELETE /api/v1/users/delete – This endpoint allows the administrator of the system to delete a cer-

tain user based on the user’s identifier.

POST /api/v1/users/authenticate – This endpoint is responsible for user’s authentication in the BugSpot-

ting’s platform, giving him access to protected routes (only accessible in the possession of a session

token) such as the creation of a classification, update the profile’s information, amongst others.

POST /api/v1/users/editProfile – This endpoint is responsible for allowing the user to update its pro-

file information. The user can change the information in bulk (all the fields changed simultaneously)

or independently (with the exception of the password related fields: all or none must be filled). He can

change his first name, last name, email and update the current password.

POST /api/v1/users/forgotPassword – This endpoint has the objective of facilitating the password

recovery process by triggering an email to the user. The user will issue a request with his email to the

solution’s backend. Then, the backend initiates another request to an email service provider. Currently,

the latter operation is executed through SendGrid [10] in order to send the recovery email.

POST /api/v1/users/resetPassword – This endpoint is responsible for updating the user’s password

based on a special short duration token (received in the email) and the information from the request’s

body. It is the follow-up after the request issued to the POST /api/v1/users/forgotPassword endpoint,

complementing the password recovery process.

GET /api/v1/users/email – This endpoint is very similar to the GET /api/v1/users/{userId}. It re-

trieves the complete profile information for a user, but instead of relying in the user’s unique identifier, it

uses the email (which is also unique).

GET /api/v1/users/slice – This endpoint is responsible for delivering a code slice to the client.

POST /api/v1/users/vulnerabilityClass – This endpoint allows the admin of the system to insert a

(new) vulnerability class in the system.

POST /api/v1/users/tool This endpoint allows the admin to insert information about a static analysis

tool in the system. The tool itself (software) still needs to be integrated within the system manually.

POST /api/v1/users/classification – This endpoint constitutes one of the core functionalities offered

by the system: the classification of a code snippet. It depends in the GET /api/v1/users/slice endpoint,

since the user first needs to examine the slice and only then provide feedback. The feedback provided

by the user consists in specifying if the code snippet in question is vulnerable or not, providing the

vulnerabilities line (in the case of being vulnerable), the confidence degree (how convinced the user is

about the classification) and an optional commentary.
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GET /api/v1/users/classifications/{userId} – This endpoint retrieves all the user’s classifications

(from all vulnerability classes).

GET /api/v1/users/reputation/{userId} – This endpoint retrieves all the user’s reputation - points

per vulnerability class.

POST /api/v1/users/uploadCodeFile – This endpoint is responsible for allowing the system’s admin-

istrator to insert a file that contains the code snippets per se (which will populate the database).

4.3.2 Algorithms

In this section, we tackle the core algorithms that have a major role in the BugSpotting’s solution, fo-

cusing specifically on two key functions: choosing a code slice from the database to hand to the client

(based on a set of criteria) and reaching consensus about the slice’s final label (vulnerable or not vulner-

able to a certain vulnerability class). The section is organized into two main parts: First, we discuss the

various logics and criteria involved in retrieving a code slice from the database. Second, we examine the

reasoning behind the achieving of a consensus on whether a given code snippet is vulnerable (or not) to

a specific class of vulnerability.

Algorithm 1 Obtain a slice from the database algorithm
1: Input: userId, vulnerabilityClassId
2: Output: A Slice based on chosen criteria or an error
3: function GETSLICE(userId, vulnerabilityClassId)
4: user← FindUser(userId)
5: if user is null then
6: Log ”User with userId not found”
7: throw UserNotFoundException
8: exit
9: end if

10: slice← GetUnclassifiedSlice()
11: if slice is null then
12: slice← GetSliceWithFewestClassifications(userId, vulnerabilityClassId)
13: end if
14: if slice is null then
15: slice← GetSliceWithHighestDivergence(userId, vulnerabilityClassId)
16: end if
17: if slice is null then
18: Log ”Slice does not exist”
19: throw SliceDoesNotExistException
20: exit
21: end if
22: ExecuteToolAndCreateClassification(slice)
23: return slice
24: end function
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Retrieval of a code slice

The main function to retrieve a code snippet of the database is depicted in Algorithm 1. This function

receives the user identifier (userId) and the vulnerability class identifier (vulnerabilityClassId). Initially,

the algorithm tries to fetch the user with the identifier provided in the arguments. If this operation returns

null (the user is not found), an exception is thrown and the function is no longer executed. Otherwise,

the process of obtaining the slice begins. Before the slice is obtained, 3 functions (explained below) may

be invoked. If none of the functions returns a slice, an exception is thrown. Otherwise, the algorithm

proceeds with the classification of the slice by a tool (WAP) and the results from the latter are saved in the

database. After the tool’s execution, the slice is returned and handed to the user for further classification.

Phases of Slice Retrieval: The process of obtaining the slice is divided into four phases, each corre-

sponding to the functions illustrated in Algorithm 1 (lines 10 to 12), more specifically:

• GetUnclassifiedSlice: Fetches an unclassified slice.

• GetSliceWithFewestClassifications: Chooses the slice with the fewest classifications.

• GetSliceWithHighestDivergenceDegree: Fetches the slice with the highest divergence.

• ExecuteToolAndCreateClassification: Before the slice is sent to the client, the tool classifies it.

A detailed explanation of each function is presented below:

GetUnclassifiedSlice: The function does not receive any input and returns an unclassified slice or null

(in the case of all slices have already been classified at least one time). The process is simple: a filtering

will occur in order to find a slice that has not been classified yet. If there are no slices matching this

criteria, null is returned. Else, the first one of the set (of unclassified slices) is returned.

Algorithm 2 Obtain an unclassified slice from the database algorithm
1: Input: None
2: Output: An unclassified slice or null
3: function GETUNCLASSIFIEDSLICE

4: unclassified← GetFirstUnclassifiedSlice()
5: if unclassified is not null then
6: return unclassified slice
7: else
8: return null
9: end if

10: end function

GetSliceWithFewestClassifications: This function is invoked if the previous one, GetUnclassified-

Slice, returns null or, in other words, when all slices have been classified at least once (for the current

vulnerability class chosen). The function takes two arguments: the user identifier (userId) and the vulner-

ability class identifier (vulnerabilityClassId). Before directly retrieving the slice with the fewest classifi-

cations from the database, a selection process takes place. This process involves calling another function,
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GetCandidateSlices, whose details are explained below and illustrated in Algorithm 4. After acquiring

the list of candidate slices, if the latter is empty, the function returns null and stops the execution process.

Otherwise, it looks for the slice with the fewest number of classifications (from the returned list). This

is accomplished by, in a first instance, calculating the maximum number of classifications across the

candidate slices. If all the slices have the same number of classifications (in the context of the current

vulnerability class) as the calculated maximum, then null is returned. Else, the slice with the fewest clas-

sifications is returned (by default, the list is sorted in ascending order by the number of classifications,

so the first slice in the ordered list is returned).

Algorithm 3 Obtain the slice with fewest classifications from the database algorithm
1: Input: userId, vulnerabilityClassId
2: Output: Slice with fewest classifications or null
3: function GETSLICEWITHFEWESTCLASSIFICATIONS(userId, vulnerabilityClassId)
4: slices← GetCandidateSlices(userId, vulnerabilityClassId)
5: if slices is empty then
6: return null
7: end if
8: maxClassifications← slice with the highest number of classifications
9: if all slices have maxClassifications then

10: return null
11: end if
12: return first slice ordered by the number of classifications
13: end function

GetCandidateSlices: This function is illustrated in Algorithm 4 and takes the same arguments as the

previous function. The workflow starts by fetching the threshold value from the server’s configuration

settings. This threshold specifies the maximum number of allowed classifications per vulnerability class

for a given slice. The function then retrieves all unique slice identifiers that the user has already classified

for the given vulnerabilityClassId. Next, it collects all unique slice identifiers that the user has ”com-

pletely” classified across all vulnerability classes. Here, ”completely” means the user has classified the

slice for all available vulnerability classes. The function then merges these two lists: alreadyClassified-

ForVulnerabilityClass and classifiedSliceIds. This merged list serves as a filter for acquiring candidate

slices, which are further refined by the algorithm. The list ensures that slices already ”completely” clas-

sified or have been classified for the current vulnerability class by the user are excluded but keeps the

ones have fewer classifications than the threshold. This is crucial because it prevents a user from re-

classifying a slice for the same vulnerability class. For instance, if a user has already classified a slice

under vulnerability class VC1, they will not see that slice again when classifying under VC1. However,

that slice could reappear if the user switches to classifying under a different vulnerability class, like VC2,

since it has not been classified under VC2 yet.

GetSliceWithHighestDivergence: This function is depicted in Algorithm 5 and, similarly to the last

two functions mentioned, it takes as arguments both the user identifier (userId) and the vulnerability class

identifier (vulnerabilityClassId). After invoking the already explained GetCandidateSlices function, it

verifies if the result from the prior invocation is an empty list: if it is indeed an empty list, then the
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Algorithm 4 Obtain candidate slices algorithm
1: Input: userId, vulnerabilityClassId
2: Output: List of Candidate Slices
3: function GETCANDIDATESLICES(userId, vulnerabilityClassId)
4: threshold← Parse from configuration
5: alreadyClassifiedForVulnerabilityClass← Find all Classifications for this user and vulnerabili-

tyClassId
6: classifiedSliceIds← Find all slice IDs classified by this user for all vulnerability classes
7: Union alreadyClassifiedForVulnerabilityClass and classifiedSliceIds
8: return All slices from database excluding those in the merged list and below threshold
9: end function

Algorithm 5 Obtain the slice with the highest divergence degree algorithm
1: Input: userId, vulnerabilityClassId
2: Output: Slice with highest divergence or null
3: function GETSLICEWITHHIGHESTDIVERGENCE(userId, vulnerabilityClassId)
4: slices← GetCandidateSlices(userId, vulnerabilityClassId)
5: if slices is empty then
6: return null
7: end if
8: minClassifications← minimum Classifications among all slices
9: Filter slices to only include those with minClassifications

10: if only one such slice exists then
11: return that slice
12: end if
13: return First slice ordered by maximum divergence degree
14: end function

function halts its execution and null is returned. Otherwise, the next step is to get (from the candidate

slices list) the slices with the minimum number of classifications (calculated before in line 8). If the

result of the filtering is a single slice, that is the one returned. Otherwise, the list is filtered in descendent

order, by the highest divergence degree value and the slice associated with it is retrieved.

ExecuteToolAndCreateClassification: This function can be observed in Algorithm 6. The function

is executed after the previous three phase mentioned above, hence having as argument the filtered slice.

If the tool has already classified the received slice, it immediately halts is execution and that slice is

delivered to the user. Otherwise, only after making a classification to the slice (and storing it in the

database) the slice is sent to the client.

The core ideas behind retrieving a slice The idea in applying multiple filters and sort the results

before handing a slice to the client has multiple logical factors, which are presented below:

• Uniform distribution: If there are no unclassified slices available, the algorithms look for slices

with the fewest classifications (having into account the current vulnerability class). This can be

seen as a strategy to balance the attention each slice receives, thereby achieving a more uniform

distribution of classifications across slices.
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Algorithm 6 Execute Tool and Create Classification algorithm
1: Input: Slice object
2: Output: None
3: function EXECUTETOOLANDCREATECLASSIFICATION(slice)
4: if tool has already classified slice then
5: return
6: end if
7: classifications← ExecuteTool(slice)
8: CreateClassificationInDatabase(classifications)
9: end function

• User-Specific Filtering: The algorithms take into account the slices that a user has already clas-

sified. This avoids redundancy and repetition for individual users, since they are not constantly

classifying the same code snippet. This allows the system to offer a less cumbersome and more

engaging experience.

• Divergence as a Tie-breaker strategy: When the all the slices have been classified at least on

time and have the same number of classifications (for the current vulnerability class), the ones

with higher divergence have priority. This approach greatly improves the overall process since the

slices that possess the higher divergence degree, i.e., the higher discordance amongst classifiers,

are the ones that will be selected. This ends up being seen as a ”conflict-solving” strategy that

improves the quality of the classifications.

• Configurability and Scalability: A threshold parameter allows the system to adjust to different

scales. More precisely, it allows the system to adapt to the number of users it has and evolve

accordingly. For instance, if the system exponentially grows in terms of number of users, perhaps

having the threshold as a lower number will make the system not only less trustworthy (since there

are less opinions from the crowd about a slice) but also will end up in exhausting the slices very

fast. The fact that it is possible to easily change this configuration in the server’s settings increases

the ease to accommodate growth and adapt to different scenarios.

Determine the slice’s final label (consensus)

Algorithm 7 illustrates the process of achieving a code snippet’s final label, which indicates whether the

slice in question is indeed vulnerable (or not) to the given vulnerability class. The function receives the

slice identifier as argument and returns either 1 (indicating that the slice is vulnerable to the vulnerability

class in question) or 0, indicating that it is not vulnerable. The function then retrieves all the classifi-

cations associated with the slice and creates two important variables: positiveWeight, which will store

the positive classifications (classifications marked as vulnerable) and the negativeWeight, which, in op-

position to positiveWeight, stores the negative classifications (classifications marked as not vulnerable).

Next, per each one of these classifications, the algorithm invokes another function – GetWeightOfClassi-

fierForVulnClass – which returns the reputation (or weight) of the classifier who made that classification.

This value is then accumulated to either the positiveWeight or negativeWeight variables. This means that

the higher the reputation of the classifier, the more of an impact it will have on the label’s final result. Fi-

nally, after all classifications have been iterated, if the positiveWeight is greater than the negativeWeight,
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Algorithm 7 Label consensus algorithm
1: Input: sliceId
2: Output: Consensus Label (1 or 0)
3: function DETERMINELABELCONSENSUS(sliceId)
4: classifications← get all classifications of the slice
5: positiveWeight← 0
6: negativeWeight← 0
7: for each classification in classifications do
8: weight ← GetWeightOfClassifierForVulnClass(classification.ClassifierId, classifica-

tion.VulnerabilityClassId)
9: if classification.Label == 1 then

10: positiveWeight← positiveWeight + weight
11: else
12: negativeWeight← negativeWeight + weight
13: end if
14: end for
15: if positiveWeight > negativeWeight then
16: return 1
17: else
18: return 0
19: end if
20: end function

the slice is marked as vulnerable to that vulnerability class. Otherwise, it is marked as not vulnerable. In

the exceptional case of a tie, the admin or security experts that belong to the project will review the code

snippet and provide a final label.

GetWeightOfClassifierForVulnClass: Algorithm 8 depicts the process of obtaining the weight (repu-

tation) of a classifier based on its unique identifier and vulnerability class identifier. This helper function

will, based on the two aforementioned arguments, obtain the weight (or reputation) of the classifier in

question, which will be further used to reach the final label’s consensus.

Algorithm 8 Get Weight of Classifier for Vulnerability Class algorithm
1: Input: classifierId, vulnerabilityClassId
2: Output: Weight of the classifier for the given vulnerability class
3: function GETWEIGHTOFCLASSIFIERFORVULNCLASS(classifierId, vulnerabilityClassId)
4: classifierVulnWeight← Query database for entry with classifierId and vulnerabilityClassId
5: if classifierVulnWeight is null then
6: Log ”Could not find the ClassifierVulnWeight for the specified classifier id”
7: Throw ClassifierVulnWeightNotFoundException
8: end if
9: return classifierVulnWeight associated weigth property

10: end function
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4.4 Deployment

Introduction

In order to make the BugSpotting solution accessible to the world, a set of steps had to be taken. In this

section, we delve into the requirements and necessary steps in order to execute the deployment of both

the frontend and backend in a virtual machine (VM) supplied by Faculdade de Ciências da Universidade

de Lisboa (FCUL).

Requirements

Before deploying the application, the virtual machine had to be prepared with a set of software instal-

lations to support both the frontend and backend components. The following software packages were

installed:

• .NET SDK: The .NET Software Development Kit (SDK) is a mandatory software as it serves

as basis for developing, compiling and running .NET applications. It includes multiple libraries

that ease the building and running of .NET applications, which is the case of the backend of

BugSpotting’s solution.

• Node.js and npm: Node.js is a JavaScript runtime. It allows the execution of JavaScript code

in the server side (no browser required). Node Package Manager (NPM) is the default package

manager for Node.js, which has the responsibility of managing the dependencies of the frontend

solution. Npm is of major importance for the setup and execution of the React frontend.

• MySQL database: The MySQL client was installed in the VM to enable access to the database

itself (where the data is persisted). It addition, it is also has the duty of several managing tasks

(such as querying and updating the database) so the integration with the .NET backend is seamless.

• React library: As already explained in Section 4.1, React is a library meant for build user inter-

faces. It is thus required by the virtual machine, containing important utilities and libraries crucial

for the proper execution of the application’s frontend.

• Java Virtual Machine (JVM): The JVM is an important piece of software that allows the execu-

tion of Java based programs. While it is not directly related to React or .NET, the JVM plays a

crucial role since the tool that is responsible to classify the code snippets (WAP) was developed in

Java.

Backend deployment

To deploy a .NET application, the backend was previously prepared for deployment by resorting to the

.NET ”Publish” option. This step produces a deployment version of the .NET solution that contains

the necessary files and DLLs. Next, this bundle was transferred to the VM and appropriately placed

in the application directory so the backend service could function correctly. Finally, to enable a secure

communication, a proxy was setup. This allowed the requests to be redirected to HTTPS.
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Frontend deployment

Similarly to the backend deployment, a deployable bundle for the React application was generated re-

sorting to npm’s build script. This bundle was then transferred to the virtual machine, being placed in

the application’s directory to be served to the clients.
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Chapter 5

Evaluation

5.1 Introduction

In this chapter, we present the evaluation of our solution, BugSpotting, as well as the methodology we

used to validate it and conduct the assessment under realistic conditions. In Section 5.2, we refer the

methods used for collecting data from the users, outlining the employed methodologies. In the next

section, we focus on the results obtained from a custom-made questionnaire given to BugSpotting’s

users, highlighting both quantitative and qualitative analysis related to the UI/UX. Section 5.4 presents

the a summary of the conclusions based on the current classifications. Finally, at the end of the chapter,

we mention the limitations of the system and detail the motives behind these.

5.2 Data Collection Methods

5.2.1 Crowdsourced Classifications

As mentioned throughout this document, the classifications of the code snippets were collected through

the BugSpotting’s platform. Users would provide their opinion about a certain label, indicating whether

the code snippet in question was vulnerable (or not vulnerable) to a certain previously chosen vulner-

ability class. The same would apply to the tool, but in an automated way, where the server would be

responsible for its execution.

It is worth mentioning that while BugSpotting’s platform supports all the eight vulnerability classes

that we proposed to include, the code slices that were inserted in the database for further analysis by users

(and the tool) were primarily focused on the SQL Injection and Cross-Site Scripting vulnerability classes.

More precisely, the database was populated with 193 code snippets that could only be vulnerable (or not)

to the aforementioned vulnerability classes. This means that, although the user could choose another

vulnerability class besides the two above mentioned, it would not encounter any slices of that chosen

type. The reason for using such code slices lies in the fact that this set was already manually classified.

This provided us with a ground truth which in turn allowed to make a comparison with the results of

the labels produced by the system, thereby offering a strategy to assess the precision and correctness of

BugSpotting.

A total of 695 classifications were obtained for these two vulnerability classes, more precisely, 371

classifications for the class XSS and 324 for the class SQL Injection. This total comprises classifications

61
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from both users and the WAP tool. Given that there are 193 unique code snippets, and since each slice

and vulnerability class combination is uniquely classified once for each of the two vulnerability classes,

the tool sums a total of 386 classifications.

5.2.2 User Questionnaire

In order to thoroughly evaluate both the design and functionality of the BugSpotting’s platform, a ques-

tionnaire was created. The main goal of this questionnaire was to capture the user’s opinions in terms

of User Experience(UX), which focus on the ease of use and user satisfaction and User Interface (UI),

which evaluates the visual aspect of the website. We also use the results to evaluate if the requisites of

Section 3.2 were accomplished. Hence, the questionnaire serves as a pillar to understand the areas where

the platform needs improvement and also to measure its effectiveness.

The questionnaire is divided in four main categories:

• Demographic Questions This part aimed to gather information about the gender, age group, ed-

ucation level, occupation and experience with coding. The demographic data helps to understand

the diversity of the users of the system and if any of the demographic factors could influence the

final results. For example, both education level and experience with coding provide valuable in-

sights in terms of classifications obtained, since it is more likely to achieve better results if the

person classifying already has some level of expertise in the field of cybersecurity or has some

knowledge about programming.

• UI feedback The UI statements had the objective to ask the user his opinion about the visual

aspect and layout of the platform as well as the navigation and accessibility. This way, it becomes

more clear for us what are the areas that are more appealing and well designed or need some

improvements. For instance, one of the statements regarding this subject was the color palette

used in both light and dark modes (whether it provided ease of reading).

• UX feedback This statements served the purpose of obtaining information about the ease of use

and functionalities of the website. For example, understanding if the process of classifying a code

snippet was easy and intuitive as well as knowing if the user had experienced some bottlenecks or

other issues and if the website was quick and responsive.

• Open-ended questions These questions were designed to capture other ideas or opinions that

could not be gathered by the statements. This allows the users to express their thoughts in a

more personalized manner, offering other type of insights that may be useful for future changes

or features. For instance, one of the open-ended questions was to know if the user had any other

feature that could be added in order to enhance his experience.

To quantify the user’s subjective experience in terms of UI/UX in the BugSpotting platform, we employed

a 10-point Likert scale that aimed at gathering opinions about several aspects of the system’s design and

behaviour. Users were asked to rate their agreement to different statements about the website, in which 1

indicated ”strongly disagree” and 10 indicated ”strongly agree”. This scale was chosen with the objective

of obtaining a detailed view of the user’s perception about the overall features and visual aspect of the
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system, allowing us to better understand in which areas the platform required enhancements or additional

features (or where it was well designed and effective). A total of 13 responses was obtained.

Appendix A contains all the statements and questions that were used in the questionnaire.

5.3 User Feedback and Evaluation

5.3.1 Quantitative Analysis (UI/UX)

The quantitative analysis focuses on the numerical ratings provided by the users (using the already men-

tioned 10-point Likert scale) to each statement about BugSpotting. In order to represent the obtained

results, an average rating of each statement was calculated.

Figures 5.1 and 5.2 illustrate the UI/UX statements present in the questionnaire. Due to space lim-

itations, each one is denoted by an alphanumeric identifier (such as ’S1’, ’S2’, etc.) on the x-axis. It is

worth noting that these identifiers are in the same order as the statements provided in Appendix A. The

y-axis represents the rating (the numerical values ranging from 1 to 10).
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Figure 5.1: Average ratings for UI statements

Figure 5.1 shows the average rating of each statement in terms of UI evaluation, providing a high

level overview about the users satisfaction and opinion about the visual aspects of BugSpotting. As it is

possible to observe, statements S1, S2, S3, S4, and S8 show particularly high mean ratings, ranging from

9.0 to 9.6, which can be interpreted as a strong level of user satisfaction. In contrast, statements S5, S6,

and S7 have relatively lower mean ratings, with 7.8 and 8.6, highlighting areas that may require further

enhancement.

S5 stands out by having the lowest rating. This statement refers to the presentation of the reputation

table, where the users can visualize their points (reputation) per vulnerability class. This could mean, for

instance, that users did not find the table intuitive or of easy perception, which translates in the need for

future improvement.

A more broader view and interpretation of such ratings can also be achieved resorting to other sta-

tistical metrics, like the median, mode and standard deviation. Table 5.1 depicts the aforementioned

statistical metrics per statement. As it is possible to observe, the overall results are quite promising.
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Table 5.1: Statistical Summary of UI Ratings

Identifier Median Mode Standard Deviation
S1 9.0 8, 9, 10 1
S2 10.0 10 0.7
S3 10.0 10 1.5
S4 10.0 10 1.2
S5 7.5 10 1.8
S6 9.0 10 1.65
S7 9.0 10 1.1
S8 9.5 10 0.9

Comparing the average rating from Figure 5.1 with the median, it is possible to conclude that there is

consistency across these metrics. This emphasizes the user satisfaction about BugSpotting’s UI, since

the ratings, in their majority, are composed of high values. For example, both S1 and S2 share a high

average and median ratings.

Moreover, the mode can also help to reach some interesting conclusion: even though that, for S5

(which, as mentioned before, refers to the user’s reputation table feature), the mode is 10 (being the

rating that users chose the most), it has an average of 7.8. This is an indicator that the ratings provided

by the users are dispersed and can be seen as another evidence that it is a feature worth inspecting and

potentially improving, since there is not a clear consensus between users. This is also backed up by

the standard deviation, which acts as a measurement of agreement between user ratings. For example,

S2 presents a low standard deviation, which, in this case, can be understood that user’s had a pleasing

experience with the website’s color pallet.

Finally, it is also possible to conclude from the table that there are other statements worth taking into

account, being those S3 and S6, since they present a high standard deviation, although the mode has a

value of 10.

Figure 5.2 depicts the average UX ratings provided by the users. Similarly to the UI case, the overall

mean ratings were positive and revealed a high level of satisfaction in terms of the BugSpotting’s UX

component. As can be seen, statements S6, S8 and S9 show the highest ratings, being an indicator

that reveals a considerable user approval. In contrast, statement S11 shows a substantial lower score.

Unsurprisingly, this statement is related to the user’s reputation table (more specifically, if the reputation

system was of easy understanding and motivated the user to keep classifying code snippets), that was

already pinpointed as an area needing attention and potential improving in terms of UI as well.

Table 5.2 illustrates other UX statistical metrics per statement, as in the case of UI. The overall

consistency of the parameters suggests a positive user experience, but with some nuances. Although the

values of the mode are, in their majority, only composed of one value or at most two, for the case of

S11 this is not true. S11 has an average of 6.9 and a median of 7.0, which could mean there is not much

dispersion on the results. The mode overrides the aforementioned: while the median and average show a

relatively low level of contentment, the mode suggests that there does not exist a single dominant rating.

Some users rated it as low (5) and others as extremely high (10). This is another strong suggestion that

this area needs further refinement (reinforced with the UI results).
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Figure 5.2: Average ratings for UX questions

Table 5.2: Statistical summary of UX ratings

Identifier Median Mode Standard Deviation
S1 8.0 10 1.7
S2 9.0 9, 10 1.3
S3 9.5 10 1.2
S4 9.0 10 1.1
S5 8.0 10 1.9
S6 9.0 10 1.0
S7 8.0 9, 10 1.5
S8 10.0 10 1.0
S9 9.0 10 1.1
S10 10.0 10 1.2
S11 7.0 5, 7, 8, 10 2.0

On the other hand, statements S6, S8 and S9 show high median values accompanied by low standard

deviations. This clearly states that these UX elements were highly appreciated by the users and no

changes should be required. The areas that may required further enhancements are the ones that show

lower median scores. This is even more obvious if the standard deviation presents higher values: this

translates in a wider range of opinions, where a consensus is not obvious. This could be the case of

statements S1, S5 and S7, which although they do not present particularly low medians (or means), they

do in fact show high standard deviations.

The quantitative analysis serves as a valuable tool for not only confirming the overall high levels

of user satisfaction, but also for isolating areas that may require additional attention. For example, the

standard deviation for questions related to UI components was relatively low, suggesting a consensus

among users about the UI’s quality. On the other hand, it was possible to observe, in the case of UX, a

more wider range of opinions between users. This leads us to conclude that there are some areas related

with the UX that need further investigation. While these statistics provide a solid foundation for further

improvement, a qualitative analysis can offer a more comprehensive point of view. The users are able
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to freely express their opinions and provide comments about any feature or functionality that they might

have found efficient or needs further enhancement, allowing us to gather a deeper understanding about

the BugSpotting’s platform. In the next section, we analyse some of the comments and opinions provided

by the users.

5.3.2 Qualitative Analysis (User Feedback)

Code Snippet Pool

The overall comments and opinions of the users to this topic were very similar: the code felt repetitive.

The explanation of such comments is of easy understanding: the code examples itself were similar. This

means that some of the code snippets would change just a few variables or some other minor details of

the implementation. The algorithm was still able to balance correctly the code snippets served to the user,

as we conducted several tests verifying this. These opinions and comments related to the code snippets

used become useful so a more diverse set can be used in the future.

User Interface and Navigation

The user interface and navigation had an unanimous feedback: the ”Make a Classification” button, which

is only present in the profile menu drop-down, should also be present in the main navigation bar once a

user logs in. The users referred that if it is one of the core functionalities of the system, then it should have

more visibility in the platform. Some said that it should be more trivial to access this page, mentioning

once again that it ought to be in the main page. We conclude that in fact there should be an easier access

to the classifications page, since is one of the most important functionalities of the website and that it

requires further refinement.

User Reputation and Scoring Systems

The user reputation feature is the one that had the lowest rating in both UI and UX components. The

comments from the crowd are pretty straightforward: some of the users complain that they do not un-

derstand what the points are or how they are obtained. Others refer that although they may understand,

there should be a scale (with a max limit) so they could better reason about how high or low their points

are. We do understand that the lack of a detailed explanation may confuse the users – we only succinctly

describe the earning of points in the main page, which may not be clear enough. A better description and

explanation must be added so the user easily understands the purpose of the reputation table and how the

scoring system works. In addition, a user stated that it was not possible to understand if the 50 points

initially received after a providing a classification were a default value or if they change according with

the difficulty of the analysed code snippet. This clearly constitutes one of the areas that will need further

focus and development.

Ease of the Classification Process

This topic also deserves our attention. The users evidenced that there should be a more clear explana-

tion of how to classify a code snippet. Although the BugSpotting platform contains a dedicated page to

explain the classification process, it would benefit from a more detailed one. Some of the users referred
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the fact that they had doubts about which lines they should pinpoint when they considered the code snip-

pet vulnerable. They also mentioned that the process could be more efficient: the classification process

should allow to classify multiple code snippets in a row, instead of returning to the page containing the

vulnerability classes grid. These constitute valid points that we intend to enhance in the future, especially

the explanation about the vulnerable lines that must be taken into account.

User Experience on Mobile Devices

Some opinions and comments were related to the lack of a mobile version and how the responsiveness in

these must be improved. At the moment, the platform does not support mobile devices. This constitutes

future work.

Bug Reports and Other Issues

A few bugs and other issues were mentioned by the users. A user stated that in the ”My Classifications”

page, the search was slow and that occasionally did not work. Some referred that there are some unclick-

able buttons in the main page while another user said that the SQL Injection vulnerability classification

was not being saved. We conducted further functional tests in the platform and were able to find that

indeed there were some elements that were not clickable (for instance, the cards with the succinct ex-

planation of how to classify a code snippet in three steps). We were unable to reproduce the other two

issues mentioned. We were able to save every SQLI classification and everytime we accessed the ”My

Classifications” page, all our classifications were being loaded correctly and in a timely fashion.

Future Requests

There were several requests in terms of functionalities that the users found interesting for the website to

have. A complete list can be understood below:

• Difficulty filtering: Some users would find interesting if there was a functionality of filtering by

difficulty of code snippet analysis, granting extra points if the code snippet was harder to classify.

• Check other user’s classifications: A user suggested that there could be a way to check other

user’s classifications.

• Code sanitization function for extra-points: A user gave the idea of giving extra points if the

sanitization function was mentioned in the comment box.

• Forum to discuss classifications: A user referred to the possibility of creating a sort of forum

where the classifications could be discussed and thus, reach better results.

5.3.3 Qualitative Feedback Assessment

The qualitative analysis of the feedback provided by the users offered valuable insights about areas that

should be enhanced in the future, allowing a deeper comprehension about what the users think about the

platform. Some of the key takeaways were the need for a more diversified set of code snippets and a more

user-friendly reputation and scoring systems. Users also pointed out that the guidelines for classifying
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a code slice should be more detailed, particularly what lines should be indicated in the case of the code

snippet under classification is considered vulnerable. Finally, a mobile version of the website should also

be implemented.

5.3.4 BugSpotting’s Requisites

In Section 3.2, we established the requisites that BugSpotting aimed to accomplish:

• Easy to Use (UI/UX): We successfully developed a platform with a visually appealing interface

that is easy to navigate, aligning with our UI goals. In terms of the UX, we ensured the platform

is quick, easily accessible, and functional. With the feedback obtained from the users about both

UI and UX, we confirmed that we were able to achieve what was initially intended.

• Extensible: The BugSpotting platform has potential to grow. By being developed with good code

practices and well-known design patterns, its architecture ensures that is easy to introduce new

tools and add new functionalities, as well as improve the ones that already exist.

• Real and Synthetic Code Snippets Support: The platform is capable of support both types

of code snippets: real and synthetic. Although we used synthetic code snippets to populate the

database, the latter is also capable of storing real ones, offering more diversity for future works.

The majority of our requisites for BugSpotting have been successfully met. The only aspect where we

faced challenges, and partially met our goals, was in determining the consensus for the code snippet’s

final label, and thus, having precision and sensitivity in the results. Although we were able implement an

algorithm that combined the classifications from both the users and the tool, arriving at a definitive label

was not possible due to several factors. Nonetheless, we were still capable of infer conclusions about the

final label. In the next section, we detail the challenges encountered and provide insights about the code

snippets labels.

5.4 Data Quality Assessment

While our algorithm performed as we initially predicted, it is important to refer that the evaluation faced

certain challenges, particularly in achieving the expected number of classifications, which is crucial for

providing an objective conclusion about the precision and quality of the code snippet labels. The main

reasons for the lack of consensus were the limited number of users on the platform, which in turn led to a

diminished count of classifications and some technical delays. Nonetheless, we still present examples of

classified code snippets that although do not show the final label, give strong and reliable indicators that

prove the algorithm is working correctly and that the final labels tend to converge to the correct value.

We also will delve deeper into the reasons and conditioning factors as well as challenges faced that did

not made possible the obtaining of the desired label consensus. Illustrated in Figures 5.3 and 5.4, one

can observe twenty examples of code snippets that were classified in the context of the XSS and SQLI

vulnerability classes. The tables show the database’s slice unique identifier, as well as the number of

positive, negative and total classifications. In the last column, the real value of the label is shown (in

which 0 means not vulnerable and 1 means vulnerable). It is worth mentioning that the total number of
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classifications for each code snippet in both tables has into consideration the classification generated by

the WAP static analysis tool.

Table 5.3: Present code snippets classifications for XSS vulnerability class

Id Positive Classifications Negative Classifications Total Classifications Real Label
1 1 4 5 0

220 1 3 4 0
264 1 3 4 0
259 3 1 4 0
242 2 2 4 0
231 2 1 3 0
267 2 1 3 0
265 0 3 3 0
276 0 3 3 0
283 0 3 3 0

As it is possible to verify in Table 5.3, although at an initial phase in terms of total number of

classifications for XSS class, one can tell that the results look very optimistic. If we focus on the slice

with identifier one, if we were to reach a consensus at the moment, chances are that the label produced

by BugSpotting would match the real value of the label, providing a precise result. It is also visible

that it happens to the other code snippets, where a majority of negative classifications surpasses the

positive ones, which match each final label. We even possess cases where classifications are unanimous,

represented by the slices with identifiers 265, 276 and 283. The only exceptions are slices with identifiers

259, 242, 231 and 267. Nonetheless, this does not mean the final result produced by the system will not

match the real one: after all, not enough classifications were provided. This constitutes the reason why

we did not opt for lowering the threshold to a value under seven, as it would produce premature results

that could no represent the real label’s value.

Table 5.4: Present code snippets classifications for SQLI vulnerability class

Id Positive Classifications Negative Classifications Total Classifications Real Label
220 4 0 4 1
242 4 0 4 1
259 3 1 4 1

1 0 3 3 0
333 0 3 3 0
261 2 1 3 0
225 2 1 3 1

7 1 2 3 0
8 0 3 3 0
9 0 3 3 0

Table 5.4 also shows good indicators that suggest the system is functioning correctly in order to reach

the final label value for SQLi class. Similarly to the XSS case, we also possess a majority of unanimous

classifications that tend to the correct real label, which are represented by slices with identifiers 220,
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242, 1, 8 and 9. Moreover, we also possess an exception: slice with identifier 261 are deviating from the

correct final label. Similarly to what happened with the XSS situation, this is still at a premature phase

and the correct result can still be reached.

It is possible to conclude by the interpretation of the results we possess at the moment that, although

a consensus was not reached, the precision and correctness of the results can be easily understood and as

time passes, we do believe that this indicators strongly suggest that the labels produced by BugSpotting

would converge to the correct ones.

5.5 Discussion and Objectives

The code snippets that populated the database employed in this study only comprised two possible types

of vulnerability: SQL Injection and Cross-Site Scripting. 193 code excerpts with these two possible

vulnerabilities were initially inserted in the database since we already knew in advance the final label

of them. More precisely, if each code snippet was vulnerable or not vulnerable to the aforementioned

vulnerability classes, providing us a good starting point. When all these code snippets were classified,

we would then compare the labels achieved by the system with the real ones, being able to discern if they

were correct or if some modifications in the consensus algorithm were needed.

In the end, we were not able to achieve the intended outcome, for fundamentally two reasons: first,

there was a lack of user participation to a large number of code snippets to analyse. Second, the way

the algorithm itself was implemented also interfered with the gathering of results. More specifically, the

number of users providing classifications was not enough to classify every code snippet in the context of

the intended vulnerability classes and the algorithm was programmed to provide a distribution of code

slices among users in a balanced manner. This algorithm design choice was deliberate and intentional:

it aimed at providing a less cumbersome task of classifying code snippets by decreasing the chances of

obtaining the same code snippet for classification. On the other hand, it also meant that achieving the

final label of a particular code snippet required more time (since the algorithm prioritized serving other

code slices that had either not been classified or had received fewer classifications).

Furthermore, we had initially configured a threshold with the value of ten maximum classifications

per code snippet (in the context of a certain vulnerability class). We even changed the value to a lower

one (seven) in an attempt to get label consensus results. Still, it was not possible to achieve consensus

and if a lower value was to be used, there would be a diminished credibility and viability of the final

label, which would be of no interest.

Moreover, there were also technical delays: although the application was already implemented and

ready to be deployed, due to various circumstances, the system administrator responsible for the VM took

some time to configure it (in order for the application to be deployed) and to setup the proxy to redirect the

requests to HTTPS. This delay meant that we had to wait until all the configurations were completed, so

no classifications could be obtained. While this study faced many obstacles, it is important to remember

that the primary focus of this thesis was the construction of a platform that allowed the classification of

code snippets and this was achieved: the BugSpotting platform is up and running. In order to achieve a

valid consensus, an algorithm was always going to be needed, being it more or less minimalist, for the

system to function as a whole.
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It is also worth noting that if it was not for the lack of time and factors above stated, the system

would produce (potentially) valid and precise labels as demonstrated in this section. We conducted an

analysis to the database in order to visualize the classifications and related data we possessed at the

moment and were able to notice that the database values were solid and some of the code snippets were

already converging to a single label value. In addition, the algorithm responsible for choosing a slice

offered good indicators, since the code snippets total number of classifications were balanced (which is

in accordance with what we expected).





Chapter 6

Conclusion

This dissertation presents a novel approach to create datasets composed of code snippets that may be

labeled as vulnerable (or not vulnerable) to a set of vulnerability classes. The strategy consist in the the

construction of a web application – BugSpotting – that aims at gathering classifications from a group of

people (crowdsourcing) and also from an SAT.

The BugSpotting platform was built taking into consideration several good practices and well known

web development principles. It was implemented resorting to various technologies that not only make

the development process easier, but are also efficient and widely supported. Moreover, it is also offers

an intuitive and user-friendly interface, which allowed a simplified classification process for the users

as well as other features, such as revisiting already classified code snippets and the verification of their

reputation. To assess the quality of BugSpotting, a questionnaire was elaborated to gather information

about the various aspects of the web application related to the UI and UX. The overall feedback from the

users was very positive, confirming the platform’s usability.

Furthermore, we developed two algorithms: first, an algorithm that is dedicated to the filtering of a

code slice (based on a set of criteria). Once enough classifications are obtained (according to a predefined

threshold), a second consensus algorithm comes into play, being responsible for determining the code

snippet’s final label.

Although our study was not able to reach a consensus about each code snippet’s due to several

limitations such as the lack of user participation and delayed deployment, it is essential to refer two

important aspects: first, the main goal of constructing a functional platform was successfully met. The

system is operational and functioning accordingly, with the potential for future improvements. Second,

while a consensus was not reached, we still analysed the data we had until this moment, which revealed

promising results when it comes to the precision and correctness of the code snippets labels.

6.1 Future work

In terms of future work, BugSpotting could benefit from a few improvements. These improvements

range from simple modifications to more complex implementations, including:

• The feature related to the visualization of the user’s reputation must be enhanced. This was the

platform’s area that received the lowest ratings from our users, both in terms of UI and UX. In
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addition, a more detailed explanation about the reputation should also be provided in the website.

This way, there could be more motivation when making classifications.

• The algorithm, although working correctly and in accordance with what was expected, could be

optimized in order to make the system faster. Not only in terms of actual implementation, but also

enhancements when it comes to complexity and precision, making it more robust.

• As mentioned by our participants, the website could have a mobile version. This would enable

more gathering of data, since there would be an extra device supported.

• The main navigation bar possessing a link to the classifications page, since this is one of the core

functionalities offered by BugSpotting. This would not only make the classification process more

obvious but also also indirectly demonstrate (potentially) the main goal of the system.

• Finally, we would like to prove the accuracy of our system when it comes to labeling code snippets.

Due to the reasons already stated in this document, this was not possible to achieve. As time passes,

eventually a majority of code slices will be classified and a comparison with the real labels can be

made, assuring the system’s precision and reliability, as it was implied by the results we had at the

moment.
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Appendix A

User Experience Questionnaire

A.1 Demographic Questions

• Gender:

– Male

– Female

– Non-Binary

– Prefer not to say

• Age group:

– 18-24

– 25-34

– 18-24

– 25-34

– 35-44

– 45-54

– 55-64

– 65 and above

• Education level:

– Below High School

– High School or Equivalent

– Bachelor’s Degree

– Master’s Degree

– Doctorate or Higher

– Prefer not to say

• Occupation:
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– Student

– Software Developer/Engineer

– IT Professional (non-development role)

– Cybersecurity Expert/Professional

– Academic/Researcher

– Unemployed

– Other (please specify):

– Prefer not to say

• Experience with coding:

– No experience

– Basic (e.g., took a few courses, self-taught basics)

– Intermediate (e.g., regularly code but not a primary job, hobbyist)

– Advanced (e.g., professional developer, extensive coding experience)

– Expert (e.g., deep knowledge in multiple languages, frameworks, etc.)

A.2 UI (User Interface) Questions

A.2.1 Visual Design and Layout

• The website’s design is visually appealing to me.

• The website’s color palette is comfortable for my eyes and promotes ease of reading (both dark

and light mode).

• I found the switch between light and dark mode seamless and visually satisfactory.

• The presentation and layout of the code snippets (when making a classification) are clear and easy

to understand.

• The presentation of user’s reputation (table) is well structured and easy to interpret.

A.2.2 Navigation and Accessibility

• I could easily navigate between different sections and pages of the website.

• The icons and buttons on the website are intuitive and well placed.

• The grid layout for vulnerability classes made it straightforward for me to select a desired vulner-

ability class.
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A.3 UX (User Experience) Questions

A.3.1 Ease of Use

• I found the website to be intuitive.

• I could easily navigate through the website without needing help.

• The process of classifying a code snippet (as vulnerable or not) was straightforward.

• Specifying the vulnerability lines and adding comments (when making a classification) was a

simple process.

• The scale for indicating my confidence level was clear and easy to use.

• The help page provided clear and helpful instructions on classifying a code snippet.

• Navigating and deciding where to click on the website was instinctive for me.

• Editing my profile was easy and straightforward.

A.3.2 Functionality

• The website loaded the content quickly and was fast to react to my actions.

• Checking my past classifications was convenient and informative.

• The reputation system (points for each vulnerability class) was clear and motivated me to classify

correctly.

A.3.3 Open-ended Questions

• What features or design elements of the website did you particularly like?

• Which areas or functionalities of the website do you believe that need improvement?

• Are there additional features or changes you would suggest for enhancing your experience on the

website?

• Do you have any other feedback or comments about the website?
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Appendix B

API Endpoints

B.1 POST /api/v1/users/create

HTTP Headers: The request should include the following HTTP header:

• Content-Type: application/json

Request Body: The request body should be a JSON object with the following keys:

• firstName: The user’s first name.

• lastName: The user’s last name.

• email: The email address for the new account.

• username: The desired username of the new account.

• password: The password for the new account.

Example:

{

"firstName": "John",

"lastName": "Doe",

"email": "johnDoe123@example.com",

"username": "jdoe2023",

"password": "My5uper5ecretPassw0rd2023!"

}

Responses: Possible responses when creating a new user:

• 200 OK: The user was successfully created.

• 400 Bad Request: The request body is malformed or missing required fields. There can

also be the case where the user does not comply with the required password specifications

- the password must be between 8 and 25 characters in size, contain at least on upper case

letter, one lower case letter, one digit and one special character.
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• 409 Conflict: A user with the given username or email already exists.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Response Example: Example of a successful user registration’s response:

{

"id": 100,

"firstName": "john",

"lastName": "doe",

"email": "johnDoe123@example.com",

"username": "jdoe2023",

"roles": [

"User"

],

"sessionToken": "eyJhbGciOiJIUzI1NitsInR5cCI

6IkpXVCJ7.eyJ1bmlxdWVfbmFtZSI6IjIiLCJyb2xlIj

oiVXNlciIsIm5iZiI2MTY5Mjg5MDIxMiwiZXhwgjoxNj

kzNDk1MDEyLCJpYXQiOjE2OTI4OTAyMFP9.rvPsMHKmz

XtewZRNh24Sf7Dp115SH7dQ0MKhbDedIug"

}

The above response depicts the scenario of a successful user creation, where the data obtained is

the following: user’s unique identifier, first name, last name, email, username, role and the JWT

token.

Error Response: Example of an error response when creating a new user:

{

"ErrorCode": "USERNAME_ALREADY_EXISTS",

"ErrorMessage": "Username is already taken"

}

The above example shows one possible response provided by the BugSpotting’s backend (API).

In this case, the HTTP status code is a 409, indicating the user tried to register himself under an

already existing username.

Additional Notes: When creating a new user, the password is hashed by the backend, granting a more

secure and robust database, since in the eventuality of the database is leaked, it is of no use for the

attacker (the passwords are not in clear text). The used hashing algorithm is the SHA-256.
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B.2 GET /api/v1/users/{userId}

HTTP Headers: The request must contain the following HTTP headers:

• Content-Type: application/json

• Authorization: Bearer {JWT}

Request Parameters: This endpoint requires the following parameter:

• userId: The unique identifier for the user. This should be included in the URL path.

Example:

{

{protocol}://{domain}/api/v1/users/1000

}

Responses: Possible responses when creating a new user:

• 200 OK: The user’s data was successfully retrieved.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 404 Not Found: The user associated with the identifier contained in the request does not

exist.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Error Response: Example of an error response when getting a user by the unique identifier:

{

"ErrorCode": "USER_NOT_FOUND",

"ErrorMessage": "The account with the user

1000 does not exist"

}

In the example above, a request was executed with a non existing identifier, resulting in an HTTP

status code of 404, meaning that the user was not found.

Additional Notes: As previously shown, the header of the request must include the JWT token. It is

mandatory in order to access this endpoint. The reason lies in the fact that each token is unique and

is with the data contained inside the token (the identifier of the user) that the correct information

is retrieved. Moreover, the successful response, although not depicted, follows the same format as

the previous endpoint, except it does not possess the ”sessionToken” field.
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B.3 DELETE /api/v1/users/delete

HTTP Headers: The request should include the following HTTP headers:

• Content-Type: application/json

• Authorization: Bearer {JWT}

Request Parameters: The request must contain the following HTTP headers:

userId: The unique identifier for the user. This should be included in the URL path.

Example:

{

{protocol}://{domain}/api/v1/users/1000

}

Responses: Possible responses when deleting a new user:

• 200 OK: The user was successfully deleted.

• 400 Bad Request: The request is malformed, missing or having invalid URL/query pa-

rameters, or invalid field types.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 403 Forbidden: The user, although in the possession of a valid token, does not has the

required permissions. Only an administrator (whose token’s role value is ”Admin”) is able

to delete a user.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Error Response: Example of an error response when deleting a user by the unique identifier:

{

"ErrorCode": "USER_NOT_FOUND",

"ErrorMessage": "The account with the user

1001 does not exist"

}

In the example above, a request was executed with a non-existing identifier, resulting in an HTTP

status code of 404, meaning that the user was not found and thus, the system was not able to delete

it.
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Additional Notes: There is no success message returned by the backend. The operation of deleting a

user is successful if the returned HTTP status code equals 200. Moreover, one can notice that the

example URL is similar to the previous endpoint. Although this is in fact true, the API is able to

respond to the correct operation because the HTTP methods of each operation are different (GET

and DELETE ).

B.4 POST /api/v1/users/authenticate

HTTP Headers: The request should include the following HTTP header:

• Content-Type: application/json

Request Body: The request body should be a JSON object with the following keys:

• email: The email address for the new account.

• password: The password for the new account.

Example:

{

"email": "johnDoe123@example.com",

"password": "My5uper5ecretPassw0rd2023!"

}

Responses: Possible responses when creating a new user:

• 200 OK: The user was successfully authenticated.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the correct credentials.

• 404 Not Found: The user with the credentials provided does not exist.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Response Example: Example of a successful user registration’s response:

{

"sessionToken": "eyJhbGciOiJIUzI1NitsInR5cCI

6IkpXVCJ7.eyJ1bmlxdWVfbmFtZSI6IjIiLCJyb2xlIj

oiVXNlciIsIm5iZiI2MTY5Mjg5MDIxMiwiZXhwgjoxNj

kzNDk1MDEyLCJpYXQiOjE2OTI4OTAyMFP9.rvPsMHKmz

XtewZRNh24Sf7Dp115SH7dQ0MKhbDedIug"

}
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The above response depicts the scenario of a successful user authentication, consisting in the ses-

sion token.

Error Response: Example of an error response when creating a new user:

{

"ErrorCode": "EMAIL_NOT_FOUND",

"ErrorMessage": "The account with the email

johnDoe12@example.com does not exist"

}

The above example shows one possible response provided by the BugSpotting’s backend. In this

case, the HTTP status code is a 401, indicating the user tried to login but the credentials were

incorrect, more precisely, the email.

B.5 POST /api/v1/users/editProfile

HTTP Headers: The request should include the following HTTP header:

• Content-Type: application/json

• Authorization: Bearer {JWT}

Request Body: The request body should be a JSON object with the following keys:

• id: The user’s unique identifier.

• firstName: The user’s first name.

• lastName: The user’s last name.

• email: The email address for the new account.

• oldPassword: The user’s old password.

• newPassword: The user’s new password.

• confirmNewPassword: Confirmation of the new user’s password.

Example:

{

"id": 100,

"firstName": "John",

"lastName": "Doe",

"email": "jhonDoe123@example.com",

"updatePassword": {

"oldPassword": "My5uper5ecretPassw0rd2023!",

"newPassword": "MyNewPassw0rd2023!",
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"confirmNewPassword": "MyNewPassw0rd2023!"

}

}

In the above example, the user is updating his current password. He did not alter any of the

other fields, but by default, this are sent in the request (although no changes occur except for the

password update).

Responses: Possible responses when updating the user’s profile information:

• 200 OK: The user was successfully created.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 404 Not Found: The user associated with the identifier contained in the request does not

exist.

• 409 Conflict: The user did not provide the correct current password or the fields ”new-

Password” and ”confirmNewPassword” do not match. It can also happen if the user fills only

one or two out of the three password fields. Finally, there could also happen that the user is

trying to update his email to an existing one.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Error Response: Example of an error response when updating user’s profile information:

{

"ErrorCode": "PASSWORDS_MUST_BE_EQUAL",

"ErrorMessage": "Passwords must be equal"

}

The above example shows an error message provided by BugSpotting’s backend. In this case, the

user did not fill the ”newPassword” and ”confirmNewPassword” fields with the same input.

Additional Notes: Although not illustrated, the successful response the same format as the GET /api/v1/

users/{userId} endpoint.

B.6 POST /api/v1/users/forgotPassword

HTTP Headers: The request should include the following HTTP header:

• Content-Type: application/json
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Request Body: The request body should be a JSON object with the following keys:

• email: The user’s email.

Example:

{

"email": "johnDoe123@example.com",

}

Responses: Possible responses when creating a new user:

• 200 OK: The user was successfully created.

• 400 Bad Request: The request body is malformed or missing the required field.

• 404 Not Found: A user with the given email does not exist.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Response Example: Example of a successful user registration’s response:

{

{protocol}://{domain}/setnewpassword?token=

32B34F76189014870E7B23581120F9152D1FD01EC

488C623FAC5B52375669CE0640FADE530170FCC407901D9E

F171287C2175B0F913365A7301676FB693FF672B6

}

The above response depicts the scenario of a successful response. This is an example of an hyper-

link that the user will receive in his email and that will further redirect him to the reset password

page of the BugSpotting’s website. The special token in the response is further explained in the

”resetPassword” endpoint.

Error Response: Example of an error response when trying to recover the user’s password:

{

"ErrorCode": "EMAIL_NOT_FOUND",

"ErrorMessage": "The account with the email

johnDoe312@hotmail.com does not exist"

}

The above example shows one possible response when the user tries to initiate the process of

recovering his password. In this case, the user did not provide an existing email, obtaining an

HTTP status code of 404 (the email was not found).
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B.7 POST /api/v1/users/resetPassword

Request Parameters: The request must contain the following parameter:

token: This is a short duration token (1 hour) that is used to identify the user who requested a password

recovery.

HTTP Headers: The request should include the following HTTP header:

• Content-Type: application/json

Request Body: The request body should be a JSON object with the following keys:

• newPassword: The user’s new password.

• confirmNewPassword: A security measure so the user does not mistype his new pass-

word.

Example:

{

"newPassword": "MyNewPassw0rd2023!",

"confirmNewPassword": "MyNewPassw0rd2023!"

}

Responses: Possible responses when resetting the user’s password:

• 200 OK: The password was successfully updated.

• 400 Bad Request: The request body is malformed or missing the required field. It can

also happen to be the case where the token has expired or is incorrect.

• 409 Conflict: The user did not fill both fields or they do not match.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Error Response: Example of an error response when creating the new password:

{

"ErrorCode": "PASSWORDS_MUST_BE_EQUAL",

"ErrorMessage": "Passwords must be equal"

}

The above example shows one possible response when the user tries to input the new password,

but they do not match. The backend responds with a HTTP status code of 409, indicating that the

passwords must be equal.
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Additional Notes: After the user receives an email containing an hyperlink to the password reset page,

the latter includes a special token composed of multiple numbers and letters (which makes it unique

and hard to forge). This token, with the duration of 1 hour, is meant to uniquely identify the user

who initiated the password recovery process. After the request by the user (providing his email) in

the previous endpoint, this token is generated and linked to the requesting user’s account. The user

then includes this token, which they receive via email, as a request parameter in their follow-up

request to BugSpotting’s backend (the current endpoint being explained), along with newPassword

and confirmPassword fields in the request body. The backend identifies the user associated with

the token and uses the information from the request body to update the user’s password.

B.8 GET /api/v1/users/email

HTTP Headers: The request must contain the following HTTP headers:

• Content-Type: application/json

• Authorization: Bearer {JWT}

Request Parameters: This endpoint requires the following parameter:

• email: The email of the user. This should be included in the URL path.

Responses: Possible responses when creating a new user:

• 200 OK: The user’s data was successfully retrieved.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 404 Not Found: The user associated with email contained in the request does not exist.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Error Response: Example of an error response when getting a user by the unique identifier:

{

"ErrorCode": "EMAIL_NOT_FOUND",

"ErrorMessage": "The account with the

email testa@gmail.com does not exist"

}

In the example above, a request was executed with a non existing email, resulting in an HTTP

status code of 404, meaning that the user with the specified email was not found.

Additional Notes: Similarly to the GET /api/v1/users/{userId} endpoint, a valid JWT token is also

required in the request header for this endpoint. Additionally, the format of a successful response

remains the same as with the aforementioned endpoint.
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B.9 GET /api/v1/users/slice

HTTP Headers: The request should include the following HTTP header:

• Content-Type: application/json

• Authorization: Bearer {JWT}

Request Parameters: This endpoint requires the following parameters:

• userId: The user’s unique identifier.

• vulnerabilityClass: The chosen vulnerability class by the user.

Example:

{protocol}://{domain}/api/v1/users

/slice?userId=1000&vulnerabilityClassId=500

Responses: Possible responses when requesting a slice:

• 200 OK: The slice was successfully delivered to the client.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 404 Not Found: Either the user identifier or the slice were not found.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Response Example: Example of a successful response:

{

"id": 1000,

"sliceSourceCode": "{Base64 Encoding}"

}

The above response depicts the scenario of a successful slice request. It is worth noting that the

sliceSourceCode field contains the slice encoded in Base64. Due to the size of the Base64 string,

it was omitted.

Error Response: Example of an error response when creating a new user:
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{

"ErrorCode": "SLICE_NOT_FOUND",

"ErrorMessage": "Slice does not exist"

}

The above example shows one possible error message provided by the server. In this case, the

HTTP status code is a 404, indicating that a slice was not found.

Additional Notes: The requesting of a code slice is a complex process, involving a dedicated algorithm

in order to choose the slice. In the next section, we will focus in detail in the execution that occurs

”under the hood” when a code snippet is requested.

B.10 POST /api/v1/users/vulnerabilityClass

HTTP Headers: The request should include the following HTTP headers:

• Content-Type: application/json

• Authorization: Bearer {JWT}

Request Body: The request body should be a JSON object with the following keys:

• vulnerabilityClassName: The vulnerability’s class name.

• vulnerabilityClassAcronym: The vulnerability’s class acronym.

Example:

{

"vulnerabilityClassName": "example",

"vulnerabilityClassAcronym": "EXPL"

}

Responses: Possible responses when inserting a new vulnerability class:

• 200 OK: The user was successfully deleted.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 403 Forbidden: The user, although in the possession of a valid token, does not has the

required permissions. Only an administrator (whose token’s role value is ”Admin”) is able

to insert a new vulnerability class.

• 409 Conflict: This occurs when the admin tries to insert an already existing vulnerabil-

ity class (either with an existing name or acronym).
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• 500 Internal Server Error: An error occurred on the server while processing the

request.

Error Response: Example of an error response when inserting a new vulnerability class:

{

"ErrorCode": "VULNERABILITY_CLASS_ALREADY_EXISTS",

"ErrorMessage": "Vulnerability class with given

acronym or name already exists"

}

In the example above, a request was executed providing an already existing vulnerability class,

resulting in a response from the server with the HTTP status code of 409 (conflict).

Additional Notes: There is no success message returned by the backend. The operation of inserting a

new vulnerability class is successful if the returned HTTP status code equals 200.

B.11 POST /api/v1/users/tool

HTTP Headers: The request should include the following HTTP headers:

• Content-Type: application/json

• Authorization: Bearer {JWT}

Request Body: The request body should be a JSON object with the following keys:

• vulnerabilityClassName: The vulnerability’s class name.

• vulnerabilityClassAcronym: The vulnerability’s class acronym.

Example:

{

"toolName": "Example Tool",

"toolAcronym": "EXPL",

"toolURL": "www.exampleTool.com"

}

Responses: Possible responses when inserting a new vulnerability class:

• 200 OK: The user was successfully deleted.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.
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• 403 Forbidden: The user, although in the possession of a valid token, does not has the

required permissions. Only an administrator (whose token’s role value is ”Admin”) is able

to insert new data about a tool.

• 409 Conflict: This occurs when the admin tries to insert an already existing tool (either

with an existing name, acronym or website).

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Error Response: Example of an error response when inserting a new vulnerability class:

{

"ErrorCode": "TOOL_CLASSIFIER_ALREADY_EXISTS",

"errorMessage": "Tool classifier with given name,

acronym or URL already exists"

}

In the example above, a request was executed an already existing tool, resulting in a response from

the server with the HTTP status code of 409 (conflict).

Additional Notes: There is no success message returned by the backend. The operation of inserting

new information about a tool is successful if the returned HTTP status code equals 200.

B.12 POST /api/v1/users/classification

HTTP Headers: The request should include the following HTTP headers:

• Content-Type: application/json

• Authorization: Bearer {JWT}

Request Body: The request body should be a JSON object with the following keys:

• vulnerabilityClassName: The vulnerability’s class name.

• vulnerabilityClassAcronym: The vulnerability’s class acronym.

Example:

{

"classifierId": 500,

"sliceId": 1000,

"vulnerabilityClassId": 15,

"label": 1,

"comment": "I am positive that this code snippet

is vulnerable.",
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"confidenceDegree": 10,

"vulnerabilityLinesViewModel": {

"lines": "1, 5, 10-12"

}

}

This example of request shows the case of a classification where the user classified the code snippet

as vulnerable (label with value 1) and with the maximum confidence degree (10). The user also

indicated the vulnerable lines and provided a comment.

Responses: Possible responses when inserting a new vulnerability class:

• 200 OK: The user was successfully deleted.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 404 Not Found: This response occurs when either the user or the vulnerability class were

not found.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Error Response: Example of an error response when inserting a new vulnerability class:

{

"ErrorCode": "USER_NOT_FOUND",

"ErrorMessage": "The account with the user 500

does not exist"

}

In the example above, a request was executed with a user’s identifier that does not exist, resulting

in the response with an HTTP status code of 404.

Additional Notes: Similarly to the GET /api/v1/users/slice endpoint, this route also involves the exe-

cution of a complex algorithm in order to reach a consensus about the code snippet’s label. A

detailed explanation can be understood in the next section. In addition, there is no success mes-

sage returned by the backend. The operation of creating a new classification is successful if the

returned HTTP status code equals 200.

B.13 GET /api/v1/users/classifications/{userId}

HTTP Headers: The request must contain the following HTTP headers:
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• Content-Type: application/json

• Authorization: Bearer {JWT}

Example:

{protocol}://{domain}/api/v1/users

/classifications/1000?skip=0&top=10

Request Parameters: This endpoint accepts the following parameters:

• userId: The unique identifier for the user. This should be included in the URL path.

• skip: A dynamic query parameter that initially starts at 0 and increments in intervals of 10.

It instructs the backend on the starting point for the classifications to be returned, based on

their unique identifiers.

• top: This parameter complements the skip parameter to define the range of classifications

to retrieve. For instance, if skip is set to 10 and top is set to 10, classifications with unique

identifiers ranging from 10 to 20 will be returned from the database.

Responses: Possible responses when creating a new user:

• 200 OK: The user’s classifications were successfully retrieved.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 404 Not Found: The user associated with the identifier contained in the request does not

exist.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Response Example: Example of a successful response with the user’s classifications:

[

{

"sliceSourceCode": "{Base64 Enconding}",

"vulnerabilityClassName": "Example One",

"vulnerabilityClassAcronym": "EXPL1",

"date": "2023-07-30T16:48:22.7159290",

"label": 0,

"comment": "I'm not very confident in my classification",

"confidenceDegree": 3,

"vulnLines": null

},
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{

"sliceSourceCode": "{Base64 Enconding}",

"vulnerabilityClassName": "Example Two",

"vulnerabilityClassAcronym": "EXPL2",

"date": "2023-07-30T17:25:22.5060290",

"label": 0,

"comment": "I'm sure this code slice is not vulnerable",

"confidenceDegree": 10,

"vulnLines": null

}

]

The above response depicts the scenario of a successful response when asking for the user’s clas-

sification. The response is an array of JSON objects that represent each classification. In this case,

the user only has classified two code snippets.

Error Response: Example of an error response when getting a user by the unique identifier:

{

"ErrorCode": "USER_NOT_FOUND",

"ErrorMessage": "The account with the user

1000 does not exist"

}

In the example above, a request was executed with a non existing identifier, resulting in an HTTP

status code of 404, meaning that the user was not found.

B.14 GET /api/v1/users/reputation/{userId}

HTTP Headers: The request must contain the following HTTP headers:

• Content-Type: application/json Authorization: Bearer {JWT}

Request Parameters: This endpoint accepts the following parameters:

• userId: The unique identifier for the user. This should be included in the URL path.

Example:

{protocol}://{domain}/api/v1/users/reputation/1000

Responses: Possible responses when creating a new user:



Appendix B. API Endpoints 104

• 200 OK: The user’s reputation was successfully retrieved.

• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 404 Not Found: The user associated with the identifier contained in the request does not

exist.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Response Example: Example of a successful response with the user’s reputation:

[

{

"vulnerabilityClassName": "Example One",

"vulnerabilityClassAcronym": "EXPL1",

"weight": 50

},

{

"vulnerabilityClassName": "Example Two",

"vulnerabilityClassAcronym": "EXPL2",

"weight": 50

}

]

The above response depicts the scenario of a successful response when asking for the user’s rep-

utation. The response is an array of JSON objects that represent each weight (number of points)

that a user has per vulnerability class. In this case, the user only has only classified two types of

vulnerability class, so the response only includes two objects in the array.

Additional Notes: The error response example is not depicted because each possible one is the same as

the previous endpoint.

B.15 POST /api/v1/users/uploadCodeFile

HTTP Headers: The request must contain the following HTTP headers:

• Content-Type: multipart/form-data

• Authorization: Bearer {JWT}

Responses: Possible responses when uploading a code file:

• 200 OK: The user’s data was successfully retrieved.
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• 400 Bad Request: The request body is malformed or missing required fields.

• 401 Unauthorized: The user did not provide the session token or the token itself is

malformed.

• 403 Forbidden: The user, although in the possession of a valid token, does not has the

required permissions. Only an administrator (whose token’s role value is ”Admin”) is able

to populate the database with code snippets.

• 404 Not Found: The user associated with the identifier contained in the request does not

exist.

• 500 Internal Server Error: An error occurred on the server while processing the

request.

Additional Notes: Unlike other endpoints that require a JSON object or URL parameters, this endpoint

requires a file. As shown above in the HTTP header specification, the content type of this request is

not ”application/json”, but a ”multipart/form-data), indicating that a file should be uploaded within

the HTTP request body. Also, there is no success message returned by the backend. The operation

of deleting a user is successful if the returned HTTP status code equals 200.
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