
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

FAST REROUTE USING SEGMENT ROUTING FOR
SMART GRIDS

Documento Provisório

Frederico António Silva de Brito

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

Dissertação orientada por:
Prof. Doutor Fernando Manuel Valente Ramos

e co-orientado pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

2016

Agradecimentos

Em primeiro lugar quero agradecer aos meus pais, por todos os esforços que fizeram
para eu me encontrar aqui, por me passarem todos os seus valores, amor e carinho. Nada
disto poderia ter acontecido sem vocês. Quero também agradecer aos meus restantes
familiares por estarem presentes e por me apoiarem nesta jornada.

Em segundo lugar quero agradecer muito, mas mesmo muito aos meus amigos e cole-
gas de curso: Filipe Custódio, João Rebelo, Joel Alcântara, José Soares e Luı́s Ferrolho.
Muitas manhãs, muitas tardes e muitas noites de dores de cabeça e estudo mas também
de muita conversa, gargalhadas e episódios históricos. Um especial obrigado para o meu
amigo Rebelo, pela brilhante decisão de nos inscrevermos na FCUL e pela ajuda dada no
primeiro ano. Não foi fácil, mas já está. Às pessoas que conheci na FCUL e se tornaram
meus amigos, e alguns bem grandes, um muito obrigado.

Finalmente, aos meus orientadores, Prof. Fernando Ramos e Prof. Nuno Neves, por
me terem proporcionado esta oportunidade, pela forma como trocamos ideias e pelo co-
nhecimento passado. A eles o meu muito obrigado. Além disso queria também agradecer
ao financiamento que foi suportado pelo projecto SEGRID e também pela FCT através do
programa Multianual do LASIGE.

Aos demais que de alguma forma possam ter contribuı́do para o meu sucesso, o meu
mais sincero obrigado.

i

A toda a minha famı́lia e amigos.

Resumo

A rede eléctrica tem contribuı́do de forma extraordinária para o nosso dia-a-dia nas
últimas décadas e, como tal, tornou-se essencial para a nossa sociedade. Hoje em dia,
estão a ser tomadas decisões para a modernizar, de modo a que seja possı́vel fornecer
novos serviços. Graças ao aumento da produção de electricidade através de energias re-
nováveis (energia solar, hı́drica e eólica), e ao aumento do consumo de energia, é vista
como necessária uma reestruturação da rede eléctrica. Para atingir estes objectivos, foi
proposta uma nova geração destas redes, as Smart Grids (SG). As SG são compostas por
dispositivos electrónicos inteligentes, sensores com e sem fios e contadores inteligentes
que necessitam de se coordenar para funcionarem correctamente. Como tal, é fundamen-
tal ter uma rede de comunicação moderna capaz de suportar estes desafios [1].

Um conjunto de propriedades de que se destacam a escalabilidade, disponibilidade
e segurança, são fulcrais para o funcionamento das SG. Para as SG a infra-estrutura de
comunicação tem um papel particularmente importante para que se possam cumprir estas
necessidades. As tecnologias actuais baseadas em Internet Protocol (IP) e em Multipro-
tocol Layer Switching (MPLS) têm conseguido corresponder a estas necessidades. O
protocolo IP é um dos alicerces para a comunicação mundial, enquanto que o MPLS tem
sido adoptado pelas suas capacidades de engenharia de tráfego.

No entanto, as redes de IP tradicionais são difı́ceis de gerir e tornam complicado o
desenho de soluções que permitam utilização eficiente de recursos e que possibilitem
comunicação resiliente. Por outro lado, o MPLS tem problemas de escalabilidade de-
vido ao uso de protocolos complexos como o Resource Reservation Protocol with Traffic
Engineering (RSVP-TE).

As Software Defined Networks (SDN) promete resolver alguns dos problemas men-
cionados anteriormente, a partir do desacoplamento do plano de dados do plano de con-
trolo, que passa a ser gerido por um controlador logicamente centralizado [2][3][4]. Deste
modo, as aplicações que são executadas no controlador têm uma visão centralizada do es-
tado da rede, o que facilita a procura de soluções de gestão de redes.

No entanto, os operadores de SG poderão apresentar alguma relutância ao mover todos
os seus elementos da rede para uma SDN. Felizmente, foi proposto recentemente um
novo protocolo pela Internet Engineering Task Force (IETF) – Segment Routing (SR)
[5] – que permite a centralização lógica oferecida por uma SDN num ambiente de uma

v

rede MPLS. SR é muito semelhante ao MPLS, na medida em que utiliza segmentos que
se comportam como etiquetas MPLS. A comutação de pacotes, baseada também nestas
etiquetas, é gerida por comutadores que usam as mesmas acções do MPLS (push, pop e
swap).

No entanto, ao contrário do MPLS, o SR não necessita de protocolos complexos como
o RSVP-TE, simplificando a gestão da rede. O SR utiliza uma forma de source routing,
facilitadora da sua integração. Desta forma o SR pode ser integrado com os controladores
SDN e outras aplicações. Para implementar SR, o controlador SDN apenas precisa de
enviar uma lista ordenada de segmentos para o encaminhador que a insere no cabeçalho
dos pacotes quando necessitarem de serem enviados. Isto torna possı́vel a criação de uma
solução mais simples e escalável para engenharia de tráfego.

Nesta tese vamos explorar o uso de SR para avaliar a resiliencia da rede. O objectivo
passa por desenhar e avaliar as soluções que forneçam reencaminhamento rápido após
uma falha de uma ligação entre nós. Em particular, fornece a capacidade de realizar reen-
caminhamento rápido enquanto fornece uma grande percentagem de cobertura. Aprovei-
tando as caracteriscas das SDN e de SR, as nossas soluções permitem que o controlador
pré compute os caminhos de backup necessários para instalar nos encaminhadores, man-
tendo o plano de dados em MPLS inalterado.

A contribuição principal desta tese pode ser resumida em dois pontos:

1. Desenho de uma solução de reencaminhamento rápido em caso de faltas para Smart
Grids, usando SR e SDN.

2. Fornecer uma avaliação exaustiva do algoritmo de modo a que se consiga compre-
ender os seus benefı́cios e limitações.

O algoritmo proposto utiliza vários comutadores que são utilizados como destinos in-
termédios, que garantem a entrega dos pacotes após a falha de uma ligação entre nós.
Como tal, também propomos dois selectores de segmentos que fornecem reencaminha-
mento rápido mas com caracterı́sticas diferentes.

A primeira solução, Fast Segment Drop (FSD), selecciona um segmento próximo da
origem do caminho em vez do segmento mais próximo do destino. Isto permite que os
pacotes que atravessam a rede causem o menor overhead possı́vel. O overhead deve-
se ao número de segmentos usados em cada nó durante o caminho. Assim sendo, se
escolhermos um segmento mais próximo do destino o overhead será maior.

A segunda solução, Congestion Avoidance Segment (CAS), escolhe segmentos que
podem aumentar o overhead mas que, em contraste, fornecem a capacidade de escolher o
caminho com menor utilização. Deste modo pode-se evitar estrangulamentos existentes
na rede.

Para compararmos as nossas soluções implementamos um selector aleatório e o al-
goritmo TI-LFA [6]. Os resultados demonstram que para a maioria das topologias uma

vi

falha entre nós pode ser tolerada utilizando Loop Free Alternatives (LFA). No entanto
ainda existem cerca de 20% dos casos que necessitam de utilizar um segmento para to-
lerar uma falha, enquanto que dois segmentos raramente são necessários. Também foi
possı́vel concluir que o nosso algoritmo fornece mais flexibilidade na escolha de segmen-
tos do que TI-LFA visto que permite uma maior escolha de segmentos. Utilizando CAS é
possı́vel reduzir ligeiramente a congestão das ligações na rede em grids e em topologias
reais.

Palavras-chave: SDN, Segment Routing, engenharia de tráfego, encaminhamento
resiliente, balanceamento de carga, Smart Grid.

vii

Abstract

With the increase of power generation from renewable sources and with a growing
energy demand, the traditional communication network underpinning the actual electric
power grid needs an overhaul.

As a response, the Smart Grid is a new generation of electric grids that aims to fulfill
this goal. Smart Grids demand a set of properties that range from high availability to
scalability and security. Therefore, the communication infrastructure plays an important
role. Current Internet Protocol-based and Multiprotocol Layer Switching (MPLS) tech-
nologies have been suggested capable in achieving those needs. However, IP networks
have problems to offer traffic engineering solutions and MPLS faces scalability problems
due to the use of complex protocols such as RSVP-TE.

A new network paradigm, Software-Defined Networks (SDN), is revolutionizing the
way computer networks are built and operated, and is leading to the “softwarization” of
networking. Showing promise to solve some of the above problems. However, smart
grid operators may be reluctant to move all their network elements to SDN anytime soon.
Fortunately, Segment routing, recently proposed by the IETF, allows SDN to be used in
the context of MPLS networks. The data plane of Segment Routing is similar to MPLS
as it uses segments that behave as MPLS labels and is managed in switches using similar
actions.

In this thesis we present algorithms for fast reroute in SR networks. We propose
two solutions: Fast Segment Drop (FSD) that aims to minimize packet overhead and
segment list size; and Congestion Avoidance Segment (CAS), a solution that provides
traffic engineering by minimizing the maximum link load. The results indeed show that
by using CAS reduces network congestion when compared with other algorithms. FSD
provides higher coverage using just one segment thus reducing overhead.

Keywords: SDN, Segment Routing, Traffic Engineering, Resilient Routing, Smart Grid,
Load balancing

ix

Contents

List of Figures xvi

List of Tables xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Software Defined Networks and Segment Routing 3
1.3 Goals & Contributions . 4
1.4 Work Planning . 5
1.5 Document Structure . 6

2 Background and Related Work 9
2.1 Smart Grids . 9

2.1.1 Home Area Networks . 10
2.1.2 Neighborhood Area Networks and Field Area Networks 10
2.1.3 Wide Area Networks . 11
2.1.4 Wired and Wireless technologies 11

2.2 Communication in Networks . 12
2.2.1 Routing & Forwarding . 12
2.2.2 IP . 13
2.2.3 IGP . 13
2.2.4 Traffic Engineering . 14
2.2.5 Software-Defined Networks . 16
2.2.6 Traffic Engineering in SDN . 18
2.2.7 Segment Routing . 20

2.3 Resilient Routing . 24
2.3.1 IP and MPLS Fast Reroute . 27

2.4 Final Considerations . 29

3 Design and Implementation 31
3.1 Algorithm for Fast Reroute . 31

3.1.1 Step 1 : ECMP Safeguard . 34

xi

3.1.2 Step 2: Loop Free Alternative Neighbor 34
3.1.3 Step 3: RLFA (1-Segment) . 35
3.1.4 Step 4: DLFA (2-Segments) . 38

3.2 Choosing from Multiple Alternative Segments 39
3.3 Implementation . 40
3.4 Final Considerations . 42

4 Evaluation 45
4.1 Random and TI-LFA strategies . 45
4.2 Environment setup . 46
4.3 Evaluation results . 50
4.4 Discussion . 54

5 Conclusion 57

Glossary 59

xii

xiv

List of Figures

1.1 Working Plan . 5

2.1 Multi-tier smart grid communications network 11
2.2 MPLS header. 16
2.3 SDN architecture . 17
2.4 OpenFlow Switch . 18
2.5 Topology using Segment Routing . 20
2.6 Fowarding a Segment routing packet . 21
2.7 Packet labeling and forwarding in MPLS vs Segment Routing 22

3.1 The several steps of a fast reroute mechanism 32
3.2 ECMP step . 34
3.3 LFA step . 34
3.4 Representation of P-Space after the link failure A-B 36
3.5 Representation of Q-Space after the link A-B failure 36
3.6 Representation of PQ-Space . 37
3.7 Representation of the Extended P-Space through multiple steps 38
3.8 PQ with empty intersection . 39
3.9 PQ Switches with multiple nodes . 39
3.10 UML class diagram. 41

4.1 Representation of TI-LFA . 46
4.2 Abilene and GÉANT topology . 47
4.3 NFS and EDP topology . 48
4.4 BRITE topology . 48
4.5 Ring and grid topologies . 49
4.6 Fat Tree topology . 49
4.7 Average segment list size . 51
4.8 Percentage of steps used to find a backup path 52
4.9 Topologies Average Overhead . 53
4.10 Bandwith difference in real topologies 54
4.11 Bandwith difference in grid topologies 55

xv

List of Tables

3.1 Functions and sets used in the algorithm. 33

4.1 Algorithm Results Summary . 51
4.2 TI-LFA Algorithm Results Summary . 54

xvii

Chapter 1 - Introduction

The electrical power grid is central to our society, having contributed greatly to our daily
life for the past decades. Nowadays, important steps are occurring towards the modern-
ization of the grid to accommodate newer services. With the increase of power generation
from renewable sources, like solar, wave and wind energy, and with a growing energy
demand (e.g., electric cars), the traditional power grid needs an overhaul. To fulfill this
goal, a new generation of electrical infrastructure, called the Smart Grid (SG), is being
deployed, composed by a complex network of intelligent electronic devices (IED), wired
and wireless sensors, smart meters and dispersed loads, that require coordination in or-
der to work properly. Therefore, a modern communications network is fundamental to
support the new challenges brought up by the SG [1].

The SGs demands a set of properties that include timeliness, scalability, high avail-
ability, and security. Besides, they also need to be interoperable, able to connect and
exchange data freely and transparently with many different types of devices. The com-
munication infrastructure plays an important role in fulfilling those needs. In particular,
current Internet Protocol-based (IP) and Multiprotocol Layer Switching (MPLS) back-
bone technologies have been meeting these needs fairly well. IP is the interoperable
foundation for communications around the world, while MPLS is being chosen to imple-
ment Traffic Engineering solutions [7][8].

However, traditional IP networks are hard to manage and have difficulties to offer so-
lutions with efficient resource utilization for resilient communication. In addition, MPLS
faces scalability problems due to the use of complex protocols like Resource Reservation
Protocol with Traffic Engineering (RSVP-TE).

Software Defined Networking (SDN) shows promise to solve some of the above prob-
lems by decoupling the data plane and the control plane of networks, managed in this new
paradigm by a logically centralized controller [2][3][4]. As such, it provides network ap-
plications running in the controller with a centralized view of the distributed network
state, facilitating the construction of solutions for network management. However, smart
grid operators may be reluctant to move all their network elements to SDN anytime soon.

Fortunately, a new network technology has been proposed recently by the Internet
Engineering Task Force (IETF) – Segment Routing (SR) [5] – which allows SDN to be
used in the context of MPLS networks. SR data plane is similar to MPLS as it uses

1

Chapter 1. Introduction 2

segments that behave as MPLS labels and is managed in switches using similar actions
(push, pop and swap). However, unlike MPLS, it does not require the use of complex
protocols such as RSVP-TE, simplifying the management tasks.

SR thus enables traffic engineering and advanced routing services in IP networks
while preserving compatibility with a traditional MPLS data plane. With this technique,
the core MPLS data plane does not have to be changed and SDN can control the network
from the edge. Taking advantage of the idea, we study and implement an approach that
makes the network more robust to failures. In particular, it gains the ability to perform
fast reroute and recovery after link failures.

1.1 Motivation

In the past decades, electrical grids have suffered from several blackouts that have dis-
rupted their service. One of the reasons for most blackouts is the slow response times of
devices over the grid. This is usually the result of problems with the communications used
among the different components in current grids. Considering that the SG requires high
levels of reliability in packet delivery, a simple disruption of a link in a part of the network
has the potential to affect hundreds of thousands of connections. Several techniques to
solve this problem have been proposed. The most effective is to install precomputed mul-
tiple redundant paths on switches, instead of recomputing the paths after a failure. This
provides fast rerouting enabling rapid recovery after link failures.

According to [7][8], most smart grid communication requirements can be provided by
IP and MPLS protocols. IP is the main communication protocol used in the network layer
[9]. It offers best effort transmission of blocks of data called datagrams from sources to
destinations. IP is widely used in our daily life and has proven to be scalable and efficient.
However, IP solutions have limited support for traffic engineering and fault tolerance
requires routers to perform complex tasks, such as tunneling and direct forwarding, which
are typically not available in common routers or are too expensive for the network as a
whole. Alternatively, MPLS is commonly used to implement traffic engineering [10]. In
a MPLS network, each router independently chooses a next hop for a packet based on
the analysis of the packet’s label, a short fixed length value. For this purpose, MPLS
requires a Label Distribution Protocol (LDP) that uses a set of procedures by which one
router informs another of the label bindings it has made. In addition to LDP, MPLS uses
RSVP-TE, another complex protocol, that allows for traffic engineering and fast reroute.
Using these protocols increases the complexity of the network and limits its scalability.
Namely, RSVP-TE inherites some properties of RSVP that adversely affect its control
plane scalability, like reliance on periodic refreshes for state synchronization.

Two recent innovations in computer networking, SDN [2] [3] [4] and SR [5], show
promise to solve the above problems. SDN decouples the data plane and the control

Chapter 1. Introduction 3

plane, which is now managed by a logically centralized controller providing applications
a centralized view of the network state. SR is a novel protocol, that improves traffic
engineering and allows fast fault recovery for IP networks, while maintaining the same
MPLS data plane. However, it does not require the use of protocols such as RSVP-TE or
LDP, simplifying the control plane.

1.2 Software Defined Networks and Segment Routing

The layered structure of the internet protocol stack had a major contribution for its suc-
cess. It allowed data plane services to be broken down into their fundamental components
and consequently offered innovation in each layer. However, problems come from the
complexity of the control plane of computer networks. The reason for this complexity is
derived from the coupling of the control and data planes inside the network equipment.
This makes the development and deployment of new networking features very hard be-
cause these normally would require a modification of all network devices.

With SDN it is possible to decouple the control and the data plane[2] [11]. The con-
trol functionality is moved to the SDN controller, leaving the network devices with the
forwarding functions only. The controller is a platform, logically centralized, that runs
on commodity servers. This provides the resources and abstractions to program the net-
work devices (e.g., switches or routers). Forwarding decisions are flow-based, instead
of destination-based and all packets of a flow receive identical policy decisions at the
network devices.

SR improves traffic engineering in IP networks while preserving compatibility with
traditional MPLS data plane [5]. Similar to MPLS the idea is to break up the routing
path into labels (segments) in order to control routing paths. In SR there are two types
of segments: Node-id segments that represent switches in the network, and adjacency
segments that identify the links connecting a node and its neighbors. These segments are
encoded as a MPLS label, which are inserted in the label stack of the packet header, also
known as Segment List (SL) allowing a source routing approach. Each packet is then
forwarded along the shortest path towards the network element represented by the top
segment. When a packet reaches the intermediate destination represented at the top of the
segment list, the top level label is popped by the intermediate destination and the packet is
forwarded to the next segment in the list. This actions continues until the packet reaches
its final receiver. As such, the stack of labels allows customized routing.

SR can be integrated with SDN. The SDN controller can learn the network topology
and the real time state information. Using this information, the SDN controller can cal-
culate the best network path based on a set of predefined criteria. To implement SR, the
SDN controller needs only to send an ordered list of labels to the source router, which
should be inserted in the header when the packet is locally forwarded. This provides a

Chapter 1. Introduction 4

much more scalable and simple solution for traffic engineering. Millions of applications
or flows can have millions of different network paths.

1.3 Goals & Contributions

Critical services of the Smart Grids that require high reliability are being deployed in IP
networks. A single link failure can disrupt many connections causing congestion and loss
of data, which may prevent for instance, the remote control of distant devices a serious
problem in this infrastructure. A technique that may mitigate this problem is Fast Reroute.
By installing precomputed redundant paths on switches, it allows them to recover quickly
when a failure occurs since they no longer have to recompute paths after that failure. As
such, recovery time are reduced from hundred of milliseconds or seconds.

The goal of our work is to design and evaluate a solution that provides fast reroute after
a single link failure for Smart Grids. We leverage on an SDN controller to precompute
the paths and on SR to steer traffic while leaving keep the MPLS data plane unchanged.
We also aim to provide solutions that offer good trade-offs between packet overhead and
load balancing.

The main contributions can be summarized as:

1. Design of a fast reroute solution for Smart Grids, using SR and SDN.

2. Provide an extensive evaluation of the algorithm to better understand its benefits
and limitations.

The proposed algorithm may employ different strategies to ensure delivery after a
single link failure. We propose two strategies that provide fast reroute but with different
properties.

The first solution tries to minimize the number of segments used. For this purpose, it
prefers to forward packets to switches closer to the source when failure occurs since, this
allows packets to traverse the network while causing less overhead. The overhead is the
cumulative number of segments used at each hop along the path.

The second solution opts to balance load by choosing the path with minimum link
load, possibly avoiding choke points in the network.

Chapter 1. Introduction 5

1.4 Work Planning

Figure 1.1: Working Plan.

This work was part of the SEGRID (Security for Smart Electricity GRIDs) project, funded
by the EU under the FP7 program. FCUL is one of its partners along with distribution
system operators, manufacturers, research institutions and universities. The project main
objective is to increase smart grid security from cyber-attacks. FCUL is responsible for
providing a resilient communication infrastructure and this thesis is part of that effort.
The work described in this thesis contributed to the deliverable do SEGRID - Deliverable
4.2, Preliminary specification of security and privacy solutions.

We elaborated a plan to achieve the established goals in the beginning of the project.
The plan was divided in the following tasks:

1. Study of the state of art on SDN, Traffic Engineering and Routing – with the goal
of investigate different techniques that could be explored to make our algorithm for
resilient communication.

2. Design of algorithms for resilient communication – based on the techniques inves-
tigated while studying the state of the art, and novel techniques required for our
project.

3. Writing the preliminary report.

4. Implementation of the proposed algorithms.

5. System Evaluation – including analysis of performance and comparison with other
algorithms.

6. Writing the dissertation.

Most of planned tasks were accomplished in their due time. However, the implemen-
tation task took longer then expected due to learning new tools. There was also a small
delay in designing the load balance solution.

Chapter 1. Introduction 6

1.5 Document Structure

The rest of the document is organized as follows. Chapter 2 addresses the background
and related work. In this chapter we present an introduction to Smart Grids, SDN, and
study of communication networks with a focus on resilience. In Chapter 3 we present our
proposal for fast reroute. Chapter 4 covers the evaluation of our solution. Finally, Chapter
5 summarizes and concludes this work.

Chapter 1. Introduction 8

Chapter 2 - Background and Related Work

The expansion of the electric grid with new energy generation resources and customers
demanding more electricity, created the need for the deployment of the SG. These infras-
tructures are composed of several devices such as smart meters, data concentrators and
various kinds of servers that need to be reliably connected through a network.

This section provides an overview of the communication architecture within a SG,
the types of wired and wireless technologies that are employed, and also the most suited
communication protocols. Some background information on communication networks is
also included. We start by providing basic principles of routing and forwarding. There
are several protocols that allow gateways to exchange routing information, such as Open
Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS). De-
spite its wide utilization, OSPF is not flexible enough to support traffic engineering for
diverse applications. Some enhancements have been proposed to enable OSPF to provide
traffic engineering by changing link weight values, but even these approaches may cause
congestion and unbalance traffic. MPLS was proposed to address these issues. However,
MPLS traffic engineering may suffer from scalability and robustness problems due to the
use of tunnels, and cannot offer service differentiation.

SDN shows promise to solve the above limitations by decoupling the data plane and
the control plane. The section on SDN provides information related to its architecture and
protocols. In addition, it presents SR, its advantages and explains how it can be integrated
in a SDN network.

Finally, the last section describes several resilient routing techniques that allow the
traffic to flow even in the event of a failure, including IP and MPLS resilient routing
techniques through fast reroute mechanisms.

2.1 Smart Grids

SG is a new generation of electric grids, that are composed of IEDs, smart meters, wired
and wireless sensors, and dispersed loads that require cooperation and coordination in
order to work properly [1] [12] [13] . They offer many benefits to utilities and consumers
– mostly seen in energy efficiency improvements on the electricity grid and in the energy
users’ homes and offices.

9

Chapter 2. Background and Related Work 10

There is not a single solution or a representative network for the SG as each utility
may require different topologies, policies and application requirements. However, SG are
normally multi-tier networks supported by several different communication technologies
to enable efficient and reliable access to grid components.

In general, the SG communication architecture can be divided in different areas, such
as depicted in Figure 2.1: Home Area Networks (HAN); Neighborhood Area Networks
(NAN); Field Area Networks (FAN); and Wide Area Networks (WAN).

2.1.1 Home Area Networks

A HAN is a communication network of appliances and devices within a home. They are
used to monitor and control how devices implement new functionalities like the Advanced
Metering Infrastructure (AMI) and Demand Response (DR). The idea is to have every
home device send its power readings over this network to the smart meter, which will
eventually send the readings to the control center. The data generated from each in-home
appliance and the communications requirements of each device in a HAN may differ. For
instance, a laptop computer does not cause a significant load on the electrical network and
therefore control centers only need simple information. The data rate expected in a HAN
is low, typically around 1–10 Kbps.

A HAN can also be a Business Area Network (BAN) if it is used to refer to networks
implemented in a company, and an Industrial Area Network (IAN) when applied to an
industrial setting.

2.1.2 Neighborhood Area Networks and Field Area Networks

A NAN connects smart meters to a data concentrator of the AMI. It can form a wireless
mesh network due to the large number of devices (e.g., smart meters and data collec-
tors) spread across a respective zone. A FAN forms the communication facility inside an
electrical station, such as a wind power plant.

NANs and FANs have the same objective, to share and exchange information, of par-
ticular types of applications: field based (e.g., to transmission lines, sensors, voltage reg-
ulators) and customer based (e.g., to end customers, like houses, buildings, industrial
users). Customer based applications (i.e., AMI, DR) require the communication network
between the customers and the utility to be highly scalable, allowing for further addition
of applications and customers. On the other hand, field based applications (i.e., SCADA)
are normally more time sensitive due to their need to react to events within well defined
intervals. Usually the data rate in NANs is higher than that of HANs.

Chapter 2. Background and Related Work 11

Figure 2.1: Multi-tier smart grid communications network with HANs, NANs, FANs and
WANs.

2.1.3 Wide Area Networks

Wide area networks form the communication backbone that connects the highly dis-
tributed smaller area networks that serve the power systems at different locations. WAN
comprises two types of networks: Core and Backhaul. While the core network is used
to connect the primary substations which are integral parts of a power system and form
important links between the generation stations, the backhaul network is used to connect
the NAN to the core network. The real-time measurements taken by IED’s and electric
devices are transported to the control centers through the WAN, which usually requires
high bandwidth to support all the communications needed from all the devices.

2.1.4 Wired and Wireless technologies

SG networks are potentially spread over wide geographic areas. Therefore, a range of
wired and wireless technologies are used. However, none of them suits all the applica-
tions, and thus it is necessary to fit the best technology for a respective group of power
system applications.

The Power Line Communication for instance, is a wired technology based on electric-

Chapter 2. Background and Related Work 12

ity wires. It can be used to carry information, but the electrical wire circuits have limited
ability to carry higher frequencies. In practice, Power line communication is used for in-
door environments to provide an alternative broadband networking infrastructure without
installing dedicate network wires. They are also used in NANs.

Common wired mediums, such as fiber optical cables, are also used to construct data
communication networks of the SG. Typically they offer a higher communication capacity
and smaller communication delays.

Wireless networks provide the ability to eliminate the installation of physical lines.
The 802.11 and ZigBee networks are the most popularly used HANs. However, it is
important to notice that wireless signals are subject to transmission attenuation and envi-
ronmental interference that may create some problems.

2.2 Communication in Networks

The information exchanged among devices through a network is governed by well-defined
rules and conventions that is usually set out in standardized technical specifications. The
Internet model, the one used by the majority of networks, divides the tasks necessary to
carry out communication in several layers, where a layer leverages from the services of
the layer below it. The Internet model is composed of five layers:

• Layer 5 corresponds to the application layer, used for high-level APIs and remote
file access. As an example, protocols like the Hypertext Transfer Protocol (HTML)
and File Transfer Protocol, are included in this layer.

• Layer 4 is the transport layer, responsible for the transmission of data between two
endpoints of a network. The most common protocols used in this layer are TCP and
the User Datagram Protocol (UDP)[14][15].

• Layer 3 is the network layer, which deals with inter-network connection, imple-
menting tasks like addressing and routing. The fundamental protocol used in this
layer is IP.

• Layer 2 is the data link layer, defines the type of data between adjacent network
nodes. The most common used protocols are ethernet and Wi-fi.

• Finally, Layer 1 is the physical layer, responsible for the transmission of unstruc-
tured raw data on a physical medium.

2.2.1 Routing & Forwarding

The role of the network layer is to move packets from a sending host to a receiving host.
To do so, two functions are necessary to do [16] :

Chapter 2. Background and Related Work 13

1. Routing - refers to the network-wide process that determines the end-to-end path
that packets take from the source to the destination.

2. Forwarding - refers to the router-local action of transferring a packet from an input
link interface (or port) to the appropriate output link interface.

In packet switching networks, routing directs packet forwarding through intermediate
nodes. Those nodes might be for example routers, gateways, firewalls, and switches.
Every router has a routing table. The construction of this table is crucial and it varies
according to the algorithm used. Usually routing algorithms employ the shortest path from
one source to each destination, but there are alternatives that use multipath techniques that
enable the use of several alternative paths.

2.2.2 IP

IP is the main communication protocol utilized in the network layer [9]. It allows the
transmission of blocks of data called datagrams from sources to destinations, where
the hosts are identified by fixed length addresses. Its routing function enables inter-
networking and essentially establishes the Internet.

IP defines packet structures that encapsulate the data to be delivered. These packets
have a maximum size. This means that when a datagram is larger than the standard 1500
bytes, it will be divided into multiple packets. In addition to fragmentation IP supports
the reassembly of long datagrams.

Routers communicate with one another via specially designed routing protocols, ei-
ther interior gateway protocols or exterior gateway protocols, as needed by the topology
of the network. IP always makes a “best effort” attempt to deliver a packet. An IP packet
might be lost, delivered out of sequence, duplicated, or delayed. IP does not attempt to
recover from these types of errors. The acknowledgment of delivered packets and the
recovery of lost packets is the responsibility of a higher-layer protocol, such as TCP.

2.2.3 IGP

An Interior Gateway Protocol (IGP) is a layer 3 protocol used for exchanging routing
information among routers within a single administrative domain [16]. This information is
used to determine how packets should be transmitted while traveling through the network.
There are two categories of IGP protocols: Distance-vector and Link-state.

Distance-Vector routing protocols

In a distance-vector routing protocol, a node advertises its distance value (or weight) to
its neighbors. Based on this information, it is possible to compute shortest paths and fill

Chapter 2. Background and Related Work 14

the routing table. This process is iterative and continues until no more information is
exchanged.

These protocols require that a router informs its neighbors of topology changes. Com-
pared to link-state protocols, which require all the nodes in a network to be notified of
topology changes, distance-vector routing protocols have less computational complexity
and message overhead.

Distance-vector protocols normally employ the Bellman-Ford algorithm to calculate
paths. An example of distance-vector routing protocol is the Routing Information Proto-
col [17].

Link-State routing protocols

In a link-state routing protocol each node broadcasts information about the state of its
links. Globally This ensures that all routers have an identical view of the network. Each
router builds a database of the network topology, aggregating the flooded network infor-
mation. Then, Dijkstra’s algorithm is used to compute the best path. After setting the
best paths in the routing table, packets are forwarded to the destination. When a change
is detected in the topology (such as when there is a link failure), the router broadcasts
this change and nodes update their information in the routing table. OSPF and IS-IS are
examples of link-state routing protocols.

2.2.4 Traffic Engineering

Most networks run OSPF or IS-IS routing protocols and select paths based on static link
weights. The use of shortest path routing is not flexible enough to support traffic engi-
neering in a network with a diverse set of applications. Using shortest paths conserve
network resources but it may introduce problems like congestion.

OSPF Weight Optimization

The traditional OSPF routing protocol allows the use of an optimization mechanism to
identify good link weight settings and thus perform traffic engineering.

In [18] the authors investigate how well OSPF routing performs on real networks,
using an AT&T WorldNet backbone and synthetic inter networks. They show that finding
the optimal setting of the OSPF weights is NP-hard for an arbitrary network. Considering
this problem, the authors propose a local search heuristic. For the considered backbone,
the heuristic allowed the computation of weight settings that made OSPF routing perform
near the optimal. For the synthetic networks the results were not as good but, when
compared with standard heuristics, it was possible to support a 50%-100% increase in the
demand, keeping max-utilization below 100%.

Chapter 2. Background and Related Work 15

The same authors in [19] present a practical approach to work within the existing
framework of static link weights, without modifying the routing protocol or the routers
themselves. The main point underlying this body of work is that the process of arriving
at good values for the weights, or a good set of changes to the existing weight values,
is handled externally from the routers. This process could depend on collected traffic
measurements and topology data. The framework described has two key features: a cen-
tralized approach for setting the routing parameters and the use of link weights as the way
to drive the path selection-process.

The traffic engineering approach has three main steps: measure, model and control.
Selecting good link weights depends on having a timely and accurate view of the current
state of the network. The operator also needs an estimate of the volume of traffic between
each pair of routers. The routing model should compute a set of paths for each pair of
routers. The output of the routing model can be combined with traffic demands to estimate
the volume of traffic on each link, based on the topology and the IGP configuration.

MPLS

MPLS is a mechanism used for traffic engineering [10][16]. In MPLS every label switch
router (LSR) makes an independent forwarding decision for the packet. Each router
chooses a next hop for the packet, which is encoded in the header as a short fixed length
value known as a “label” (as depicted in Figure 2.2). When a packet is forwarded to its
next hop, the label is sent along with it to facilitate the forwarding decisions along the
path.

MPLS requires a LDP that uses a set of procedures by which one LSR informs another
of the labels bindings it has made. This protocol is used regularly to exchange labels
and reachability information in order to build a complete picture of the network, which
can then be used to forward packets. After full label information is exchanged, a Label
Switching Path (LSP) is selected between routers. The internet resources can be allocated
to multiple LSP tunnels that can be created between routers, and the traffic between the
nodes is divided among the tunnels according to some policy.

In MPLS, a label can be used to represent the route. Usually in a traditional IP network
each router performs an IP lookup, determines a next-hop based on its routing table, and
forwards the packet to that next-hop. This process is repeated until the final destination
is reached. In MPLS the first node also does a rooting lookup, but instead of finding a
next-hop it searches for the final destination router. Then, the router applies a label based
on this information. The following LSR uses the label to route the traffic without needing
to perform any additional IP lookups. Since the label has a short fixed size, there is an
improvement in forwarding speed of routers, as it avoids complex lookups. Usually at the
egress router, the label is removed and the packet is forwarded normally with IP.

However, the main advantage of MPLS are the traffic management capabilities that it

Chapter 2. Background and Related Work 16

enables. MPLS provides the ability to control where and how traffic is routed in a network,
prioritizing different services, preventing congestion and improving network resilience.
In addition to LDP, MPLS uses RSVP-TE, a complex protocol with high overhead, but
that supports the implementation of traffic engineering techniques.

MPLS labels can also be stacked multiple times. Some common stacking applications
are: VPN/Transport services, which use an inner label to map traffic to specific interfaces,
and an outer label to route through the network; and “Bypass” LSPs services, which can
protect a bundle of other LSPs, to redirect traffic quickly without having to completely
re-signal every LSP, in the event of a router failure.

Figure 2.2: MPLS header.

2.2.5 Software-Defined Networks

Most of the success of the Internet is due to its layered protocol structure that allowed data
plane services to be broken down into fundamental components and enabling innovation
in each layer. In spite of this advantage, computer networks feature problems related
to the complexity of the control plane, making the development and deployment of new
networking features very hard because they would require a modification of all network
devices.

SDN supports the decoupling of the control and the data planes. The control function-
ality is moved to a SDN controller, leaving the network devices with the packet forwarding
functions [2]. The controller is a logically centralized platform, that runs on commodity
servers. It provides the resources and abstractions to program network devices. Network
applications running on top of the SDN controller implement the management services
of the network (e.g., routing, link recovery and monitoring). Packet forwarding deci-
sions are flow-based, instead of destination-based. All packets of a flow receive the same
processing at the switches, i.e., they are forwarded in a similar manner.

A simplified view of the SDN architecture is presented in Figure 2.3.

• Data plane: The data plane comprises a set of network elements. It implements
packet forwarding decisions that are made in the control plane.

Chapter 2. Background and Related Work 17

Figure 2.3: SDN Architecture. Simplified view of an SDN architecture.

• Southbound interface: In order for the data plane and the control plane to interact
with each other it is necessary to define a communication protocol between the
forwarding devices and the control plane elements. The most common protocol
used for this task nowadays is OpenFlow [20] .

• Control plane: The SDN Controller is a logically centralized entity in charge of
translating the requirements from the management plane to the data plane and pro-
viding the SDN applications with an abstract view of the network. The controller
plane comprises one or more SDN controllers. Forwarding devices are programmed
by the control plane using the southbound interface protocols.

• Northbound interface: Typically the northbound interface abstracts the low level
instructions sets used to program the forwarding devices. This interface is offered
by the controller platform through an API.

• Management plane: SDN applications are programs that programmatically commu-
nicate their network requirements and desired network behavior to the SDN Con-
troller via the northbound interface. These applications define policies that indicate
how the network should behave.

OpenFlow

Until recently, commercial network elements (e.g., switches and routers) did not provide
an open interface, neither the means to virtualize either their hardware or software, which
made them too inflexible. OpenFlow provides an open protocol to program the network
elements [20].

OpenFlow tries to compromise generality with a degree of switch flexibility such that
it is:

1. Amenable to high-performance and low-cost implementations;

Chapter 2. Background and Related Work 18

2. Capable of supporting a broad range of research;

3. Ensure the isolation of flows, such as experimental traffic from production traffic;

4. Takes into consideration the vendors need for closed platforms;

An OpenFlow switch consists of at least two parts (Figure 2.4): A flow table, with
an action associated with each flow entry (e.g., send to a specific port or drop a packet);
and a secure channel that connects the network device to the controller, where Openflow
messages can be transmitted.

Figure 2.4: OpenFlow Switch. The flow table is controlled by a remote controller via the
secure channel.

2.2.6 Traffic Engineering in SDN

Datacenter switching fabrics have enormous bandwidth demands due to the rapid increase
of applications. Equal-cost multi-path (ECMP) can split a flow aggregate uniformly over
a group of next-hops based on the hash of the packet header fields [21]. However, using a
hash function can lead to unnecessary traffic shifts during updates. ECMP hash functions
are often proprietary, making it difficult for network operators to know which traffic uses
which components, complicating network troubleshooting and analysis.

The emergence of open interfaces in SDN switches suggests an alternative approach,
where the controller programs the flow table to satisfy a load-balancing goal. Installing
all the rules in advance may not be attractive because rules change over time and the
switches have relatively limited high-speed memory. Some works attempt to solve these
issues through a series of novel solutions.

Google’s B4 uses SDN principles and OpenFlow to manage individual switches [21].
B4 serves multiple sites, each with a number of server clusters. Within each B4 site,
the switches primarily forward traffic and do not run complex control software. The site

Chapter 2. Background and Related Work 19

controller layer consists of a network control server hosting both OpenFlow controllers
and applications. The controller maintains network state based on information collected
by the applications and switch events, and instructs switches to set forwarding table entries
based on this changing network state.

Each B4 site has multiple switches with potentially hundreds of individual ports link-
ing to remote sites. In order to scale, B4 abstracts each site into a single node with a
single edge of a given capacity to every remote site. To achieve this, all traffic crossing a
site-to-site edge must be evenly distributed over across all its constituent links.

The goal of traffic engineering (TE) in B4 is to share bandwidth among competing
applications possibly using multiple paths. The idea is to deliver max.min fair allocation
to applications. In order to do so, it associates a bandwidth function with every applica-
tion. This function specifies the bandwidth allocation of the application given the flow’s
relative priority, which is called its fair share.

The optimal solution for the allocation of the fair share for all flow groups is expensive
and does not scale well. Thus, B4 employs an algorithm that achieves similar fairness and
at least 99% of the bandwidth utilization with 25x faster performance. The optimization
algorithm has two main components: the tunnel group generation that allocates bandwidth
to flow groups using bandwidth functions to prioritize bottleneck edges, and the tunnel
group quantization that changes split ratios in each tunnel group to match the granularity
supported by tables of switches.

Similar to B4, SWAN is a system that enables inter-datacenter WANs to carry more
traffic using a SDN based approach [22]. SWAN achieves high efficiency while meeting
policy goals, such as ensuring preferential treatment for higher-priority services and fair-
ness among similar services. Two key aspects of the approach are global coordination of
sending rates of services and centrally allocating network paths. Based on current service
demands and network topology, SWAN decides how much traffic each service can send
and configures the network’s data plane to carry that traffic. SWAN’s authors observe that
it is impossible to update the network’s data plane without creating congestion if all links
are full. SWAN thus leaves “scratch” capacity (e.g., 10%) at each link. This enables a
congestion-free plan to update the network in a series of steps.

Analysis of a production network shows that the number of rules required to fully use
its capacity exceeds the limits of even the next generation SDN switches. In order to solve
this problem, SWAN dynamically changes the set of paths available in the network based
on traffic demand. On the same WAN, SWAN can fully use network capacity with an
order of magnitude fewer rules.

SWAN supports two types of traffic sharing policies. First, it supports a small number
of priority classes (e.g., Interactive > Elastic > Background) and allocates bandwidth in
strict precedence across these classes, while preferring shorter paths for higher classes.
Second, within a class, SWAN allocates bandwidth in a max-min fair manner.

Chapter 2. Background and Related Work 20

Niagara [23] is an efficient traffic-splitting algorithm that computes OpenFlow rules
to minimize traffic imbalance (the fraction of traffic sent to the “wrong” next-hop, based
on weights), subject to flow-table size constraints. Niagara scales to tens of thousands of
aggregates and hundreds of next hops with a small imbalance. It also provides accurate
traffic-splitting with limited wildcard rules, since load-balancing weights are approxi-
mated accurately. Niagara packs rules for multiple flow aggregates into a single table and
allows sharing of rules across multiple aggregates with similar weights thus improving
the usage of the flow table space. Niagara also computes incremental changes to the rules
to reduce churn and traffic imbalance.

2.2.7 Segment Routing

SR is an approach to improve traffic engineering and online route selection in IP net-
works, while preserving compatibility with the traditional MPLS data plane [5]. SR relies
on label stacking to steer traffic using a source routing paradigm. With source routing,
operators can specify a path from network ingress to egress using a forwarding path that is
independent of the shortest path determined by the IGP. A segment is encoded as a MPLS
label that is inserted in a stack called the SL. Each packet is then forwarded along the
shortest path toward the network element identified at the top of the SL. Considering that
segments behave just like MPLS labels, the actions push, pop and swap can be applied to
modify the entries in the SL.

Figure 2.5: Topology using Segment Routing. Topology with node-id in each router and
adjacency-id in each link. As it is possible to observe, that a topology can have two
adjacency-id with the same value (link R1-R3 and link R4-R5) since they are just locally
unique

Segments can be of two types, Node-ID and Adjacency-ID (depicted in Figure 2.5.
Each node in the network has an associated unique Node-ID Segment identifier. Adjacency-
ID identifies the links connected to a node and its neighbors (or a specific set of links).

Chapter 2. Background and Related Work 21

While Node-ID are globally unique, Adjacency-ID are locally unique allowing the same
Adjacency-ID to represent different links (depicted in Figure 2.6). Adjacency-ID can be
globally unique if necessary, but this increases the state stored in the routers. In addi-
tion, Adjacency-ID enforces the detour of a packet through a particular interface or set of
interfaces. This is key to theoretically prove that any path can be expressed as a list of
segments.

Figure 2.6: Fowarding a Segment Routing packet. It starts by forwarding the packet to
R4. When arrives at R4 it pops the top segment. Then it inspect the SL again a observer
that 1500 is an adjacency-id. This will force the packet through this specific link. When
arrives ate R3 it pop the final label a proceeds to forward it to its destination

SR uses IGP (IS-IS or OSPF) extensions to distribute segments without a separate
protocol such as LDP or RSVP-TE. Thus, scalability of transit nodes is greatly improved,
since MPLS LSPs state information is not required. Unlike MPLS, there is no need to
maintain path state in segment routing except on the ingress node, since packets are routed
based on the list of segments that they carry. A example is displayed in Figure 2.7. In
MPLS, the first LSR does a routing lookup, inserts the label for the next hop. Then at each
LSR, it swaps the label for the next hop. In SR only the first router inserts the segment
that will be maintained until it reaches its destination.

Segment routing can be integrated with SDN. The SDN controller knows the network
topology and the current state information. Using this information, the SDN controller
can pre-calculate multiple paths for load balancing. This provides a much more scalable
and simple solution for traffic engineering.

Fast Reroute and Load Balancing in Segment Routing

We resort to SR to improve the resilience of the SG. This is due to its capabilities of traffic
engineering, maintaining the same data plane and simplifying the control plane. Below,
we give an overview of several techniques that use SR to provide fast rerouting as well as
load balancing solutions.

Chapter 2. Background and Related Work 22

Figure 2.7: Packet labeling and forwarding in MPLS vs Segment Routing

The authors in [24] argue that is possible to improve network behavior by moving
away from shortest path routing and employ SR. They propose 2-segment routing, where
the traffic between the ingress and the egress router passes through exactly one interme-
diate node. The key decision is how to pick the most appropriate segments for each flow
in order to minimize overall network congestion.

The authors consider three versions of this problem: Traffic Matrix Aware Segment
Routing - the traffic matrix is assumed to be known and the objective is to determine
the traffic split across different segments for each source destination pair; Traffic Matrix
Oblivious Segment Routing - the traffic matrix is not known but the traffic splits are de-
signed such that traffic is properly distributed for a wide range of traffic matrices; Online
Segment Routing - connection requests arrive into the system one at a time to a SDN
controller that determines which segments are picked in order to keep the load balanced.

Their solution is made from multiple linear programming formulations that have the
objective to minimize the maximum link utilization. The Traffic Matrix Aware Segment
Routing is easier to calculate due to the knowledge of the traffic matrix. However, the au-
thors argue that often one does not have the traffic matrix. So, for Traffic Matrix Oblivious
Segment Routing, they use an approach based on game theoretic techniques to derive the
traffic matrix. This approach was used for deriving routing parameters. Online Segment
Routing, besides routing the traffic, has the second objective of rejecting as few requests
as possible. This is only feasible if the links are made as less congested as possible, and a
solution can be obtained from a linear programming formulation.

According to their simulation results, Traffic Oblivious Segment shows that most ben-
efits of path diversity can be captured by 2-Segment Routing. It is also demonstrated to be
better than shortest path routing by a factor of 2. Online Segment Routing also performs
consistently better than shortest path routing with a lower demand rejection rate.

The authors in [25] also use SR for traffic engineering. They assume that the SDN
controller is requested to allocate a set of traffic flows with a specified bit rate, knowing
the link capacity. They use a module with TE and SR that first allocates hop-by-hop
TE paths by solving a classical flow assignment problem. Then, for each TE path, they

Chapter 2. Background and Related Work 23

compute a corresponding SR path to instruct the forwarding of packets along the assigned
TE path.

For flow assignment, the authors implemented a modified version of an heuristic that
tries to minimize the overall network crossing time. The heuristic is divided in two phases:
a constrained shortest path first (CSPF) phase, where they allocate the first flows; and a
heuristic re-assignment phase, which tries to re-allocate all admitted flows one-by-one,
in order to minimize the global network crossing time. The second phase is executed
multiple times until no more improvements are achieved. The SR assignment algorithm is
then performed with the objective of finding the minimal-length SR paths corresponding
to each TE path.

In [26] the authors propose a segment routing procedure to dynamically recover traffic
flows disrupted by link or node failures. A central controller is used to optimize the traffic
flows on the faulted topology to avoid link congestion. Their results demonstrate that,
in most of the cases, traffic recovery is performed by inserting no more than two new
labels in the segment list. Considering that SR natively implements ECMP aware routing,
in case of multiple shortest paths toward the destination, the traffic is load balanced on
a per-flow basis. In order to avoid it, it is necessary to use a more strict path, where
additional labels are required in the segment list.

To implement fast recovery in SR networks, the authors propose a procedure that does
not involve the controller in the traffic recovery upon failure occurrence. The forwarding
table of each network node is properly configured during the network initialization phase
so that when a node physically detects a failure of a connected link it is able to deviate
the traffic to a backup path. The backup path calculation is made for two different types
of failures: link failures and node failures. For link failures, the traffic flows are re-
routed from the node detecting the failure up to the node indicated in the next label of the
segment list. Basically the backup path is pre-computed excluding the supposed disrupted
link from the network topology. When a node detects a failure, it checks its table and
inserts more segments if needed at the top of the segment list. Without them it is possible
to obtain loops. For node failures the difference is in the assumed disruption for the
precomputation. In this case, the links towards the failed node are also excluded from the
network.

The same authors in [27] provide an enhancement to their previous work. Even though
the majority of their results require no more than two segments, there are still cases where
the segment lists are too long. The enhancement requires a primary forwarding table in
each node and a number of failover forwarding tables (i.e., one failover table is required
for each interface of the node). When a link fails, the backup action in the primary table
are executed. Following the backup actions the node first pops all the segments in the seg-
ment list except the bottom segment of the stack, and proceeds to the respective failover
table. The segments inserted in the failover table will follow the shortest path without ex-

Chapter 2. Background and Related Work 24

cluding the failed link. The authors also suggest that this enhancement can also be made
for node failures. It would be sufficient to initialize the failover tables by computing the
paths without all the links connected to the failed node. Their results show a decrease in
the average segment list depth when compared with [26].

Comparing our algorithm with [26][27], we incentive the use of ECMP and LFA tech-
niques in order to reduce the amount of segments necessary. This is fundamental since we
try to minimize the number of segments used to tolerate a link failure. In average we will
try to use less than 1 segment. However, the main idea of precomputing path to obtain
fast reroute is the same.

2.3 Resilient Routing

The Internet is a ubiquitous platform used for a wide range of everyday communication
activities. Thanks to its success, more critical services are being deployed in IP networks
every day, requiring higher levels of reliability in packet delivery. Unfortunately, a simple
disruption of a link in a central part of a network has the potential to affect hundreds of
thousands of connections. Routing protocols like OSPF and IS-IS solve this sort of issues
in a reactive manner: They rely on network-wide link state advertisements to discover net-
work topology changes and reroute around failures. Therefore, failure recovery can take
many seconds. The following works try to solve these issues through novel approaches.

In [28] the authors propose an integrated solution with simpler routers that balances
load effectively under a range of failure scenarios. The arguments used is that traffic
engineering and failure recovery can be achieved by the same underlying approach, by
dynamically re-balancing traffic across diverse end-to-end paths in response to individ-
ual failure events, reducing routers complexity. This network architecture has three key
features:

• Precomputed multipath routing - traffic between each pair of edge routers is split
over multiple paths that are configured in advance by a management system;

• Path-level failure detection - failure recovery based only on the paths that have
failed. A minimalist control plane performs path-level failure detection and notifi-
cation which will lead to simpler and cheaper routers;

• Local adaptation to path failures - Upon detection of path failures, the ingress
router rebalances the traffic on the remaining paths, based only on the failed path.
The management system makes network wide decisions based on the expected traf-
fic, network topology and the group of links that can fail together.

This architecture uses simple, cheap routers to balance load before, during and after
failures by placing most functionality in a management system that performs offline op-

Chapter 2. Background and Related Work 25

timizations. The management system computes these paths based on traffic engineering
and failure recovery goals, and installs them in the underlying network.

The authors propose two different ways for the routers to split traffic over the working
path - state-independent splitting and state-dependent splitting. In state-dependent split-
ting, each ingress router has a separate configuration entry with path-splitting weights for
each combination of path failures to a particular egress router. State independent splitting
simplifies the router configuration by having a single set of weights across all failure sce-
narios. So, an ingress router with three paths to an egress router would have only three
weights, one for each path.

A heuristic is used to compute multiple diverse paths that ensure good load balance.
This guarantees that the paths are sufficiently diverse to ensure traffic delivery in all failure
states, while making efficient use of network resources.

As in the previous solution, Multiple Routing Configurations (MRC) uses a set of
backup configurations based on network graph link weights [29]. This is a proactive and
local protection mechanism that allows recovery in the range of milliseconds. The link
weights in these backup configurations are manipulated so that for each link and node
failure, the node that detects the failure can safely forward the incoming packets towards
the destination on an alternate link. The backup configurations differ from the normal
routing configuration in that link weights are set so as to avoid routing traffic in certain
parts of the network.

The MRC approach works in three steps. First, it creates a set of backup config-
urations, so that every network component is excluded from packet forwarding in one
configuration. Second, for each configuration, a standard routing algorithm like OSPF is
used to calculate configuration specific shortest paths and create forwarding tables in each
router. This provides loop-free forwarding within one configuration. Finally, a forward-
ing process takes advantage of the backup configurations to provide fast recovery from a
component failure.

The base idea of using backup configurations prevents that even when a failure occurs,
the nodes that detect it can forward traffic through another path. This is a fundamental
idea to use in our work for fast reroute and recovery.

Failure Insensitive routing (FIR) ensures high service availability and reliability with-
out changing the conventional destination-based forwarding paradigm [30]. It employs
two key ideas: interface-specific forwarding and local rerouting.

Under FIR, when a link fails, the adjacent node suppresses global advertising and
instead initiates local rerouting of packets, using a backup table that sets packets to be
forwarded through the failed link. The nodes on the new path infer the failure from the
packets in flight. When a packet arrives at a node through an unusual interface, the node
can infer that probably there were failed links. These interface specific forwarding tables
can be precomputed since inference about failed links can be made in advance. Thus,

Chapter 2. Background and Related Work 26

when a link fails, only the adjacent nodes reroute packets and all other nodes simply for-
ward packets according to their precomputed interface specific forwarding tables without
being explicitly aware of the failure.

FIR provides near-continuous forwarding of packets despite failures and improves
service availability without jeopardizing routing stability. FIR requires minimal changes
to conventional routing and forwarding planes. Besides using a backup table, the ability of
infering errors in the networks might prove usefull in future work. However their specfic
forwarding tables might require more space than the ones provided in TCAM’s, specially
for large networks.

Keep Forwarding [31] (KF) is designed to provide effective failure resilience for the
general k-link failure case, that tolerates k failed links in a network. It is also built upon
a new network model called Partial Structural Network (PSN). This approach provides
flexible resilience for single and multi-failure cases, and fast recovery.

PSN is a model proposed for network routing based on directed acyclic graphs, which
utilizes all links but only set directions to determined links. In the PSN model, selected
links are hold undirected to achieve a better resilience. This way is PSN offers higher
flexibility in failure protection.

The goal of the k-failure resilient routing problem is to maximize reachability over all
failure cases. In order to improve performance while guaranteeing simplicity, KF uses an
Inport-Aware Routing, where both the destination IP and the ingress port are employed
for the routing lookup.

The pre-computation phase includes three steps. First, a PSN is built for each destina-
tion. Afterwards, in each PSN, every link is set with a priority. Finally, the routing table is
generated based on the priority. when the building the PSN it is necessary to calculate the
node weight, which is done based on the distance to the destination. Nodes with the same
weight are grouped into an A-layer and the links within them are called A- links. Links
between two A-layers are named M-links that consist of two types, according to the direc-
tion. To establish priority, it is considered that a router with more outgoing links should
have higher potential to reach the destination, and therefore is given higher priority.

In Difane, when a switch does not know where to send a package, it transmits the
packet to a special intermediate node in the network that knows a path to the respective
destination [32]. The authors argue that it is necessary to install the appropriate rules in
the switches, both to avoid a bottleneck at the controller and to keep all traffic in the data
plane for better performance and scalability.

The key challenge is to determine the appropriate division of labor between the con-
troller and the underlying switches, to support high-level policies in a scalable way. While
the controller should generate the rules, the authors do not think that the controller should
be involved in the real-time handling of data packets. In DIFANE the controller distributes
the rules across the switches, called “authority switches”, to scale to large topologies with

Chapter 2. Background and Related Work 27

many rules. The controller runs a partitioning algorithm that divides the rules evenly and
minimizes fragmentation of the rules across multiple authority switches. The space of
rules is partitioned to reduce the number of rules each component must handle and enable
simpler techniques for maintaining consistency.

DIFANE makes it cheap for switches to forward all data packets in the data plane, by
directing “miss” packets through an intermediate switch. Transferring packets in the data
plane through a slightly longer path is much faster than handling packets in the control
plane. Also, it supports wildcard rules, which allow switches to have fewer rules in the
TCAM. Although these techniques are interesting, they may require a specific type of
topology and the addition of more switches to the network. However, the necessity to
install the appropriate number of rules shows that one also has to think about the amount
of rules generated.

Resilient Routing Reconfiguration (R3) [33] is a routing protection scheme that is
congestion-free (all traffic demands are routed without creating any link overload), effi-
cient in terms of router processing and robust to traffic variations and topology failures.
The main idea of R3 is the use of a novel technique for covering all possible failure sce-
narios with a compact set of linear constraints on the amounts of traffic that should be
rerouted.

A failed link is always upper bounded by the capacity of the link itself. Therefore,
by creating a virtual demand for every link in the network and by taking the convex
combination of all demands, it is possible to cover the entire space of rerouted traffic up
to a certain bound of link failures. Through the sum of the actual demand and the set
of virtual demands calculated it is possible to convert topology uncertainty into traffic
uncertainty, which is easier to deal with.

R3 uses an offline precomputation phase and an online reconfiguration phase. The
first one is where the routing is computed to minimize the maximum link utilization on
the original network topology over the actual demand plus the virtual demand. In the
second phase, R3 responds to failures using a simple rescaling procedure that does not
traverse any failed link and thus can be used to reroute traffic from the failed links.

2.3.1 IP and MPLS Fast Reroute

Since IP and MPLS are appropriate protocols for the Smart Grid, we investigated their
ability to perform fast reroute.

IP Fast Reroute techniques (IPFRR) work as follows [34][35]: Once a failure has been
detected, traffic that previously traversed the failure link needs to be transmitted over one
or more repair paths. Alternative paths are pre-calculate for all possible failures and
made available for invocation with minimal delay. Several categories of repair paths are
considered: ECMP, corresponding to equal cost paths; loop-free alternate (LFA) paths;
and multi-hop repair paths. When there is no feasible loop-free alternate path it may still

Chapter 2. Background and Related Work 28

be possible to locate a router, which is more than one hop away from the router adjacent
to the failure, and take advantage of it to recover from a failure.

ECMP and loop-free alternate paths offer the simplest repair paths. It is anticipated
that around 80% of failures can be repaired using these basic methods alone. Multi-
hop repair paths are more complex, both in the computations required to determine their
existence, and in the mechanisms required to invoke them. These mechanisms are: ap-
proaches where one or more alternate Forwarding Information Bases (FIB) are pre-computed
in all routers, and the repaired packets are instructed to be forwarded using a “repair FIB”
by some method of per-packet signaling such as detecting a “U-turn”; approaches similar
to source routing that are invoked using a normal FIB such as a tunnel; and approaches
employing special addresses or labels that are installed in the FIBs of all routers, with
routes pre-computed to avoid certain components of the network.

Tunnel-based approaches can use a technique called directed forwarding. It uses an IP
tunneling encapsulation, or it may use a single MPLS label stack entry interposed between
the IP tunnel header and the packet being repaired.

The coverage provided by multi-hop repair paths is higher, and in some topologies it is
even possible to obtain full coverage. However, there is a trade-off between minimizing
the number of repair paths to be computed, and minimizing the overheads incurred in
using higher-order multi-hop repair paths for destinations.

The available approaches normally assume that all routers in the network are capable
of acting as IP fast reroute routers, performing such tasks as tunnel termination and direct
forwarding. However, this is unlikely to be the case, in part because of the heterogeneous
nature of networks, and also due to the need to progressively deploy such capability.
IPFRR needs to support some form of capability announcement, and the algorithms need
to take these capabilities into account when calculating their path repair strategies.

As mentioned previously, MPLS uses an extension to RSVP to establish backup LSP
tunnels to repair LSP tunnels [36]. There are two methods used for local protection: a
one-to-one backup method where a point of local repair (PLR) (usually a node next to
a failed link) computes a separate backup LSP, called a detour LSP, for each LSP that
the PLR protects; and the facility backup method, where the PLR creates a single bypass
tunnel that can be used to protect multiple LSPs.

In the one-to-one backup method, a label-switched path is established that intersects
the original LSP somewhere downstream of the point of link or node failure. A separate
backup LSP is established for each LSP that is backed up. To protect an LSP that traverses
N nodes fully, there could be as many as (N - 1) detours possibly causing scalability issues.

The facility backup method takes advantage of the MPLS label stack. Instead of
creating a separate LSP for every backed-up LSP, a single LSP is created that serves to
back up a set of LSPs. This LSP tunnel is called a bypass tunnel. The bypass tunnel must
intersect the path of the original LSPs somewhere downstream of the PLR.

Chapter 2. Background and Related Work 29

RSVP-TE Fast Reroute methods allows full network coverage but with a high com-
plexity in terms of operation, as well as potential scaling issues [37]. RSVP-TE inherited
some properties of RSVP that adversely affect its control plane scalability. In particular,
reliance on periodic refreshes for state synchronization between RSVP neighbors and for
recovery from lost RSVP messages, reliance on refresh timeout for stale state cleanup, and
lack of any mechanisms by which a receiver of RSVP messages can apply back pressure
to the sender of these messages. In addition, when RSVP-TE is used for the MPLS con-
trol plane, the path state is held at every router through which the LSP passes, including
head-end, tail-end and any intermediate (mid-point) routers.

2.4 Final Considerations

In our work, we employed some of the previously proposed approaches and integrated
them in a solution to recover from a single link failure using SR in a SDN network that
targets SG. In our solution we aim to provide fast reroute as the main goal while doing
traffic engineering. Thus, we allow the network to recover quickly after a failure without
congesting it.

Chapter 3 - Design and Implementation

It is common today to switches have the capability to detect failures that affect the links
directly connected to its ports. Detection is made almost immediately for ordinary forms
of the problem, such as when a cable is broken. This functionality can be exploited to
restore network connectivity by diverting the traffic, which would be transmitted through
the failed link, to the remaining ports that are still operational. Based on this idea, the main
objective of the protocol for fast reroute proposed in this thesis is to recover the network
from a single link failure while guaranteeing maximum coverage, minimum overheads
and loop freeness. In order to accomplish the properties mentioned above, we designed a
module to run in an SDN controller that pre-computes backup paths and installs them on
routers. We follow a SR approach in our design. Finnaly, we address how the algorithm
was developed through an UML diagram, and add few considerations

3.1 Algorithm for Fast Reroute

In Figure 3.1 the fast reroute module obtains an up-to-date view of the network topology
by querying the topology manager. Based on the topology, it computes for each link a
path that detours packets in case of failure, allowing the network to recover quickly. Af-
ter executing the algorithm it sends the information to the edge switches (SDN switches)
that will distribute the backup path to the remaining switches. These alternative paths are
configured in the switches in backup flow tables that are used only when a port becomes
disconnected (i.e., the switch detects locally the failure of the link connected to the port).
Therefore, recovery can be accomplished without the need to wait for the routing proto-
cols to converge or for the SDN controller to intervene, allowing the traffic to continue to
flow without loops.

The algorithm assumes switches to employ ECMP, LFA techniques [34], including
LFA, Remote LFA (RLFA) and Direct LFA (DLFA), and SR. A LFA is an alternate next
hop through which packets can be sent in case of failure without creating any loops. We
follow a SR approach, an emerging technology for IP/MPLS networks that provides the
ability to source-route. With source routing, operators can specify a path from ingress
to egress that is independent of the shortest path determined by the IGP. As mentioned
previously, SR uses segments instead of labels, such as Node-ID Segment that identify

31

Chapter 3. Design and Implementation 32

a node in the network and Adjacency-ID that identifies the links connected to a node.
Segments are added to the SL in the ingress node and forwarded through the network to
the element at head of the list.

The algorithm is executed in a number of steps, which are attempted in order until
a recovery solution is found (see Table 3.1 and Algorithm 1). The several steps of the
algorithm are explained next.

(a)

(a) (b)

(c) (d)

Figure 3.1: The several steps of a fast reroute mechanism: (a) shows the computation (b)
installation of normal and backup rules on the edge switches;(b) Using the normal for-
warding rules. (c) displays a failure in a link; and finally (d) fast rerouting after detecting
the failure, allowing the traffic to flow.

Chapter 3. Design and Implementation 33

Notation used in the algorithm
N Set of all nodes in the network {n1, n2,, nm}
NBn Set of all neighbor nodes of node n {nb1, nb2,, nbn}
dist(n, d) Distance from node n to node d through shortest path routing
distf (n, d) Distance from node n to node d through shortest path after a failure f
obtainNB(n) Obtain the set of neighbor nodes of node n
PSpace(n) Calculate the P-Space and Extended P-Space of node n
QSpace(n) Calculate the Q-Space of node n
intersect(P,Q) Intersects two sets
segmentSelect() Select a specific segment
2segmentSelect() Selects 2 specific segments

Table 3.1: Functions and sets used in the algorithm.

Algorithm 1 Algorithm
1: for each node n in N do
2: for each destination d in N do
3: for each possible link failure f of node n do
4: Step 1: ECMP
5: if dist(n, d) == distf (n, d) then
6: no segment required
7: continue to next iteration
8: Step 2: LFA
9: NB= obtainNB(n)

10: for each neighbor nb in NB do
11: if dist(nb, d) < dist(nb, n) + dist(n, d) then
12: no segment required
13: forward to nb with the shortest path to d
14: continue to next iteration
15: Step 3: RLFA
16: P = PSpace(n)
17: Q = QSpace(d)
18: PQ = intersect(P,Q)
19: if PQ is not empty then
20: segmentSelect() of PSpace or Extended PSpace
21: add segment to SL
22: continue to next iteration
23: else
24: Step 4: DLFA
25: 2segmentSelect()
26: add the two segments to SL
27: continue to next iteration

Chapter 3. Design and Implementation 34

3.1.1 Step 1 : ECMP Safeguard

Nowadays it is common for a switch to support the use of ECMP [38]. If one of the links
fails, the switch can divert the packets using the remaining equal cost paths automatically.
This is valid because it is already known that the other paths are shortest path to the
respective destination[35] [39]. In this case it is not necessary to insert any segment to
recover from a link failure. This is possible to observe in lines 4 to 7 in Algorithm1.
Consider the Figure 3.2, consider B the source of packets and G the destination. If link
B-G fails, B can automatically move all traffic to route B-C-G because it has the same
distance/cost to reach node G.

Figure 3.2: ECMP step: B wishes to send a packet to G. If link B-G fails, we can use
ECMP through the path B-C-G which has the same cost.

3.1.2 Step 2: Loop Free Alternative Neighbor

Figure 3.3: LFA step: Example of a network topology.

Consider the network depicted in Figure 3.3, further consider node B to be the sender
and node D the receiver, it will use the path with lower cost (B − A − F − E − D).
If, however, link (A,B) fails, then B needs to find an alternative neighbor to forward
the packet to D as destination [40]. ECMP cannot be applied in this case because the
paths that go through the available neighbors have a higher cost than the original path
(namely, 11 and 13 versus 10). In general, a solution is found without creating loops

Chapter 3. Design and Implementation 35

if the following condition is verified. The source (src) needs to find a neighbor (n) that
is closer to the destination (dst), ensuring that i) the cost/length of the route from the
neighbor to the destination is smaller than ii) the added cost/length of the neighbor to
the source and from the source to the destination (i.e., the original shortest path). This
relation is expressed as:

dist(n, dst) < dist(n, src) + dist(src, dst), (3.1)

where, the function dist(i, k) denotes the length of the shortest path from i to k on the
original network topology without the link failure. One should notice that if the relation
does not hold, then the neighbor will forward the packet accordingly to the shortest path,
which in this case would mean returning it back to the source, thus creating a loop.

The second step of the algorithm will use the LFA equation provided in (3.1) for the
respective neighbors of the source node (lines 8 to 14 in Algorithm 1). If one of the
neighbors is a LFA node, then it will not be necessary to add a segment to the SL. It is just
necessary to forward the packets through the respective LFA neighbor after the failure. If
more than one neighbor node provides LFA coverage, the one with smaller dst(n, dst) is
chosen, in order to transmit packets through the shortest path possible (for simplicity, this
optimization is not represented in Algorithm 1).

Returning to our example src is the source node B, dst is the node D, n is a neigh-
bor of src other than the failed next-hop (A in the example). Neighbor C and G are for
instance a LFA neighbor for B towards node D.

dist(C,D) < dist(C,B) + dist(B,D)⇔ 10 < 1 + 10 (3.2)

3.1.3 Step 3: RLFA (1-Segment)

If there is no LFA neighbor, one has to resort to other techniques to find alternative paths.
Our proposal is to search for a RLFA where the source will need to create a virtual LFA
tunnel to carry the packet to a node that is not a direct neighbor. This tunnel must be
reachable from the source without traversing the failed link. When the tunnel exists, it
has as endpoint an intermediate switch that is able to deliver the packet to the destination
without looping back to the source. This intermediate node will be the segment inserted
in the packet header at the source. In order to do so, we will use the P and Q-Space
techniques used by RLFA [41] (lines 15 to 23 in Algorithm 1).

P-Space

The P-Space is the set of switches that can be reached from the source after the link
failure, in other words, the switches where the cost to reach them is smaller than the cost
to reach them through the failed link.

Chapter 3. Design and Implementation 36

Consider the failure of link A-B in the topology in Figure 3.4 and that A is the source
and C is the destination. The set of nodes that can be reached from A without traversing
the failed link A-B is termed the P-Space of A. In this case, the P-Space for node A with
a faulty link A-B will be P (A) = {F,E,D}.

Figure 3.4: Representation of P-Space after the link failure A-B. In this example A is the
source and C the destination.

Q-Space

The Q-Space is the set of nodes from which the destination can be reached, by normal
forwarding, without traversing the failed link. Considering Figure 3.5 with the same case
as above, the Q-space of node C will be Q(C) = {D,G,B}.

Figure 3.5: Representation of Q-Space after the link A-B failure. Where A is the source
and C the destination.

PQ switches

The PQ switches are the switches in the intersection of the source P-Space with the desti-
nation Q-Space. These switches define the set of viable switches that can be added to the
SL, since the source can forward to these switches without traversing the failed link while
ensuring that they can transmit the packets to the destination (as they would not loop

Chapter 3. Design and Implementation 37

back). In the example, if P ∩ Q Space, the only the result PQ = {D}. In other cases,
however, there might cases where PQ intersection is empty. In those cases, it is neces-
sary to modify the solution by calculating the Extended P-Space. In some cases, the PQ

intersection will have several nodes, making possible to employ different mechanisms to
choose which node to select as intermediary node.

Figure 3.6: Representation of PQ-Space, in a situation where A is the sender and C the
destination. The Node-ID Segment from D will be added to the SL at the A switch. As
a result, the packet will be forwarded to F that will inspect the label and forward it to D.
When the label is popped at D it will then forward the packets to C.

Extended P-Space

Consider now that B the sender and A the destination and that the link B-A fails in the
same topology as above (represented in Figure 3.7). The P-Space of node B is P (B) =

{C,G}. The Q-Space of node A is Q(A) = {F,E,D}. This case has no intersection
between these two sets P (B) and Q(A), and therefore the forwarding solution mentioned
above cannot be utilized. Consider SN as the set of nodes adjacent to the src (i.e., the
neighbours) without passing through the failed link. The Extended P-space of the src is
the P (src) ∪ P (n) ∀n ∈ SN , in other words the extended P-Space is the union of the
source P-Space with its neighbors P-Space. In this case, the Extended P-Space for node
B is Extended− P (B) = {C,G,D}.

When using the Extended P-Space instead of the P-Space to compute the intersection
with the Q-Space, there is potentially a new outcome for the PQ switches, which may
no longer be empty. When this happens, one of these switches can be added to the SL
(again, using a selection algorithm as the ones proposed in section 3.2), so that packets
are forwarded through that switch. In the example, the PQ now includes nodes D. In case
of failure of link B-A, B should forward packet with the SR label D, D pops up the label
and forwards to destination A using shortest path.

Chapter 3. Design and Implementation 38

(a) (b)

(c) (d)

Figure 3.7: Representation of the Extended P-Space through multiple steps: (a) shows
the computation of B P-Space;(b) presents the new Extended P-Space; (c) displays the
Q-Space; and finally (d) shows the P ∩Q.

3.1.4 Step 4: DLFA (2-Segments)

If the PQ set is empty even with the Extended P-Space then it is necessary to use DLFA.
DLFA finds which nodes in the Extended P-Space are adjacent to a node in the Q-Space.
After discovering which nodes are adjacent it is possible to add to the SL the Node-ID
corresponding to the switch in the Extended P-Space and an Adjacency-ID Segment that
forces the switch to forward the packet to the switch in the Q-Space. Overall, the SL
contains two segments, defining a route across the network that guarantees the packet
delivery (lines 24 to 27 in Algorithm 1).

In Figure 3.8 there is an example where A wants to send information to B and link
A-B fails. In this case, P (A) = {F,E,D} and Q(B) = {C,G}. When Extended P-
Space is computed, it does not add switches to the set, and therefore the intersection stays
empty. If we check the switches in the P-Space that are adjacent to the Q-Space, only D is
adjacent to node C. Therefore, in order to ensure delivery of packets it will be necessary
to add to the SL the Node-ID Segment of D and the Adjacency-ID ADC .

It is important to mention that a router must limit the amount of time an alternate
next-hop is used after the primary next-hop has become unavailable, since eventually
the routing tables in the network will be updated to reflect the changes in the topology.

Chapter 3. Design and Implementation 39

Figure 3.8: Empty intersection.
Figure 3.9: PQ Switches with multiple
nodes.

This ensures that all possible transient conditions are removed and the network converges
according to the deployed routing protocol. The use of the alternate next-hops for packet
forwarding should terminate[35] if the new primary next-hop was loop-free prior to the
topology change, or if notification of an unrelated topological change in the network is
received.

3.2 Choosing from Multiple Alternative Segments

As been explained before in Step 3, if the PQ set is composed of several nodes, it is nec-
essary to select one of them as it is shown in the algorithm through segmentSelect()

(line 20 in the Algorithm 1). We propose two strategies for this purpose. The first ap-
proach we used, which we called Fast Segment Drop (FSD), employs information from
convergence. Convergence is the state of a set of switches that have the same topologi-
cal information about the network in which they operate. This routing state defines the
(shortest) paths that are in use at a given instant. A pre-convergence path is a path that is
in use before the failure. A post-convergence path is a path that is in use after the failure.
The set of pre-convergence and post-convergence paths are typically different because the
routing state changes with the link failure.

Through the use of an SDN controller we know the current state of the network, and
we can assume link failures to calculate new post-convergence paths. FSD obtains the
post-convergence path, then checks first if there is more than one switch from the PQ in
it. In the affirmative case, we choose the switch that is closer to the source providing
lower overhead possible. However, if there are no PQ nodes in the post-convergence path,
we simply choose one that is closer to the source. This provides slightly higher overhead
but will be still lower than using two segments.

In Step 4 through 2segmentSelect() (line 25 in the Algorithm 1), we use a similar
approach but for the set of switches in the P-Space that are adjacent to switches in the Q-
Space. If it there are nodes adjacent to Q-Space that are in the post convergence path, we

Chapter 3. Design and Implementation 40

will choose the node closer to the source and the adjacency segment towards the Q-Space,
providing once again lower overhead. However, if there is not, we verify the remaining
nodes and choose the closer to the source along with the respective adjacency segment
towards the Q-Space.

This approach allows us to minimize overhead. The use of the SL imposes an over-
head on the network that results from the transmission and processing of packets with a
larger header (because they have extra segment information). Therefore, one would like
to reduce the number of segments that are included in the SL and the number of hops
until they are popped out. If the segment selected are in the post convergence path it will
always have the lowest overhead possible.

The second strategy we propose provides a load balancing solution, Congestion Avoid-
ance Segment (CAS), where we choose the segment that is associated with a path with
the smallest link utilization. After we calculate the set of PQ switches, if it is not empty,
segmentSelect() tests the all paths from the source to the possible intermediate switch
(a switch that is in the PQ set) and then from the intermediate switch to the destina-
tion, and we choose the path with less link utilization. However, if PQ set is empty, in
2segmentSelect(), we choose the path with less link utilization with the best node (a
node in the P-Space that is adjacent to a node in the Q-Space) and its adjacency seg-
ment, inserting two segment in the SL. This solution will have greater overhead than the
previous but avoids passing through highly congested links.

3.3 Implementation

All software components were implemented in Java within approximately 2700 lines of
code. The machine where the experiments where performed had an Intel Core i5-4570
CPU with 3.20GHz x 4 and 4 GB of RAM memory. The software environment was
Ubuntu 14.04 LTS with Java(TM) SE Runtime Environment (build 1.7.0 07-b10) 64 bits.

Figure 3.10 shows the class diagram for the software development. SegmentRouting
is the abstract class responsible for the computation of the algorithm presented previously
(Algorithm 1). It requires all shortest paths from every node to all other nodes that are
obtained by class ShortestPath. The class ShortestPath computes all paths from a source
node to all possible destinations through Dijkstra class. It also computes all paths from a
source node to all possible connections for each adjacent link failed. This provides us all
possible paths for all single link failures. Dijkstra uses instances of the class Distance that
stores the shortest path computed by Dijkstra and also the sum of all weight values of the
respective path. SegmentRouting has instances of the respective graph and allSL that is
responsible for maintaining the SL for each switch. SegmentRoutingFSD, SegmentRout-
ingRandom, SegmentRoutingTI-LFA, SegmentRoutingCAS are the classes that implement
the interface, each one have the same attributes and methods but each one implements

Chapter 3. Design and Implementation 41

different strategies.

SegmentList is composed by all the segments (Node-ID Segment presented in Segment
or adjacency segments in AdjacencySegment) necessary to perform fast reroute after a
failure (it can be empty if ECMP or LFA are enough to find a solution).

The package Graph is designed to build a graph with a certain topology. The class
Graph is composed of multiple nodes and edges. The constructor of Graph defines the
number of nodes added, and Edge class allows to set the respective weight values for links
and its respective bandwidth.

Figure 3.10: UML class diagram.

Chapter 3. Design and Implementation 42

3.4 Final Considerations

We introduced in this chapter an algorithm that uses multiple steps to attempt to imme-
diately recover the network after a link failure. We described the several steps of our
algorithm, where in each step is used a different technique that ensures packet delivery.
We also presented the several segment selectors, that provide different properties such as
minimizing packet overhead and load balancing. Finally, it was also explained the how
the algorithm was implemented its respective UML diagram.

Chapter 3. Design and Implementation 44

Chapter 4 - Evaluation

To evaluate the properties of our solution, we implemented two versions of our algorithm
with the two strategies mentioned in section 3.2. We evaluated our strategies against a
random strategy and TI-LFA (a mechanism that will be introduced in section 4.1).

Our main goals are to analyze the packet overhead and load balancing abilities of each
algorithm on several network topologies. Another goal is to compare the coverage of our
proposal with the IP fast reroute and MPLS fast reroute.

We start by introducing random and TI-LFA selectors and then the environment setup,
including the topologies used, link weights and bandwidth values. Finally, we report and
discuss our results for each solution and selector.

4.1 Random and TI-LFA strategies

In order to compare our strategies (FSD and CAS), we implemented a random selector
and TI-LFA algorithm. After discovering the PQ node set, the random selector chooses
one node belonging to the PQ set randomly that will be added to the SL. This is also used
for the 2segmentSelection(), in which we find all the possible nodes in the P-Space that
are adjacent to a node in the Q-Space and choose one randomly along with the respective
Adjacency-ID Segment.

In [6], the authors intend to reduce the amount of path changes and service tran-
sients, making just one transition (pre-convergence to post-convergence) instead of two
(pre-convergence to fast reroute and then to post-convergence) when a failure occurs. To
implement this idea, they consider the pre-convergence path as the shortest path between
a source and destination before a link failure, and the post-convergence path as the short-
est path between a source and destination after a failure. Then, the authors use similar
techniques to ours but instead they intersect the Q-Space with the post-convergence path.
Using this new Q-Space forces the repair path to go through the post-convergence path.

In Figure 4.1 we have the representations of our algorithm and TI-LFA. The P-Space
is the same, however the Q-Space computed by TI-LFA only considers the nodes that are
in the post-convergence (shortest) path (represented in red in Figure 4.1 (c)), in this case
C. When P ∩Q TI-LFA only has one node that can be chosen.

In the implementation of this solutions, we also chose to select the PQ node closer

45

Chapter 4. Evaluation 46

to the source since the authors do not mention which none they select. While in Fast
Segment Drop we try to follow the shortest path, in TI-LFA we are bound to use the post-
convergence (shortest) path. When using Fast Segment Drop there will be some cases
where instead of using the shortest path the algorithm will choose a longer path with just
one segment. In TI-LFA it will always use the shortest path, but it with one or more
segments.

(a) (b)

(c) (d)

Figure 4.1: Representation of TI-LFA. The example considers the case where A is the
sender and D is the destination but the link A-F fails. In (a) we can observe the several
nodes in the Q-Space while in (c) there is just one node, the one that belongs to the shortest
path (which is A-B-C-D). In (b) and (d) we can observe that P ∩Q obtains two different
results for the two versions of the algorithm.

4.2 Environment setup

To evaluate our solution we considered several topologies, divided in three groups of
topologies: (i) real topologies; (ii) random topologies generated with BRITE[39]; (iii)
regular topologies (i.e., grids and rings) and fat trees.

We considered the following real topologies:

• Abilene Network (Abilene), a high-performance backbone network composed mostly

Chapter 4. Evaluation 47

of universities and some corporate and affiliate institutions, across the US. In our
tests we considered 11 nodes (depicted in Figure 4.2 (a)).

(a) (b)

Figure 4.2: In (a) the Abilene topology; in (b) the Pan European or GÉANT topology.

• GEANT is the pan-European data network for the research and education commu-
nity (Depicted in Figure 4.2 (b)) (PanEU). It interconnects national research and ed-
ucation networks across Europe. The GEANT project combines a high-bandwidth,
high-capacity 50,000 km network with a growing range of services. In our tests we
considered 18 nodes.

• The National Science Foundation Network (NSF) [42], in Figure 4.3 (a) (NFS), is
composed by 14 nodes. It was initially created to link researchers to NSF-funded
supercomputing centers. Through further public funding and private industry part-
nerships it IS developed into a major part of the Internet backbone.

• The future smart grid connection infrastructure of EDP, a portuguese electric dis-
tribution company. This infrastructure is composed by the union of three rings (as
shown in Figure 4.3 (b)). The first ring represents the core network that hosts crit-
ical application servers and acts as a gateway to other networks. The second ring
is the aggregation network that has multiple terminations to aggregate traffic from
the next ring, the edge. The edge enables services related to the transmission of
data from smart meters, substation control and monitoring. In practice, the core
is connected to multiple aggregation rings, and each aggregation ring has multiple
edge rings attached, providing a huge network infrastructure. In our tests we gen-
erated two topologies based on this organization, one with 21 nodes (1 core ring, 1
aggregation ring and 1 edge ring) and another with 140 nodes (1 core ring with 10
nodes, 10 aggregation rings with 5 nodes each, 8 edge rings with 10 nodes each).

Chapter 4. Evaluation 48

(a) (b)

Figure 4.3: In (a) the NSF topology and in (b) EDP smartgrid topology.

In order to generate more generic topologies we used BRITE[39] a random topology
generator, that employs a Flat Router-Level model where each network ID is represented
individually in the routing table (depicted in Figure 4.4). The used router model is Wax-
man, which refers to a generation model for a random topology using Waxman’s proba-
bility model for interconnecting the nodes of the topology. We generated topologies with
16, 32 and 64 nodes.

Figure 4.4: Example of a BRITE topology with 16 nodes.

We also generated regular topologies:

• Rings with 16, 25 and 49 nodes (presented in Figure 4.5 (a)).

• Grids with 4x4, 5x5 and 7x7 nodes (as depicted in Figure 4.5 (b)).

Chapter 4. Evaluation 49

(a) (b)

Figure 4.5: In (a) an example of a ring topology and in (b) of a Grid topology.

• Fat trees, which are topologies employed in large scale datacenters. It is divided in
k pods, with each pod containing 2 layers with k/2 switches, and a core layer (as
shown in Figure 4.6). The lower layer is called edge and the upper layer aggrega-
tion. Each switch in the lower layer is connect to k/2 hosts and to k/2 switches in
the aggregation layer. The aggregation layer is also connected to k/2 core switches.
The core layer is made of (k/2)2 switches, each one is connected to k pods. The ad-
vantages of using this topology is that all switches are identical providing the ability
to use commodity switches across the network, and by having multiple paths of the
same length it allows multiple paths to be explored

Figure 4.6: Example of a 4-ary Fat Tree topology.

For some topologies (namely EDP, grids and rings), it was not possible to obtain the
link weight values and therefore we assigned values between 1 and 10 randomly. For
these topologies, the algorithms were run 100 times with different random link values. In
addition, for the BRITE topologies we tested the algorithms on 100 different topologies
of each size. The results presented in the next section are the averages of these 100
experiments.

Chapter 4. Evaluation 50

In order to perform congestion analysis, each link was assigned a bandwidth value.
We established that the maximum link load is 100Mbps, so on average the networks have
a link utilization bellow 50% (in order to tolerate failures). We used a normal distribution
function where the values tend to cluster around the average. The average was set to be
30Mbps with a deviation of 20Mbps. Thus, 70% of values are between 10-50Mbps and
95% are between 1-70Mbps.

4.3 Evaluation results

This section evaluates the proposed algorithm considering different strategies: FSD, CAS,
Random and TI-LFA. The objective is to:

• Analyze the average segment list size (SLS) in order to understand what strategies
require more segments to tolerate a single link failure.

• Analyze the average packet overhead. To evaluate packet overhead we use the
technique provided in[43], where the number of segments that exist in the SL at
each hop of the transmission path is computed. A SL that contains segments all the
way to the destination would have a higher overhead when compared to one that
contains segments closer to the initial hops. This overhead is due to the packet size
and segment processing at each switch.

First we show in Figure 4.7 the average SLS using FSD strategy. It is possible to
observe that networks organized as rings (including EDP topologies) require on average
more segments to be added to the SL. This number tends to increase as the network grows,
i.e., as more switches are added to this ring. By contrast, the BRITE and Fat Tree networks
requires a small average SLS. It is interesting to notice that the average SLS of grids and
Fat Trees decrease as the networks grow in number of switches. This is explained with the
larger path redundancy that exists in BRITE networks and fat trees as more paths exists
in the network, it is easier to find alternative paths.

Next, we study for each network topology which protocol step needs to be used to
perform the recovery of every possible link failure: ECMP can reroute the traffic (Step
1); a LFA path is found (Step 2); one segment added to the SL is enough (Step 3); two
segments are necessary (Step 4). The results of this analysis are presented in Figure 4.8
and Tables 4.1 and 4.2. The results show that ECMP is used rarely in most cases. This was
more or less expected as in the majority of cases the weights assigned to links are random
values, and therefore it is unlikely that two paths have exactly the same cost. It is possible
to observe in Tables 4.1 and 4.2, that in BRITE topologies the values are closer to zero.
The notable exception was as expected Fat Trees, which due to their regular structure and
high redundancy, affords the use of ECMP in many links.

Chapter 4. Evaluation 51

Figure 4.7: Average segment list size: SL size vs number of nodes using Fast Segment
Drop.

Table 4.1: Algorithm Results Summary

SLS
N Avg Max ECMP

(%)
LFA
(%)

1 Seg.
(%)

2 Segs.
(%)

Avg Random CAS

Pan EU 18 0.13 1 2.29 84.98 12.75 0.00 1.97 4.03 2.28
NSF 14 0.22 1 6.04 71.98 21.98 0.00 1.95 4.85 2.66

Abilene 11 0.35 1 0.00 65.45 34.55 0.00 2.29 3.18 2.47
EDP 21 21 0.72 2 1.35 27.12 70.69 0.82 2.99 5.78 3.49

EDP 140 140 0.75 2 1.34 24.53 73.00 0.84 3.24 5.74 3.60
BRITE 16 0.04 1 0.00 96.18 3.78 0.00 1.28 3.96 -
BRITE 32 0.06 2 0.00 93.62 6.32 0.00 1.62 5.73 -
BRITE 64 0.07 2 0.00 92.85 7.14 0.00 1.97 7.48 -

Grid 16 0.18 2 5.57 76.73 17.56 0.14 2.12 5.18 2.55
Grid 25 0.15 2 5.73 79.59 14.66 0.06 2.12 6.78 2.84
Grid 49 0.11 2 7.58 81.28 11.12 0.02 2.17 9.76 3.44
Ring 16 0.88 2 0.52 12.30 86.41 0.78 4.83 6.19 4.84
Ring 32 0.94 2 0.30 5.85 93.43 0.41 8.83 12.15 8.83
Ring 64 0.97 2 0.17 2.83 96.82 0.17 16.80 24.13 16.80

Fat Tree 6 45 0.07 1 92.88 0.00 7.12 0.00 2.00 4.67 2.15
Fat Tree 8 80 0.04 1 96.38 0.00 3.67 0.00 2.00 4.93 2.15

LFA, on the other hand, is very effective at supporting recoveries in most topologies,
with the exception of ring based topologies (where EDP is also included). Due to the lack
of redundancy, ring topologies require one more segment to be added because they are
not well protected by LFAs alone. EDP topologies are multi-ring networks so they will
inherit some problems of ring topologies. Thus, they require the use of 1-Segment more
often, the values are above 70%. The graphs also give evidence that only in very few

Chapter 4. Evaluation 52

scenarios 2-Segments are necessary. The use of 2-Segments are very special corner cases
which occur infrequently.

TI-LFA, however, causes the use of 2-Segment steps slightly more often due to always
following the post-convergence path. This shows that using TI-LFA introduces a cost in
terms of increasing overhead, by requiring more segments for recovery.

(a)

(b)

Figure 4.8: Percentage of steps used to find a backup path: In (a) it shows the percentage
of times each step of the algorithm was used to find a backup path using the original
algorithm and in (b) using TI-LFA

Interestingly, however, if we observe Figure 4.9, using more segments does not neces-
sarily imply more overhead. This happens because while using FSD we do not force the
packets to traverse the new shortest-path (usually the post-convergence path), therefore
the packets carrying just one label may be routed through a longer path increasing the

Chapter 4. Evaluation 53

respective overhead. In Figure 4.9 (a) the values obtained for real network using TI-LFA
and FSD are so close that is not possible to observe more than three values. The lowest
value for NFS, PanEU and EDP-21 are overlapped. The same situation happens in 4.9 (c).
Showing that the algorithms perform similarly. However in Ring topologies, the values
for FSD, CAS, TI-LFA are the same. This happens because when a link fails there is only
one viable path to arrive to the destination, causing the packet to travel the same path for
all strategies. Using the CAS it will have an increasing overhead but at a cost of avoiding
congested links.

(a) (b)

(c)

Figure 4.9: Topologies Average Overhead: (a) real topologies, (b) Ring Topologies and
(c) Grid topologies.

In Figure 4.10 and 4.11 we observe that with CAS we obtain a slight decrease in
congestion when compared with TI-LFA for all topologies. As mentioned previously the
values established for link capacity are 100Mbps. The majority of topologies show that
75% of values are below or slightly above 100Mbps. The only exceptions are EDP topolo-
gies that present more values above 100. This is once again due to the characteristics of
the topology, rings do not present many alternative paths, therefore they have to follow
a path that will become congested. This is the reason why we do not present results for
rings since they are the same. As for grids we can observe that with TI-LFA the values
keep increasing along with the topology size. in contrast, with CAS, the values decrease
maintaining below 100Mbps.

Chapter 4. Evaluation 54

Table 4.2: TI-LFA Algorithm Results Summary

SLS
N Avg Max ECMP

(%)
LFA
(%)

1 Seg.
(%)

2 Segs.
(%)

Avg.
Ovh

Pan EU 18 0.16 1 2.29 84.97 9.80 2.94 1.97
NSF 14 0.22 1 6.04 71.98 21.98 0.00 1.95

Abilene 11 0.35 1 0.00 65.45 34.55 0.00 2.29
EDP 21 21 0.73 2 1.36 27.12 70.51 0.95 3.00

EDP 140 140 0.75 2 1.34 24.81 72.62 1.14 3.23
BRITE 16 0.03 2 0.01 96.56 3.35 0.00 1.25
BRITE 32 0.06 2 0.01 93.67 6.21 0.06 1.59
BRITE 64 0.07 2 0.00 93.02 6.92 0.05 1.94

Grid 16 0.20 2 5.57 76.73 15.14 2.56 1.90
Grid 25 0.17 2 5.73 79.55 12.56 2.17 1.92
Grid 49 0.13 2 7.58 81.29 9.55 1.59 1.88
Ring 16 0.88 2 0.52 12.30 86.41 0.78 4.83
Ring 32 0.94 2 0.30 5.85 93.43 0.41 8.83
Ring 64 0.97 2 0.17 2.83 96.82 0.17 16.80

Fat Tree 6 45 0.07 1 92.88 0.00 7.12 0.00 2.00
Fat Tree 8 80 0.04 1 96.33 0.00 3.67 0.00 2.00

Figure 4.10: Bandwidth difference between TI-LFA and CAS in real
topologies

4.4 Discussion

In this chapter we presented the evaluation to our strategies (FSD and CAS). In order to
achieve this we had to implement a random selector and TI-LFA algorithm. We used three
types of topologies: real topologies, random generated topologies and regular topologies.

The objectives of our evaluation were to analyze the average segment list size and

Chapter 4. Evaluation 55

Figure 4.11: Bandwidth difference between TI-LFA and CAS
in grid topologies

analyze the average packet overhead. We observed that most networks organized as rings
require on average more segments to be added to the SL. However BRITE and Fat Tree
networks requires a small average SLS due to larger path redundancy that they have.

We examined which protocol step needs to be used to perform the recovery of every
possible link failure : The results show that ECMP is used rarely in most cases. LFA, on
the other hand, is very effective at supporting recoveries in most topologies. Ring based
topologies require the use of 1-Segment more often due to their characteristics. There
is also evidence that in very few scenarios 2-Segments are necessary. While using TI-
LFA, it causes the use of 2-Segment steps slightly more often due to always following the
post-convergence path.

We can observe that with CAS we obtain a slight decrease in congestion when com-
pared with TI-LFA for all topologies.

Chapter 5 - Conclusion

SG are a new generation of electric grids that are composed of smart meters, wired and
wireless sensors and dispersed loads that need to be reliably connected through a network.
A SG network requires a set of properties that range from high availability to security.
Besides, they also need to be interoperable, able to connect and exchange data freely
and transparently with many different types of devices. To provide such properties the
communication architecture and data management play a fundamental role.

IP-based and MPLS communication technologies, often used in the core networks
of smart grids, can achieve good levels of scalablility, security and be able to provide
traffic engineering, but they present problems with due to the heterogeneous nature of
the network elements or the complexity introduced by their supporting protocols (e.g.,
RSVP-TE).

SDN and SR are recent technologies that can contribute to solve the above problems.
SDN decouples the data plane from the control plane, providing a centralized view of the
network state. SR can support traffic engineering while maintaining a MPLS data plane,
without requiring the use of complex protocols like LDP and RSVP-TE.

In this thesis, we proposed an algorithm that attempts to guarantee packet delivery
after a single link failure. The implementation of our fast reroute algorithm resorts to SDN
and SR. We also propose two novel strategies for segment selection: Fast Segment Drop
that aims to minimize packet overhead and segment list size; and congestion Avoidance
Segment, a strategy that provides traffic engineering by minimizing the maximum link
load.

We compared our solutions with two other solutions (random and TI-LFA). Our pro-
posal and TI-LFA share a similar general goal but the results show that our algorithm
provides more flexibility when compared to TI-LFA as it allows for a wider segment
choice. For instance, the results demonstrate that using CAS reduces the number of con-
gested links when compared to TI-LFA. Using Fast Segment Drop it possible to achieve
higher coverage (3% to 5%) with just one segment when compared to TI-LFA. Finally,
these techniques can obtain 100% coverage after a single link failure with a small cost of
packet overhead.

57

Glossary

AMI Advanced Metering Infrastructure.

BAN Building/Business Area Network.

DLFA Directed Loop Free Alternate.
DR Demand Response.

ECMP Equal-cost Multi-path.

FAN Field Area Network.
FIB Forwarding Information Base.
FIR Failure Insensitive Routing.

HAN Home Area Network.
HTML HyperText Markup Language.

IAN Industrial Area Network.
IED Intelligent electronic devices.
IETF Internet Engineering Task Force.
IGP Interior Gateway Protocol.
IP Internet Protocol.
IPFRR IP Fast Reroute.
IS-IS Intermediate System Intermediate

System.

LDP Label Distribution Protocol.

LFA Loop Free Alternate.
LSP Label Switching Path.
LSR Label Switch Router.

MPLS Multiprotocol Label Switching.
MRC Multiple Routing Configurations.

NAN Neighbor Area Network.

OSPF Open Shortest Path First.

PLR Point of Local Repair.
PSN Partial Structural Network.

R3 Resilient Routing Reconfiguration.
RLFA Remote Loop Free Alternative.
RSVP-TE Resource Reservation Protocol

with Traffic Engineering.

SDN Software Defined Networking.
SG Smart Grid.
SL Segment List.
SR Segment Routing.

UDP User Datagram Protocol.

WAN Wide Area Network.

59

Bibliography

[1] Jing Liu, Yang Xiao, Shuhui Li, Wei Liang, and Philip Chen. Cyber security and pri-
vacy issues in smart grids. IEEE Communications Surveys & Tutorials, 14(4):981–
997, 2012.

[2] Diego Kreutz, Fernando Ramos, Paulo Verissimo, Christian Rothenberg, Siamak
Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, 103(1):14–76, 2015.

[3] Scott Shenker, Martin Casado, Teemu Koponen, and Nick McKeown. The future of
networking, and the past of protocols. Open Networking Summit, 20, 2011.

[4] Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap for
traffic engineering in sdn-openflow networks. Computer Networks, 71:1–30, 2014.

[5] Clarence Filsfils, Nagendra Nainar, Carlos Pignataro, Juan Cardona, and Pierre
Francois. The segment routing architecture. In Global Communications Confer-
ence, pages 1–6. IEEE, 2015.

[6] Pierre Francois, Clarence Filsfils, Ahmed Bashandy, Bruno Decraene, and Stephane
Litkowski. Topology independent fast reroute using segment routing. 2016.
https://tools.ietf.org/id/draft-francois-rtgwg-segment-routing-ti-lfa-01.txt.

[7] Vijay K Sood, Daniel Fischer, JM Eklund, and Tim Brown. Developing a commu-
nication infrastructure for the smart grid. In Proceedings of the Electrical Power &
Energy Conference (EPEC), pages 1–7. IEEE, 2009.

[8] Tong Xiaoyang, Liao Guodong, Wang Xiaoru, and Zhong Shan. The analysis of
communication architecture and control mode of wide area power systems control.
In Proceedings Autonomous Decentralized Systems, pages 59–65. IEEE, 2005.

[9] Jon Postel. Internet protocol. STD 5, RFC Editor, September 1981. http://www.
rfc-editor.org/rfc/rfc791.txt.

[10] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architec-
ture. RFC 3031, RFC Editor, January 2001. http://www.rfc-editor.org/
rfc/rfc3031.txt.

61

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.rfc-editor.org/rfc/rfc3031.txt

Bibliography 62

[11] Fernando Ramos, Diego Kreutz, and Paulo Verissimo. Software-defined networks:
On the road to the softwarization of networking. Cutter IT journal, 2015.

[12] Thilo Sauter and Maksim Lobashov. End-to-end communication architecture for
smart grids. IEEE Transactions on Industrial Electronics, 58(4):1218–1228, 2011.

[13] Hassan Farhangi. The path of the smart grid. IEEE power and energy magazine,
8(1):18–28, 2010.

[14] Jon Postel. Transmission control protocol. STD 7, RFC Editor, September 1981.
http://www.rfc-editor.org/rfc/rfc793.txt.

[15] J. Postel. User datagram protocol. STD 6, RFC Editor, August 1980. http:

//www.rfc-editor.org/rfc/rfc768.txt.

[16] James F Kurose and Keith W Ross. Computer networking: a top-down approach.
Pearson, 2013.

[17] Charles Hedrick. Routing information protocol. RFC 1058, RFC Editor, June 1988.
http://www.rfc-editor.org/rfc/rfc1058.txt.

[18] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimizing ospf
weights. In Proceedings of INFOCOM 2000. Nineteenth annual joint conference of
the IEEE computer and communications societies, volume 2, pages 519–528. IEEE,
2000.

[19] Bernard Fortz, Jennifer Rexford, and Mikkel Thorup. Traffic engineering with tra-
ditional ip routing protocols. IEEE Communications Magazine, 40(10):118–124,
2002.

[20] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[21] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Stuart.Stephen,
and Amin Vahdat. B4: Experience with a globally-deployed software defined wan.
ACM SIGCOMM Computer Communication Review, 43(4):3–14, 2013.

[22] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven
wan. In ACM SIGCOMM Computer Communication Review, volume 43, pages 15–
26. ACM, 2013.

http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc1058.txt

Bibliography 63

[23] Nanxi Kang, Monia Ghobadi, John Reumann, Alexander Shraer, and Jennifer Rex-
ford. Efficient traffic splitting on sdn switches. In Proceedings of CoNEXT ’15
the 11th ACM Conference on Emerging Networking Experiments and Technologies,
Article No. 6, 2015.

[24] Randeep Bhatia, Fang Hao, Murali Kodialam, and T.V. Lakshman. Optimized net-
work traffic engineering using segment routing. In Proceedings of the Conference
on Computer Communications (INFOCOM), pages 657–665. IEEE, 2015.

[25] Luca Davoli, Luca Veltri, Pier Luigi Ventre, Giuseppe Siracusano, and Stefano Sal-
sano. Traffic engineering with segment routing: Sdn-based architectural design and
open source implementation. In Proceedings of the Fourth European Workshop on
Software Defined Networks, pages 111–112. IEEE, 2015.

[26] Alessio Giorgetti, Andrea Sgambelluri, Francesco Paolucci, and Piero Castoldi. Re-
liable segment routing. In Reliable Networks Design and Modeling (RNDM), 2015
7th International Workshop on, pages 181–185. IEEE, 2015.

[27] Alessio Giorgetti, Andrea Sgambelluri, Francesco Paolucci, Filippo Cugini, and
Piero Castoldi. Demonstration of dynamic restoration in segment routing multi-
layer sdn networks. In Proceedings of the Optical Fiber Communication Confer-
ence, pages Th4G–4. Optical Society of America, 2016.

[28] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer Rex-
ford. Network architecture for joint failure recovery and traffic engineering. ACM
SIGMETRICS Performance Evaluation Review, 39(1):97–108, 2011.

[29] Amund Kvalbein, Audun Fosselie Hansen, Tarik Čičic, Stein Gjessing, and Olav
Lysne. Multiple routing configurations for fast ip network recovery. IEEE/ACM
Transactions on Networking (TON), 17(2):473–486, 2009.

[30] Sanghwan Lee, Yinzhe Yu, Srihari Nelakuditi, Zhi-Li Zhang, and Chen-Nee Chuah.
Proactive vs reactive approaches to failure resilient routing. In Proceedings of the
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications
Societies (INFOCOM), volume 1. IEEE, 2004.

[31] Baohua Yang, Junda Liu, Scott Shenker, Jun Li, and Kai Zheng. Keep forward-
ing: Towards k-link failure resilient routing. In Proceedings of the Conference on
Computer Communications (INFOCOM), pages 1617–1625. IEEE, 2014.

[32] Minlan Yu, Jennifer Rexford, Michael J Freedman, and Jia Wang. Scalable flow-
based networking with DIFANE. ACM SIGCOMM Computer Communication Re-
view, 40(4):351–362, 2010.

Bibliography 64

[33] Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi, Yin Zhang, Lili Qiu, and
Yang Richard Yang. R3: resilient routing reconfiguration. In Proceedings of SIG-
COMM Computer Communication Review, volume 40, pages 291–302. ACM, 2010.

[34] Mike Shand and Stewart Bryant. Ip fast reroute framework. RFC 5714, RFC Editor,
January 2010. http://www.rfc-editor.org/rfc/rfc5714.txt.

[35] Alia Atlas and Alex Zinin. Basic specification for ip fast reroute: Loop-free alter-
nates. RFC 5286, RFC Editor, September 2008. https://tools.ietf.org/
rfc/rfc5286.txt.

[36] Ping Pan, George Swallow, and Alia Atlas. Fast reroute extensions to rsvp-te for
lsp tunnels. RFC 4090, RFC Editor, May 2005. https://tools.ietf.org/
html/rfc4090.

[37] Stephane Litkowski, Bruno Decraene, Clarence Filsfils, and Kamran Raza. In-
teractions between lfa and rsvp-te. Internet-Draft draft-litkowski-rtgwg-lfa-rsvpte-
cooperation-01, February 2013. http://www.ietf.org/internet-drafts/draft-litkowski-
rtgwg-lfa-rsvpte-cooperation-01.txt.

[38] C. Hopps. Analysis of an equal-cost multi-path algorithm. RFC 2992, RFC Edi-
tor, November 2000. http://www.ietf.org/mail-archive/web-old/
ietf-announce-old/current/msg09968.html.

[39] Ina Minei and Julian Lucek. MPLS-enabled applications: emerging developments
and new technologies. John Wiley & Sons, 2010.

[40] Clarence Filsfils, Stefano Previdi, Bruno Decraene, Stephane Litkowski, and
rjs@rob.sh. Segment routing architecture. Internet-Draft draft-ietf-spring-
segment-routing-04, IETF Secretariat, July 2015. http://www.ietf.org/

internet-drafts/draft-ietf-spring-segment-routing-04.

txt.

[41] Stewart Bryant, Clarence Filsfils, Stefano Previdi, Mike Shand, and Ning So. Re-
mote loop-free alternate (lfa) fast re-route (frr). Internet-Draft draft-ietf-rtgwg-
remote-lfa-11, IETF Secretariat, January 2015. http://www.ietf.org/

internet-drafts/draft-ietf-rtgwg-remote-lfa-11.txt.

[42] Anica Bukva, Ramon Casellas, Ricardo Martı́nez, and Raül Muñoz. A dynamic
path-computation algorithm for a gmpls-enabled multi-layer network. Journal of
Optical Communications and Networking, 4(6):436–448, 2012.

[43] Alessio Giorgetti, Piero Castoldi, Filippo Cugini, Jeroen Nijhof, Francesco Lazzeri,
and Gianmarco Bruno. Path encoding in segment routing. In Proceedings Global
Communications Conference (GLOBECOM), pages 1–6. IEEE, 2015.

http://www.rfc-editor.org/rfc/rfc5714.txt
https://tools.ietf.org/rfc/rfc5286.txt
https://tools.ietf.org/rfc/rfc5286.txt
https://tools.ietf.org/html/rfc4090
https://tools.ietf.org/html/rfc4090
http://www.ietf.org/mail-archive/web-old/ietf-announce-old/current/msg09968.html
http://www.ietf.org/mail-archive/web-old/ietf-announce-old/current/msg09968.html
http://www.ietf.org/internet-drafts/draft-ietf-spring-segment-routing-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-spring-segment-routing-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-spring-segment-routing-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtgwg-remote-lfa-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtgwg-remote-lfa-11.txt

	List of Figures
	List of Tables
	Introduction
	Motivation
	Software Defined Networks and Segment Routing
	Goals & Contributions
	Work Planning
	Document Structure

	Background and Related Work
	Smart Grids
	Home Area Networks
	Neighborhood Area Networks and Field Area Networks
	Wide Area Networks
	Wired and Wireless technologies

	Communication in Networks
	Routing & Forwarding
	IP
	IGP
	Traffic Engineering
	Software-Defined Networks
	Traffic Engineering in SDN
	Segment Routing

	Resilient Routing
	IP and MPLS Fast Reroute

	Final Considerations

	Design and Implementation
	Algorithm for Fast Reroute
	 Step 1 : ECMP Safeguard
	Step 2: Loop Free Alternative Neighbor
	Step 3: RLFA (1-Segment)
	Step 4: DLFA (2-Segments)

	Choosing from Multiple Alternative Segments
	Implementation
	Final Considerations

	Evaluation
	Random and TI-LFA strategies
	Environment setup
	Evaluation results
	Discussion

	Conclusion
	Glossary

