

2019

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Generating Software Tests to Check for Flaws and
Functionalities

Francisco João Guimarães Coimbra de Almeida Araújo

Mestrado em Engenharia Informática
 Especialização em Engenharia de Software

Dissertação orientada por:
Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

e co-orientado pela Prof. Doutor Ibéria Vitória de Sousa Medeiros

Acknowledgments

First of all, I would like to express my thanks to my advisors, Prof. Nuno
Neves and Prof. Ibéria Medeiros for their guidance. Without their orientation and
feedback, this dissertation would have never been completed in time.

I would also like to thank, by order of most distracting to least distracting,
Nuno Burney, Robin Vassantlal, João Becho, Ana Maria Fidalgo, João Pinto, João
Batista, Nuno Rodrigues, Tiago Correia, and Ana Ilhéu. Without all of you, I would
have surely finished my thesis much sooner.

Lastly, I would like to express my gratitude to my family and especially my two
dogs, Godzilla, and Thor for all the good distractions and helpful tips on how to
best write a dissertation.

This work was partially supported by the PT2020 through the project XIVT
(PORL/39238/2018), and by the FCT through the project SEAL(PTDC/CCI-INF/
29058/2017), and LASIGE Research Unit (UID/CEC/00408/2019).

ii

In memory of my Grandparents.

Resumo

O rápido crescimento da complexidade de software unido com a grande neces-
sidade de software no dia a dia causou uma exigência para testar os mesmos de
modo a conseguir garantir um certo ńıvel de qualidade, funcionamento e segurança.
Por exemplo, tanto o carro que conduzimos hoje como o frigorifico que usamos para
manter a temperatura desejada dos nossos alimentos, requer software de tal com-
plexidade que quando postos sobre alto stress, poderiam apresentar algum tipo de
bug. No caso desse bug ser uma vulnerabilidade, e, por conseguinte, poder ser ex-
plorada, seria capaz de por vidas em perigo e mesmo causar danos financeiros no
valor de milhões de euros. Essa vulnerabilidade conseguiria, por exemplo, criar a
hipótese ao atacante de tomar controlo do carro ou, no caso do frigorifico, aumentar
a temperatura fazendo com que a comida se estrague. Não obstante a isso, depois
de essas vulnerabilidades terem sido descobertas, é necessário iniciar um processo
de correção do software, custando tempo e dinheiro.

A complexidade do software cresce quando é necessário criar variantes das aplica-
ções a partir de diversos componentes de software, como acontece em sistemas embe-
bidos. Tal complexidade dificulta o teste e a validação do software para as funciona-
lidades que foi desenhado, podendo aumentar também o número vulnerabilidades de
segurança. Estas vulnerabilidades podem permanecer ocultas durante vários anos
em qualquer programa, independentemente de quantos testes foram executados para
tentar assegurar a sua qualidade e segurança. Isto é tanto devido à eficiência destes
testes que podem ser de uma qualidade limitada, bem como ao curto tempo dis-
pońıvel para garantir a correta funcionalidade. Um atacante externo, ao contrário,
possui tempo teoricamente ilimitado para explorar o software quando este já se
encontra no mercado.

Vulnerabilidades são a principal causa de problemas de segurança e o foco prin-
cipal quando os atacantes estão a tentar explorar o sistema. Estes, podem também
causar diversos tipos de danos ao sistema e aos stockholders da aplicação, como por
exemplo o dono da aplicação e os utilizadores. Uma distinção importante é que nem
todos os bugs são vulnerabilidades. Uma vulnerabilidade tem de ser explorada de
modo a possibilitar a corrupção do comportamento normal do programa, levando a
um estado erróneo deste.

vi

De modo a conseguir tomar partido de um pedaço de software, os atacantes
externos necessitam apenas de conseguir encontrar uma vulnerabilidade. No en-
tanto, os testes desenvolvidos pelos responsáveis pela qualidade de segurança têm
de encontrar inúmeros. Como resultado disto, hoje em dia as companhias gastam
recursos em termos de custo e de tempo para conseguirem melhorar o processo de
verificação e validação de software, por forma a tentar garantir o ńıvel de qualidade
e segurança desejado em qualquer dos seus produtos. No entanto, como acima re-
ferido, os recursos e tempo são limitados nos testes, fazendo com que vários bugs e
vulnerabilidades possam não ser detetados por estes testes, mantendo-se ainda nos
produtos finais. Embora já existam ferramentas automáticas de validação de segu-
rança, não existe nenhuma ferramenta que possibilite a reutilização de resultados
de testes entre versões de aplicações, de modo a validar estas versões e variantes da
maneira mais eficiente posśıvel.

Validação de Software é o processo de assegurar um certo ńıvel de confiança,
que o software corresponde às espectativas e necessidades do utilizador e funciona
como é suposto, não tendo nenhuma incoerência de comportamento e tendo o me-
nor número de bugs posśıvel. Neste contexto, cada teste examina o comportamento
do software em teste de modo a verificar todas as condições mencionadas anterior-
mente e contribui para aumentar a confiança no sistema em si. Normalmente, esta
verificação é feita com conhecimento à priori do programa a ser testado. Isto, no
entanto, é um processo muito lento e pode ser sujeito a erros humanos e suposições
sobre o programa a ser testado, especialmente se forem efetuadas pela mesma pessoa
que fez o programa em si.

Existem várias técnicas para testar software de maneira rápida, automática e
eficiente, como por exemplo fuzzers. Fuzzing é uma técnica popular para encontrar
bugs de software onde o sistema a ser testado é corrido com vários inputs semi-
validos gerados pelo fuzzer, isto é, inputs certos o suficiente para correr no programa,
mas que podem gerar erros. Enquanto o programa está a ser submetido a todos
os testes, é monitorizado na espectativa de encontrar bugs que façam o programa
crashar devido ao input dado. Inicialmente, os fuzzers não tinham em consideração
o programa a ser testado, tratando-o como uma caixa preta, não tendo qualquer
conhecimento sobre o seu código. Assim, o foco era apenas na geração rápida de
inputs aleatórios e a monitorização desses inputs na execução do programa. No
entanto, estes poderiam levar muito tempo para encontrar bugs somente atinǵıveis
após certas condições logicas serem satisfeitas, as quais são pouco prováveis de ser
ativadas com inputs aleatórios. A fim de resolver esse problema, um segundo tipo
de fuzzers foi desenvolvido, whitebox fuzzers (fuzzers de caixa branca), que utilizam
inputs de formato conhecido de modo a executar de maneira simbólica o programa a
ser testado, guardando qualquer condição lógica que esteja no caminho de execução

vii

de um input, para depois as resolver uma a uma e criar novos inputs a partir das
soluções dessas condições. No entanto, a execução simbólica é bastante lenta e
guardar as condições todas leva a uma explosão de condições a serem resolvidas
perdendo muito tempo nelas. De modo a resolver estes problemas com o whitebox
fuzzers (fuzzers de caixa branca), foram criados greybox fuzzers, uma mistura dos
dois tipos de fuzzer descritos anteriormente que usa instrumentação de baixo peso
para ter uma ideia da estrutura do programa sem necessitar analise previa causando
muito tempo nessa instrumentalização, mas compensado com a cobertura devolvida.

No entanto, não existe nenhuma ferramenta, ou fuzzer, que consiga usufruir de
informação obtida de testes realizados a versões mais antigas de um dado software
para melhorar os resultados dos testes de uma versão do mesmo software mais re-
cente. Hoje em dia, dois produtos que partilham funcionalidades implementadas
de maneira semelhante ou mesmo igual irão ser testadas individualmente, repetindo
assim todos os testes que já foram realizados no outro programa. Isto representa,
claramente, uma falta de eficiência, perdendo tempo e dinheiro em repetições de tes-
tes, enquanto outras funcionalidades ainda não foram testadas, onde provavelmente
podem existir vulnerabilidades que continuam por não ser descobertas.

Este trabalho propõe uma abordagem que permite testar variantes ainda não
testadas a partir de resultados das que já foram avaliadas. A abordagem foi imple-
mentada na ferramenta PandoraFuzzer, a qual tem por base a aplicação de fuzzing
American Fuzzy Lop (AFL), e foi validada com um conjunto de programas de di-
ferentes versões. Os resultados experimentais mostraram que a ferramenta melhora
os resultados do AFL.

A primeira etapa consiste na compreensão das várias vulnerabilidades comuns
em programas desenvolvidos em C/C++ e os modos mais comuns de detetar e
corrigir tais vulnerabilidades. A segunda etapa deste projeto é a implementação e
validação da ferramenta. Esta ferramenta vai ser constrúıda sobre um Fuzzer guiado
por cobertura já existente, AFL, e segue um prinćıpio semelhante. A terceira etapa
deste projeto consiste na avaliação da ferramenta em si, usando várias medidas de
comparação e foi validada com um conjunto de programas de diferentes versões.
Os resultados experimentais mostraram que a ferramenta melhora os resultados do
AFL.

Palavras Chave: Fuzzing, Detecção de Vulnerabilidades, Testes de Cobertura,
Testes de Software, Segurança no Software

viii

Abstract

Industrial products, like vehicles and trains, integrate embedded systems im-
plementing diverse and complicated functionalities. Such functionalities are pro-
grammable by software containing a multitude of parameters necessary for their
configuration, which have been increasing due to the market diversification and
customer demand. However, the increasing functionality and complexity of such
systems make the validation and testing of the software highly complex. The com-
plexity inherent to software nowadays has a direct relationship with the rising num-
ber of vulnerabilities found in the software itself due to the increased attack surface.
A vulnerability is defined as a weakness in the application that if exploitable can
cause serious damages and great financial impact. Products with such variability
need to be tested adequately, looking for security flaws to guarantee public safety
and quality assurance of the application. While efficient automated testing systems
already exist, such as fuzzing, no tool is able to use results of a previous testable
programme to more efficiently test the next piece of software that shares certain
functionalities. The objective of this dissertation is to implement such a tool that
can ignore already covered functionalities that have been seen and tested before in
a previously tested program and give more importance to block codes that have yet
to been tested, detect security vulnerabilities and to avoid repeating work when it
is not necessary, hence increasing the speed and the coverage in the new program.
The approach was implemented in a tool based on the American Fuzzy Lop (AFL)
fuzzing application and was validated with a set of programs of different versions.
The experimental results showed that the tool can perform better than AFL.

Keywords: Fuzzing, Vulnerability detection, Coverage testing, Software testing,
Software security

x

xii

Contents

Figure List xvii

Table List xix

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Thesis Structure . 4

2 Context and Related Work 5
2.1 Software Validation and Verification 5

2.1.1 Types of Coverage . 6
2.1.2 Code Representation . 7

2.2 Vulnerabilities . 8
2.3 Fuzzing . 14

2.3.1 Fuzzer Running Example . 20
2.4 AFL . 21

2.4.1 AFL description . 22
2.4.2 AFL issues . 29

3 PandoraFuzzer 31
3.1 Tool Reasoning and Issues Found . 31
3.2 Main AFL Differences . 32

3.2.1 Program Instrumentalization and Multiple Forkserver Usage . 33
3.2.2 Multiple Program Transition and Usage 33
3.2.3 Program Input Organization using Multiple Queues 34
3.2.4 Interesting Program Code Block Identifier Retrieval 34
3.2.5 Interesting Program Input Sharing 35

3.3 Architecture . 35
3.4 Main Modules . 38

3.4.1 Instrumentalization Procedure 38

xiii

3.4.2 Fuzzing Procedure Architecture Modules 39

4 PandoraFuzzer Implementation 43
4.1 Instrumentalization . 43

4.1.1 Basic Block Identifier Generation 45
4.2 Fuzzing . 46

5 Evaluation of the Tool 51
5.1 Testing Setup . 51
5.2 Applications under test . 52

5.2.1 Binutils Applications . 52
5.2.2 Vulnerability Detection . 52
5.2.3 Code Coverage . 54

6 Conclusion 59
6.1 Future Work . 59

Bibliography 64

xiv

xvi

List of Figures

2.1 Forkserver Sequence in AFL . 25

3.1 Proposed fuzzing procedure architecture of the solution 32
3.2 Proposed Instrumentalization Procedure Architecture of the solution. 37

4.1 Instrumentalization Sequence in PandoraFuzzer 44
4.2 Basic block example. 45
4.3 Removal of unnecessary lines of basic blocks. 46
4.4 Removal of the information about registers. 46
4.5 Concatenation of lines and generation of the identifier. 46
4.6 Setup Sequence in PandoraFuzzer . 47
4.7 Main Fuzzing Loop in PandoraFuzzer 48

5.1 Detections over a period of 1 hour for fuzzing tests 53
5.2 Detection over a period of 8 hours for fuzzing tests 54
5.3 Coverage 1 hour testing for Binutils 2.25 55
5.4 Coverage 8 hour testing for Binutils 2.25 56
5.5 Coverage 1 hour testing for Binutils 2.26 56
5.6 Coverage 8 hour testing for Binutils 2.26 57

xvii

List of Tables

5.1 Information about selected binutils applications (LoC - Lines of Code) 53
5.2 Unique crashes observed in Binutils applications. 53
5.3 Maximum number of paths found in Binutils 54

xix

Chapter 1

Introduction

The swift growth of software complexity coupled with the universal use and need of
software in everyday life, has caused an equally significant need to test those pieces
of software to assure certain quality standards and security both to the company
that developed the product and the users that use it. As an example, the car we
drive to work requires extremely complex software which, when put under stress,
could eventually present some sort of bug. If any of the existing bugs happen to be
exploitable, i.e., if they happen to be a vulnerability, it could give an opportunity to
an external attacker to control the car, putting lives in danger and causing millions
in damages. Not only that, but bug correction after the flaw has been found and
explored would result in high costs to repair, in addition to all the previous described
costs.

Such vulnerabilities can stay undetected for several years in the programs, re-
gardless of the many tests campaigns, they are submitted to before release, because
of the limited testing time and the efficiency of the tests themselves used to find
an unknown number of bugs. Attackers, on the other hand, have a theoretically
infinite amount of time to discover those vulnerabilities and only need to find one
to take advantage of the system and run whatever malicious code they desire. As a
result, most companies nowadays spend an increasing amount of time, money and
expertise in software testing and verification to assure a certain level of quality on all
their products. However, as previously described, since they have limited resources,
many bugs and vulnerabilities still manage to find themselves in the final products.

A bug is different from a vulnerability in the sense that every vulnerability is
a bug, but not all bugs are vulnerabilities. A vulnerability can be described as a
flaw or weakness in the application which can be the result of a design flaw or a
simple implementation bug, which allows an attacker to exploit it to compromise
the security properties of an application. Vulnerabilities can be used to hurt the
stakeholders of an application, such as the users or other entities that need the
application.

1

Chapter 1. Introduction 2

Software testing is a very complex and time-consuming endeavour. Software engi-
neering has demonstrated that test cases are far more effective when not performed
by the original programmers, since they are bound to have preconceptions when
creating tests that cover the implementation, such as considering certain inputs as
insignificant. For human testers to be effective, implementation understanding is
required, including boundary and corner cases. Acquiring this knowledge is expen-
sive in both time and conceptual effort. However, by simply supplying the program
with randomly generated input, a considerable part of the input state space can be
explored without requiring any form of human interaction. Not only that but the
random generation of such tests reduces bias and includes items that are so different
from what any developer or tester could have imagined, that it may trigger parts of
the attack surface of the program that could have easily been missed by the software
testers or developers.

1.1 Motivation

The security of critical software has become more and more relevant in everyday
life, becoming unavoidable as time goes on, such as in a car while commuting to
work or while travelling to a distant country in a plane. In case a vulnerability is
exploited in any of the previous examples, it could lead to highly expensive and
dangerous results. For example, the costs of updating the software in vehicles have
reached billions annually and so, they could be significantly reduced if appropriated
software tests were performed. Even if the individual cost could be made negligible
if the number of products affected by the vulnerability was big enough, the costs
would still be very high.

Unfortunately, most software usually suffers from being highly complex and di-
verse, employing many people to develop it and such complexities usually result in
a considerable number of bugs. From an original piece of software, there are usually
several code blocks that can be reused, normally in distinct modules. Bugs found
in those modules and code blocks will be carried to any and all software products
that happen to utilize them.

Nowadays, fuzzing is probably the most effective state-of-the-art vulnerability
detecting approach. Fuzzing works by feeding the program with randomly-generated
inputs, recording any crashes found while doing so. It has been used successfully
by major software companies for security testing and quality assurance. However,
no fuzzer to date takes into consideration already tested modules or code blocks
shared between the pieces of software under test (SUT). As such, a lot of redundant
tests occur, which decreases the efficiency of the procedure. Not only that, but
the tests provided by the fuzzers will not find many vulnerabilities as well as new

Chapter 1. Introduction 3

vulnerabilities because they are busy exploring already explored program paths,
finding the same vulnerabilities over and over, with no advantage to the company
conducting the testing.

This thesis focuses on the development of a greybox fuzzer, which is constructed
by modifying the AFL fuzzer. The resulting fuzzer can detect software vulnerabilities
in a simple, efficient and productive way, as it is common among fuzzers, but without
having to redo the testing of already covered functionalities, or modules, that are
shared among programs. This is achieved by retaining the results of previous tests to
keep track of the code blocks already tested. As such, we can minimize the amount of
repeated test cases done and maximize the coverage on the unshared functionalities,
saving precious time and money and providing vulnerability detection and quality
assurance to the company conducting the tests.

1.2 Objectives
This thesis main objective is to create a tool that is able to detect vulnerabilities in
various software written in C or C++, which share an unknown number of features,
in an effective and efficient way. We propose both an architecture for the tool,
presenting every module that constitutes it, and the development of a prototype
as proof that it works. In order to develop such a tool, the main objective can be
broken down into three sub-objectives.

The first objective focuses on getting an understanding of the various vulnera-
bilities found in software nowadays, as well as the state-of-the-art techniques that
are used with the aim of detecting those vulnerabilities in real-world software.

The second objective naturally is related to the design and the implementation of
such a tool, which facilitates and enhances vulnerability detection in certain software
products that share an unknown amount of common functionalities.

The third objective focuses on the evaluation of the implemented tool. This is
done by comparing the developed tool with existing tools, in order to collect more
information about the performance behaviour and when compared to the state-of-
the-art.

1.3 Contributions
The main contributions of the thesis are:

• A fuzzer architecture that can be used to detect vulnerabilities in multiple
program variants. A program variant is defined as simply being a change in
a single program, for example, the addition or removal of a few lines of code.
The proposed architecture takes advantage of previously done test procedures

Chapter 1. Introduction 4

to best understand how to test a given program variant and be able to identify
potential vulnerabilities.

• As a proof of concept a prototype that implements the architecture, called
PandoraFuzzer, and shows: (1) the efficiency to detect crashing inputs (vul-
nerabilities) in a multitude of programs with a variety of proprieties and sizes;
(2) the ability to replicate the crashes found during fuzzing by providing to
the user the testing cases that crashed the programs; (3) the capacity to learn
from previous fuzzing efforts as to more efficiently identify inputs that can
crash the given programs.

• An experimental evaluation of the currently implemented prototype with four
applications, to reveal the viability and effectiveness of the tool developed at
finding crashing inputs.

The developed work supported the publication of a full paper (12 pages) at
the INForum 2019, in the track of Security of Computational Systems: Francisco
Araújo, Ibéria Medeiros and Nuno Neves, Geração de Testes de Software para Veri-
ficação de Faltas e Funcionalidades, at Simpósio Nacional de Informática (INForum),
September 2019.

1.4 Thesis Structure
This thesis is structured as follows:

Chapter 2 explains some relevant concepts and provides fundamental context for
the work done in this thesis. Distinct types of vulnerabilities are explored along
with the different kinds of program coverage and code representation. Various types
of fuzzers are also presented, like blackbox, whitebox and greybox fuzzers. Lastly,
AFL, a greybox fuzzer, is described more in detail.

Chapter 3 is dedicated to explaining the proposed solution, including the archi-
tecture and main components. We also describe the way the components interact
together to solve the problem addressed in the thesis. A few of the considered
alternatives are also discussed.

Chapters 4 and 5 describe the current implementation of the proposed archi-
tecture in the PandoraFuzzer prototype as well as evaluating and validating the
prototype with four applications. A detailed explanation is given about the test-
ing platform the tests were conducted on. The results show the efficiency of the
architecture proposed when compared with AFL.

Chapter 6 provides a conclusion of the developed research and discusses future
work.

Chapter 2

Context and Related Work

This chapter explains the related works to this dissertation as well as some context
that serves as the basis for the project. First, we describe the techniques employed
in test generation to increase software code coverage. Secondly, we explain in detail
most of the vulnerability classes we can find, describing how they occur and how
they can be corrected and avoided. Afterwards, we present the state-of-the-art of the
fuzzing mechanisms for bug discovery. Finally, we go into greater detail to describe
AFL, a greybox coverage fuzzer where the tool will be built upon.

2.1 Software Validation and Verification

Software Validation is the process of making sure the software matches the needs of
the user and works as intended, fulfils the software requirements and specifications
and has the least number of bugs possible. Each test examines the behaviour of
the software under test to verify if it has any incoherent behaviour and contributes
to raise the confidence on the correctness of the product. Testing often works by
developing inputs that have a certain code coverage of the program. This is usually
done with knowledge of the program to be tested.

In order to increase the speed and the amount of testing done, automation of
software verification should be performed whenever possible. In software validation,
a test case is composed of the test values and the expected results. A test set,
as the name indicates, is a set of test cases. An important distinction must be
made between a fault, an error and a failure. A software fault is a defect in the
software. An error is an incorrect state of the program, for example, an invalid
value in a variable that happens due to some fault. A software failure is an incorrect
behaviour with respect to the requirements defined for the program.

5

Chapter 2. Context and Related Work 6

2.1.1 Types of Coverage

Program coverage of a suite of test cases can be divided into: Basic Coverage Criteria
and Coverage Based on Graphs. Those different criteria allow the development of
tests suits that can result in better coverage of the SUT as well as giving a coverage
goal to aspire to.

Basic Coverage Criteria

Three main coverages are relevant with regard to this criteria:

• Line Coverage: As the name indicates, it is the percentage of all the lines
the programs that are executed by the test set. While it might be possible to
provide 100% Line Coverage, it does not tell us much about the behaviour of
the software.

• Branch Coverage: Percentage of branches, such as if statements or loops, that
have been executed at least once while running the test suite. This criteria
provides some better knowledge about the program but probably still not
enough to get a good understanding of the SUT.

• Instruction Coverage: Percentage of instructions in the software that are ex-
ecuted by the test suite. An instruction is any line in the program and each
component in a conditional branch.

As it might be evident, some of these criteria subsume the other, i.e., instruction
coverage subsumes line coverage because for every test set that might satisfy the
requirements of instruction coverage, also satisfies the requirements of line coverage,
while the inverse is not true. One important feature missing from these coverage
types is the order in which those conditions happen. The order might affect the
state of the program at the time each line is executed, or a branch, or as atomic
statement. The next coverage type remedies this limitation somewhat.

Graph Coverage

A graph can be used as the representation model of the SUT, where each node is
a basic block. A basic block is defined as a sequence of code lines that are always
executed together in a sequence, each edge represents the control flow between basic
blocks. The execution of a test corresponds to a path in the graph, i.e., a set of
basic blocks connected by edges. The requirements of this criteria is a test set that
can cover the paths of the graph. Unlike the basic coverage criteria, in some graph
coverage criteria the order of execution matters, making it a much better criteria to
pick from. Such criteria includes:

Chapter 2. Context and Related Work 7

• Node Coverage: Much like line coverage described before, Node Coverage is
the percentage of nodes executed after running the test suite. This does not
take into consideration the order on which the nodes are reached.

• Edge Coverage: Corresponds to the percentage of Edge executed after run-
ning the test suite, which corresponds to Branch Coverage since each edge
represents a conditional statement.

• Edge-pair Coverage: It is the requirement to cover all paths up to length 2 in
the graph. In other words, the requirement to execute each pair of nodes that
is connected through an edge in the graph.

• Prime Path Coverage: A prime path is a maximal length simple path, i.e., a
path that has no repeated nodes with the exception of possibly the first and the
last, that is not a subpath of any other path. It requires every prime path to
be executed by the test set. This can result in a vast amount of paths making
it infeasible sometimes to test on large program where there are millions of
paths.

In order to test a program more adequately, we could focus on the flows of the
data values in the graph itself, while ensuring that the created values are always in a
correct state and used appropriately. A variable can either be defined, in which case
one assigns a value to the said variable or used, in which one accesses its value. So,
given the previously defined graph, in each node we could declare which values were
defined and used, allowing us to define that alternative criteria for code coverage.
In the dissertation, we will, however, focus more on the criteria defined above.

Some paths, regardless of what coverage is being used, might end up being infea-
sible, meaning they might be impossible to cover. For example, a simple path that
requires leaving a for loop the moment we enter it might be impossible depending
on the for loop and the program under test.

2.1.2 Code Representation

While code can be represented in a simple graph, there are several types of graphs we
can choose from. In particular, different representations of code have been developed
to reason about the various properties of the software. Even if those representations
have been designed to have a better understanding of the software and how to
optimize it, they can also be used to generate software tests to form the basis of
vulnerability detection. We present three different kinds of representations, namely
abstract syntax trees, control flow graphs and program dependence graphs.

• Abstract Syntax Trees (AST): These trees are an intermediate representation
produced by code parsers of compilers. They are ordered trees where inner

Chapter 2. Context and Related Work 8

nodes are represented by, for example, additions or assignments. Inner nodes
encode how statements are nested to produce programs and the leaf nodes are
operands, such as constants or identifiers.

• Control Flow Graphs (CFG): A control flow graph describes the order in which
code statements are executed along with the conditions that need to be met
for a path to be taken. The nodes represent the statements, and the edges,
which are directed, represent the transfer of control. This type of graphs helps
guide fuzzing testing tools such as in the work done by S. Sparks et al. [31].

• Program Dependence Graphs (PDG): This type of graphs were originally de-
veloped to determine all statements and predicates of a program that affect the
value of a variable. As previously mentioned, detecting the values of variables
from where they were defined to where they are used is extremely important
in software verification. The program graph uses two types of edges: data de-
pendency edges and control dependency edges. Data dependency edges reflect
the influence that one variable has on another. Control dependency edges cor-
respond to very much the same thing but with predicaments on the variables.

Work has been done in the development of new code representations. F. Yam-
aguchi et al. [36] propose a new code representation which is a mixture of all the
previous, called code property graph in order to better model templates for vulner-
abilities in graph transversal. They are able to present small and concise traversals
for many vulnerabilities like buffer overflows and memory address leaks. It is a
directed graph where each property is assigned to edges and nodes, where graph
traversals are the main way of obtaining information about the code. A traversal
is a function that maps a set of nodes to another group of nodes. They combine
the three representations in the following manner: they start by transforming the
Abstract Syntax Tree into a program property graph, they do this afterwards to
every single one of the previous code representations (AST, CFG, PDG) and then
combine them. They evaluated the efficacy of their approach in coverage analysis
and vulnerability detection by testing it on the source code of the Linux kernel. The
evaluation showed that they obtained a better view of the code and could describe
more vulnerabilities than any of the previous one individually and any combination
of them.

2.2 Vulnerabilities
Vulnerabilities are the root cause of security problems and when they are exploited
by attackers, they can cause damage to the system and the stakeholders, that is,
anyone with interest in the system, such as users or the software owner. A distinction

Chapter 2. Context and Related Work 9

must be made, a vulnerability is a bug but not all bugs represent a vulnerability.
A vulnerability is a bug that can be exploited to corrupt the programs normal
behaviour, leading it to an erroneous state. ISO 27005 defines a vulnerability as “a
weakness of an asset or group of assets that can be exploited by one or more threats”.
In this study, we consider the following vulnerabilities identified in the Common
Weakness Enumeration (CWE) [1] as problems for the applications programmed in
the C and C++ languages.

Variable Overflow and Underflow

Some of the most common security vulnerabilities in software are buffer overflow
flaws. When this sort of bugs are exploited the running program may return corrupt
information, crash or it might even allow the attacker to take control of the execution
flow of the program. While this class of errors belong to Memory Errors, we decided
to put them into their own specific section because of their importance. In this
study, we focus on the following problems related to Buffer Overflows:

1. Buffer overflow and underflow: A buffer overflow occurs when a program tries
to write data outside the memory allocated for the memory buffer. This can
occur because there is a write before the start of the buffer (underflow) or after
the end of the buffer (overflow).

2. Stack overflow and underflow: A stack overflow means that the bug occurs in
a buffer stored in the stack.

3. Heap overflow and underflow: Similarly, it means a buffer stored in the heap
has exceeded its allocated memory limit.

4. Global variable overflow and underflow: Occurs when one of the above happens
in a buffer that is a global variable.

The following is a buffer overflow example, which occurs by copying the user
input into the buffer without having any bound checking. If the size of the user
input buff is bigger that the allocated value buffer, it will result in a buffer overflow.
Function strcpy copies the contents of buff to buffer up to a ”\0” character.

void b u f f e r o v e r f l o w (char ∗ bu f f){
char b u f f e r [5] ;
s t r cpy (bu f f e r , bu f f) ;

}

Any of these bugs can occur due to improper restrictions of operations in the
arrays, or incorrect calculation on the index used in buffers, or even integer overflows.

Chapter 2. Context and Related Work 10

In the study conducted by X. Jia et al. [19], the authors propose a new solution
to discover potential vulnerabilities by modelling heap overflows as spatial inconsis-
tencies between allocations and access to the heap. They implement a prototype
called HOTracer which found a considerable number of previously unknown vul-
nerabilities using dynamic analysis, without employing test cases to directly trigger
vulnerabilities. Initially, HOTracer pre-processes the sample inputs by selecting rep-
resentative inputs, and then uses them in a dynamic analysis component to generate
execution traces for each of them. For any given trace, HOTracer traverses it offline
to do an in-depth analysis. It proceeds to identify any heap operation and builds
the heap layout. HOTracer then tracks the heap objects spatial and taint attributes
during the execution traces. Finally, it checks for any potential heap overflows and
generates inputs to prove them.

The work of Y. Shoshitaishvili [30] focuses on vulnerability detection through a
binary analysis tool, angr, that implements many existing approaches in offensive
binary analysis. They designed angr with the intent to make it able to support cross-
architecture. They do this since modern hardware architectures vary immensely and
they require cross-platform support and to support all different types of operating
systems. They also need the ability to support various analysis techniques, as well as
the ability to be used easily by the software security community and most have the
ability to reproduce the input that caused the vulnerability or replayability of the
crash. The tool generates a CFG by performing an iterative CFG recovery. It starts
from the entry point of the program, after the control Flow Graph is generated, they
run a Value-set Analysis which is a static analysis technique that combines numeric
analysis and pointer analysis for binary programs. In the evaluation phase, they
show that after a crash is identified only a small percentage of the inputs were not
easily identifiable.

Integer Vulnerabilities

In this study we also take into consideration integer overflows vulnerabilities. We
take into consideration the following types char, short, int, long and long long,
which can be used to store integers of different sizes. Any of this types, except char,
are signed by default, while char is unsigned. If a value is signed, it means it can
represent both negative and positive values.

Below we show a few examples of integer vulnerabilities:

1. Overflow

2. Underflow

3. Demotion/narrowing/truncation

Chapter 2. Context and Related Work 11

4. Sign conversion

Overflows occur when the required number surpasses the known maximum limit
of its representation. Independently of what type the overflow is, when it occurs it
always has the same result, but not the same value, it loops back around. If we are
at the maximum limit of a specific value and increment by one, we will have the
minimum value as a result.

The following vulnerability occurs when the value passed to the function is equal
to 101. It happens because, as explained before, the value returned passes the
maximum representation value, looping the value around.

i n t i n t e g e r o v e r f l o w (i n t a){
i f (a == 101){

r e turn INT MAX + 1 ;
}
r e turn a ;

}

When an underflow occurs, much of the same happens, but instead of passing the
maximum possible value that can be represented on the specific type, the progress
passes the minimum possible value that can be represented which causes the value
to loop around to the maximum value. As an example, if we subtract one from the
minimum value of any given type, the value on that variable will be the maximum
possible value in the represented type.

i n t i n t e g e r u n d e r f l o w (i n t a){
r e turn (a == 10002) ? INT MIN − 1 : a ;

}

Type narrowing occurs when one tries to save a value from a type that occupies
more memory to a type that requires less, such as a 32 bit int to a 16 bit short. In
this case, only the bottom 16 bits of the int are copied to the short. For unsigned
numbers this might result in a loss of information if the value required more than
16 bits to be represented. If this happens in signed numbers, the truncation might
change a negative value to a positive value or vice-versa.

As shown in the following example, we are trying to pass a value that requires
all the allocated memory to a value that does not have that memory capacity. What
occurs is that the unsigned int value gets shorten since it cannot be represented as
an unsigned short.

Chapter 2. Context and Related Work 12

void t runcat ing uns i gned (i n t a){
unsigned i n t va l = INT MAX;
unsigned shor t s s = va l ;

}

Sign conversion happens when a signed integer is converted to an unsigned num-
ber or the other way around. If the most-significant-bit is a zero, then no issue
will happen in the conversion. Otherwise, the change will result in a sign and value
change as well.

The following example demonstrates a signed conversion that happens when we
convert from an unsigned short to a signed one. The value 0x8080, which corresponds
to 32896, will become in the variable ss the value -32640.

void s i g n c o n v e r s i o n (){
unsigned shor t us = 0x8080 ;
shor t s s = us ;

}

Integer vulnerabilities are such a common cause of bugs that specific techniques
have been developed to detect them in a variety of ways. In J. Cia et al. [10] a
fuzzer was implemented called SwordFuzzer that uses taint analysis to identify which
bytes in an input file might be relevant in security-sensitive operations. This allows
the tool to only test those bytes and hence be more efficient for integer overflow
vulnerability detection. The key idea is using taint analysis to determine which
bytes are more relevant to be mutated. The evaluation concluded that the efficiency
of the fuzzing is improved dramatically as drastically fewer bytes are required to be
mutated when compared to other fuzzers.

Memory Vulnerabilities

Memory corruption bugs are one of the oldest and most important problems in
computer security. Memory errors are especially common in low-level programming
languages like C or C++. To put it simply, a memory error occurs when an object
accessed using a pointer expression is different from the one intended. Even without
considering buffer overflows, memory errors have been stuck in the top-3 of the
CWE SANS top 25 most dangerous software error for a long time [28], and several
attacks nowadays often start with a memory corruption that provides a crevice to
start infection.

There are several types of memory errors, and a few examples are listed below:

1. Use after free: Using a pointer to a region of memory that has been freed
previously.

Chapter 2. Context and Related Work 13

2. Memory Leak: Occurs when dynamically acquired memory is not freed often
it is no longer needed.

3. Double free: As the name indicates, occurs when a free operation is performed
on an already freed pointer.

We can see from the following example on a memory leak. The function reserves
some memory and then ends up forgetting to free it.
void memory leak (){

f l o a t ∗a = mal loc (s i z e o f (f l o a t) ∗ 45) ;
f l o a t b = 42 ;
a = &b ;

}

In M. Muench et al. [23] it is shown that memory vulnerabilities are a prevalent
class and that simple liveness checks are insufficient to detect many kinds of bugs
in a blackbox manner when dealing with embedded systems. This happens because
memory corruptions can change behaviours depending on what type of system the
vulnerability occurs on. For example, on embedded devices the results of a memory
corruption are less visible than on desktop systems. Desktop systems have nowadays
a plethora of mechanisms to detect faulty states, such as heap hardening and sanitiz-
ers, while embedded devices often do not have such mechanisms due to their limited
I/O capabilities. As such, silent memory corruptions can occur more frequently
when compared with traditional computer systems creating a bigger challenge for
conducting fuzzing sessions. They also evaluate and describe heuristics that can
be used at run time during the analysis of an embedded device in order to locate
memory corruptions.

N. Nethercote et al. [24] describes a dynamic binary instrumentation framework
called valgrind, that can detect memory vulnerabilities using shadow values. The
technique shadows every register and memory value with a data structure that
describes it. Valgrind has become a standard C and C++ development tool on
Linux and Memcheck is the tool that looks for memory bugs. While valgrind does
slow down the programs execution, it allows for better memory error detection while
still having reasonable performance.

In V. van der Veen et al. [34] it is presented a study of memory error statistics
analysing vulnerabilities and the occurrences of exploits in the past 15 years. It is
shown for every memory error when it was first introduced along with the defensive
measures that were implemented at the time and how they were surpassed. The
paper claims that while the number of vulnerabilities has been decreasing, the num-
ber of exploits has not. It is said that the reason for the diminishing number of
memory vulnerabilities starting in 2007 could be related to fundamental changes of
web development and the fact that the software industry became more mature.

Chapter 2. Context and Related Work 14

In the work done by B. Dolan-Gavitt et al. [13] it is described a tool, LAVA,
which is able to introduce serious bugs into any program, such as a buffer overflow
allowing the testing of tools that look for bugs. To add bugs to programs LAVA
first identifies execution traces locations where input bytes are available that do not
determine control flow and have yet to be modified, calling them DUA for Dead,
Uncomplicated and Available data. From there, the tool finds potential attack points
that are temporary after a DUA in the program trace and then it adds code to the
program to mimic the vulnerability. In the evaluation phase, they first injected a
large number of bugs into four open-source programs and then evaluated the dis-
tribution and realism of the generated bugs. Finally, they performed a preliminary
investigation to see how effective an open-source fuzzer and a symbolic execution-
based bug-finder were.

2.3 Fuzzing

Fuzzing is a popular technique for finding software bugs where the system under
test is barraged with randomly generated test cases. It is used for security testing
and quality assurance proposes, such as in the work done by A. Takanen [32], and
by P. Oehlert [25], ever since it was introduced. While the program is being put
under test, it is monitored in the hopes of finding errors that might arise as a result
of the input given.

Most fuzzers differ in many significant ways as will be described further on, but,
in general, they all follow a simple, yet highly effective algorithm, shown below.

General Fuzzing Algorithm{
Queue <− I n i t i a l Test Cases o f conc r e t e v a l i d input
whi l e (not DoneWithFuzzing){

chosenTestCase <− chooseTestCase (queue)
runProg (chosenTestCase)

mutatedTestCase <− mutate (chosenTestCase)
i f (i s I n t e r e s t i n g (mutatedTestCase)){

Queue <− addToQueue (mutatedTestCase)
}

}
}

This type of algorithm always receives, and returns, concrete valid inputs (or
test cases) that the SUT (software under test) processes. After running the program
with the received input, it mutates the input used in the execution to generate new
input, which might lead to different paths being covered when it is executed. Some
fuzzers also use the information gathered in the execution to help generate and pick
better program inputs. If the program input is deemed interesting, it is saved to

Chapter 2. Context and Related Work 15

the queue in order to be further mutated to uncover different paths in the program.
In the end, it is necessary to decide if the fuzzing process is done. This is generally
accomplished by a timeout or by reaching a certain number of discovered bugs, with
the ultimate goal of trying to find inputs to make the project crash. These inputs
are then returned to the software developers and testers that can use them to locate
the bug and reproduce the crash.

In greater detail, the fuzzing tests can be implemented by three components:

1. Fuzz Generator: Responsible for generating the test cases that will be used to
drive the SUT. The output is a series of inputs, which are subsequently fed to
the SUT by the delivery mechanism.

2. Delivery Mechanism: Accepts system test cases from the fuzz generator and
presents them to the SUT for consumption.

3. Monitoring System: Observes the SUT as it processes the input, attempting
to detect any and every erroneous behaviour of the program, often translated
into a program crash.

In the beginning, fuzzing tended to rely simply on the construction of the random
test cases from a sequence of random numbers. However, fuzzers have evolved
significantly over the years to the point where there are several classes of fuzzer.
Classes of fuzzer can be categorized by how they implement the following three
criteria:

1. Production of inputs/test cases

2. Before knowledge of input structure

3. Awareness of program structure

Regarding the generation of test cases, fuzzers can be divided into two categories,
grammar based and mutational fuzzers. Grammar based fuzzers, described in the
work done by P. Godefroid et al. [15], such as SPIKE and PEACH, construct in-
puts according to some user provided format specification, which imposes significant
manual effort to create but allows for better coverage. It, however, fails to cover
applications without known grammar. Mutational fuzzers, such as AFL, honggfuzz
and zzuff, on the other hand, require no user effort to create any test cases since they
“mutate” some initial program inputs. However, they usually require more time to
have the same coverage as generational fuzzers.

Blackbox Fuzzers: These were the original fuzzers. They treat the program as
a blackbox, i.e., without having any knowledge about the source code of the program.

Chapter 2. Context and Related Work 16

Even without having prior knowledge, they have to generate an instrumental amount
of random test cases in a very short amount of time to perform the fuzzing task.
However, even if they run extremely quickly, they can take an extremely long time
to find deeply nested bugs due to the random nature of the input generation. In
other words, blackbox fuzzing while still being extremely simple to the tester has
the greatest ability to generate the largest amount of tests, but only provides limited
coverage and so the testing can be very inefficient.

In the work done by M. Woo [35] it is developed an analytical framework using
a mathematical model of blackbox mutational fuzzing. They model the repeated
fuzzing of a configuration as a bug arrival process, modelling it as a weighted variant
of the Coupon Collector’s Problem, where each coupon type has its own fixed but
initially unknown arrival probability. The Coupon Collector’s Problem concerns a
consumer who obtains one coupon with each purchase of a box of breakfast cereal.
Suppose there are a variety of different coupon types in circulation, one basic ques-
tion about the problem is what the expected number of purchases is required before
the consumer amasses a number of unique coupons. In this variation, they model
the coupons as the bugs and give them a weight which represents the chance of
encountering those bugs, initially unknown. They develop FuzzSim, a replay-based
fuzz simulation system, in order to model and evaluate online algorithms using pre-
recorded data.

Whitebox Fuzzers: This type of fuzzers fix many of the faults blackbox fuzzers
have, since this sort of fuzzers miss bugs that depend on specific triggers values.
Starting from a well-formed input, whitebox fuzzing consists of symbolically execut-
ing the SUT dynamically, gathering constraints on inputs from conditional branches
encountered along the execution.

As an example, the whitebox developed by P. Godefroid, SAGE [16], is a white-
box fuzzer for Windows OS applications, which, starting with a fixed input, symbol-
ically executes the program gathering input constraints from conditional statements
encountered along the way. The collected constraints are then negated and solved
with a constraint solver, yielding new inputs that will go on to exercise different
execution paths that were previously protected by those constraints. One key in-
novation behind SAGE is the algorithm called generational search for dynamic test
generation, which is designed to partly explore the state spaces of large applications
to avoid path explosion, since systematically executing all feasible program paths
does not scale on large programs. The search algorithm also maximizes the number
of new tests generated from each symbolic execution. The key innovation behind
the algorithm, however, is the way the children test cases are used. Given a set of
constrains collected during the execution of an input with each of them correspond-
ing to a conditional statement. When the solution to the new path constraint is

Chapter 2. Context and Related Work 17

used to update the old input, all test cases that were not used are preserved, and
the ones that did are updated. From the experimental results, which were of limited
size, they found several bugs that were missed by traditional blackbox fuzzers. They
also noticed that symbolic execution is slower than testing or tracing a program.

In E. Bounimova et al. [8] it is shown the results of the whitebox fuzzer, SAGE
[16]. In the paper, they describe the challenges with running the fuzzer in production
as well as showing data on the performance of constraint solving and dynamic test
generation. They claim that since 2017 SAGE has found hundreds of previously-
unknown vulnerabilities. Notably, it was used to find many bugs in the development
of Windows 7. They faced production challenges such as in a multi-week whitebox
fuzzing that had to consume hundreds of gigabytes of disk, where each task in the
SAGE pipeline increased the probability of something to go wrong.

Greybox Fuzzers: uses only lightweight instrumentation to glean on the pro-
gram structure without requiring any previous analysis. This may cause a significant
performance overhead but increases the code coverage as a result. In practice, grey-
box fuzzing may be more efficient than whitebox fuzzing with more information
about the internal structure of a program and it may also be more effective than
blackbox fuzzing.

H. Chen et al. [11] describes a directed greybox fuzzer, Hawkeye, that combines
static analysis and dynamic fuzzing. They developed this fuzzer with four main
properties in mind. The directed greybox fuzzer (DGF) should have a well-defined
and developed distance-based mechanism to guide the fuzzing while still consider-
ing all traces to the targets. This is done since there might still exist several traces
towards the target that have yet to be explored. So, the guiding mechanism must
find all the traces, or paths, that can lead to the target. Also, the DFG should strike
a balance between overheads and utility of static analysis. The fuzzer should also
schedule the testing inputs to reach the target site rapidly and it should adopt an
adaptive mutation strategy when the test cases cover the different program states.
When evaluating the tool, they strived to answer four questions: (1) check if static
analysis beforehand is worth it, the experimental results shown that they outper-
formed the vanilla AFL most of the times and the cost of the static analysis was
deemed worth it; (2) If Hawkeye could detect crashes more rapidly and more effec-
tive than any other tools; (3) are the dynamic strategies in Hawkeye effective; (4)
how effective the tools capacity for reaching specific target sites.

Another study of the combination of static and dynamic fuzzing was done by I.
Haller [18], in which the authors implement an evolutionary fuzzer called VUzzer.
The fuzzer implements a feedback loop to help generate new inputs from the old
ones, with its two main components being a static analyser and a dynamic fuzzing
loop. In the beginning of the fuzzing process, VUzzer use lightweight static analysis

Chapter 2. Context and Related Work 18

to compute the weights for each basic block of the application binary and then run
the program on some inputs to determine the initial set of control-flow and data-flow
features. In the evaluation phase, they compared it with AFLPIN [33], which has the
same engine as AFL, and determined that VUzzer was able to find more bugs with a
lot fewer inputs, concluding that inferring input properties by analysing application
behaviour is a viable and scalable strategy to improve fuzzing performance.

S. Karamcheti et al. [20] show that sampling distribution over mutational op-
erators can improve the performance of AFL. They also introduce Thompson Sam-
pling, which is a bandit-based optimization to improve the mutator distribution
adaptively. They focus on improving greybox fuzzing by studying the selection of
the most promising parent test case to mutate. They argue that the best way to
optimize fuzzing is to prioritize mutators operators that have been successful in
the past. Then they demonstrate that tuning the mutation operator generates new
sets of test cases that significantly improve the code coverage and also finds more
crashes. In the evaluation, there was a comparison of Thompson Sampling against
some fuzzers, such as AFL, for relative coverage in a testing period of 24 hours. They
show that Thompson Sampling is extremely effective at the beginning of fuzzing and
that there are significant gains to be made by improving existing fuzzing tools with
data-driven machine learning techniques. They conclude that while its approach
did not gain optimal results in all experiments, it worked in a vast majority of the
real-world applications they tested it on.

LibFuzzer is a coverage-guided, evolutionary fuzzing engine to test C/C++ soft-
ware [4]. LibFuzzer works by implementing a fuzz anchor. An anchor is a program
written in C or C++ that allows the tester to specify a fuzzing entry point. This en-
try point is a function that accepts data and the size of the data. With this function,
the tester can direct the fuzzer to whatever function it is desired, where it will then
execute the fuzz target. This type of fuzzers require some sample inputs for the SUT.
This corpus should optimally be packed with a variety of valid and invalid inputs.
LibFuzzer generates random mutations based around the input given originally. If
the fuzzer discovers new and interesting test cases, which is defined as any test case
that covers new code paths, the test case is then saved for later usage or mutation.
Another such fuzzer is honggfuzz [2], a security oriented, feedback-driven, evolution-
ary fuzzer. Honggfuzz has been used to find some interesting security problems in
some major software packages [3].

Alexandre et al. [27] presented a way to optimize test case selection in order
to increase coverage of the software under test. They show that current test input
selection strategies found in Peach do not have better results than randomly picking
the test cases. They also show ways to improve the test input selection strategies
to maximize the total number of vulnerabilities found during fuzzing. Also, it can

Chapter 2. Context and Related Work 19

be done in a manual or automated way while making no assumption of the type of
fuzzer. This means it works for greybox fuzzers and whitebox fuzzers alike. The
main objective of this study is to test different program input selection techniques
and analyse them in order to conclude which one is best in what scenarios. The
results of the experiments conducted the paper showed an increase in vulnerability
detected when compared to Peach and a reduced testing set size. Allowing for more
bugs to be found with fewer testing cases.

In the work by G. Grieco et al. [17], it is predicted if a test case is likely to
discover software vulnerabilities by using lightweight static and dynamic features
implemented using machine learning techniques. They do this mostly by analysing
binary programs according to some procedure to perform the vulnerability discovery.
They implemented a tool called VDiscover that uses two components: a fuzzer to
mutate the original test case and a dynamic detection module to identify memory
corruptions. Their proposed methodology works in two phases. A training phase,
where they train the tool, and the recall phase where a trained classifier is used
to predict if new test cases will find bugs or not, which can be later prioritized
for further analysis. The results of the evaluation show that by analysing a small
percentage of the test set pointed as potentially interesting, VDiscover can predict
with reasonable accuracy which programs contain a vulnerability, which results in
a significant increase in the fuzzing speed.

G. Klees et al. propose [21] some guidelines to better test and evaluate fuzzing
algorithms. Of the 32 papers examined, they found that most experimental evalua-
tions left a lot to be desired. They claim that for a new fuzzing algorithm it must
be empirically demonstrated that it provides an advantage over another baseline
fuzzer using a sample of target programs, that being the benchmark suite. An eval-
uation should also take into account the fundamentally random nature of fuzzing,
since each fuzzer execution on the same program might result in different results.
As such, an evaluation should measure sufficiently many trials to sample the overall
distribution that represents the fuzzers performance, using a statistical test to deter-
mine if the new fuzzing algorithm is an improvement against the baseline, assuring
that the improvement is real rather than being due to chance. When running the
benchmark suite a performance metric is required to measure the fuzzing algorithm
and suggest that reliance on heuristics for evaluating performance is not optimal.
A better approach would be to measure against ground truth directly by assessing
fuzzers against known bugs. After this, a meaningful set of program input files is
required to start fuzzing with, and a timeout of a considerable long duration (>=
24 hours vs 5 hours).

Chapter 2. Context and Related Work 20

2.3.1 Fuzzer Running Example

This section presents a simple example of how each basic fuzzer type tests a piece
of code.

Consider the program shown below. The program takes as input 5 bytes and will
trigger an error if the inputs are equivalent to ”bug!!”. This bug is only executed if
the value of the variable count is equal to 5 at the end of the function.

void bugFinder (char input [5]) {
i n t count =0;
i f (input [0] == ’b ’) count++;
i f (input [1] == ’u ’) count++;
i f (input [2] == ’ g ’) count++;
i f (input [3] == ’ ! ’) count++;
i f (input [4] == ’ ! ’) count++;
i f (count == 5) abort () ; // e r r o r

}

Blackbox Fuzzing

Any blackbox fuzzer would behave in a similar fashion. Starting with a random
input, it would randomly generate hundreds of thousands of inputs until it triggered
the bug. As it is understandable, running this program with random inputs hoping
that the exact five-byte value is selected to trigger the bug is unlikely to be fast or
efficient. There are 28∗5 possible input values that could have to be tested, with a
probability of 1/240 of actually triggering the bug.

Whitebox Fuzzing

Using as an example the previously talked whitebox fuzzer SAGE [16], we are going
to demonstrate how it would look for the previously identified bug. Initially, SAGE
would start with a random value perhaps given by the initial test case, lets say
the initial input is ”good!”. The symbolic execution would collect the following
predicates: input[0] 6=′ b′; input[1] 6=′ u′; input[2] 6=′ g′; input[3] 6=′!′; input[4] =′!′.
To force the program through a different equivalence class, SAGE would compute
a different test case for a different path constraint obtained by negating the fourth
constraint. Running the program with the new input ”goo!!”, would force a different
path to be followed that is needed to execute the error. This process would be
repeated making it much faster to activate the bug when compared to blackbox
fuzzing.

Chapter 2. Context and Related Work 21

Greybox Fuzzing

As previously stated, greybox fuzzing is a mix between both of the previously de-
scribed fuzzers. We will be using the AFL fuzzer, presented in more detail in the
next section, as an example. Initially, AFL applies instrumentation to be able to
identify when a program executes new branches. AFL starts with an input derived
from a test case given by the user and then proceeds to mutate it as it hits new
branches. This is not as fast as a whitebox fuzzer, but requires less overhead as well,
possibly being faster since whitebox fuzzers do not escalate well.

2.4 AFL

AFL, or American Fuzzy Lop, is one of the most popular and used greybox fuzzers. A
fuzzer works by testing the software target by barraging it with test cases generated
automatically through mutations. AFL can execute hundreds to thousands of inputs
per second, covering a large amount of the program attack surface in a relatively
short amount of time. In a broad sense, AFL selects a prior promising parent test
case to sample, mutates its contents, and executes the program with the resulting
child input.

AFL verifies the behaviour of the target software against incorrect data inputs.
The typical bugs that can be found are:

• Faulty Memory Management

• Assertion Violations

• Incorrect Null Handling

• Bad Exception Handling

• Deadlocks

• Infinite Loops

• Undefined Behaviours

Problems like deadlocks and infinite loops can be detected by setting timeouts
for the execution of the program. To detect memory issues, additional software
like AddressSanitizer [29] or UndefinedBehaviorSanitizer [6] can be used to discover
erroneous patterns of execution.

Chapter 2. Context and Related Work 22

2.4.1 AFL description

A key innovation behind AFL is the use of coverage information obtained during the
execution of the previously generated testing inputs. It is able to do this thanks to
the injection of lightweight instrumentation in the SUT during compilation. More
specifically, after the assembling stage has finished but before the linking stage
has started, a few instructions are added to each basic block to track the path
an input takes while being processed by the SUT. This is done because relying
solely on random mutations decreases the chances to reach certain previously unseen
parts of the program. The instrumentation presents a simple way, with a modest
performance impact, to identify new paths in the program and to have the ability
to find the edges have been passed on the program.

The instrumentation is injected by a companion tool that works as a drop-in
replacement for compilers, which slightly modifies the gcc and clang behaviour.

The instrumentalization code can be divided into two sections, the Trampoline
code and the Main Payload code.

Trampoline: This specific assembly code is added at the beginning of each basic
block in the target software, with the objective of being run when the basic block is
executed. The goal is to give to every basic block a randomly generated unique 8
byte identifier. Compilers usually decompose programs into their basic blocks as a
first step in the analysis process. A basic block is a straight-line code sequence with
no branches in except to the entry and the exit. Algorithm 1 demonstrates how the
trampoline code functions.

Algorithm 1: Trampoline
Result: AFL trampoline Instrumentation

1 set RANDOM ID OF BLOCK
2 call MAIN PAYLOAD;

The value RANDOM ID OF BLOCK is generated randomly and is supposed to
be unique in a probabilistic manner, meaning that two blocks may share an identifier.

AFL uses a shared memory shared mem, with a default size of 64 kB, to track the
application edge coverage. Every byte set in the output map can be thought of as
a hit for a particular (branch src, branch dst) tuple in the instrumented code. The
random identifiers of the basic blocks are employed to compute the key associated
to the edge in the bitmap. Given an edge from A to B, AFL computes the key as
A⊕ (B � 1). In practise, collisions happen sporadically, with one study conducted
by S. Gan et al. [14] finding that the impact of the hash collision can be significant
with extremely large programs. This causes errors in the bitmap processing that
leads to a loss of accuracy of edge coverage, meaning that AFL will think it has
explored an edge, while in reality it has not.

Main Payload: Enables the increment of any edge hit in the shared mem

Chapter 2. Context and Related Work 23

bitmap. It also performs the necessary setup that is required to run the program
with the instrumentalization and starts and maintains the forkserver process.

The first time the program under test executes, it will not have initialized the
shared memory variable or the global area pointer, which is used to store the address
of the shared memory region. Hence, AFL needs to initialize global area pointer by
calling AFL SETUP. Then, it runs AFL SETUP FIRST that simply attaches the
shared memory segment to the variable (through shmat).

Algorithm 2: Main Payload
Result: AFL Main Payload

1 cur location = RANDOM ID OF BLOCK
2 if first time in block then
3 call AFL SETUP
4 if first time overall then
5 call AFL SETUP FIRST
6 call AFL FORKSERVER
7 call AFL STORE
8 return

The main function described in Algorithm 2 is used as the logic for the instru-
mentalization. Every time a basic block is run in the program under test, it will call
the Main Payload. From there, the execution will depend if it is the first time this
block is reached or if it is the first time any block is executed overall.

Algorithm 3: Main Payload Setup and Storage
Result: AFL Main Payload data initialized and Edge stored

1 Procedure AFL SETUP
2 if ¬ have global area pointer then
3 global area pointer = get global area pointer()
4 Procedure AFL SETUP FIRST
5 save everything()
6 shared mem = shmat(FLAGS, global area pointer, AFL SHM ENV)
7 Procedure AFL STORE
8 shared mem[cur locˆ prev loc] ++
9 prev location = cur location >> 1

In Algorithm 3 we simply take care of the necessary arrangements required to
work with the instrumentalization and the process that is used to actually mark an

Chapter 2. Context and Related Work 24

edge as hit.

Algorithm 4: AFL Main Payload Forkserver
Result: AFL Forkserver activation and block passed writing

1 write(OK) // tell parent we are ok
2 read(GO) // wait for command from parent to go
3 fork()
4 if child pid then
5 return
6 if parent pid then
7 write(child pid) // write the child pid to the parent
8 wait status = waitpid() // Wait for the child to finish
9 write(wait status) // send parent result

(finished/crashed/timed out)
10 jmp AFL FORKSERVER // loop back and wait for ’go’

The most common way to fuzz programs is to just keep executing the SUT over
and over with different random inputs. This approach has its problems as most of
the time might be spent waiting for program cloning (execve), the linker and all the
library initialization routines, to do their jobs.

That is where the forkserver comes up, as described in Algorithm 4. It lets execve
happen, get past the linker and then stop early in the actual program, before it gets
to process any inputs generated by the fuzzer. Once the SUT reaches the designated
point in the program, it simply waits for commands from the fuzzer. When it receives
a ”go” message, then it calls the function fork to create an identical clone of the
already-loaded program. The injected code returns control to the original binary,
letting it process the fuzzer-supplied input data and then relay the PID of the child
process to the fuzzer, In the end, it goes back to the command-wait loop.

The parent process then simply calls AFL STORE that, as previously described,
simply hashes the edge and adds it to the bitmap as seen.

In summary, there will at the most be three different processes at work at the
same time: one process will be the fuzzer, in this case AFL; the other will be the
parent process running the forkserver that waits for commands from the fuzzer and
for the child pid to finish; and the last will be the process that runs the program
with the new input.

The fuzzer process will simply tell the forkserver to start the fuzzing process and

Chapter 2. Context and Related Work 25

Figure 2.1: Forkserver Sequence in AFL

add the input to be fuzzed.
Algorithm 5: AFL Fuzzer process

Result: AFL Fuzzer running Forkserver returns result of run
1 write(input, file to fuzz) // Write the input to the file to fuzz
2 write(’go’) // Start the forkserver
3 read(child pid) // Receive the pid of the child pid
4 read(status) // Receive child pid status (Finished/Crashed/Timed

Out)
5 return status

Then we have the process that simply waits for the go message from the fuzzer.
Then, the child pid simply runs the rest of the program, marking in the shared

mem bitmap every edge that it passes by and then finishes, either by crashing, timing
out or successfully finishing the program. More simply, Figure 2.1 demonstrates how
the above works.

Fuzzing step
Now that the instrumentalization is done. We proceed to actually fuzzing the

program.
The fuzzing phase works by passing through every element in the Queue, which

is where all interesting test cases are stored. It works in a FIFO manner (First in
First Out). The test cases are mutated in order to find new interesting test cases.
The mutations are executed to check if they are interesting, i.e., if they trigger new
coverage. If the test case or any of its mutations cause a crash of the program,
then the test case is added to the crashQueue. This queue keeps all the inputs that

Chapter 2. Context and Related Work 26

crashed the program. If the program times out, then the test case is added to the
hangQueue.

AFL maintains a list of the top entries in the Queue. When it finds a new path,
it checks to see if the path appears to be more favourable than any of the existing
ones. With the purpose of having a minimal set of paths that trigger all the bits
seen in the bitmap so far. Then it prioritises fuzzing them at the expense of the rest
of the entries. Hence for every byte of the bitmap AFL maintains a top-rated entry.
A test case is added to the top-rated entries if the top-rated entries are not full yet,
or if the contender is able to reach a certain byte faster.

Algorithm 6: AFL Main Algorithm
Result: Fuzz the Target

1 Function AFL(Prog, Seeds)
2 testInitSeeds(Prog, Seeds)
3 Queue = Seeds
4 while True do
5 for testCase in Queue do
6 if ¬ isWorthFuzzing(testCase) then
7 continue
8 score = PerformanceScore(Prog)

// Deterministic Phase
9 mutateBitFlip(Prog, testCase)

10 mutateArith(Prog, testCase)
11 mutateInteresting(Prog, testCase)

// Havoc Phase
12 mutateHavoc(Prog, testCase, score)
13 Function PerformanceScore(testCase)
14 score = 0
15 score += testCase.execSpeed * 0.1 > avg exec ? 10 : 150
16 score *= testCase.bitmap size * 0.3 > avg bitmap size ? 3 : 0.75
17 score *= testCase.handicap >= 4 ? 4 : 2 // how late in the fuzzing

it was found
18 score *= testCase.depth <= 3 ? 2 : 5
19 return score
20 Function runAndMaybeSave(Prog, input)
21 runResults = runProg(Prog, input)
22 if newCoverage(runResults) then
23 addToQueue(input)
24 if isCrash(runResults) then
25 addToCrashReport(input)
26 else if isTimeout(runResults) then
27 addToHangs(input)

AFL logic can be described with the function help AFL, presented in Algorithm
6 The main functions included in the algorithm are described below:

Chapter 2. Context and Related Work 27

• testInitSeeds: in order to test the functionalities of the SUT, and therefore
test different code paths, the initial test cases (which are called seeds) must
not crash or timeout. In other words, they should be valid inputs to the SUT
so that further test cases can be generated from them.

• isWorthFuzzing: determines if the test case is worth fuzzing. A test case is
worth fuzzing if it has not been fuzzed yet and it was deemed as favoured. If
it has been fuzzed, it will only be fuzzed if no other favoured have been found.
A test case is marked as favoured if it is among the top-rated test cases in the
Queue, with the rating coming from the function PerformanceScore.

• PerformanceScore: checks the execution results and details. The number of
mutation inputs to be produced is determined by the performance score given.
The score returned is based on a variety of factors, such as the execution speed,
bitmap size and handicap of the seed. The handicap is proportional to how
late the seed appears in the fuzzing process. It defines an initial score based on
the execution time, then the score increases significantly based on the size of
the found bitmap, if it is bigger than the average bitmap found in the software
under test it results in a bigger score. AFL gives higher importance to test
cases that cause the execution of deeper paths as they have a higher chance
to reveal information about the program that normally is not discovered by
traditional fuzzers.

• runAndMaybeSave: runs the program with the test case and checks if it has
new coverage. If it does, the test case is added to the Queue. After this, if the
test case causes a crash to the program it adds it to the CrashQueue, and if
it causes a hang or a timeout, it adds it to the HangQueue.

• addToQueue: This function simply appends to the queue the new test case.

• newCoverage: Compares the shared mem bitmap that results from executing
the SUT with a bitmap that aggregates information about all previous edges
observed in the past, and if they differ it returns true, otherwise returns false.

• addToCrashReport: Adds the test case to the crashQueue and adds informa-
tion about the crash. More specifically when in the mutation stage was it
found.

• runProg: Runs the program and returns the result of the execution. If the
program crashes or hangs it returns a specific error code, if it finishes normally
it returns no fault.

Chapter 2. Context and Related Work 28

The mutation functions present in Algorithm 6 are described in Algorithm 7.
Algorithm 7: AFL Deterministic Mutation Algorithm

Result: Mutate the seeds deterministically and run the mutations
1 Function mutateBitFlip(Prog, seed)
2 for num bits in [1,2,4] do
3 for i in 0 to LENGTH(seed) do
4 for t in num bits do
5 flip bit(seed, i + t)
6 runAndMaybeSave(Prog, seed)
7 for t in num bits do
8 flip bit(seed, i + t) // set the bits back to normal
9 Function mutateArith(Prog, seed)

10 arith val[] = ARITH MAX 8bits, ARITH MAX 16bits,
ARITH MAX 32bits

11 for index in 0 to LENGTH(arith val) do
12 for arith max in arith val[index] do
13 for i in 1 to arith max do
14 seed += i
15 runAndMaybeSave(Prog, seed)
16 seed -= i * 2
17 runAndMaybeSave(Prog, seed)
18 Function mutateInteresting(Prog, seed)
19 interesting val[] = interesting 8bits vals, interesting 16bits vals,

interesting 32bits vals
20 for index in 0 to LENGTH(interesting val) do
21 for i in 0 to LENGTH(seed) do
22 for interesting in interesting val[index] do
23 orig = seed[i]
24 seed[i] = interesting[i]
25 runAndMaybeSave(Prog, seed)
26 seed[i] = orig

The deterministic mutation phase consists of three different sub-phases executed
one after the other at the bit level.

• Bit flips: The first and simplest mutation strategy is to perform sequentially
ordered bit flips, switching a bit from 1 to 0 or the other way around. It does
this to every bit in the test case. Then it then begins flipping bits in pairs of
two adjacent bits, then it does this operation with four adjacent bits.

• Arithmetic operations: In order to trigger more complex conditions, AFL at-
tempts to increment or decrement existing integer values in the test case. It
starts by summing and subtracting 8-bit values. Once it has finished this part,
it then proceeds to add and subtract 16-bit values, and then 32-bit values op-
erations are performed in both endian representations.

Chapter 2. Context and Related Work 29

• interesting values: The last deterministic stage relies on a hard-coded set of
integers chosen for their elevated likelihood of triggering edge conditions in
normal code (e.g., -1, 256, 1024, MAX INT - 1, MAX INT). The fuzzer uses a
step-over of one byte to sequentially overwrite existing data in the test cases
with one of the approximately two dozen ”interesting” values (the writes are
8-, 16-, and 32-bit wide in both endian representations).

The havoc mutation phase has two sub-phases:

• Havoc: Is a cycle with stacked random tweaks that can vary from only modi-
fying one byte to one double word. The random mutations attempted in this
stage include bit flips, overwrites with random and ”interesting” integers, block
deletion, block duplication and an assortment of dictionary-related operations.

• Splicing: This is a last-resort strategy that only occurs if all of the previously
described deterministic mutation strategies and the previous Havoc stage have
not wielded any interesting, or favourable, results. It involves picking two
distinct test cases from the queue that differ in at least two locations and
splicing them at the random location.

2.4.2 AFL issues

Since AFL uses a simple hash of the edge as a key to the bitmap, there is a risk of
collisions. This would mean that AFL would not be able to distinguish between two
edges with the same hash, causing a coverage inaccuracy. S. Gan et al. [14] studies
how much of a negative impact the hash collision issue has in the coverage of a
program. They also propose an algorithm to resolve the hash problem and proposed
new seed selection policies. It is observed that the impact of the hash collision in
an application with 260K edges occurs over 75% of times. They conclude that the
reason for this is the size of the bitmap and the algorithm used for hashing, since in
an 64KB bitmap it is only possible to save information about a maximum of 64K
edges.

Coverage inaccuracies can blur fuzzers ability to find bugs, causing certain paths
to go undiscovered by the fuzzer, making the fuzzer explore other paths that might
not contain vulnerabilities. There are three types of fuzzer granularity, block cover-
age, edge coverage and path coverage.

Chapter 3

PandoraFuzzer

This chapter describes in detail the solution developed as well as the logic behind
each and every one of its components. Section 3.1 explains the problem the thesis
is attempting to solve. The main emphasis of this section is to detail the reasoning
behind the development of the tool and the issues found.

The next section, 3.2, goes into detail about the alterations that were made to
AFL, mainly on the logical part of the architecture as well as alternatives that were
considered and eventually dismissed. Section 3.3 provides the general architecture
of the solution, explaining key module interactions, and presents the changes that
were made to the original fuzzer, AFL.

Finally, Section 3.4, describes the modules, showing how they relate to the pre-
viously identified issues.

3.1 Tool Reasoning and Issues Found

During the creation of the tool, several problems had to be solved in order to imple-
ment the correct functionality. All the problems enumerated below occurred with
the intent to build a tool that learns how to best test a given variant of a program
and also focuses the fuzzing efforts on the patch fixes. This must be achieved while
still fuzzing the original program for any vulnerabilities that might have yet to be
detected and might have made it to the patched application.

1. Shared Functionality Discovery - In order to direct the SUT to targets
that have yet to be fuzzed, we need to build test cases that do not cause the
execution of functionalities that have previously been fuzzed in the program, or
that are shared between programs. Hence, there is the need to allow the fuzzer
to avoid repeating work. This gives the tool the ability to reach for example
a patch location, letting it fuzz the code modified by the patch sooner than
AFL.

31

Chapter 3. PandoraFuzzer 32

2. Multiple Program Fuzzing - One forkserver would not suffice to fuzz more
than a single program. Hence the forkserver logic itself should be changed
somewhat to allow for more than one program to be fuzzed at a time. Multiple
program fuzzing allows for testing of both SUT, not only focusing the fuzzing
efforts on the patched part of the program but also the unpatched region
that might still have to be tested. This gives the solution the ability to find
previously undiscovered vulnerabilities that perchance might have been passed
into the next version of the program.

3. Interesting Program Input Interchange - In order to avoid repeating
work while fuzzing, interesting program inputs that can trigger new behaviour
in more than one program variant have to be shared among all testing oper-
ations, so they can learn from it. The solution to this problem allows hidden
vulnerabilities or hidden paths in one variant to be discovered by the other
program variants faster than if we only had been fuzzing each SUT separately.

3.2 Main AFL Differences

Figure 3.1: Proposed fuzzing procedure architecture of the solution

The solution presented in this chapter is based on the highly effective and popu-
lar greybox fuzzer AFL. To better describe the differences between the two fuzzers,
AFL and PandoraFuzzer, this chapter describes what was changed from the origi-
nal fuzzer and why, explaining the logic behind those modifications and discussing

Chapter 3. PandoraFuzzer 33

some alternatives that were considered at the time. This is presented alongside the
reasoning behind the decision-making process when choosing between each of the
alternatives.

Figure 3.1 highlights in green the modules that were modified in the original
AFL architecture to create our own fuzzer solution.

3.2.1 Program Instrumentalization and Multiple Forkserver
Usage

One big difference that allows for better internal program structure understanding,
is the way we instrumentalize the programs to be tested. The edge identifier is no
longer randomly generated, like in AFL, but it is based on the contents of the basic
block itself. This allows the comparison of coverage information among program
variants, which solves the problem number one in Section 3.1. In PandoraFuzzer
figuring out if two program variants contain the same functionality, or basic block,
consists of simply checking if the programs share a basic block identifier. In our
solution, the identifier corresponds to a summary (i,e., a hash) of the contents of
each basic block.

The computation of the hash of a basic block consists of three steps. First,
the fuzzer captures the basic block assembly code, obtaining the operations that
influence the behaviour of the basic block and what it does. It then proceeds to
create a string with every important operation concatenated. Finally, the fuzzer
hashes the resulting string in a way that best distributes the resulting identifiers
through a map of limited size, to minimize hash collisions when the basic blocks are
fundamentally different. Otherwise, the rest of the program instrumentalization is
done much like AFL. Unlike AFL where there is a single forkserver for a program,
we have multiple forkservers for the various program variants. This is done because
each forkserver can only interact with the assembly code of a single program, making
it impossible to have one forkserver for multiple programs. Hence the only logical
choice was to have multiple forkservers, so we can have each one of them interact
with their own respective program. As a side effect, we also simplify the way we
obtain the coverage information since we do it much like AFL but maintain a variable
that tells us from which variant the information is coming from.

3.2.2 Multiple Program Transition and Usage

By definition, single program vulnerability detection tends to lack the motivation to
explore other programs besides the SUT. This is not a luxury that PandoraFuzzer
has because its focus is on fuzzing multiple program variants. This creates the
necessity to give to the fuzzing solution a mechanism where it can explore and

Chapter 3. PandoraFuzzer 34

discover interesting testing inputs for each and all of the variants.
The solution to this issue resides on simple program switching when a given time

interval has passed, allowing each variant to be fuzzed a similar amount of time, and
every so often share what was learned with past tests. This is described in more in
detail in the next section.

More than one solution was considered of course. For instance, multiple proce-
dures, each running and fuzzing a single program was tried, since this allowed for
each program to be fuzzed at the same time, theoretically allowing for faster results.
This was not the case, however, when this solution was implemented. The execu-
tion speed of each program left a lot to be desired because the more processes we
have, the slower each process will be. This coupled with the fact that the solution
would require an amount of cores that would have a linear growth as the number of
programs become larger. Hence, it was decided to employ a single process switching
among program variants while doing the fuzzing.

3.2.3 Program Input Organization using Multiple Queues

Since AFL focuses on fuzzing a single program, a lone test case queue is enough to
store both the results of previous fuzzing operations, but also to organize the internal
logic of the program. Unlike AFL, however, PandoraFuzzer might fuzz more than
a program. Hence, there is a need for multiple queue management in the fuzzing
mechanism.

Multiple queues however, is not the only solution that is available for considera-
tion. For example, an alternative solution is to resort to a single bigger queue, which
would contain more complex information to allow all inputs and crashes to reside at
a single place. This could bring the benefit of simpler programming when developing
the fuzzer. On the other hand, the solution was put aside on the premise that it
would create a much larger queue which could cause slower queue operations. For
example, information about all crashes, independently of the SUT, would go into a
single queue, making it harder to identify which crashes belong to which program
variants and delaying search operations.

3.2.4 Interesting Program Code Block Identifier Retrieval

In order to be able to identify which basic blocks the current input triggered, Pan-
doraFuzzer needs to have a way to be able to track code coverage in any given
program. As such, the implemented solution resorts much to the same approach of
AFL, with one key difference. The approach of AFL consists of writing the edge to
shared memory every time the execution passes through a basic block. This is much
the same as what was implemented in our solution. The key difference consists on

Chapter 3. PandoraFuzzer 35

the way the basic block identifiers are generated before they are written into shared
memory. We use edge coverage instead of simply tracking each basic block, allowing
the collection of more structural information about the path being tested.

One approach that was considered was to try to directly target specific areas
in the program variants by first identifying those areas and then prioritising inputs
that passed through those areas. In theory, this would allow a better search of
specific locations in the program variant. In practice, however, since we already focus
our efforts on fuzzing paths that were never seen before, this would be redundant.
Another issue of this solution was that in order to be able to discover the areas of
the code that were deemed interesting, the tool would have to use node coverage
instead of edge coverage to better identify that specific area. This would incur a
significant penalty in the way we get information about processed paths during the
execution of a given input.

3.2.5 Interesting Program Input Sharing

Simply fuzzing all program variants would yield no more interesting results than
to simply fuzz those variants independently, one at a time, for the same amount of
time. Furthermore, to avoid repeating tests that have already been done and would
bring no different result, the tool must possess a mechanism that allows it to learn
from all the previous tests that have already been done. A mechanism which will
allow it both to avoid repeating tests and also to help it uncover new paths, which
are based on the paths already uncovered while fuzzing one of the variants.

The mechanism that was developed is derived from a very simple concept. When-
ever the tool is switching between programs to fuzz, all the previously interesting
inputs uncovered for the earlier variant that was fuzzed are executed on the next
program. If the tool finds any new coverage, i.e., any basic block that was not
identified before, the fuzzer will designate it as interesting and save it for later tests.
Then, the program input is marked as already checked for that program with the
goal to avoid running the input more than once. In case the input is not considered
interesting, it is simply marked as not useful for the specific program variant.

This mechanism avoids repeating work because all the previous tests that have
been done are copied into the new testing program queue, excluding all the mutations
and exploration that derived those inputs. At the same time, it allows the tool to
learn all paths and crashes that are uncovered by the previous tests.

3.3 Architecture

This section presents the architecture that was used to develop the PandoraFuzzer,
along with the key modules and key concepts necessary for proper functioning. The

Chapter 3. PandoraFuzzer 36

architecture presented here focuses on the development of a solution that could solve
all the issues described previously. As such, it allows for a multitude of programs
to be fuzzed at the same time and, as previously described, for various crashes and
interesting inputs to be saved for each and every one of the variants in such a way to
facilitate the interaction with the user. The architecture presented here also allows
for interesting program input interchange, supporting the sharing of previous tests
that have been performed. Hence, it is expected a faster vulnerability discovery for
example if bugs were introduced in a patch correction. The solution also lets the
tool be able to function normally even when fuzzing a single application.

We divide the architecture into two different and separate parts that when com-
bined together solve the issue presented in this thesis. The architecture is divided
into the Instrumentalization Procedure Architecture, which displays the logic behind
the instrumentalization procedure that is done, and the second architecture is the
proposed Fuzzing Procedure Architecture, which fuzzes the various program variants.

The main modules included in the Fuzzing Procedure Architecture are:

1. Queue Handler - contains, manages and interacts with the queues that rep-
resent the exploration state of the program. Each program variant will be
represented by a Queue in the Queue handler. Each queue contains infor-
mation about all interesting inputs to be fuzzed in the program. The queue
handler also contains information about all top test cases for each program,
where a top test case represents the best test case that can reach a specific
basic block.

2. Next Test Case Selection - chooses the next test case to fuzz and mutate.
Our solution functions like AFL when selecting the next element. To simplify,
the tool evaluates and marks each test case as interesting or not interesting;
when selecting a test case, it simply picks the interesting test cases for fuzzing
and skips the others.

3. Is Interesting - Unlike AFL, where an interesting test case is deemed inter-
esting simply if it uncovered new edges/basic blocks in the program, the tool
considers a test case interesting if it uncovers new edge information among any
program variant. This is so we can prioritise inputs that trigger never before
seen functionalities in any variant, avoiding repeating tests that lead to the
same result.

4. Assign Score - Each test case has an associated score (or energy) that is used
to determine how much effort the fuzzing process does to find and uncover
vulnerabilities or paths in the program. This is true for both AFL and our
solution, with the score being calculated much the same way as AFL. The

Chapter 3. PandoraFuzzer 37

score takes into consideration the number of new paths uncovered, how far
along the fuzzing process the test case was found, the size of the test case and
how long the program takes to process the test case is.

5. Mutate Input - The mutation process is exactly like the one found in AFL.
It tries to find interesting test cases by both deterministic mutations, done
once for each test case, and havoc mutations, which are random mutations of
the test case itself. The number of mutations done to the test case depends
heavily on the associated score.

6. Crash Queue Handler - The tool has a crash queue for every single program
variant. This is done mostly so the data storage is more organized, and the
user has a simpler way to identify which test case inputs crash which variant.

Figure 3.2: Proposed Instrumentalization Procedure Architecture of the solution.

The modules that compose the Instrumentalization Procedure Architecture are:

1. Initialize Instrumentalization: Performs the initialization of the instru-
mentalization by means of processing the program source code. It acts as a
compiler, instrumentalizing the program while the executable is being gener-
ated. In Figure 3.2 are represented the main steps a program goes through
while being compiled by afl-gcc.

Chapter 3. PandoraFuzzer 38

2. Detect Basic Block: Goes through all basic blocks in the resulting assembly
code from the provided source code, essentially instrumentalizing all basic
blocks detected.

3. Generate Identifier of Basic Block: A major difference between AFL
and our tool is the way the basic bock identifier is generated. Basic block
Id generation in AFL consists of simply creating a random value, while the
tool developed generates the identifier by virtue of hashing the contents of the
basic block itself.

4. Modify Assembly Code: Modification of the assembly code is done much
like AFL in our tool. Simply adding the identifier to the basic blocks.

5. Forkserver: The forkserver itself, a big and important part of AFL, is left
unchanged in our tool.

3.4 Main Modules

This section, goes into more detail how the main modules work and interact with
each other.

3.4.1 Instrumentalization Procedure

As stated before, the solution is comprised of two phases, the instrumentalization
phase and the fuzzing phase.

The goal of the instrumentalization phase is to simply facilitate the fuzzing phase
by providing information about the structure of the program under test. As such,
the fuzzing phase can decide which blocks to target in the future and which blocks
are less interesting. The instrumentalization phase also allows for faster execution
rate by means of the forkserver, explained further down.

Generation Of Basic Block Identifier

Structural information of any given program is highly important both in this solution
as in AFL. The outputs of this module are used by many of the other modules from
the fuzzing process.

In AFL, the generation of the basic block identifier is extremely simple, being
generated randomly. This is enough in AFL case because it is not looking for shared
structure information across program variants.

The tool we propose is, however, looking for the ability to differentiate between
two programs functionalities. This is done at the basic block level. The generation
of the identifier is based on the contents of the basic block itself. In essence, this

Chapter 3. PandoraFuzzer 39

means that, if done correctly, all different basic blocks will have a distinct identifier
associated to them. As such, if two programs share any basic bock, they will share
the same Ids.

To be more precise, the generation of the identifier firstly divides the assembly
code of any basic block into lines. It then removes all unimportant lines from the
assembly code, such as line information or labels. Afterwards, it concatenates all
important info into a single line and proceeds to hash it. The hash is an adaptation
of the Pearson hashing to guarantee better distribution of the hash values and the
fast execution on the registers of the processor.

The implementation of the generation of the basic block identifier is described
in greater detail in Chapter 4.

Forkserver

When fuzzing any given program, the simplest way to do it is to find any given test
case that exercises the desired functionalities and then keep executing it over and
over again. This, however, is not the optimal way of fuzzing any given application,
since the tool needs to continuously repeat slow operations like the execve system
call, the linking of all libraries, and all the library initialization routines.

The forkerver is an injection of a small piece of code into the program being
tested, with the goal to let execve happen, get past the linker and stop before the
program starts processing any inputs. Once this is done, the forkserver simply waits
for a ’go’ command, calls the function fork, and then creates an identical clone of
the already-loaded program and continues processing the input.

This mechanism does not change from the one provided by AFL, except for the
support for multiple program variants.

3.4.2 Fuzzing Procedure Architecture Modules
Queue Handler

It is of the upmost importance the ability to maintain information about multiple
test cases in an efficient manner.

Each queue that the Queue Handler possesses is implemented using an hash map
data structure that allows it to verify quickly if an element is already in the queue,
to avoid repeating the work of initializing the element twice and to quickly add the
said element to the queue. The basic block identifier is used as the key element of the
hash map and the value is the number of times it was executed during the fuzzing
process. Hence, an element of the Hash Maps that as a value equal to zero represents
a basic block which may or may not be in the program itself. This basic block has
yet to be seen during the fuzzing process of the program. The stored value has an

Chapter 3. PandoraFuzzer 40

8-bit capacity which is a limitation. One issue that occurs due to this limitation is
that any basic block that is passed more than 255 times (the maximum value that
can be stored with 8 bits) simply flips around to zero, which is a miss-representation
of the value itself.

An added benefit of the implementation of multiple queues is the organisational
aspect it provides to the tool. This means, for instance, if a testing input results in
a crash for a specific program, it becomes simple to identify the other variants that
might also suffer from the same problems.

Almost all other modules mentioned in this section interact with the Queue
Handler, be it for simple queue addition when a test case is deemed interesting or
for obtaining an element of the queue for the splicing mutation phase.

Score Assignment

As mentioned before, one of the goals of our solution is to avoid repeating work
that has already been done in previous fuzzing runs. This goal can be stated as
focusing the fuzzing efforts on any previously unseen functionality or code block.
That is, any path of code blocks that is tested on the exact same circumstances only
in different programs will normally not reveal any further information from what it
would reveal from one of the other variants.

Taking this into consideration, all fuzzing efforts to understand more about the
structure of a single program can be applied on the structure of another variant, as
long as the two share some sort of functionality or code. Using this information,
each test case has a score directly related to its performance in the specific program
it was being executed on. The larger the score a test case has, the more mutation
time is given, allowing for more inputs to be generated and developed from the said
test case.

Interesting and Uninteresting Test Case Partition

All test cases, both initially given and generated during the fuzzing procedure, are
deemed either interesting or uninteresting. By default, uninteresting test cases are
only fuzzed after all interesting test cases have been processed. This is done much
like AFL with one small difference. Our tool deems a test case interesting not only
if it triggers new coverage in the program under test, but also if it uncovers new
information in the variants of the program being tested.

The selection of the next test input to fuzz is a highly important subject that
can make or break a fuzzer. If the tool followed a random selection criteria, it could
waste time with either tests that have already been performed or with tests that
are less likely to trigger new coverage. A test case is considered as more or less
likely to trigger new coverage based on the score assigned to it. Therefore, this

Chapter 3. PandoraFuzzer 41

module determines which test case should, or should not, be fuzzed next. As such,
it interacts with all the modules that have to process the test case chosen, such as
the mutation module.

Input Mutation

Input mutation is the cornerstone of AFL. This mechanism explores the paths of the
program under test trying to maximise speed. It consists of two phases, deterministic
mutation and havoc mutation, as previously described in the related work chapter.
This process remains largely unchanged in the solution presented here.

Crash Queue Handler

The Crash Queue Handler is a simple addition to manage and facilitate all crash
reproduction. It allows the fuzzer (and the user) to better know what test case
crashed which program. This manager is implemented in the tool as a simple queue
per program, to facilitate the simple addition of test cases to the queue itself.

Chapter 3. PandoraFuzzer 42

Chapter 4

PandoraFuzzer Implementation

This chapter presents the implementation of the PandoraFuzzer that supports the
approach we described in Chapter 3, as specified in Figure 3.1 and in Figure 3.2. We
start by describing the implementation of the instrumentalization phase in Section
4.1, followed by explaining the fuzzing phase in Section 4.2.

The prototype we developed is based on AFL, an open-source greybox fuzzer.
Our tool allows for the detection of the same types of vulnerabilities as AFL. Pan-
doraFuzzer was implemented mostly in C but has a single component in the instru-
mentalization phase that was implemented in assembly code. This is the code that
is injected into the programs to be tested.

Figures 4.1 presents how the instrumentalization phase operates. The fuzzing
phase is divided in two parts, the setup represented in Figure 4.6 and the main
fuzzing loop, shown in Figure 4.7. The functions presented in the figures are in
different colours depending on: i) if they were created from scratch, represented
in green; ii) if heavily modified, shown in blue; iii) not modified or only modified
slightly, if displayed in black.

4.1 Instrumentalization

This component was mostly implemented in C. The only sub-component that was
implemented in assembly is the code that is injected in the binary of the program
under test. This sub-component is inserted by gcc or clang, allowing the collecting of
coverage information and supporting the forkserver. Once we have passed through
each line of a basic block, the tool proceeds to generate the identifier of the basic
block based on the contents of all the interesting lines. This phase is executed once
for each program under test.

Figure 4.1 shows how the instrumentalization phase works, explaining each step.
The calculation of the identifier of a basic block is described in more detail in Section
4.1.1.

43

Chapter 4. PandoraFuzzer Implementation 44

Figure 4.1: Instrumentalization Sequence in PandoraFuzzer

• edit params: the goal of this function is to examine and modify the parameters
passed to the program to be tested.

• add instrumentation: processes the input program and generates the modified
file by inserting the trampoline instrumentation in all appropriate places.

• get next line: goes through every line of the resulting assembly of the program
to be instrumentalized.

• is line interesting: checks if the line is useful for the functionality of the basic
block. A line is not interesting if for example it simply adds a label. Uninter-
esting lines are not considered further for processing.

• concat basic block line: concatenates the important information contained in
the line into a single string that will be used later to generate the identifier.

• add trampoline: Starts the injection of the trampoline code into the binary of
the program under test.

• hash basic block: hashes the concatenated lines to generate the identifier of
the basic block. The function is Pearsons hashing with a 16-bit size, which is
used to guarantee the best possible distribution of the blocks identifiers, i.e.,
to generate as many as possible unique identifiers.

Chapter 4. PandoraFuzzer Implementation 45

• add trampoline code: injects the code with the previously generated basic
block identifier on the current basic block line in the program.

• add main payload: when there are no more basic blocks to consider, it adds
the main payload to create a shared memory with the fuzzer to add coverage
information by a given input.

• compile program: compiles the resulting instrumented program with either gcc
or clang, depending on the configuration chosen by the user.

4.1.1 Basic Block Identifier Generation

This section goes into more detail about the generation of the identifier, along with
an example. The identifier is created in three steps: (1) remove all unnecessary
information; (2) remove registers; (3) concatenate all remaining information for
hashing.

As was said before, a basic block is a sequence of code lines with no jumps in
between. Compilers usually decompose programs into their basic blocks as a first
step in the analysis process.

Figure 4.2: Basic block example.

Figure 4.2 shows a basic block, which will be used as an example to show the
generation of the basic block identifier.

The first step follows the idea: To avoid having an identifier that depends on
the content of a basic block that could change among program variants, we remove
all unnecessary lines that do not affect functionality. The changes applied to the
example basic block can be seen in Figure 4.3, where the labels have been eliminated.

The second step removes the registers (e.g., eax) because their contents are
volatile. Hence, they could change across program variants. The resulting basic
block can be observed in Figure 4.4.

Chapter 4. PandoraFuzzer Implementation 46

Figure 4.3: Removal of unnecessary lines of basic blocks.

Figure 4.4: Removal of the information about registers.

The third and final step concatenates all the remaining lines and hashes them
into the identifier. The final concatenated basic block to be hashed is shown in
Figure 4.5.

Figure 4.5: Concatenation of lines and generation of the identifier.

4.2 Fuzzing

After instrumentalizing the program under test, we start the fuzzing procedure.
Figure 4.6 illustrates how the PandoraFuzzer setup is done, namely the fuzzer itself,
while Figure 4.7 demonstrates the working sequence of the second half of the fuzzing
procedure. In the following we present the main functions incorporated in this
operation.

Chapter 4. PandoraFuzzer Implementation 47

Figure 4.6: Setup Sequence in PandoraFuzzer

• get prog paths: obtains the paths given as arguments for the program variants
under test. The paths are used later to execute the programs and to check if
they were instrumentalized.

• get fuzzer args: obtains the fuzzer arguments, such as the input directory and
the output directory. The input directory is used to store the user provided
input test cases and the output directory to store all output information from
the fuzzing process.

• setup signal handlers: sets up signal handlers, such as the various ways of
stopping the fuzzing procedure and dealing with timeout window resizing.

• check asan opts: checks if the current fuzzing procedure is using AddressSan-
itezer or MemorySanitizer. These programs can be used to increase the amount
of vulnerabilities found by PandoraFuzzer.

Chapter 4. PandoraFuzzer Implementation 48

Figure 4.7: Main Fuzzing Loop in PandoraFuzzer

• setup all dirs fds: prepares each program variant output directory where rele-
vant fuzzing information will be saved. It checks if the given output directory
already exists. If it does, it checks if it has considerable information about the
previous fuzzing session and stops the setup procedure. Otherwise, it creates
all directories in the output directory and adds the plot stats information.

• read testcases: reads all test cases from the given input directory, stores them
in the queue for the initial program, and then queues them for testing. This
function is only called at start-up. If no valid test cases are specified in the
input directory, the function warns the user and stops the fuzzing procedure.

• load auto: loads automatically generated extras, such as particular words that
seem interesting to be included in the test cases.

• pivot inputs: creates hard links for inputs test cases in the output directory
by passing through the given test cases and linking them.

Chapter 4. PandoraFuzzer Implementation 49

• load extras: reads extras from the extras directory and sorts them by size.
Such as a user provided dictionary.

• detect file args: checks to see if the programs receive files as command line
arguments. If they do, marks where the files are supposed to go.

• init all forkservers: starts each program forkserver as well as checks each pro-
gram binary to verify if it was instrumentalized. It validates the program
binary by executing the program once and waits for an ACK. If the confirma-
tion is not received in a given amount of time, it considers that the program
does not have instrumentalization.

• get qemu argv: rewrites the arguments for the programs under testing for
QEMU.

• perform dry run: performs a dry run on all test cases confirming that the
fuzzer is running as expected. Only done with the initial input test cases and
only once.

• cull queue: goes over the top-rated entries from the queue and then sequen-
tially grabs winners from previously-unseen bytes and marks them as favoured.
The favoured entries are given more time during all fuzzing steps.

• show init stats: displays quick statistics at the end of processing the input
directory, such as warnings if the program is slow or the test cases are too big.
It displays the average execution time of the testing inputs.

• find start position: when resuming a fuzzing session, it finds the testing input
to start from. This test case is the next input that was to be used in the
fuzzing process.

• write stats file: updates a file with statistics about the current program being
tested. The stats file contains information about the start time of the fuzzing
process, the timestamp when it was last updated, the fuzzer PID, the number
of cycles done, and the number of executions done along with the average
execution speed. It also contains information about the total number of paths
discovered, the total number of favoured paths and the max depth found in
any of those paths. The stats file also contains information about the crashes
that were discovered.

• save auto: saves automatically generated extras.

• on prog change: called when a given time as passed. It passes through each
queue element, checks if it has been fuzzed in this program, and if it has not,
checks if it generates new program coverage.

Chapter 4. PandoraFuzzer Implementation 50

• get next queue elem: returns the next queue element to test in a given pro-
gram.

• run queue elem: runs the specified queue element in the current program under
test. This function is used to run any given queue element in any given program
so it can look for new code coverage.

• save if interesting: checks to see if there is new code coverage was attained
by checking if a new edge was executed. If so, it adds the given input to the
program queue.

• show stats: called every given program execution. Shows the fuzzing infor-
mation to the user, such as for how long the program has been running and
which program is currently under test. Also gives information about the total
number of unique crashes, unique hangs and unique timeouts as well as the
time passed since they last occurred.

• is interesting: checks if the test case is deemed interesting to fuzz, such as if it
allowed the discovery of new code coverage or if there are no other interesting
test cases.

• calibrate case: this is done when processing the input directory to warn about
problematic test cases early on and when new paths are discovered to detect
variable behaviour.

• trim case: reduces the test case to the shortest possible size without influencing
the execution trace of the said test case.

• calculate score: calculates the score of a given test case. This score will influ-
ence the amount of time the test case is fuzzed.

• deterministic mutation: deterministically mutates the test case. Only done
once per test case.

• havoc mutation: randomly mutates the test case according to its score.

• sync fuzzer : when multiple fuzzing processes are interacting with each other,
this function grabs interesting test cases and shares them between the fuzzers.

Chapter 5

Evaluation of the Tool

The main measure of how good a fuzzer is when compared with another fuzzer
is the number of vulnerabilities it can detect in a given amount of time. As an
approximation of this value, we can count the number of unique crashes that are
found. We may also take into consideration the code coverage each fuzzer can achieve
as a complementary metric of the effectiveness of the generated tests.

This chapter presents the results for the evaluation process, starting with the
presentation of the test environment in Section 5.1, followed by a description of the
applications under test and the experimental results in Section 5.2 .

Our experimental tests compare the results of the PandoraFuzzer with AFL,
demonstrating the capability to detect potential bugs and the ability to avoid re-
peating work between program variants.

5.1 Testing Setup
The main objective of evaluating the tool is to test and verify the correctness of the
solution as well as the efficiency when detecting vulnerabilities in program variants.

To do this, the following questions must be answered:

1. Is the tool capable of detecting all vulnerabilities AFL is able to?

2. Is the tool able to learn from a previously tested program?

3. Is the tool at least as efficient as AFL at detecting vulnerabilities?

The PandoraFuzzer was tested and validated in a single computer provided by
the faculty. The machine had 48 CPU cores and had Ubuntu 18.04 as the operating
system.

The testing was performed on four different applications from binutils, a package
containing several utilities distributed with the Linux OS. In order to test whether an
application could learn from a previously executed testing procedure, two versions

51

Chapter 5. Evaluation of the Tool 52

of each application were used. We first began by executing PandoraFuzzer for a
single hour, fuzzing each application along with their different version. Afterwards,
each application was fuzzed for 8 hours in the same conditions. Finally, the results
were compared with AFL to be able to identify if we could find all vulnerabilities
and to determine if we are at least as effective as AFL. To obtain the most precise
values possible, metrics were used from the work of G. Klees et al. [21]. As such
each program version was run for a total amount of ten times, the results presented
here represent the average of those ten runs and the initial input was the same for
each program.

The evaluation was conducted in the following steps: (1) instrumentalizing the
four binutils programs and their versions using the process described in the Section
4.1; (2) Instrumentalizing a copy of the programs and their variants with AFL
instrumentalization; (3) running the PandoraFuzzer tool for 1 hour and then for 8
hours with a given program and their variant program; (4) running a given program
for 1 hour and then for 8 hours using AFL; then, doing the same for the variant of
the program; (5) Compare the results when AFL is run individually in both variants
and when using our tool for both programs at the same time.

5.2 Applications under test

In this section we present the applications that were tested to assess both the cor-
rectness and the efficiency of PandoraFuzzer.

5.2.1 Binutils Applications

Table 5.1 provides relevant important information about the binutil applications
under test, such as the total number of files per program and the number of paths
found during the evaluation procedure with either AFL or PandoraFuzzer. The
applications are cxxfilt, readelf, strings and size, and the two versions of binutils used
are version 2.25 and 2.26. These four applications were chosen because they have
already been employed in other fuzzing studies and because they are mainstream
applications used every day by a great number of people.

5.2.2 Vulnerability Detection

This section contains an evaluation on the efficiency of PandoraFuzzer at discovering
vulnerabilities on the binutils applications and compares it with AFL. We report
the total number of unique crashes detected for both versions of binutils as they

Chapter 5. Evaluation of the Tool 53

Binutils
Version Programs LoC Total Files Total paths

Version 2.25

cxxfilt 5994 17 2739
readelf 13275 3 644
strings 5899 16 81

size 5807 14 758

Version 2.26

cxxfilt 5816 17 2703
readelf 14315 3 281
strings 5895 16 80

size 5799 14 694

Table 5.1: Information about selected binutils applications (LoC - Lines of Code)

Testing 1 hour Testing 8 hours
Version Programs AFL Pandora Fuzzer AFL Pandora Fuzzer

Version 2.25

cxxfilt 100 123 406 505
readelf 0 0 0 0
strings 0 0 0 0

size 12 8 18 12

Version 2.26

cxxfilt 95 140 497 561
readelf 0 0 0 0
strings 0 0 0 0

size 0 0 0 0

Table 5.2: Unique crashes observed in Binutils applications.

provide an indication of potential bugs that are triggered with particular test cases.
Table 5.2 shows the results for both tools for a testing period of 1 hour and 8 hours.

Figure 5.1 and Figure 5.2 depicts the average number of crashing test cases
detected by PandoraFuzzer and AFL in Binutils 2.25 for one-hour tests and for
eight hours tests, respectively. As the figures indicate, PandoraFuzzer was able to
identify more crashing inputs than AFL.

Figure 5.1: Detections over a period of 1 hour for fuzzing tests

Chapter 5. Evaluation of the Tool 54

Figure 5.2: Detection over a period of 8 hours for fuzzing tests

The results presented in this section answer both the first and the last question
presented in Section 5.1. The first question is answered since all types of vulner-
abilities AFL found here were also found by PandoraFuzzer. The last question is
answered since PandoraFuzzer managed to, on average, detect more unique crashes
than AFL.

5.2.3 Code Coverage

To understand the difference between the code coverage achieved while fuzzing two
programs, we used the number of paths found during the execution of a given pro-
gram. Table 5.3 shows the total number of paths discovered by both tools for the
four Binutils programs. While we can see an increase in the number of paths found
by PandoraFuzzer in Binutils 2.25 that does not occur in Binutils 2.26. This is due
to the fact that PandoraFuzzer focused most of the test cases generated on the code
that was changed between versions, thus avoiding repeating the work previously
done.

Version Programs AFL PandoraFuzzer

Version 2.25

cxxfilt 5811 5962
readelf 1090 1415
strings 72 74

size 1599 1143

Version 2.26

cxxfilt 6597 5820
readelf 1090 1028
strings 75 71

size 1443 1057

Table 5.3: Maximum number of paths found in Binutils

Chapter 5. Evaluation of the Tool 55

Testing 1 hour Testing 8 hours
Version Programs AFL Pandora Fuzzer AFL Pandora Fuzzer

Version 2.25

cxxfilt 2174 1746 6157 5086
readelf 280 412 1062 1369
strings 66 47 74 68

size 694 384 1555 787

Version 2.26

cxxfilt 2503 2482 6073 5122
readelf 279 374 1068 1022
strings 71 60 76 69

size 667 397 1589 688

On Figure 5.3 we can see how PandoraFuzzer compares against AFL when find-
ing new coverage information on binutils 2.25 for one-hour tests, while Figure 5.5
demonstrates the same for binutils 2.26. The results present in Figure 5.4 and Figure
5.6 show the exact same thing for eight-hour tests. All in all, it is possible to observe
that our tool is able to increase code coverage when compared with the coverage
provided by AFL.

Figure 5.3: Coverage 1 hour testing for Binutils 2.25

To collect coverage information, we resorted to the afl-cov [5]. Afl-cov uses the
test case files produced during the fuzzing phase to generate code coverage results
for each program being tested.

Each binutils version had its four programs run once with afl-cov. The results

Chapter 5. Evaluation of the Tool 56

Figure 5.4: Coverage 8 hour testing for Binutils 2.25

Figure 5.5: Coverage 1 hour testing for Binutils 2.26

Chapter 5. Evaluation of the Tool 57

Figure 5.6: Coverage 8 hour testing for Binutils 2.26

were manually analysed, and they indicate that PandoraFuzzer focuses, around 20%
more, on the changes that appear in the code of in the program variants, with the
areas that did not change being mostly tested by the interesting inputs found in the
previous fuzzing sessions. This answers the second question presented in Section 5.1,
since the focus of the fuzzing efforts changed when subjected to previously learned
information.

Overall, on average over all four Binutils applications, PandoraFuzzer was able
to detect more unique crashes and a higher percentage of the total paths in a given
amount of time when compared with AFL.

Chapter 6

Conclusion

This thesis presents an architecture and a tool for automatic vulnerability detection,
utilizing the results of previous testing sessions in program variants to further boost
code coverage and the number of vulnerabilities detected. The tool, called Pando-
raFuzzer, only works for programs that are written in the C or C++ languages.

The solution developed was built upon AFL. So, the designed architecture works
as a mechanism able to identify shared functionalities among program variants,
alongside with the capability to learn from previous fuzzing sessions, and finally
introducing the ability to avoid repeating tests that would only trigger functionalities
that had already been tested to a certain degree of confidence in a previous fuzzing
session.

The current implementation of the solution utilizes an instrumentalization mech-
anism that differs from AFL to be able to identify shared functionalities between
program variants. Using this we can better avoid repeating tests. The tool also uti-
lizes a learning mechanism so that every test case that has been previously generated
while testing a variation of the program will no longer be executed.

The experimental results show that PandoraFuzzer is able to detect more unique
crashes and a higher percentage of total paths in a given amount of time when
compared with AFL.

6.1 Future Work
Further experimentation and research is required to guarantee a certain level of per-
formance in day to day application with a wider variety of functionalities between
program variants. The instrumentalization proposed in this solution should also be
researched and tested further to ensure a higher confidence on the correct function-
ality of this mechanism. Also, different ways to instrumentalize the programs under
test should be considered, such as to take advantage of fuzzing sessions that have
already been done.

59

Chapter 6. Conclusion 60

Bibliography

[1] Common Weakness Enumeration. https://cwe.mitre.org/data/index.htm/.
[Accessed in 30/05/19].

[2] honggfuzz. https://github.com/google/honggfuzz/. 2018, [Accessed in
21/02/19].

[3] honggfuzz Trophies. http://honggfuzz.com/. 2018, [Accessed in 22/02/19].

[4] libfuzzer. https://llvm.org/docs/LibFuzzer.html/. 2018, [Accessed in
20/04/19].

[5] afl-cov, 2018. https://github.com/mrash/afl-cov.[Accessed in 01/02/19].

[6] Undefined Behavior Sanitizer, 2018. https://developer.apple.com/ documenta-
tion/code diagnostics/undefined behavior sanitizer.[Accessed in 01/02/19].

[7] M. Böhme, V. Pham, M. Nguyen, and A. Roychoudhury. Directed Greybox
Fuzzing. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 2329–2344, New York, NY, USA,
2017. ACM.

[8] E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of constraints:
Whitebox fuzz testing in production. In Proceedings of the International Con-
ference on Software Engineering (ICSE), pages 122–131, May 2013.

[9] M. Böhme, V. Pham, and A. Roychoudhury. Coverage-based Greybox Fuzzing
As Markov Chain. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 1032–1043, New York, NY, USA,
2016. ACM.

[10] J. Cai, P. Zou, J. Ma, and J. He. A Taint Based Smart fuzzing Approach for
Integer Overflow Vulnerability Detection. In Proceedings of the IEEE Interna-
tional Conference on Software Testing, Verification and Validation, 2014.

61

Bibliography 62

[11] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu. Hawkeye: Towards
a Desired Directed Grey-box Fuzzer. In Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’18, pages 2095–2108,
New York, NY, USA, 2018. ACM.

[12] P. Chen and H. Chen. Angora: Efficient Fuzzing by Principled Search. volume
abs/1803.01307, pages 711–725, 2018.

[13] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson,
F. Ulrich, and R. Whelan. LAVA: Large-Scale Automated Vulnerability Ad-
dition. In Proceedings of the IEEE Symposium on Security and Privacy (SP),
pages 110–121, May 2016.

[14] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. CollAfl: Path
Sensitive Fuzzing. In Proceedings of the IEEE Symposium on Security and
Privacy (SP), volume 00, pages 660–677, 2018.

[15] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based Whitebox Fuzzing.
In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, pages 206–215, New York, NY, USA,
2008. ACM.

[16] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox Fuzzing for
Security Testing. Queue, 10(1):20:20–20:27, January 2012.

[17] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier. Toward
Large-Scale Vulnerability Discovery Using Machine Learning. In Proceedings
of the ACM Conference on Data and Application Security and Privacy, CO-
DASPY ’16, pages 85–96, New York, NY, USA, 2016. ACM.

[18] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing for Over-
flows: A Guided Fuzzer to Find Buffer Boundary Violations. In Proceedings of
the USENIX Security Symposium (USENIX Security 13), pages 49–64, Wash-
ington, D.C., 2013. USENIX.

[19] X. Jia, C. Zhang, P. Su, Y. Yang, H. Huang, and D. Feng. Towards Efficient
Heap Overflow Discovery. In Proceedings of the USENIX Security Symposium
(USENIX Security 17), pages 989–1006, Vancouver, BC, 2017. USENIX Asso-
ciation.

[20] S. Karamcheti, G. Mann, and D. Rosenberg. Adaptive Grey-Box Fuzz-Testing
with Thompson Sampling. In Proceedings of the ACM Workshop on Artificial
Intelligence and Security, AISec ’18, pages 37–47, New York, NY, USA, 2018.
ACM.

Bibliography 63

[21] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating Fuzz Testing.
In Proceedings of the ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2123–2138, October 2018.

[22] C. Lemieux and K. Sen. FairFuzz: Targeting Rare Branches to Rapidly Increase
Greybox Fuzz testing coverage. CoRR, abs/1709.07101, 2017.

[23] M. Muench, J. Stijohann, F. Karglz, A. Francillon, and D. Balzarotti. What
you corrupt is not what you crash: Challenges in fuzzing embedded devices. In
Proceedings of the Network and Distributed Systems Security Symposium, pages
18-21 February 2018.

[24] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dy-
namic Binary Instrumentation. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 89–100,
June 2007.

[25] P. Oehlert. Violating assumptions with fuzzing. In IEEE Security and Privacy,
volume 3, Number 2, pages 58–62, March 2005.

[26] H. Peng, Y. Shoshitaishvili, and M. Payer. T-Fuzz: Fuzzing by Program Trans-
formation. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 697–710, May 2018.

[27] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley. Optimizing Seed Selection for Fuzzing. In In Proceedings of the
USENIX Security Symposium, pages 861–875, August 2014.

[28] SANS, CWE/SANS TOP 25 Most Dangerous Software Errors, June 2011.
http://www.sans.org top25-software-errors/. [Accessed in 30/05/19].

[29] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer:
A Fast Address Sanity Checker. In Proceedings of the USENIX Annual Tech-
nical Conference, pages 309–318, June 2012.

[30] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. SOK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 138–157, May 2016.

[31] S. Sparks, S. Embleton, R. Cunningham, and C. Zou. Automated Vulnera-
bility Analysis: Leveraging Control Flow for Evolutionary Input Crafting. In
Proceedings of the Annual Computer Security Applications Conference, pages
477–486, Dec 2007.

Bibliography 64

[32] A. Takanen. Fuzzing for Software Security Testing and Quality Assurance.
Technical report, June 2008.

[33] P. Thompson. Aflpin. https://github.com/mothran/aflpin. 2015 [Accessed in
20/04/19].

[34] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos. Memory Er-
rors: The Past, the Present, and the Future. In D. Balzarotti, S. J. Stolfo,
and M. Cova, editors, Proceedings of the Research in Attacks, Intrusions, and
Defenses, pages 86–106, September 2012.

[35] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley. Scheduling Black-box Muta-
tional Fuzzing. In Proceedings of the ACM SIGSAC Conference on Computer;
Communications Security, pages 511–522, November 2013.

[36] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and Discovering Vul-
nerabilities with Code Property Graphs. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 590–604, May 2014.

[37] M. Zawlewski. AFL Technical Details. http://lcamtuf.coredump.cx/afl/technical details.txt/.
2018 [Accessed in 20/04/19].

[38] M. Zawlewski. American Fuzzy Lop (AFL) Fuzzer.
http://lcamtuf.coredump.cx/afl/. 2017, [Accessed in 01/03/19].

	Figure List
	Table List
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Structure

	Context and Related Work
	Software Validation and Verification
	Types of Coverage
	Code Representation

	Vulnerabilities
	Fuzzing
	Fuzzer Running Example

	AFL
	AFL description
	AFL issues

	PandoraFuzzer
	Tool Reasoning and Issues Found
	Main AFL Differences
	Program Instrumentalization and Multiple Forkserver Usage
	Multiple Program Transition and Usage
	Program Input Organization using Multiple Queues
	Interesting Program Code Block Identifier Retrieval
	Interesting Program Input Sharing

	Architecture
	Main Modules
	 Instrumentalization Procedure
	 Fuzzing Procedure Architecture Modules

	PandoraFuzzer Implementation
	Instrumentalization
	 Basic Block Identifier Generation

	 Fuzzing

	Evaluation of the Tool
	Testing Setup
	Applications under test
	Binutils Applications
	 Vulnerability Detection
	 Code Coverage

	Conclusion
	Future Work

	Bibliography

