
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Detecting Web Vulnerabilities in an Intermediate
Language by Resorting to Machine Learning

Techniques
Documento Provisório

Ana Maria Dias Fidalgo

MESTRADO EM CIÊNCIA DE DADOS

Dissertação orientada por:
Prof. Doutor Ibéria Vitória de Sousa Medeiros

Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

2020

Acknowledgments

This work would not be possible without the support and insights from the
people around me.

For starters, I want to thank my advisor Prof. Ibéria Medeiros and my co-
advisor Prof. Nuno Neves. I could not be happier with the opportunity to learn
with them throughout the thesis. They were always eager to learn things outside of
their expertise, hear my insights and share theirs. Their enthusiasm motivated and
challenged me to achieve higher. To all that, I am incredibly grateful.

Next, I would like to thank my best friends that, even after a lot of crankiness,
crying, and complaining throughout this year, they still stick around: Filipa, for
always showing me the bright side; Rita, for understanding me better than myself,
Sofia, the sister I wish I had; Patŕıcia, for showing me my value; and André, for
never letting me give up and teaching me so much about critical thinking in data
science. More than friends; they are my beloved (Lisbon) family.

For the last two years, I also had the pleasure to work alongside excellent people,
with whom I shared many lunches, laughs, anxieties, achievements, and the best
political arguments: João Lobo, Miguel Silva, Paulo Santos, Guilherme Espada,
Francisco Medeiros, and Rita Belo. A special thanks to my mate and friend Pedro
Gaspar, one of the kindest and selfless people I know, who is always ready to help
me overcome whatever comes in the way.

Life would have certainly been more stressful and sad without Lindy Hop, so a
big thank you to the Little Big Apple community for the dances, jams, and good
vibes.

And last but not least, thank you to my family for their support and belief:
my grandma Isaura and grandpa Armando, for the heartfull family moments they
provide every time I go to Coimbra; my mom Céu, who listens to me so patiently;
my aunt Palmira, who helped me to continue college when I could not afford it; and
my dad, who taught me the value of education and hard work. Even though he is
not here, my desire to make him proud still lingers and fuels me.

This work was partially supported by the national funds through Fundação para
a Ciência e a Tecnologia (FCT) with reference to PTDC/CCI-INF/29058/2017, pro-
ject SEAL, and LASIGE Research Unit (UIDB/00408/2020), and through P2020

i

with reference to LISBOA-01-0247-FEDER-039238, XIVT project, an ITEA3 Eu-
ropean project (I3C4-17039).

ii

I dedicate this work to my dad, who worked incredibly hard to allow me to thrive.

Resumo
Nos últimos anos, as aplicações web mudaram a forma como os utilizadores usam

a Internet e para muitos tornaram-se imprescind́ıveis para as mais variadas tarefas,
desde a socialização a transações bancárias. Com o aumento da sua popularidade, as
aplicações web tornaram-se também alvos aliciantes para atacantes cibernéticos, le-
vando a um aumento exponencial do número de vulnerabilidades reportadas. Injeção
de SQL (iSQL) é uma vulnerabilidade que ocorre quando o atacante consegue intro-
duzir código SQL num comando que, ao ser executado, produz um efeito diferente do
pretendido pelo programador (por exemplo, acesso a dados protegidos ou alteração
inadvertida de informação guardada na base de dados). Devido ao seu enorme im-
pacto e facilidade de exploração (basta, por exemplo, introduzir num formulário da-
dos de forma inteligente em conjunto com código SQL), iSQL é das vulnerabilidades
mais atrativas e populares. No nosso trabalho decidimos focar-nos exclusivamente
neste tipo de fragilidade da web.

Apenas recentemente é que se começou a investigar a utilização de técnicas de
Aprendizagem Automática (AA) na deteção de vulnerabilidades (com foco em lin-
guagens como C/C++), e os resultados, apesar de embrionários, são encorajadores,
o que nos leva a crer que a aplicação de técnicas de AA nesta área tem um grande
potencial. Contudo, para PHP (a linguagem para aplicações web mais popular nos
dias de hoje) o trabalho realizado com técnicas de AA é praticamente inexistente. As
vulnerabilidades web que ocorrem em linguagens para back-end como PHP tendem
a ter um comportamento e caracteŕısticas diferentes que linguagens como C/C++,
pelo que não se pode concluir que modelos que evidenciaram algum sucesso no pas-
sado podem de uma maneira imediata ser aplicados com resultados semelhantes no
nosso contexto.

Na nossa abordagem, escolhemos analisar o código PHP numa linguagem in-
termédia (LI) semelhante ao Assembly (para C). Esta opção pretende resolver um
dos problemas da deteção de vulnerabilidades em código fonte, relacionada com a
quantidade de rúıdo presente. O código fonte, por ser de alto ńıvel, contém in-
formação sintática necessária à compreensão humana que em nada contribui para
o processamento automático e para a tarefa de deteção de vulnerabilidades. Além
disso, o uso de uma LI aumenta a flexibilidade da solução, uma vez que pode ser
usada para qualquer outra linguagem que possa ser convertida na mesma LI. Mais
ainda, uma vez que a LI é uma linguagem de baixo ńıvel quando comparada com a

vi

linguagem do código fonte, é posśıvel ter acesso à estrutura interna das instruções,
o que permite a criação e o uso de novas variáveis nos modelos de AA, melhorando
o seu desempenho.

A nossa solução passa pela construção de seis conjuntos de dados: o PHP Ex-
cerpt Dataset (PED), o Bytecode Excerpt Dataset (BED), o Opcode Dataset (OD),
o Opcode+Operand Dataset (OOD), o Slice Dataset (SD) e o Simplified Slice Data-
set (SSD). O primeiro contém excertos com e sem vulnerabilidades iSQL, extráıdos
do repositório público Software Assurance Reference Dataset (SARD). O segundo é
constitúıdo pelos excertos correspondentes na LI. O BED foi posteriormente usado
para criar os restantes conjuntos de dados. O OD e o OOD são, como o nome indica,
conjuntos de dados em que cada exemplo contém apenas os opcodes ou opcodes e
operandos do excerto em bytecode, respetivamente. Os últimos dois conjuntos de da-
dos seguem uma abordagem diferente. Para obter uma representação mais próxima
da linguagem natural (em que o fluxo de controlo é linear) criámos fatias para cada
excerto. Uma fatia de um excerto corresponde a um dos seus caminhos de execução,
pelo que um excerto pode originar múltiplas fatias.

Para classificar os exemplos, criámos uma rede sequencial de Aprendizagem Pro-
funda (AP). Esta rede é constitúıda por:

• uma camada de Embedding, que recebe uma sequência de vetores e os trans-
forma em vetores capazes de representar a sua informação semântica.

• n blocos de camadas LSTM e Dropout. A camada LSTM recebe vetores com
informação da camada anterior, codifica padrões relacionados com a ordem dos
vetores na sequência, e envia o vetor resultante à camada Dropout. A camada
Dropout escolhe aleatoriamente alguns nós para ‘desligar’, i.e., modificar os
seus pesos para tomarem o valor 0, com o objectivo de prevenir o sobreajuste
aos dados. Ao ‘desligar’ certos conjuntos de nós, a camada Dropout previne a
adequação do modelo a certos padrões de dados, que podem ter sido aprendidos
coincidentalmente, e que têm um impacto negativo no desempenho do modelo,
uma vez que não são padrões gerais mas sim padrões espećıficos de certo
subconjunto dos dados de treino.

• uma camada Dense, que codifica a relação entre o vetor que recebe e o seu
rótulo (vulnerável ou não-vulnerável a iSQL).

• uma camada Dense que produz o resultado final. O resultado do modelo é um
número real entre 0 e 1, que representa a probabilidade de um exemplo ser
vulnerável a iSQL.

Para aferir a perfomance do nosso modelo e a qualidade das representações de
cada conjunto de dados, conduzimos uma série de experiências seguindo técnicas de

vii

Ciência de Dados. Começámos por separar cada conjunto em dois subconjuntos,
treino e teste. Aplicámos 10-Fold Cross-Validation ao conjunto de treino 3 vezes,
obtendo 30 valores de accuracy, precision e reacall para cada configuração do modelo
em cada conjunto de treino. Testámos também diversas configurações do modelo
para múltiplos valores dos principais parâmetros: tamanho da camada escondida,
número de épocas, taxa de dropout e taxa de aprendizagem. Como este trabalho foi
desenvolvido iterativamente e o primeiro conjunto de dados constrúıdo e testado foi
o OD, a avaliação para este conjunto de dados foi ligeiramente diferente. Primeiro,
optámos por usar o valor por defeito da taxa de aprendizagem. Testámos três
algoritmos de otimização usados em redes neuronais: ADADELTA, RMSProp e
ADAM. Para os restantes conjuntos de dados apenas usámos o RMSProp, uma vez
que foi este algoritmo que oblteve melhor desempenho. Para o OD testámos ainda o
modelo com 1 e 2 blocos LSTM+Dropout. Conclúımos que o ganho no desempenho
não era suficiente para justificar o uso de 2 blocos, pelo que decidimos restringir-nos
a 1 bloco com os restantes conjuntos.

Contrariamente ao esperado, o OD foi o que obteve melhores resultados (com
valores médios acima de 90% em todas as métricas), apesar de conter menos in-
formação do bytecode e não ter controlo de fluxo linear. Ainda assim, os resultados
de todos os conjuntos foram bastante bons, sendo que o conjunto com pior perfo-
mance (o OODD) obteve valores médios acima de 60% em todas as métricas.

Uma das conclusões a que chegámos é que seria preciso um conjunto de excertos
PHP que espelhasse melhor o paradigma das aplicações web. Os exemplos do PED
são muito pequenos e pouco variados, o que nos impede de assegurar a fiabilidade
dos resultados obtidos no contexto de aplicações reais. Ainda assim, usámos este
conjunto de dados porque não conhecemos bibliografia que tenha um conjunto mais
variado e com melhor qualidade. Outro ponto importante que antevemos que me-
lhore os resultados da abordagem com fatias seria a automatização do processo de
conversão de excerto para fatias. Infelizmente, por limitações de tempo, optámos
por fazer a conversão manualmente de apenas uma parte do BED (aproximada-
mente um terço). Ainda assim, podemos concluir que esta abordagem tem grandes
vantagens uma vez que o desempenho obtido tanto com o SD como com o SSD foi
superior ao do OOD.

O planeamento original do projeto foi adaptado no decorrer do mesmo. Inicial-
mente propusemo-nos estudar diversas arquiteturas de AP, com recurso a diferentes
tipos de camadas usadas em Processamento de Linguagem Natural - camadas LSTM,
Convolutional Neural Networks (CNN) e Transformers - mas após obtermos os pri-
meiros resultados, conclúımos que era mais relevante fazer um estudo acerca do tipo
de informação, e da sua qualidade, que o modelo recebe. Assim, decidimos mudar
o foco do nosso trabalho: em vez de fazer um estudo aprofundado sobre o impacto

viii

de diferentes arquiteturas de redes neuronais na qualidade dos resultados, decidimos
dar maior ênfase ao estudo do impacto que diferentes representações de informação
podem ter nos resultados gerados por diferentes modelos.

Palavras-chave: vulnerabilidades web, deteção de vulnerabilidades, segurança de
software, processamento de linguagem natural, aprendizagem profunda

ix

Abstract

The number of vulnerabilities has grown exponentially over the last years, with
SQL Injection being especially troublesome for web applications. In parallel, novel
research has shown the potential of Machine Learning to find vulnerabilities, which
can aid experts to reduce the search space or even classify programs on its own.
Previous work, however, rarely includes SQL Injection or considers popular server-
side languages for web application development like PHP.

In our work, we construct a Deep Learning model capable of classifying PHP
excerpts as vulnerable (or not) to SQL Injection. We use an intermediate language to
represent the excerpts and interpret them as text, resorting to well-studied Natural
Language Processing techniques. This work can help back-end programmers discover
SQL Injection in an early stage of the project, avoiding attacks that would eventually
cost a lot to repair their damage.

We also investigate which information should be fed to the model. Hence, we
built four datasets (the Opcode Dataset, the Opcode+Operand Dataset, the Slice
Dataset, and the Simplified Slice Dataset) from the bytecode dataset that represent
each PHP excerpt differently. This approach is a simpler alternative to complex
data structures previously used to represent code’s control flow. For each of those
datasets, we performed several experiments to evaluate alternative configurations
for the model. For all datasets, we managed to find a setting that leads to a score,
on average, above 60% for the accuracy, precision, and recall.

Keywords: web vulnerabilities, vulnerability detection, software security, natural
language processing, deep learning

xi

Contents

List of Figures xviii

List of Tables xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Contributions . 3
1.4 Structure of the document . 4

2 Background and Related Work 5
2.1 Web Vulnerabilities . 5
2.2 Intermediate Language . 7
2.3 Deep Learning for Natural Language Processing 10

2.3.1 Convolutional Neural Networks 11
2.3.2 Recurrent Neural Networks 12
2.3.3 Input Representation . 14

2.4 Machine Learning in Vulnerability Detection 16
2.5 Program Representation . 18

3 Datasets and Deep Learning Architectures for SQLi Detection 21
3.1 Problem Definition . 22

3.1.1 Which data to use? . 24
3.1.2 Which model to define? . 26

3.2 SQLi Detection Network . 28
3.2.1 Preprocessing . 29
3.2.2 Deep Learning Model . 31

3.3 Datasets . 34
3.3.1 PHP Excerpt Dataset (PED) 35
3.3.2 Bytecode Excerpt Dataset (BED) 36
3.3.3 Opcode Dataset (OD) . 37
3.3.4 Upgrades to the Opcode Dataset 39

xiii

4 Implementation 49
4.1 Dataset Construction . 49
4.2 Network Construction and Model Evaluation 52

5 Experiments 57
5.1 How to evaluate the model . 57
5.2 Evaluation with the Opcode Dataset 58

5.2.1 Model with 1 LSTM layer . 59
5.2.2 Model with 2 LSTM layers . 61

5.3 Evaluation with the remaining datasets 63
5.3.1 Configuration of the Experiments 63
5.3.2 Results . 64

6 Conclusion 71
6.1 Future Work . 72

Abbreviations 73

Bibliography 79

xiv

xvi

List of Figures

2.1 Example of a SARD sample vulnerable to SQLi. 7
2.2 Intermediate language for the example depicted in Figure 2.1. 8
2.3 Intermediate language for the example depicted in Figure 2.1. 9
2.4 Scheme of an LSTM, showing the units t− 1, t and t+ 1. 13
2.5 Scheme of a BRNN. 14
2.6 Heatmap for one-hot and embedding encodings of the Opcode Dataset

vocabulary, where each line corresponds to the encoding of a token
from the vocabulary. 15

2.7 CBOW and Skip-Gram model diagrams. 16

3.1 Example of a vulnerable code excerpt adapted from a SARD sample. 22
3.2 Example of a non-vulnerable code excerpt adapted from a SARD

sample. Note the similarities of this code excerpt and Figure 3.1 . . . 22
3.3 Bytecode excerpt corresponding to code excerpt in Figure 3.1 24
3.4 Bytecode excerpt corresponding to code excerpt in Figure 3.2 25
3.5 Opcode sequence for the excerpts in Figures 3.3 and 3.4. 25
3.6 Opcode and operand sequence for the excerpts in Figure 3.3. 26
3.7 Opcode and operand sequence for the excerpts in Figure 3.4. 27
3.8 Opcode and operand sequence for the excerpts in Figure 3.3. 28
3.9 Example of the resulting numerical vector from a sequence of opcodes. 29
3.10 High level overview of our model. 31
3.11 Example of a PED instance, without the comment section. 36
3.12 OD instance, obtained from the BED example of Figure 2.3 37
3.13 Sequence of opcodes and operands obtained from the BED example

depicted in Figure 2.3 . 40
3.14 OOD instance. Obtained from the example depicted in 2.3 after ap-

plying the transformations in Table 3.4 42
3.15 Example of an if statement in PHP code and opcodes + operands. . . 43
3.16 Example of an if statement’s slices. 43
3.17 Example of a while statement PHP code and opcodes + operands. . . 44
3.18 Example of a while statement’s slices. 44

xvii

3.19 SD and SSD examples corresponding to the OOD example in Figure
3.14 when the while statement is true. 46

3.20 Diagram representing the dependencies between the different datasets. 47

5.1 Box-plots for the hyperparameter tuning of the hidden size of the
LSTM layer, dropout rate and number of epochs (respectively, the
first, second and third rows), using the RMSProp optimizer. 61

5.2 Box-plots for the hyperparameter tuning of the hidden sizes of the
2 LSTM layers, dropout rates for the 2 Dropout layers and number
of epochs (respectively, the first, second and third rows), using the
RMSProp optimizer. 63

xviii

xx

List of Tables

3.1 Vocabulary composed of VLD opcodes. The index of the opcode in
position i, j is given by i ∗ 4 + j + 1. 30

3.2 Definition of each layer’s input, output and activation function. . . . 32
3.3 Vocabulary for the Opcode Dataset. 38
3.4 List of grouped operands and corresponding token. 41
3.5 List of grouped opcodes and corresponding token. 47
3.6 Datasets sizes. 48

5.1 List of the default hyperparameters of each optimizer. 58
5.2 Configurations tested for each hyperparameter. 60
5.3 Results of the accuracy, precision and recall for the various configu-

rations analysed. 60
5.4 Configurations tested for each hyperparameter for the OD using RSMP. 62
5.5 Performance of the best configurations in both the train and test sets

for the 1-LSTM and 2-LSTM models. 63
5.6 Configurations tested for each hyperparameter with OOD, SD, and

SSD, using RMSProp. 64
5.7 Performance of the model for the OOD in every configuration tested

(HS - hidden size, δ - dropout rate, LR - learning rate, NE - number
of epochs). The metrics presented are the mean value for the 30 folds
run (Acc - accuracy, Prec - precision, Rec - recall). 65

5.8 Performance of the model for the SD in every configuration tested
(HS - hidden size, δ - dropout rate, LR - learning rate, NE - number
of epochs). The metrics presented are the mean value for the 30 folds
run (Acc - accuracy, Prec - precision, Rec - recall). 66

5.9 Performance of the model for the SSD in every configuration tested
(HS - hidden size, δ - dropout rate, LR - learning rate, NE - number
of epochs). The metrics presented are the mean value for the 30 folds
run (Acc - accuracy, Prec - precision, Rec - recall). 68

5.10 Performance of the best configurations in both the train and test sets
for the 1-LSTM and 2-LSTM models. 69

xxi

Chapter 1

Introduction

The present document constitutes the final work for the Master’s in Data Science
in the Faculty of Sciences of the University of Lisbon. The work intersects two big
fields: Data Science and Software Security. The problem domain - detection of web
vulnerabilities in an intermediate language (IL) - belongs to the latter, while the
techniques used to collect, clean and model the data, as well as the model evaluation
belong to the Data Science field.

In the following sections, we explain why it is crucial to tackling the problem of
detecting web vulnerabilities, the advantages of analyzing the code of web applica-
tions in an IL, and why we decided to use Machine Learning (ML) techniques to
address this issue. Next, we define the goals of this research and state its contri-
butions. To finish, we reveal the structure of the document and give some insights
into each chapter.

1.1 Motivation

Web applications have become central in everyone’s lives. We use them to check
the email, to make transactions, to socialize, and much more. As their role grew,
so did their appeal to hackers. That is why the number of web vulnerabilities has
continuously grown year by year. SQL Injections (SQLi) are considered to be one
of the most devastating web vulnerabilities, as they allow intruders to access and
manipulate private data. Also, successful attacks can cost companies much money
in repairs. Furthermore, SQLi is relatively easy to exploit, making it even more
appealing to attackers.

Although there is some work on vulnerability detection leveraging ML, this area
is still at the start and focuses mainly on C/C++. Nevertheless, some research
already shows the benefits of using Deep Learning (DL) and Natural Language
Processing (NLP) to detect vulnerabilities in the source code [22, 32, 42]. However,
there is no previous work experimenting DL in PHP, even though PHP is the most

1

Chapter 1. Introduction 2

popular server-side language for web applications [51]. Since the vulnerabilities that
commonly arise are different for C/C++ and PHP, it is not trivial to assume they
would work equally well. Nonetheless, it is something worth considering.

Perhaps the biggest potential with our approach is that it helps to overcome
the problem of dealing with source code. Typically, source code has a lot of syntax
information useless for the detection task. This problem may be atoned if the
analysis is done in an intermediate language (IL). PHP has an IL similar to Assembly
(for C/C++), based in opcodes and their operands, which allows us to look closer
to the internal structure of the language, which we believe can help in the detection
task performed by ML.

1.2 Goals

The main goal of this thesis is to leverage ML to detect web vulnerabilities in an
IL. We focused the work on SQLi since the spectrum of web vulnerabilities is vast,
and this is the most prominent one. Besides, we decided to analyze PHP excerpts
due to the lack of previous research and the relevance it still has. Thus, the main
goal was refined into detecting SQLi in an intermediate language for PHP programs,
leveraging DL and NLP techniques.

Initially, we thought of building a dataset and experimenting with different DL
architectures to determine the best for our dataset. Nonetheless, we understood
that the IL had interesting paths we could explore. Consequently, after the first
experiments, we built other datasets with different information.

In total, we built six datasets: the PHP Excerpt Dataset (PED), the Bytecode
Excerpt Dataset (BED), the Opcode Dataset (OD), the Opcode + Operand Dataset
(OOD), the Slice Dataset (SD), and the Simplified Slice Dataset (SSD). The PED
was retrieved from the Software Assurance Reference Database (SARD)1, which
provides PHP test cases of both vulnerable and non-vulnerable to SQLi. Each test
case is composed of a code excerpt, i.e., an instance of PED. A code excerpt starts
in an entry point, an instruction that receives user-defined input, such as $ GET. It
finishes in a sensitive sink, such as mysql query that, when executed with malicious
input, may cause undesired behavior, such as giving access to private data to an
unauthorized person. The instructions between the entry point and the sensitive sink
can manipulate (or not) the entry point. Each BED sample contains the bytecode
for the corresponding PHP excerpt. This dataset is the origin of the following four
datasets: OD, OOD, SD, and SSD. These contain a selection of features from the
BED and are the ones we used to train the model.

Even though the model itself was not the focus of the thesis, we wanted to build
1https://samate.nist.gov/SARD/index.php

Chapter 1. Introduction 3

a DL network capable of accurately classifying the dataset samples. The model
must be capable of extracting relevant features associated with SQLi and the order
of the tokens in an excerpt. Hence, our model starts by representing each sample
as an embedding vector. Embedding vectors are useful in DL due to their ability to
embed semantic information and adapt the dimensionality. Then, the model uses an
LSTM layer to extract features related to the order of the elements in the sample.
These features are fed to the Dropout layer, which deals with overfitting by zeroing
some nodes. Next, the result goes into a Dense layer responsible for learning the
relationship between the sample and its label. Finally, the last Dense layer outputs
the final value, between 0 and 1, which indicates the probability of the sample being
vulnerable to SQLi.

We conducted experiments on the OD, OOD, SD, and SSD. To each, we trained
the model with different configurations on 70% of the dataset by performing 10-
fold stratified cross-validation repeated three times. Afterwards, we tested the best
configuration on the remaining part. In each training, we registered the accuracy,
precision and recall. These metrics helped us analyze the model’s performance under
each configuration, and decide how to proceed with the investigation. All datasets
led to models with good performance, in which all the metrics scored, on average,
more than 60%. Contrary to our expectations, the OD (the most straightforward
dataset) obtained the best results (scores above 90%), followed by the SD, then the
SSD, and finally the OOD. Since the performance under the SD and SSD was better
than under the OOD, we can conclude that the slice representation we used for them
helps the model learning the necessary patterns to SQLi discovery. Nevertheless,
we consider that the initial dataset has a significant impact on the results, and
that if we manage to build a better one (with more diversified and longer samples,
retrieved from real web applications) the scores would be higher on the other data
representations.

1.3 Contributions
There are four main contributions of our work:

• The analysis of PHP web applications in the intermediate PHP language;

• A DL network that accurately classifies PHP excerpts as SQLi vulnerable or
non-vulnerable;

• Six datasets with different representations for the code excerpts - PED, BED,
OD, OOD, SD, and SSD;

• Experimental evaluations providing assessments of different hyperparameter
configurations for the datasets OD, OOD, SD, and SSD;

Chapter 1. Introduction 4

This research led to the publication of the paper Towards a Deep Learning Model
for Vulnerability Detection on Web Application Variants in the Workshop on Testing
of Configurable and Multi-variant Systems co-located with the 2020 IEEE Interna-
tional Conference on Software Testing [18].

1.4 Structure of the document
This document is organized in six chapters, the first one being the introductory
chapter we are currently in. The remaining chapters are:

• Chapter 2 - Background and Related Work
In this chapter, we address two points: which concepts the reader needs to
understand the work developed, and what has already been done in previous
research that is similar or related to the problem we want to solve and the
Data Science challenges that arise from it.

• Chapter 3 - Datasets and Deep Learning Architectures for SQLi Detection
We start by defining the problem we want to solve. In here, we show how the
dataset and model influence the results of the solution. After that, we develop
on the approaches followed to create the datasets and the model.

• Chapter 4 - Implementation
In this chapter, we provide details on how some aspects of our approach were
implemented. It is divided into two parts: the first focuses on the datasets
creation while the second addresses the network construction.

• Chapter 5 - Experiments
The experiments are also divided into two parts. In the first part, we show the
preliminary results with the Opcode Dataset, where we experimented with
different optimization algorithms and one and two LSTM layers. For the
second part, we used the results from the first part to choose a single algorithm
and work with one LSTM layer.

• Chapter 6 - Conclusion
To conclude, we discuss the strengths and weaknesses of the present work and
propose further research to be taken from here.

Chapter 2

Background and Related Work

Chapter 2 introduces the necessary background and relevant related work on the
topics carried by the thesis. The chapter is divided into five subsections: 1) Web
Vulnerabilities, 2) Intermediate Language, 3) Deep Learning for Natural Language
Processing, 4) Machine Learning in Vulnerability Detection, and 5) Program Rep-
resentation. The first three sections briefly introduce the necessary theory to un-
derstand the solution presented in the next chapter. In the last two, we describe
the state of the art of machine learning (ML) usage in vulnerability detection, and
of program representation. The state of the art helps us to understand what has
already been done, what are the frailties of past work, and what is still left to do.

2.1 Web Vulnerabilities

Vulnerabilities are flaws present in a system. When an attacker exploits them,
he can breach some security policy, and the impact can cost a significant amount
of money to the organization (e.g., time to fix the damage that was inflicted in
the servers). Over the last years, with the increasing importance of the Internet
and web applications being widely used, the number of vulnerabilities has grown
exponentially [14]. According to the OWASP Top 10 of 2017 [52], the most popular
web vulnerability classes are:

1. Injection,

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

5

Chapter 2. Background and Related Work 6

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with Known Vulnerabilities

10. Insufficient Logging&Monitoring

The number one web vulnerability class is called Injection. Injection happens
whenever malicious data is sent to a web application, and then an interpreter pro-
cesses it as part of a command or query (e.g., SQL query). This allows the attacker to
trick the interpreter into executing unintended commands or accessing data without
proper authorization. An interpreter can be, for instance, accessed by a function of
the programming language (e.g., mysqli query on PHP) that receives the injected
input as an argument to be included in a query. Injections are easy to exploit because
the attacker only has to insert appropriate strings to exploit the target interpreter,
usually through the addition of meta characters. The impact of such an attack on
the system can be quite high, making these vulnerabilities particularly appealing
to attackers. So, the best way to prevent injection vulnerabilities is by guarantee-
ing that commands and queries are not tainted (compromised) by malicious data.
This approach can be made, preferably, by utilizing secure APIs or, if not possible,
escaping special characters [14].

There are several types of injections, such as command line, SQL, LDAP, and
XML. In this work, we will look at SQL Injection (SQLi) only. According to Clarke
[13], SQLi is one of the most devastating bugs. Anytime an application gives an
attacker the chance to control SQL queries that it passes to a database, the software
is vulnerable to a SQLi vulnerability. This problem is not restricted to web applica-
tions, meaning that any system that uses dynamic SQL statements to communicate
with a database, like some server-client systems, can be prone to this sort of flaw.

In our work, we chose to detect SQLi vulnerabilities in PHP code, since PHP
is the server-side high-level language in which the majority of web applications are
written. According to W3Tech [51], 79% of web applications are written in PHP.
The PHP example depicted in Figure 2.1 is a SARD vulnerable sample. On line 45,
exterior data enters the program through the global array $ GET, and it is stored
in the $tainted variable. On line 49, a query string is constructed with the given
input and stored on variable $query. Since the input is not evaluated in any way,
an attacker could, for example, give as input a string (following the SQL syntax)
that, together with the query string, allows the attacker access to private data.
The access is obtained through the variable $res (line 56), which stores the result
from the execution of the query in the database. Therefore, the code has a SQLi
vulnerability. Finally, from lines 58 to 61, the value of res is displayed to the user.

Chapter 2. Background and Related Work 7

This vulnerability can be fixed by escaping special characters. For this purpose,
there are sanitization functions which escape and invalidate metacharacters (e.g., ’
and ”) that change the structure and the goal of the query. mysql real escape string
is one of these functions. It can be used in the example to sanitize the $tainted
variable, before constructing the query. So, line 47 could be replaced by $tainted
= mysql real escape string($tainted).

Figure 2.1: Example of a SARD sample vulnerable to SQLi.

2.2 Intermediate Language

Compilers are software responsible for translating the source code of a program
into a low-level language that the machine can execute. ILs were introduced by
compiler designers to simplify the translation process. An IL is a data structure
representing a program in a simplified manner without losing information. It allows
the compiler to break up the program in multiple modules that can be efficiently
and independently processed. Moreover, all high-level programming languages that
may be represented by the same IL can be dealt equally.

Traditionally, PHP uses a virtual machine engine called Zend 1 to interpret and
run PHP programs. Zend transforms the programs into bytecode, which is then
interpreted and executed. A tool called Vulcan Logic Dumper (VLD)2 can intercept

1https://www.zend.com/products/php-development-tools
2https://github.com/derickr/vld

Chapter 2. Background and Related Work 8

the bytecode processing before its execution, allowing it to be saved into a file.
This way, we gain access to an IL in which the original code instructions have been
transformed into simpler ones (that we denominate by statements) with a more
restricted space. Figure 2.2 depicts the bytecode file’s structure. At the top of the
file, there is the result of the branch analysis. Next, the file presents the bytecode for
the main part of the program - the main code -, i.e., the code without user-defined
classes and functions. The bytecode for the user-defined classes and functions is
written below, followed by the branch and path lists.

Branch Analysis

List of Compiled Variables

main code Bytecode

User-defined Classes and
Functions Bytecode

Branch List

Execution Path List

Figure 2.2: Intermediate language for the example depicted in Figure 2.1.

There are several ILs with different specifications and data structures. Usually,
the most used ones are structured (graph or tree-based), tuple-based, stack-based,
or combinations of the three. The PHP bytecode is a tuple-based language.

Figure 2.3 shows the main code obtained with VLD for the source code in Figure
2.1. It is easy to understand how this representation is a tuple-based language by
considering that each tuple is a line of the table in the figure, in the form <line,#*,
E, I, O, op, fetch, ext, return, operands>.

Note that, from the bytecode, we can get a lot of insights on how the code is
internally executed, which cannot be obtained from the source code. For instance,
it shows which are the statements that are executed for each PHP instruction.
The first column corresponds to the PHP instruction line and the op column to the
statement’s opcode. An opcode is an elementary operation in the bytecode language.
It can have zero, one, or two operands, depicted in column operands, where they

Chapter 2. Background and Related Work 9

Figure 2.3: Intermediate language for the example depicted in Figure 2.1.

are presented separated by commas. These two columns are the most important
as they tell us the operation being executed and its parameters. The remaining
columns merely specify further characteristics about it.

Columns I and O indicate if it is an I/O operation, and fetch whether the
variable being accessed is global. The return column indicates in which variable the
result of the statement is stored. Note that, in this IL, variables are represented
by a number preceded by a $, ˜, ->, or !. All but the last correspond to auxiliary
variables created for execution purposes. On the other hand, variables preceded
by ! correspond to user-defined variables that are automatically mapped by VLD
to these symbols beforehand. For example, the PHP instruction of line 45, the
entry point $ GET[’UserData’], is interpreted as a composition of the first three
statements. The result from the first statement (FETCH R GET) is temporarily stored
in $6. This variable is used as an operand in the second statement (FETCH DIM R
$6, UserData). Its result is, in turn, temporarily stored in $5, which is finally used
in the third statement (ASSIGN !0, $5) to assign its value to !0 (!0 will represent
the $tainted variable).

Chapter 2. Background and Related Work 10

2.3 Deep Learning for Natural Language Process-
ing

ML excels in problems that humans can solve intuitively but have difficulties for-
malizing. For instance, it is easy for a human to distinguish between a dog and a
cat but it is hard to exhaustively list all the differences between the two animals.
Because of that, these problems are harder for machines to tackle. In many ML
models, such as Logistic Regression, data representation is preponderant for model
performance - it is imperative to gather and select the appropriate features which
will be used to represent each data instance. In the previous example, if we used the
number of legs as a feature, we would probably not be able to distinguish the two
species. Maybe a Boolean feature representing whether the animal has pointy ears
would be more useful. For many tasks, it is hard to decide which representation to
use though.

In DL models, instead of specifying the features, it is possible to learn them to-
gether with the main task. In our example we could simply use the pixels of pictures
of dogs and cats, saving a lot of effort thinking which features would be better to
distinguish the two animals. In these cases, DL models are good alternatives. DL
models are constituted by multiple layers. Each layer receives as input the output
of another layer and applies some additional transformation. By having multiple
layers, the model can learn more complex data and patterns, based on simpler and
broader ones (from previous layers) [20].

Like any ML model, DL models have a cost function they look to optimize, i.e.,
they are optimization tasks for which they need an optimization algorithm and a loss
function (the target function to be optimized). Usually, neural network optimizers
are based on stochastic gradient descent (SGD) [1]. This optimizer is a stochastic
online version of the gradient descent, which iterativelly updates the weight matrix
in the opposite direction of the gradient of the loss function.

Contrary to the traditional algorithm, SGD utilizes a single data point to perform
the update, chosen at random. Equation 2.1 provides a formalization of the SGD,
where W is the weight matrix, µ is the learning rate, and Li is the loss with respect
to the ith point of the dataset (where i is randomly chosen).

W ← W − µ∂Li
∂W

(2.1)

The learning rate is the hyperparameter responsible for dictating how big the
update is. It is also directly related to how many updates the model takes to converge
to a minimizer of the loss function. If the learning rate is small, the updates are
minor, and it will take a long time for the model to converge. On the other hand, if it
is too large, one expects the algorithm to converge in a fewer number of steps. This

Chapter 2. Background and Related Work 11

comes with the disadvantage that a better solution may be ‘missed’ by algorithm.
Hence, the choice of the learning rate parameter must be taken wisely.

There are three SGD-based optimizers that are frequently used in DL models:
1) ADADELTA [56], 2) RMSProp [49], and 3) ADAM [25]. In ADADELTA, the
learning rate is dynamic and the updates are made per dimension based on a moving
window of gradient updates (instead of all past updates). This allows ADADELTA
to continue learning even if many updates are done. RMSProp keeps a moving
average of the square of past gradients. When updating the weight matrix, the
gradient is divided by the square root of this average, which functions as a re-
scale of the current gradient. ADAM resorts to estimations of the first and second
moments of the loss function instead of the gradient itself. Hence, the computation
of ADAM is normally faster a lighter, turning it into a very appealing algorithm for
DL models.

NLP deals with natural language data. Because of data characteristics, namely
the lack of structure, ambiguity, discreteness, and sparseness [19], it is often hard
to find a suitable representation for the desired task, making DL methods very
popular in NLP. [37, 24]. There are two widely used components in DL for NLP:
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) [19].
These are not standalone layers but are important as feature extractors. CNN is a
type of feed-forward network that can extract local features from the data. RNN
architectures take into account both word ordering and past words in a sequence.
They are excellent for sequential data and have achieved state-of-the-art results in
many NLP fields [48, 5].

CNN and RNN layers are often preceded by an embedding layer, which maps
discrete symbols into continuous vectors. This is a way of handling the sparsity
problem that is common in NLP. It is also common to feed the output of these com-
ponents to a feed-forward component that learns to perform the desired task, which
in most cases is classification [19]. Recently, new approaches that combine different
methods have obtained exciting results, such as the combination of attention and
RNN or CNN [53, 33] and attention only, with resort to transformers [50, 15].

2.3.1 Convolutional Neural Networks

CNNs are a type of feed-forward network that, due to its architecture, is great
at finding informative local patterns in long sequences with different sizes. The
main idea behind CNN layers is to apply a non-linear learned function (filter) to a
window of size k. At each time step, the window moves, until until it has covered
the whole sequence, and produces a scalar value that represents the tokens from
that time window [19]. We can apply n filters to each window, which results in

Chapter 2. Background and Related Work 12

an n dimensional vector that characterizes that window. The resulting vectors are
combined through a pooling operation into a single vector, that represents the whole
sequence. There are several pooling operations. The most common are:

• Max Pooling: takes the maximum value across each feature;

• Average Pooling: takes the average of each feature;

• K-max Pooling: for each feature, it keeps the k highest values, preserves their
order, and concatenates the values into vectors.

In general, CNN cannot extract the global order of the input - only local order
can be represented. Hence, this architecture is especially good in solving computer
vision tasks, like image classification and object recognition [26, 45].

2.3.2 Recurrent Neural Networks

The first DL language models used a feed-forward network called tapped delay line
(TDL). These networks receive as input the token at position t and the previous w
tokens, where w is pre-determined. In [44], they train a TDL network to pronounce
written English words. This approach, however, has a clear disadvantage. If w
is too small, the model might miss interesting patterns, and if it is too long, it
will be overloaded with parameters and may overfit. Besides, each token will be
independently processed several times, in different time steps [8]. RNNs are networks
that maintain a short-term memory through internal state space. The state space
can be seen as a trace of previously processed input and enables the representation
of dependencies between tokens that may be closer or further apart [8].

RNNs take into account all previous inputs in a more efficient fashion and without
the trouble of tuning the hyperparameter w. There are several kinds of recurrent
units. The simplest one is called Simple Recurrent Neural Network (SRNN) [16],
and its internal state has a single recurrent layer that receives the output of the
previous state and applies an activation function. Bengio et al. [7] noticed that even
though SRNNs can learn short-term dependencies, long sequences led to vanishing
or exploding gradients, making it difficult for the model to learn them.

The LSTM unit [23] was developed to tackle this issue. Figure 2.4 shows how
the different parts of an LSTM unit (represented by the grey circles) work. LSTM
models can maintain the error flow constant by introducing two gates - input and
forget - that control how much information they let in [11]. The input gate it controls
the input xt, whereas the forget gate ft controls the output of the previous unit,
yt−1. These gates produce a value between 0 and 1 (0 means they do not let anything
pass, and 1 implies everything passes). Equations (2.2) show how to compute it and
ft. In equations it and ft, respectively, Ui, Wi and bi are the weight matrices and

Chapter 2. Background and Related Work 13

ft+1 it+1 kt+1

ct+1

yt

xt+1

ct+2

yt+1

ft it kt

ct

yt-1

xt

ft-1 it-1 kt-1

xt-1

yt-2

ct-1

t-1 t t+1

Figure 2.4: Scheme of an LSTM, showing the units t− 1, t and t+ 1.

the bias for the input gate, and Uf , Wf and bf are the weight matrices and bias for
the forget gate.

it = activation(dot(yt−1, Ui) + dot(xt,Wi) + bi)
ft = activation(dot(yt−1, Uf) + dot(xt,Wf) + bf)

(2.2)

Each unit has a data flow ct that carries information across time steps. Besides the
gates, there is also a simple hidden layer component, kt, whose equation is given by
Equation (2.3), in which Uk, Wk, and bk represent the weight matrices and bias for
the hidden layer.

kt = activation(dot(yt−1, Uk) + dot(xt,Wk) + bk) (2.3)

The next carry data flow ct+1 is computed by combining ct, it, ft and kt, expressed
by Equation (2.4):

ct+1 = it ∗ kt + ct ∗ ft. (2.4)

Finally, the output of the unit (and state of the next unit), is calculated by Equation
(2.5), where ct, xt, and yt−1 are combined via a dense transformation. Analogously
to Equations (2.2) and (2.3), here we also have weight matrices Uy, Wy and Vy, and
a bias vector by.

yt = activation(dot(yt−1, Uy) + dot(xt,Wy)) + dot(ct, Vy) + by) (2.5)

In the last few years, other recurrent units have appeared. The Gated Recurrent
Unit (GRU) [10] is a more recent RNN very similar to the LSTM, but it was de-
veloped to be cheaper to run. It may, however, not have as much representational
power as an LSTM layer [11]. The Bidirectional Recurrent Neural Network (BRNN)
[43] can learn based not only in the past but in future information as well, widening
the context considered. Figure 2.5 shows what happens inside a BiRNN layer. The
BRNN feeds into an RNN the input vector and the reversed input vector to another
RNN.

Chapter 2. Background and Related Work 14

Figure 2.5: Scheme of a BRNN.

2.3.3 Input Representation

In NLP, it is necessary to represent text data as numeric vectors to be easily ma-
nipulated. The first thing to do is to decide the granularity of the representation: a
vector may represent a sentence/sequence, a token (word or other character sequence
separated by a space), a character, etc. Let us assume it represents a token. There
are two main representation methods: one-hot vectors and embedding vectors. One-
hot vectors are binary vectors where each entry is associated with a specific token,
and it is either equal to 1 if the token condition is true, or 0 if it is false. This
results in a binary sparse vector with dimension equal to the vocabulary (set of
unique tokens in the dataset) size. This form of representation has been known to
degrade the performance in neural network models [19]. On the other hand, embed-
ding vectors are continuous representations in a lower-dimensional space. They can
capture similarities between tokens, allowing the model to treat tokens with similar
embedding representations in a similar way [19]. With embedding vectors, we can
choose the size, and tune it to improve the model’s performance.

The concatenation of the representations forms a matrix of parameters, that may
be:

• pre-trained: there are specific models for embedding training (e.g., Word2vec
[38] and GloVe [28]) that can be applied on a broader dataset. For instance,
if we intend to classify English news as fake or not fake, we can use a large
corpus of English documents from multiple areas to grasp better each word
context, and then use the pre-trained embeddings on our model;

• static or dynamic: when dynamic embeddings are used, we allow the matrix

Chapter 2. Background and Related Work 15

(a) One-hot encoding (b) Embedding
encoding

Figure 2.6: Heatmap for one-hot and embedding encodings of the Opcode Dataset
vocabulary, where each line corresponds to the encoding of a token from the vocab-
ulary.

of representations to change its values during training. This is always the
case for embeddings that are not pre-trained. If we choose to pre-train the
representations, however, we may want them to adapt to our data (and use the
dynamic approach) or simply use them as they are (with the static approach).

Figure 2.6 shows two heatmaps representing the encodings of the vocabulary
from the Opcode Dataset, which is one of the datasets we built. On the left there is
the one-hot representation and the embedding representation is on the right. In both
heatmaps, a horizontal ”line” represents a different token from the vocabulary. It is
clear from the figure that the one-hot representation requires a higher dimensional
space, as it always needs as many features as unique tokens (vocabulary size). In
addition, it is a sparse representation - image (a) shows a large light grey area
corresponding to values 0 and only the diagonal has black dots that correspond to
values 1. The embedding image is dense and needs fewer features, since each feature
is more meaningful. This also means the model will have fewer parameters, which
helps prevent overfitting.

Word2vec is a popular model used to train word embeddings. There are two
Word2vec approaches, the Continuous Bag-Of-Words (CBOW) model and the Con-
tinous Skip-Gram model. They are both composed of a projection layer (a simple
linear layer). However, the CBOW model tries to predict the missing word given
a context while the Skip-Gram tries to predict the context given a word [36]. Nor-
mally, the second model achieves better results and it is the one generally used. In
Figure 2.7 there are the two models diagrams. As we can see, the CBOW model
receives the context xt−2, xt−1, xt+1, xt+2, with window size equal to 2, of the word xt
and tries to predict it. On the other hand, the Skip-Gram model receives the word

Chapter 2. Background and Related Work 16

Figure 2.7: CBOW and Skip-Gram model diagrams.

xt as input and tries to predict its context. The main advantage of these models is
that they are able to grasp the semantics of the words. For instance,

vec(”Madrid”)− vec(”Spain”) + vec(”France”) ' vec(”Paris”),

which shows the power of Word2vec in finding syntactic and semantic word rela-
tionships.

2.4 Machine Learning in Vulnerability Detection
ML entered the vulnerability detection field as a component in their models that
automatizes some parts of the task. For instance, Yamaguchi et al. [54] use Principal
Component Analysis (PCA) to create vector representations that describe API usage
patterns in the code. Expert analysts then study the presence of vulnerabilities
through these vectors and classify them. Another approach [34] applies taint analysis
to PHP code to extract possible vulnerabilities. Next, they apply ML models to
classify them as vulnerable or not. Here, the ML models help diminish false positives,
a well-known problem of static analysis. Nevertheless, these models still require a
great amount of specialized human effort.

In the following years, ML started to be used by a few authors to identify vulner-
abilities. Medeiros et al. [35] extract code slices from PHP programs and translate
them into an IL developed by the authors which are then classified by a Hidden
Markov Model (HMM) to determine if they are vulnerable. However, a potential
limitation of this approach is that the IL developed by the authors may loose insights
about the computation behind it. Our IL based on PHP bytecode can decompose

Chapter 2. Background and Related Work 17

complex functions into simpler ones, exposing how they are executed and their inter-
connections inside the program. This choice deletes noise present in source code and
at the same time introduces internal information that we believe is useful for vulner-
ability detection. Also, since they use an HMM, it was necessary to define manually
the features that represent the PHP slices. In DL models, feature representation is
greatly simplified.

Recently, DL gave its first steps in the field of vulnerability detection to enhance
automation and reduce human experts’ load [42, 21, 32, 31]. However, the vast
majority focuses on the C/C++ languages [42, 32, 31, 30, 57], which have very
different vulnerability characteristics and origins than those of the web. Since PHP
is present in most web applications, it is imperative to investigate effective models
that locate vulnerabilities in this language. To the best of our knowledge, there
is no DL model that detects web flaws. Even recent DL models for C/C++, such
as Devign [57], still present some issues: code and dataset are unavailable to the
public, the results are questionable, considering the outdated tools that were used
for comparison, and use function level granularity. The examples we use to train
our model have program level granularity, where the instructions may come from
different functions. Moreover, we are the first to explore vulnerability discovery at
PHP bytecode level. Some works have used NLP techniques, such as Word2vec, to
pre-train the embedding vectors [21, 32]. This allows input vectors to have semantic
information embedded in them. Pre-training embedding vectors should be done in a
large dataset, not necessarily the same used for the main task. Because it does not
have to be labeled, it is usually easier to construct. This approach is quite relevant,
especially when the available dataset is small.

There are two interesting approaches that leverage Lower Level Virtual Machine
(LLVM) intermediate code for C/C++ programs [6, 30]. The first creates an embed-
ding space, inst2vec, for code instructions in LLVM representing it as a graph that
comprises both the Data Flow Graph (DFG) and the Control Flow Graph (CFG).
The concepts of DFG and CFG are defined in the next section. The second starts by
extracting the relevant lines from the LLVM code representation to refine the gran-
ularity. Then, they train a model composed of a standard BRNN configuration to
which they added three pooling layers to deal with the fine-grained representation.

In the related field of malware detection, Guo et al. [22] developed a blackbox
mixture model to interpret DL models. Although it is not in the scope of our work,
it is an important subject to study in the future, since interpretability is essential
in vulnerability detection and DL is quite hard to explain, which is often pointed as
a reason to mistrust DL.

To the best of our knowledge, the way we address this task is new and has never
been tried before. Previous work is either on other languages that do not suffer the

Chapter 2. Background and Related Work 18

same types of vulnerabilities [42, 32, 31, 29, 57], use methods that do not take into
account the order of each token [21], or do not use an IL easily scalable and flexible
[35].

2.5 Program Representation
A common limitation pointed out in past research is related to code representation.
DL models for vulnerability detection frequently derive from NLP [42, 31, 32, 30, 6],
where code is interpreted as a natural language. This abstraction does not consider
the control and data flow of programs. Hence, a few works resort to traditional
graph representations for programs, such as Abstract Syntax Tree (AST), Data Flow
Graph (DFG), Control Flow Graph (CFG), Program Dependency Graph (PDG),
and Code Property Graph (CPG), to detect vulnerabilities [4, 29, 57]. Let us briefly
present each graph representation:

• AST [2] is an ordered tree representation whose purpose is to expose the
abstract syntactic structure of a program in a certain programming language.
Each node corresponds to a construct in the source code, which may be an
operation (inner nodes) or operands (leaf nodes).

• CFG [3] is a directed binary tree where each node has two successors with
attributes T (true) and F (false) associated with the outgoing edges. The
subtree with the attribute T side is executed if the statement node represents
is true, otherwise the program executes the subtree with attribute F.

• DFG [40] represents the global data dependence at the operator level and it
was created for program optimization.

• PDG [17] is a program representation in which the nodes are statements and
predicate expressions and the edges of a node represent both the data values
on which the node’s operations depend and the control conditions on which the
execution of the operations depends. In other words, a PDG accommodates
both the data and control dependencies.

• CPG [55] is a directed edge-labelled graph that comprises the AST, CFG and
PDG of the program. Through the assignment of properties to both nodes and
edges, we can know in which simpler representation we are in, which helps with
traversals and information extraction. This representation results in a more
complex graph where we can extract syntax, control and data dependencies.

Backes et al. [4] stores each PHP program as a CPG, to which they add a
Call Graph - a directed graph connecting function call nodes that allow reason

Chapter 2. Background and Related Work 19

about control and data flows at an interprocedural level. Vulnerabilities are then
discovered by appropriate graph traversals. Zhou et al. [57] represents a C function
by a graph that accommodates the AST, CFG, DFG, and Natural Code Sequence.
Thereafter, they train a Graph GRU that learns how to detect vulnerabilities from
these representations.

One of the most recent papers in vulnerability detection for the C language [29]
starts by creating a System Dependency Graph, a PDG to which they add the
inter-procedural invocations. From this representation they extract a reduced set of
statements which relate to a security flaw. This work follows a granularity strategy
similar to ours, by extracting a sequence of tokens from an inter-procedural program
excerpt that takes into consideration a security-critical operation. In our work, we
also start with PHP excerpts that end in a security-critical operation (sensitive sink).
However, we will not use the source code directly, but the bytecode.

These approaches create an overly complicated representation of the code, which
could be difficult to learn and generalize. We believe that our approach with an IL
for PHP is cleaner, and can still accommodate the necessary program dependencies
without resorting to these complex structures.

Chapter 2. Background and Related Work 20

Chapter 3

Datasets and Deep Learning
Architectures for SQLi Detection

Chapter 3 presents our solution to detect SQLi vulnerabilities by leveraging DL,
as well as the definition of the problem that it solves and the datasets we built
to evaluate it. In fact, the chapter presents the three main contributions, which
correspond to the following sections:

1. Problem Definition (Section 3.1)

2. SQLi Detection Deep Learning Network (Section 3.2)

3. Datasets (Section 3.3).

In Section 3.1, we define the problem of classifying PHP code represented in an
intermediate language as vulnerable or not to SQLi. This section is the lead-off of
the thesis, which makes it of the uttermost importance. Here, the reader can grasp
better the nuances we are faced with when solving this problem.

Section 3.2 presents the solution we built for the problem. We designed a DL
network which, through the different layer types that compose it, predicts how likely
the PHP code is of being vulnerable to SQLi.

Finally, Section 3.3 defines the datasets we used. We built six datasets to evaluate
which one is a better fit to our model, namely, the PHP Excerpt Dataset, the
Bytecode Excerpt Dataset, the Opcode Dataset, the Opcode + Operand Dataset,
the Slice Dataset, and the Simplified Slice Dataset. The first contains raw PHP
excerpts retrieved from the SARD. The second contains the corresponding excerpts
in the IL. The remaining datasets were built iteratively with different information
from the IL and were used to train the network.

21

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 22

3.1 Problem Definition
In this section we present the detection of SQLi vulnerabilities in PHP source code,
by analyzing it through an IL and resorting to a DL model. Hence, the section is
divided into three subsections. The first is the main description of the problem. We
will show different examples of code with and without SQLi vulnerabilities and how
it reflects in the corresponding IL. Then, we will present two subproblems that arise
from it: 1) which data is most suitable to solve the problem, and 2) which model
can better classify the data samples correctly.

Figure 3.1: Example of a vulnerable code excerpt adapted from a SARD sample.

Figure 3.2: Example of a non-vulnerable code excerpt adapted from a SARD sample.
Note the similarities of this code excerpt and Figure 3.1

Suppose there is a PHP application to which we can access the source code
to check if it contains SQLi vulnerabilities. Our goal is to create a framework to

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 23

detect SQLi vulnerabilities by analyzing its IL through a DL model. Typically,
web applications have more than one file, and the vulnerability may be scattered
across multiple files. Besides, not all lines of code are equally relevant to detect
SLQi. Hence, choosing the right granularity to solve this task is the first important
decision, as it dictates how useful the model will be in practice. For example,
models that only detect intra-function vulnerabilities, or intra-file vulnerabilities,
end up missing critical cases. If the input is sanitized in a function that belongs to
a different file from where the entry point is located, those models will miss it.

We will consider as analysis unities code excerpts in an IL. A code excerpt is a
sequence of lines (instructions) that begins in an entry point and ends in a sensitive
sink. Those lines do not necessarily belong to the same file, though. This approach
prevents the model from missing cases as the one explained above. Each code excerpt
can be represented in the IL by a sequence of statements, which comprises a bytecode
excerpt.

Therefore, the problem can be defined as finding the best DL model (in a
certain sense) that takes a bytecode excerpt as input, and decides whether
the excerpt is vulnerable to SQLi or not. Ideally, the model achieves this by
learning some structure from several bytecode excerpts to which we give the label
in advance (known as supervised learning). Even though we will use DL, in which a
lot of reasoning is done for us by the model, understanding how an SQLi is detected
is key to finding better solutions. So, let us consider the code excerpts depicted in
Figures 3.1 and 3.2.

The two excerpts are pretty similar. They start by storing some input through
the global variable $ GET (line 45), which is then sanitized in respect to a filter
(line 47). Next, the result is concatenated to a query string, which is then executed
(lines 49 and 56). In Figure 3.1, the filter applied is the FILTER SANITIZE EMAIL,
which aims to check if a given string follows the email format (e.g., mail@mail.com).
However, it cannot escape all metacharacters from SQL, such as ’ and –, which makes
it possible for an attacker to inject malicious SQL code in the input. This excerpt
is, therefore, vulnerable to SQLi. On the other hand, FILTER SANITIZE STRING can
escape all SQL metacharacters. So, Figure 3.2 is not vulnerable to SQLi.

Figures 3.3 and 3.4 show the bytecode excerpts for the excerpts of Figures 3.1
and 3.2, respectively. Here, we can see that there are important aspects that help us
in classifying the excerpts. Firstly, there are the dataflows from the input (stored in
!0) and the query string (stored in !2 (line 18), which can be followed through the
operands’ column. Then, it is important to identify which PHP functions are being
executed. For example, the excerpt 3.3 would not be vulnerable if the mysql query
function was not called on the query string (query execution in lines 31-32 of the
figure). Without it, the attacker would not have access to the information in the

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 24

$tainted ->

$sanitized ->

$query ->

$res = mysql_query($query);

$res ->

FILTER_SANITIZE_EMAIL ->

Figure 3.3: Bytecode excerpt corresponding to code excerpt in Figure 3.1

database. Another crucial information, which is the preponderant factor in this
example, is the filter code, the numeric operand in the fifth statement (SEND VAL
517 for the vulnerable sample). To identify it as the filter code, it has to be the
operand of the SEND VAL opcode and first statement of that instruction (line 47) has
to be INIT FCALL ’filter var’.

This problem introduces two subproblems: which information to use to express
vulnerabilities and semantic aspects of PHP, and which model is capable of pro-
cessing such information to detect SQLi accurately. The following subsections offer
some further details on why these problems exist and how they can be solved.

3.1.1 Which data to use?

As we discussed above, the first important decision we needed to take regarding data
was related to the granularity of the samples analyzed. We saw that a good choice
can be excerpts. Another important aspect is related to which information to choose
from the bytecode excerpts. We could encode everything included, but it could turn
out to be too much information to model. To balance overfitting and accuracy, one
should opt to use the minimum information possible. So, which information is this?

A first approach might be to consider the opcodes only. The downside is that

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 25

FILTER_SANITIZE_STRING ->

Figure 3.4: Bytecode excerpt corresponding to code excerpt in Figure 3.2

we would lose crucial information, such as the function names or their arguments.
For instance, the two excerpts we showed before would be represented by the same
opcode sequence (Figure 3.5). In this case, the model would be unable to learn the
correct labels.

Figure 3.5: Opcode sequence for the excerpts in Figures 3.3 and 3.4.

Thus, including the operands is also essential. In our examples, the sequences
would no longer be equal, as they would contain the filter code, which is the key
to determine the label. Figures 3.6 and 3.7 show the sequence of opcodes and
operands for the vulnerable and non-vulnerable bytecode excerpts, respectively. As
it is possible to observe, the sixth line on both sequences is different, meaning they
can be distinguished.

When processed as natural data, these approaches pose a problem already ex-
posed in Section 2.5. Contrary to natural data, programs are not necessarily pro-

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 26

Figure 3.6: Opcode and operand sequence for the excerpts in Figure 3.3.

cessed sequentially. They might have user function calls, cycles, etc., which alters
the control flow. Past work used graph program representations to tackle this is-
sue, even when they increase the complexity. Another option can be to analyze the
multiple execution paths from each excerpt. We will call it slices. For instance,
the excerpt from Figure 3.8, which is an adaptation of the vulnerable sample from
SARD, has two different slices: a vulnerable slice with the true branch of the if-
statement, which is composed by lines {45, 47, 48, 49, 53, 56, 57, 58, 60, 62}; and
a correct slice with the false branch, which is composed by lines {45, 47, 48, 50, 51,
53, 56, 57, 58, 60, 62}. Note that, even though the original excerpt is vulnerable,
the second slice is non-vulnerable: the variable $tainted defined on line 45 with the
user input is substituted by an empty string on line 51. This prevents the attacker
to inject SQL code, but also invalidates the usage of any user input.

3.1.2 Which model to define?

The model and the data characteristics are closely related. They are, in fact, de-
pendent on each other. As discussed in Section 2.3, the employment of DL models

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 27

Figure 3.7: Opcode and operand sequence for the excerpts in Figure 3.4.

facilitates defining the characteristics for each sample since the layers can learn
them along with the labels. This is especially useful with unstructured data such as
natural data, code or bytecode excerpts.

Hence, it is necessary to choose the network configuration accordingly: types of
layers and their sizes, number of layers, optimization function, and optimization al-
gorithm. Some choices can be made promptly through reasoning (e.g., the choice of
the optimization function). However, some require experimental work, like choosing
the size of the network’s layers or the number of layers. Finally, others require a bit
of both, such as choosing the type of layers. We may start by a more straightfor-
ward configuration that fits the problem well, and then try to improve it through
experimentation. It is through experimentation that the data and the model be-
come dependent on each other. Nonetheless, it should not be too dependent but
only enough to learn the general patterns relevant to solve the problem in question.

In our problem, we have unstructured data, the bytecode excerpts. We want to
classify them as vulnerable or non-vulnerable to SQLi (i.e., binary classification).
Since we have access to the excerpts’ labels, the problem is known as supervised
learning. Hence, we aim at finding a network configuration that can deal with

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 28

Figure 3.8: Opcode and operand sequence for the excerpts in Figure 3.3.

unstructured data, in which the order is important to classify the sample. In Section
2.3 we looked into such layers: RNN and CNN layers. Both components may be
used, however, since the related elements in the bytecode may be further away, an
RNN layer seems a better fit to start with. Regarding the data used for training, we
built different representations from bytecode sequences. In the remaining sections
of this chapter, we present in detail the model and datasets we built to solve this
problem.

3.2 SQLi Detection Network

In this section, we present the methodology we use to classify PHP code (excerpts
or slices) as vulnerable or non-vulnerable to SQLi, by processing them in an IL, i.e.,
bytecode. Firstly, we introduce a sequential DL network capable of classifying PHP
code as being vulnerable or not. The network is composed of Embedding, LSTM,
Dropout, and Dense layers, following the guidelines presented in Section 2.3. We
then present the preprocessing steps the datasets were subject to, such that they
can adequately serve as input to the network. Since the network can only deal with
numeric vectors, we will explain how they are constructed from vectors of opcodes.

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 29

3.2.1 Preprocessing

Since neural networks receive as input arrays of numerical values, we created a
numeric vector for each instance, by mapping the tokens to their corresponding
index in the vocabulary. We will use one of the datasets we constructed, the Opcode
Dataset (OD), to exemplify this procedure. This dataset is solely composed of the
operation names in bytecode (opcodes). Table 3.1 lists OD’s vocabulary. The index
of the opcode in position (i, j) (row, column) is given by expression i ∗ 4 + j + 1.

Figure 3.9 shows how an OD example (part (a)) is represented in a numeric
vector (part (b)). As we can observe the first opcode of the example, FETCH R,
has index 82 (see Table 3.1 by applying the expression 20× 4 + 1 + 1 = 82), which
is the first element of the vector.

(a) Corresponding OD instance

(b) Resulting numeric vector

Figure 3.9: Example of the resulting numerical vector from a sequence of opcodes.

LSTM layers do not support different sized inputs. For that reason, before
training, we pad all smaller sequences with 0’s at the end so that all sequences
have the same size as the longest sequence in the training set. If a longer sequence
appears when evaluating the model, then we truncate it. This means it is possible
that the model may evaluate sequences that are incomplete, namely, without the last
tokens. Even though this technique may affect the model’s performance negatively,
we consider it a fair approach since it is unlikely it will happen often.

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 30

Table
3.1:

Vocabulary
com

posed
ofV

LD
opcodes.

T
he

index
ofthe

opcode
in

position
i,j

is
given

by
i∗

4
+
j+

1.
i
\j

0
1

2
3

0
O

O
V

N
O

P
A

D
D

SU
B

1
M

U
LT

D
IV

M
O

D
SL

2
SR

C
O

N
C

A
T

B
W

O
R

B
W

A
N

D
3

B
W

X
O

R
B

W
N

O
T

B
O

O
L

N
O

T
B

O
O

L
X

O
R

4
IS

ID
E

N
T

IC
A

L
IS

N
O

T
ID

E
N

T
IC

A
L

IS
E

Q
U

A
L

IS
N

O
T

E
Q

U
A

L
5

IS
SM

A
L

L
E

R
IS

SM
A

L
L

E
R

O
R

E
Q

U
A

L
C

A
ST

Q
M

A
SSIG

N
6

A
SSIG

N
A

D
D

A
SSIG

N
SU

B
A

SSIG
N

M
U

L
A

SSIG
N

D
IV

7
A

SSIG
N

M
O

D
A

SSIG
N

SL
A

SSIG
N

SR
A

SSIG
N

C
O

N
C

A
T

8
A

SSIG
N

B
W

O
R

A
SSIG

N
B

W
A

N
D

A
SSIG

N
B

W
X

O
R

P
R

E
IN

C
9

P
R

E
D

E
C

P
O

ST
IN

C
P

O
ST

D
E

C
A

SSIG
N

10
A

SSIG
N

R
E

F
E

C
H

O
G

E
N

E
R

A
T

O
R

C
R

E
A

T
E

JM
P

11
JM

P
Z

JM
P

N
Z

JM
P

Z
N

Z
JM

P
Z

E
X

12
JM

P
N

Z
E

X
C

A
SE

C
H

E
C

K
V

A
R

SE
N

D
V

A
R

N
O

R
E

F
E

X
13

M
A

K
E

R
E

F
B

O
O

L
FA

ST
C

O
N

C
A

T
R

O
P

E
IN

IT
14

R
O

P
E

A
D

D
R

O
P

E
E

N
D

B
E

G
IN

SIL
E

N
C

E
E

N
D

SIL
E

N
C

E
15

IN
IT

F
C

A
L

L
B

Y
N

A
M

E
D

O
F

C
A

L
L

IN
IT

F
C

A
L

L
R

E
T

U
R

N
16

R
E

C
V

R
E

C
V

IN
IT

SE
N

D
V

A
L

SE
N

D
V

A
R

E
X

17
SE

N
D

R
E

F
N

E
W

IN
IT

N
S

F
C

A
L

L
B

Y
N

A
M

E
F

R
E

E
18

IN
IT

A
R

R
A

Y
A

D
D

A
R

R
A

Y
E

L
E

M
E

N
T

IN
C

L
U

D
E

O
R

E
V

A
L

U
N

SE
T

V
A

R
19

U
N

SE
T

D
IM

U
N

SE
T

O
B

J
F

E
R

E
SE

T
R

F
E

F
E

T
C

H
R

20
E

X
IT

F
E

T
C

H
R

F
E

T
C

H
D

IM
R

F
E

T
C

H
O

B
J

R
21

F
E

T
C

H
W

F
E

T
C

H
D

IM
W

F
E

T
C

H
O

B
J

W
F

E
T

C
H

R
W

22
F

E
T

C
H

D
IM

R
W

F
E

T
C

H
O

B
J

R
W

F
E

T
C

H
IS

F
E

T
C

H
D

IM
IS

23
F

E
T

C
H

O
B

J
IS

F
E

T
C

H
F

U
N

C
A

R
G

F
E

T
C

H
D

IM
F

U
N

C
A

R
G

F
E

T
C

H
O

B
J

F
U

N
C

A
R

G
24

F
E

T
C

H
U

N
SE

T
F

E
T

C
H

D
IM

U
N

SE
T

F
E

T
C

H
O

B
J

U
N

SE
T

F
E

T
C

H
L

IST
25

F
E

T
C

H
C

O
N

ST
A

N
T

G
O

T
O

E
X

IT
ST

M
T

E
X

T
F

C
A

L
L

B
E

G
IN

26
E

X
T

F
C

A
L

L
E

N
D

E
X

T
N

O
P

T
IC

K
S

SE
N

D
V

A
R

N
O

R
E

F
27

C
A

T
C

H
T

H
R

O
W

F
E

T
C

H
C

L
A

SS
C

L
O

N
E

28
R

E
T

U
R

N
B

Y
R

E
F

IN
IT

M
E

T
H

O
D

C
A

L
L

IN
IT

ST
A

T
IC

M
E

T
H

O
D

C
A

L
L

ISSE
T

ISE
M

T
Y

V
A

R
29

ISSE
T

ISE
M

P
T

Y
D

IM
O

B
J

SE
N

D
V

A
L

E
X

SE
N

D
V

A
R

IN
IT

U
SE

R
C

A
L

L
30

U
N

K
N

O
W

N
[119]

SE
N

D
U

SE
R

ST
R

L
E

N
D

E
F

IN
E

D
31

T
Y

P
E

C
H

E
C

K
V

E
R

IF
Y

R
E

T
U

R
N

T
Y

P
E

F
E

R
E

SE
T

R
W

F
E

F
E

T
C

H
R

W
32

F
E

F
R

E
E

IN
IT

D
Y

N
A

M
IC

C
A

L
L

D
O

IC
A

L
L

D
O

U
C

A
L

L
33

D
O

F
C

A
L

L
B

Y
N

A
M

E
P

R
E

IN
C

O
B

J
P

R
E

D
E

C
O

B
J

P
O

ST
IN

C
O

B
J

34
P

O
ST

D
E

C
O

B
J

A
SSIG

N
O

B
J

O
P

D
A

T
A

IN
ST

A
N

C
E

O
F

35
D

E
C

L
A

R
E

C
L

A
SS

D
E

C
L

A
R

E
IN

H
E

R
IT

E
D

C
L

A
SS

D
E

C
L

A
R

E
F

U
N

C
T

IO
N

R
A

ISE
A

B
ST

R
A

C
T

E
R

R
O

R
36

D
E

C
L

A
R

E
C

O
N

ST
A

D
D

IN
T

E
R

FA
C

E
V

E
R

IF
Y

IN
ST

A
N

C
E

O
F

V
E

R
IF

Y
A

B
ST

R
A

C
T

C
L

A
SS

37
A

SSIG
N

D
IM

ISSE
T

ISE
M

P
T

Y
P

R
O

P
O

B
J

H
A

N
D

L
E

E
X

C
E

P
T

IO
N

U
SE

R
O

P
C

O
D

E
38

A
SSE

R
T

C
H

E
C

K
JM

P
SE

T
D

E
C

L
A

R
E

L
A

M
B

D
A

F
U

N
C

T
IO

N
A

D
D

T
R

A
IT

39
B

IN
D

T
R

A
IS

SE
P

A
R

A
T

E
F

E
T

C
H

C
L

A
SS

N
A

M
E

JM
P

SE
T

V
A

R
32

D
ISC

A
R

D
E

X
C

E
P

T
IO

N
Y

IE
L

D
G

E
N

E
R

A
T

O
R

R
E

T
U

R
N

FA
ST

C
A

L
L

33
FA

ST
R

E
T

R
E

C
V

V
A

R
IA

D
IC

SE
N

D
U

N
P

A
C

K
P

O
W

34
A

SSIG
N

P
O

W
B

IN
D

G
L

O
B

A
L

C
O

A
L

E
SC

E
SP

A
C

E
SH

IP
35

D
E

C
L

A
R

E
A

N
O

N
C

L
A

SS
D

E
C

L
A

R
E

A
N

O
N

IN
H

E
R

IT
E

D
C

L
A

SS
F

E
T

C
H

ST
A

T
IC

P
R

O
P

R
F

E
T

C
H

ST
A

T
IC

P
R

O
P

W
36

F
E

T
C

H
ST

A
T

IC
P

R
O

P
R

W
F

E
T

C
H

ST
A

T
IC

P
R

O
P

IS
F

E
T

C
H

ST
A

T
IC

P
R

O
P

F
U

C
A

R
G

F
E

T
C

H
ST

A
T

IC
P

R
O

P
U

N
SE

T
37

U
N

SE
T

ST
A

T
IC

P
R

O
P

ISSE
T

ISE
M

P
T

Y
ST

A
T

IC
P

R
O

P
F

E
T

C
H

C
L

A
SSIC

A
L

C
O

N
ST

A
N

T
B

IN
D

L
E

X
IC

A
L

38
B

IN
D

ST
A

T
IC

F
E

T
C

H
T

H
IS

U
N

K
N

O
W

N
[185]

ISSE
T

ISE
M

P
T

Y
T

H
IS

39
SW

IT
C

H
L

O
N

G
SW

IT
C

H
ST

R
IN

G
IN

A
R

R
A

Y
C

O
U

N
T

39
G

E
T

C
L

A
SS

G
E

T
C

A
L

L
E

D
C

L
A

SS
G

E
T

T
Y

P
E

F
U

N
C

N
U

M
A

R
G

S
39

F
U

N
C

G
E

T
A

R
G

S
ISSE

T
E

M
P

T
Y

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 31

3.2.2 Deep Learning Model

Figure 3.10: High level overview of our model.

To address the SQLi vulnerability detection, we propose a DL model following
the guidelines presented in Section 2.3. Figure 3.10 gives a high-level overview of our
network. The network is composed of a minimum of five layers that work sequen-
tially. It produces a final output, between 0 and 1, indicating the probability of the
sample being vulnerable. It receives as input a numeric vector that goes sequentially
through the Embedding, LSTM, Dropout, and two Dense layers, suffering succes-
sive transformations and producing the final output. The LSTM+Dropout block of
layers can be stacked n times to increase the learning capacity of the model.

Since each layer transforms its input differently, the contribution they bring
to the final result is also different. The Embedding layer is responsible for the
creation of the embedding vectors for each element of the vocabulary. We chose the
LSTM layer to learn the relationship between the tokens and their ordering, i.e.,
the order in which the tokens appear in the piece of code that is being processed.
To diminish overfitting, we introduced the Dropout Layer after each LSTM Layer.
Finally, the Dense Layers appear, respectively, to learn to classify the examples, i.e.,
the relationship between the sample and its label, and to transform the vector into
a single value between 0 and 1, which corresponds to how probable is the example

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 32

of being vulnerable to SQLi.
Instead of an LSTM layer, we could have chosen other layers that can learn

sequential relationships, such as the BiRNN, or opt for another type of network
based on attention, as many recent NLP DL models. However, we believe that,
due to the additional complexity they bring, it is preferable to first experiment with
more straightforward configurations known to work in similar tasks before creating
an overly sophisticated network that might not improve the results.

The optimization function most suitable to a binary classification problem is the
Binary Cross Entropy Loss function [12]. Equation 3.1 represents this loss function,
where y is the label vector (1 for vulnerable and 0 for non-vulnerable), p(yi) is
the predicted probability of the example being vulnerable, and N is the number of
examples.

Hp(y) = − 1
N

N∑
i=1

(yi log2(p(yi)) + (1− yi) log2(1− p(yi))) (3.1)

Thus, the network should have at least three layers, with Binary Cross Entropy Loss
function.

Table 3.2: Definition of each layer’s input, output and activation function.

Layer Input Output Activation
Embedding MAX LENGTH, 1 MAX LENGTH, HIDDEN SIZE1 -
LSTM1 MAX LENGTH, HIDDEN SIZE1 HIDDEN SIZE1, 1 Tanh
LSTMi HIDDEN SIZEi−1 HIDDEN SIZEi, 1 Tanh
Dropouti HIDDEN SIZEi, 1 HIDDEN SIZEi, 1 -
Dense HIDDEN SIZEn, 1 HIDDEN SIZEn, 1 ReLU
Dense HIDDEN SIZE, 1 1, 1 Sigmoid

Table 3.2 lists each layer’s input and output sizes, and activation function. The
first LSTM layer receives as input a matrix (of size MAX LENGTH×HIDDEN SIZE)
and outputs a vector (of size HIDDEN SIZE×1). MAX LENGTH corresponds to
the maximum sequence size we allow and it is fixed before training the model to
the longest sequence in the training set. HIDDEN SIZEi is a predefined value that
needs to be tuned along with n, where i ∈ {1, . . . , n}, and it represents the number
of neurons in layer i. The subsequent LSTM and Dropout layers simply transform
their input into vectors of the same size. The choice of activation function of each
layer follows the recommendations of the Keras documentation [12] for the LSTM
layer and of Goodfellow et al. [20] for the Dense layers. They state that the ReLU
is commonly the preferred activation function for neural network layers and Sigmoid
for output layers in classification problems with two classes. Furthermore, we chose
to optimize the network with the Binary Cross Entropy Loss function, as explained
in the previous section.

Next, we present each layer in detail.

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 33

Embedding Layer

The Embedding layer is responsible for mapping the tokens that constitute the vo-
cabulary to embedding vectors. This layer receives a matrix and can simply function
as a lookup table to match the token to the embedding vector (static approach),
or it can change the embedding vectors during training (dynamic approach). The
static approach is only feasible when we have the corresponding embedding vectors,
like when pre-training them through the Word2Vec model. Since we could not build
a big enough dataset to pre-train the embeddings, we chose the dynamic approach.
The matrix is firstly initialized from a uniform distribution [12] and its values are
updated according to the backpropagation algorithm and the training data [11].

LSTM Layer

The LSTM layer follows the configuration presented in Section 2.3, where it processes
the tokens sequentially and learns patterns related to their order. In the vulnerability
detection task, the order of the tokens in the sample is sometimes very relevant. For
instance, it matters if the input is sanitized before being used in a sensitive sink.
Furthermore, since we cannot predict how long these dependencies are, it is crucial
to choose a layer that can deal with long-range dependencies, like the LSTM layer.
Therefore, after mapping each token to the embedding vectors with the Embedding
layer, the model will encode patterns present in the sample related to the order of
the tokens with the LSTM layer.

The network presents n LSTM layers, where n ∈ N. This flexibility in the net-
work allows us to follow Chollet’s recommendations on how to balance underfitting
and overfitting in neural networks [11]. The author suggests that users begin with
a single layer and then add layers until the performance starts to degrade. We can
think of it as each layer is responsible for learning more details about the sam-
ple, where shallower layers learn coarser patterns, and deeper layers learn thinner
patterns. We need to balance between learning in a coarse enough manner to be
representative (avoid overfitting) while being specific enough to label the example
correctly (avoid underfitting).

Dropout Layer

The Dropout layer is introduced after each LSTM layer to reduce overfitting. Dur-
ing training, the layer randomly sets some entries of its input to zero, according to
a given probability (δ). This approach introduces noise in the model, preventing
it from memorizing irrelevant patterns that are too sample-specific, learned by the
previous layers. When evaluating an instance, the layer does not apply any trans-
formation to its input [11], working as a simple identity layer, where the vector is

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 34

transformed in itself.
Although it takes more time for the model to converge, neural network models

that have dropout layers can reduce overfitting further and improve their perfor-
mance [46].

Dense Layers

The last two layers are fully-connected feed-forward neural network layers, i.e., their
neurons are all connected to all neurons from previous and next layers. These are
core elements of neural networks, where they apply a simple transformation of the
form

output = activation(dot(input, weights) + bias).

weights and bias are, respectively, a matrix and a vector created by the layer which
start to be randomly initialized from a uniform distribution and are updated during
training according to the backpropagation algorithm. The input and output vectors
may have the same or different sizes. In our case, as we saw back in Table 3.2,
the first Dense layer preserves the sizes while the second transforms the vector in a
scalar.

The first Dense layer is introduced to learn the relationship between the example
and its label (vulnerable or non-vulnerable). It transforms the input through the
ReLU activation function in a vector with the same shape, which encodes this
relationship. The last layer classifies the example by transforming the input in a
value between 0 and 1. The value corresponds to how likely it is of being vulnerable
to SLQi, and it is computed by the Sigmoid activation function, which is commonly
used in binary classification tasks as ours to produce the final output [11].

To sum up, the model we created, although it may seem simple, is based on pre-
vious literature where it worked for similar tasks. It is a sequential DL model, with
a minimum of five layers, which can grasp patterns in the order of the components
of the input (thorugh the LSTM layers) and the relationship of the sample with its
label (through the Dense layers).

3.3 Datasets

In this section, we present the datasets built by us. This process was done in-
crementally starting in a simpler representation featuring only the opcodes, to a
representation that resulted from a more complex processing, where we have se-
quences of opcodes and operands with linear control flow (which we call slices). The
dataset construction was one of the main focus and contribution of this thesis.

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 35

Thus, we start by extracting PHP code excerpts from SARD to create the first
dataset - the PHP Excerpt Dataset (PED). We then used a tool to obtain the
bytecode for each excerpt, which resulted in the Bytecode Excerpt Dataset (BED).
The first dataset used to train the network was the Opcode Dataset (OD). As
explained before, this dataset’s samples are simply composed of sequences of opcodes
from the BED. Although it is a simplistic representation, we consider it was an
important starting point to assert some information about the behaviour of the
network, such as which optimization algorithm to use. Following the experiments
with the OD, and tending to our knowledge on SQLi, we decided to: 1) incorporate
the operands, and built the Opcode + Operand Dataset (OOD), and 2) create a
dataset where the bytecode statements are executed sequentially, that is, where the
examples have linear control flow. To that matter, we built the Slice Dataset (SD).
Finally, we created the Simplified Slice Dataset (SSD) where we restrict the opcode
space by grouping opcodes we consider that have the same meaning when detecting
SQLi.

Summing up, we constructed six datasets along an incremental process, which
four of them will be assessed with our model in order to determine the one that leads
to a higher accuracy. These datasets are listed below and detailed in next sections:

• PHP Excerpt Dataset (PED)

• Bytecode Excerpt Dataset (BED)

• Opcode Dataset (OD)

• Opcode + Operand Dataset (OOD)

• Slice Dataset (SD)

• Simplified Slice Dataset (SSD)

3.3.1 PHP Excerpt Dataset (PED)

Stivalet and Fong [47] developed a PHP test case generation tool and made it avail-
able in SARD. Each sample is composed of a comment section labeling, a description
and a code excerpt. The code excerpt starts with an entry point and ends with a
sensitive sink.

In our work, we use SQLi test cases from SARD to compose the PHP Excerpt
Dataset (PED). There are a total of 1362 instances - 858 vulnerable and 504 non-
vulnerable. Non-vulnerable instances are code excerpts where the user input is cor-
rectly sanitized or validated (e.g., through the PHP function mysqli real escape string).
On the other hand, vulnerable excerpts lack input sanitization or validation, or such
operations do not avoid malicious inputs effectively. Note that 1) the input may be

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 36

Figure 3.11: Example of a PED instance, without the comment section.

sanitized and still compromise the application, and 2) in vulnerable examples, the
malicious input may be propagated across the excerpt through assignments to other
variables. These show the complexity of the task we intend to solve.

Figure 3.11 shows an instance of the PED, without the comment section, for sim-
plification purposes. This excerpt is labeled as vulnerable. It is easy to understand
why it is effectively vulnerable considering that the variable $tainted receives ex-
ternal input through the global variable $ GET[’UserData’] (entry point) and it is
used in the query statement without any type of validation or sanitization (stored in
$query). This query is thereafter sent to the database by the mysql query function
(sensitive sink) to be executed there, exposing the application to a SQLi vulnerabil-
ity. An attacker can exploit this vulnerability by providing, for example, ’ OR 1=1’
as input, which will retrieve all drivers’ first and last names from the database.

3.3.2 Bytecode Excerpt Dataset (BED)

We started by executing all examples from the PED on VLD, obtaining a bytecode
excerpt for each code excerpt. These bytecode excerpts constitute the Bytecode
Excerpt Dataset (BED). We will use this dataset to obtain the datasets described
in the following sections, and that will be used to train the model.

Figure 2.3 shows the bytecode excerpt obtained on VLD for the PED example
in Figure 3.11. In Section 2.2, we explained the different components of this rep-
resentation. As stated in that section, the use of an IL simplifies the analysis by

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 37

the compiler. Similarly, we believe it could also simplify the analysis that needs to
be performed by the model. Besides, this approach can surely be applied to any
high-level language that can be represented by the same IL.

Figure 3.12: OD instance, obtained from the BED example of Figure 2.3

3.3.3 Opcode Dataset (OD)

To analyze SLQi vulnerabilities, not all the information in a BED instance file is
equally relevant. Therefore, our first approach was to create from each BED instance
a sequence of its opcodes, i.e., a vector containing the opcodes from the op column
(see Figure 2.3), maintaining the order in which they appear there, and with the
same length as the op column. Hence, the Opcode Dataset (OD) is composed of
the same number of vulnerable and non-vulnerable instances of PED and BED.
Therefore, OD comprises 858 vulnerable and 504 non-vulnerable examples, where
each one is a sequence of opcodes of variable length.

Figure 3.12 shows how a OD instance looks like, using the example we have been
following (Figures 3.11 and 2.3). Table 3.3 lists all 198 opcodes from the OD, which
will constitute the tokens of the vocabulary for our model (more details in Section
3.2.2). Basically, these are all the known opcodes from VLD to which we added
an out of vocabulary token (OOD) in case of an unknown opcode appears during the
evaluation of the model.

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 38

Table
3.3:

Vocabulary
for

the
O

pcode
D

ataset.
O

O
V

N
O

P
A

D
D

SU
B

M
U

LT
D

IV
M

O
D

SL
SR

C
O

N
C

A
T

B
W

O
R

B
W

A
N

D
B

W
X

O
R

B
W

N
O

T
B

O
O

L
N

O
T

B
O

O
L

X
O

R
IS

ID
E

N
T

IC
A

L
IS

N
O

T
ID

E
N

T
IC

A
L

IS
E

Q
U

A
L

IS
N

O
T

E
Q

U
A

L
IS

SM
A

L
L

E
R

IS
SM

A
L

L
E

R
O

R
E

Q
U

A
L

C
A

ST
Q

M
A

SSIG
N

A
SSIG

N
A

D
D

A
SSIG

N
SU

B
A

SSIG
N

M
U

L
A

SSIG
N

D
IV

A
SSIG

N
M

O
D

A
SSIG

N
SL

A
SSIG

N
SR

A
SSIG

N
C

O
N

C
A

T
A

SSIG
N

B
W

O
R

A
SSIG

N
B

W
A

N
D

A
SSIG

N
B

W
X

O
R

P
R

E
IN

C
P

R
E

D
E

C
P

O
ST

IN
C

P
O

ST
D

E
C

A
SSIG

N
A

SSIG
N

R
E

F
E

C
H

O
G

E
N

E
R

A
T

O
R

C
R

E
A

T
E

JM
P

JM
P

Z
JM

P
N

Z
JM

P
Z

N
Z

JM
P

Z
E

X
JM

P
N

Z
E

X
C

A
SE

C
H

E
C

K
V

A
R

SE
N

D
V

A
R

N
O

R
E

F
E

X
M

A
K

E
R

E
F

B
O

O
L

FA
ST

C
O

N
C

A
T

R
O

P
E

IN
IT

R
O

P
E

A
D

D
R

O
P

E
E

N
D

B
E

G
IN

SIL
E

N
C

E
E

N
D

SIL
E

N
C

E
IN

IT
F

C
A

L
L

B
Y

N
A

M
E

D
O

F
C

A
L

L
IN

IT
F

C
A

L
L

R
E

T
U

R
N

R
E

C
V

R
E

C
V

IN
IT

SE
N

D
V

A
L

SE
N

D
V

A
R

E
X

SE
N

D
R

E
F

N
E

W
IN

IT
N

S
F

C
A

L
L

B
Y

N
A

M
E

F
R

E
E

IN
IT

A
R

R
A

Y
A

D
D

A
R

R
A

Y
E

L
E

M
E

N
T

IN
C

L
U

D
E

O
R

E
V

A
L

U
N

SE
T

V
A

R
U

N
SE

T
D

IM
U

N
SE

T
O

B
J

F
E

R
E

SE
T

R
F

E
F

E
T

C
H

R
E

X
IT

F
E

T
C

H
R

F
E

T
C

H
D

IM
R

F
E

T
C

H
O

B
J

R
F

E
T

C
H

W
F

E
T

C
H

D
IM

W
F

E
T

C
H

O
B

J
W

F
E

T
C

H
R

W
F

E
T

C
H

D
IM

R
W

F
E

T
C

H
O

B
J

R
W

F
E

T
C

H
IS

F
E

T
C

H
D

IM
IS

F
E

T
C

H
O

B
J

IS
F

E
T

C
H

F
U

N
C

A
R

G
F

E
T

C
H

D
IM

F
U

N
C

A
R

G
F

E
T

C
H

O
B

J
F

U
N

C
A

R
G

F
E

T
C

H
U

N
SE

T
F

E
T

C
H

D
IM

U
N

SE
T

F
E

T
C

H
O

B
J

U
N

SE
T

F
E

T
C

H
L

IST
F

E
T

C
H

C
O

N
ST

A
N

T
G

O
T

O
E

X
IT

ST
M

T
E

X
T

F
C

A
L

L
B

E
G

IN
E

X
T

F
C

A
L

L
E

N
D

E
X

T
N

O
P

T
IC

K
S

SE
N

D
V

A
R

N
O

R
E

F
C

A
T

C
H

T
H

R
O

W
F

E
T

C
H

C
L

A
SS

C
L

O
N

E
R

E
T

U
R

N
B

Y
R

E
F

IN
IT

M
E

T
H

O
D

C
A

L
L

IN
IT

ST
A

T
IC

M
E

T
H

O
D

C
A

L
L

ISSE
T

ISE
M

T
Y

V
A

R
ISSE

T
ISE

M
P

T
Y

D
IM

O
B

J
SE

N
D

V
A

L
E

X
SE

N
D

V
A

R
IN

IT
U

SE
R

C
A

L
L

U
N

K
N

O
W

N
[119]

SE
N

D
U

SE
R

ST
R

L
E

N
D

E
F

IN
E

D
T

Y
P

E
C

H
E

C
K

V
E

R
IF

Y
R

E
T

U
R

N
T

Y
P

E
F

E
R

E
SE

T
R

W
F

E
F

E
T

C
H

R
W

F
E

F
R

E
E

IN
IT

D
Y

N
A

M
IC

C
A

L
L

D
O

IC
A

L
L

D
O

U
C

A
L

L
D

O
F

C
A

L
L

B
Y

N
A

M
E

P
R

E
IN

C
O

B
J

P
R

E
D

E
C

O
B

J
P

O
ST

IN
C

O
B

J
P

O
ST

D
E

C
O

B
J

A
SSIG

N
O

B
J

O
P

D
A

T
A

IN
ST

A
N

C
E

O
F

D
E

C
L

A
R

E
C

L
A

SS
D

E
C

L
A

R
E

IN
H

E
R

IT
E

D
C

L
A

SS
D

E
C

L
A

R
E

F
U

N
C

T
IO

N
R

A
ISE

A
B

ST
R

A
C

T
E

R
R

O
R

D
E

C
L

A
R

E
C

O
N

ST
A

D
D

IN
T

E
R

FA
C

E
V

E
R

IF
Y

IN
ST

A
N

C
E

O
F

V
E

R
IF

Y
A

B
ST

R
A

C
T

C
L

A
SS

A
SSIG

N
D

IM
ISSE

T
ISE

M
P

T
Y

P
R

O
P

O
B

J
H

A
D

L
E

E
X

C
E

P
T

IO
N

U
SE

R
O

P
C

O
D

E
A

SSE
R

T
C

H
E

C
K

JM
P

SE
T

D
E

C
L

A
R

E
L

A
M

B
D

A
F

U
N

C
T

IO
N

A
D

D
T

R
A

IT
B

IN
D

T
R

A
IS

SE
P

A
R

A
T

E
F

E
T

C
H

C
L

A
SS

N
A

M
E

JM
P

SE
T

V
A

R
D

ISC
A

R
D

E
X

C
E

P
T

IO
N

Y
IE

L
D

G
E

N
E

R
A

T
O

R
R

E
T

U
R

N
FA

ST
C

A
L

L
FA

ST
R

E
T

R
E

C
V

V
A

R
IA

D
IC

SE
N

D
U

N
P

A
C

K
P

O
W

A
SSIG

N
P

O
W

B
IN

D
G

L
O

B
A

L
C

O
A

L
E

SC
E

SP
A

C
E

SH
IP

D
E

C
L

A
R

E
A

N
O

N
C

L
A

SS
D

E
C

L
A

R
E

A
N

O
N

IN
H

E
R

IT
E

D
C

L
A

SS
F

E
T

C
H

ST
A

T
IC

P
R

O
P

R
F

E
T

C
H

ST
A

T
IC

P
R

O
P

W
F

E
T

C
H

ST
A

T
IC

P
R

O
P

R
W

F
E

T
C

H
ST

A
T

IC
P

R
O

P
IS

F
E

T
C

H
ST

A
T

IC
P

R
O

P
F

U
C

A
R

G
F

E
T

C
H

ST
A

T
IC

P
R

O
P

U
N

SE
T

U
N

SE
T

ST
A

T
IC

P
R

O
P

ISSE
T

ISE
M

P
T

Y
ST

A
T

IC
P

R
O

P
F

E
T

C
H

C
L

A
SSIC

A
L

C
O

N
ST

A
N

T
B

IN
D

L
E

X
IC

A
L

B
IN

D
ST

A
T

IC
F

E
T

C
H

T
H

IS
U

N
K

N
O

W
N

[185]
ISSE

T
ISE

M
P

T
Y

T
H

IS
SW

IT
C

H
L

O
N

G
SW

IT
C

H
ST

R
IN

G
IN

A
R

R
A

Y
C

O
U

N
T

G
E

T
C

L
A

SS
G

E
T

C
A

L
L

E
D

C
L

A
SS

G
E

T
T

Y
P

E
F

U
N

C
N

U
M

A
R

G
S

F
U

N
C

G
E

T
A

R
G

S
ISSE

T
E

M
P

T
Y

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 39

3.3.4 Upgrades to the Opcode Dataset

After experimenting with the OD, we detected two potential problems:

1. Absence of operands: Analyzing the opcodes without their operands may be
insufficient to detect SQLi vulnerabilities - we cannot extract data flow nor
function names (these only appear in the operands of certain opcodes like
INIT FCALL);

2. Control flow: Although the opcodes from an instance of the OD are processed
sequentially by the model, they may not be executed sequentially, as in the
case of if and while statements.

To overcome these two issues, we propose 1) adding the opcodes’ operands,
and 2) convert excerpts into slices, where a slice represents an execution path of
the excerpt. Each solution originated a new dataset, respectively, the Opcode +
Operand Dataset (OOD), and the Slice Dataset (SD).

Additionally to these two datasets, we built a third that results from the SD by
group-ing some opcodes that we believe that have similar meaning in the context of
SQLi detection. We named it Simplified Slice Dataset (SSD). Let us look at these
three datasets in more detail.

1. Opcode + Operand Dataset (OOD)

We constructed the OOD dataset to solve the absence of operand, which is pretty
straight forward. Each example is composed of a sequence of bytecode statements,
where a statement is itself a sequence of one or more tokens. The first token is
always the opcode, followed by its operands if it has any. Again, the examples may
have different lengths, and their statements too. To construct the dataset, each
BED sample suffers a two step process. First, from each bytecode statement it is
extracted the opcode and its operands. Then, each operand is analyzed and may be
translated to a grouped operand token, as explained further down in this section.
Each instance is represented by a vector in which each element corresponds to a
bytecode statement, where it is also expressed by a vector.

Figure 3.13 depicts the result of the first step when applied to the sequence
in Figure 2.3, where we can observe that the resulting vector comprises a set of
subvectors to represent the bytecode statements.

Analysis of the Operands

Note that the operands’ space is potentially infinite. One must only think of the
amount possibilities there are for strings and numeric values in PHP. This fact leads

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 40

Figure 3.13: Sequence of opcodes and operands obtained from the BED example
depicted in Figure 2.3

to a problem: the vocabulary for this dataset will be huge, and filled with tokens that
appear only once and will possibly never appear again. A model with a vocabulary
like this will struggle to perform well. Also, certain differences do not affect the
classification of the instances. Therefore, we created 6 tokens that can represent
the majority of the operand tokens, and which we believe do not lose too much
information from the sequence.

Table 3.4 presents the grouped operand tokens we defined, resulting from the
analysis we made over the operands of our dataset. We see that, for instance, the
token <FNC> represents any function except those dedicated to SQL and filtering.
For these two cases, we defined two extra tokens: SQL FNC and FTR FNC.

Another important aspect of these transformations is that it keeps some operand

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 41

Table 3.4: List of grouped operands and corresponding token.

Token Operand

<FNC>
Corresponds to a function name
Does not contain the string ’sql’ or is equal to ’filter input’,
’filter var array’ or ’ filter var’

<SQL FNC> Corresponds to a function name
Contains the string ’sql’

<FTR FNC> Corresponds to ’filter input’, ’filter var array’ or ’ filter var’
<QRY> Corresponds to a SQL query
<NUM> A numerical value that is not part of a <FTR FNC>statements

<STR>
Any operand that does not fall in any other category
Cannot be a variable
(variables follow the pattern ’(ˆ[!∼\$]|ˆ->|ˆ:-)\d+\$’)

tokens unaltered, namely variable tokens (since keeping track of the data flow is
crucial to our task) and numeric values that represent PHP constants for filtering.
In our dataset there are only four: 274, 515, 517, and 522, which correspond to
FILTER VALIDATE EMAIL, FILTER SANITIZE SPECIAL CHARS,
FILTER SANITIZE EMAIL, and FILTER SANITIZE FULL SPECIAL CHARS, respectively.

Figure 3.14 represents the OOD instance for the BED example in Figure 2.3.
Each line corresponds to a statement, which is a sequence of tokens. It is easy to
confirm that the first token is always the opcode of the corresponding statement.
Note that the statements have variable length, as mentioned above. The first state-
ment is composed of two tokens - the opcode and a single operand (where the GET
operand is translated to the <STR> token), while the second one has length three -
the opcode and two operands.

The final dataset’s base vocabulary contains 208 tokens (198 opcode tokens pre-
sented in Table 3.3, 6 operand tokens defined in Table 3.4, and 4 tokens correspond-
ing to PHP filter constants). Apart from these tokens, others may be added before
training, corresponding to variable tokens that appear in the train dataset, and that
are left unaltered.

2. Slice Dataset (SD)

A slice represents an execution path, and besides granting linear control flow, which
reduces the representation complexity, its structure is now closer to natural language,
allowing better performance with NLP models such as the ones we will use. This
strategy can, in a simple way, solve the second issue presented at the beginning of
this subsection - the control flow problem.

Since the same excerpt may have several execution paths, a bytecode excerpt may
also originate several slices. To obtain the slice dataset, we manually processed each

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 42

Figure 3.14: OOD instance. Obtained from the example depicted in 2.3 after ap-
plying the transformations in Table 3.4

bytecode excerpt. We analyzed 522 excerpts from which we obtained 1650 slices,
772 of which are vulnerable. Afterwards, we obtained the sequence of opcodes and
operands following the same transformations as for the OOD.

It is important to note that, even though the excerpts are already classified, the
final slice classification may be different. An excerpt without SQLi vulnerabilities
always originates slices free of vulnerabilities. However, a vulnerable excerpt may
have one or more slices that do not create SQLi vulnerabilities. For instance, the
variable containing the vulnerable input may be sanitized inside an if statement,
leading to a vulnerable slice (without the branch with the sanitization) and a non-
vulnerable slice (with the branch with the sanitization). Hence, the classification of
each slice was also manually done.

To produce the excerpts’ slices, we need to look for control flow statements such
as if and while. In more complex applications, other statements would be of
interest, such as switch cases and exceptions, but in our dataset there are only if
and while statements since SARD test cases are small and simple. Therefore, we
will only detail these two. However, the process we present next can be extended
and applied to other control flow statements.

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 43

(a) PHP code excerpt for the if statement

(b) OOD excerpt for the if
statement

Figure 3.15: Example of an if statement in PHP code and opcodes + operands.

(a) Slice corresponding to the
value true.

(b) Slice corresponding to the
value false.

Figure 3.16: Example of an if statement’s slices.

Addressing if statements

The presence of an if statement originates two slices: one corresponding to the value
true of the if condition and another one corresponding to the value false. Figure
3.15 shows how an if statement is processed and separated into two slices. In Figure
3.15 a), there are a few lines taken from a sample of the PED. Figure 3.15 b) shows
the corresponding sequence of opcodes and operands. Figure 3.16 shows the two
slices extracted where: 1) Figure 3.16 a) includes only the statement for code line
52 (the instruction of the true branch), and 2) Figure 3.16 b) contains the statement
for code line 54 (the instruction of the false branch). On the other hand, since the
condition is executed whether it is true or false, both a) and b) contain the first
fours statements, which correspond to that line (line 51).

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 44

(a) PHP code excerpt for the while statement (b) OOD excerpt for the while
statement

Figure 3.17: Example of a while statement PHP code and opcodes + operands.

(a) Slice corresponding to the value
true.

(b) Slice corresponding to the value
false.

Figure 3.18: Example of a while statement’s slices.

Addressing while statements

To deal with while statements, we also decided to produce two slices from the
original excerpt: the first corresponds to when the while condition is false - therefore,
the while block is not executed - and the second corresponds to the case where
the while block is executed once. We can proceed this way because, to detect a
vulnerability, a single representation of the block suffices. Figure 3.17 shows a while
statement taken from a PED example and the corresponding opcode + operand
sequence. Figure 3.18 shows how this while statement is divided into two slices.
Note that in Figure 3.17 b) the while condition (code line 65) appears after the
while block. However, to obtain a linear control flow, these lines precede the while
block in the slices (first four statements in Figures 3.18 a) and b)).

Note that, because the slices have linear control flow, all opcodes related to
control flow changes, such as jumps, are irrelevant and were excluded from the
vocabulary. That is why in Figure 3.16 the JMP and JMPZ disappeared, and in
Figure 3.18 the JMP and JMPNZ disappeared as well. Listing 3.1 shows all excluded
opcodes. This means that the SD base vocabulary has 208 − 11 = 197 tokens (the

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 45

same tokens as OOD minus the control flow tokens). Again, additional tokens may
be added before training, corresponding to variable tokens present in the training
set.

JMP
JMPZ
JMPNZ
JMPZ_EX
JMPNZ_EX
CASE
JMP_SET
JMP_SET_VAR
GOTO
SWITCH_LONG
SWITCH_STRING

Listing 3.1: Opcodes excluded from the list of possible opcodes.

Some slices may have calls to user-defined functions. Therefore, it was necessary
to include statement blocks from user functions, defined in or out of classes, to the
correct sequence location where they will be executed.

3. Simplified Slice Dataset (SSD)

We created a last dataset called Simplified Slice Dataset (SSD) that tries to prevent
overfitting that may be caused by a large number of unique opcodes. Similarly to
the procedure followed when creating the OOD samples, we grouped some opcodes
that have a similar meaning to our task by representing them by the same token. For
instance, there are numerous opcodes for mathematical operations, such as ADD and
MULT, that correspond to the addition and multiplication, respectively. Nevertheless,
to detect an SQLi vulnerability, it is normally irrelevant which one appears in the
example. So, we represent such operations by the token <OPER>. Table 3.5 shows
the tokens we defined to aggregate opcodes with similar functionalities. We defined
10 new tokens to represent 101 opcode tokens. Therefore, the SSD has 197− 101 +
10 = 106 unique tokens that form its base vocabulary, which correspond to SD base
vocabulary tokens minus the old opcode tokens plus the new opcode tokens.

Figure 3.19 exemplifies the changes applied to an SD sample in the SSD. The
figure shows how the example from Figure 2.3 is represented in the SD (Figure
3.19(a)) and SSD (Figure 3.19(b)) when the while statement in line 48 is true. Note
that, for instance, the opcode in the first line of (a) is FETCH R, which corresponds
to the token <FETCH>, as shown in Table 3.5. The remaining tokens in that line
remain equal, since they are operand tokens.

To sum up, we created six datasets: the PHP Excerpt Dataset, the Bytecode Ex-
cerpt Dataset, the Opcode Dataset, Opcode + Operand Dataset, the Slice Dataset,

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 46

(a) SD example (b) SSD example

Figure 3.19: SD and SSD examples corresponding to the OOD example in Figure
3.14 when the while statement is true.

and the Simplified Slice Dataset. We used the first two datasets to understand
how the SLQi detection could be carried out, and to build the remaining datasets.
As for the rest, we used them to train and test the model. Figure 3.20 shows the
relationship between different components we presented throughout this section.
Continuous lines define dataset dependencies from other datasets. For example, the
BED could not be originated without the PED. On the other hand, the BED is es-
sential for the construction of the OD, the OOD, and the SD. Dashed lines indicate
the datasets resort to an external resource, such as the SARD or the conversion in
grouped operator tokens of Table 3.5.

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 47

Table 3.5: List of grouped opcodes and corresponding token.

Token Opcode

<INIT CALL>

INIT FCALLINIT FCALL BY NAME
INIT NS FCALL BY NAME
INIT METHOD CALL
INIT STATIC METHOD CALL
INIT USER CALL
INIT DYNAMIC CALL

<DO CALL>

DO FCALL
DO ICALL
DO UCALL
DO FCALL BY NAME

<DECLARE>

DECLARE CLASS
DECLARE INHERITED CLASS
DECLARE FUNCTION
DECLARE LAMBDA FUNCTION
DECLARE ANON CLASS
DECLARE ANON INHERITED CLASS
DECLARE CONST

<FETCH>

FECTH R
FECTH DIM R
FECTH OBJ R
FECTH W
FECTH DIM W
FECTH OBJ W
FECTH RW
FECTH DIM RW
FECTH OBJ RW
FECTH IS
FECTH DIM IS
FECTH OBJ IS
FECTH FUNC ARG
FECTH DIM FUNC ARG
FECTH OBJ FUNC ARG
FECTH UNSET
FECTH DIM UNSET
FECTH OBJ UNSET
FECTH LIST
FECTH CONSTANT
FECTH CLASS
FECTH CLASS NAME
FECTH CLASSICAL CONSTANT
FECTH STATIC PROP R
FECTH STATIC PROP W
FECTH STATIC PROP RW
FECTH STATIC PROP IS
FECTH STATIC PROP FUNC ARG

<UNSET>
UNSET STATIC PROP
UNSET VARUNSET DIM
UNSET OBJ

<OPER>

NOP
ADD
SUB
MULT
DIV
MOD
SL
SR
BW OR
BW AND
BW XOR
BW NOT
BOOL XOR
PRE INC
PRE DEC
POST INC
POST DEC
ASSIGN ADD
ASSIGN SUB
ASSIGN MULT
ASSIGN DIV
ASSIGN MOD
ASSIGN SL
ASSIGN SR
ASSIGN BW OR
ASSIGN BW AND
ASSIGN BW XOR
POW
ASSIGN POW
PRE INC OBJ
PRE DEC OBJPOST INC OBJ
POST DEC OBJ

<CONCAT>
CONCAT
ASSIGN CONCAT
FAST CONCAT

<COMPR>

IS IDENTICAL
IS NOT IDENTICAL
IS EQUAL
IS NOT EQUAL
IS SMALLER
IS SMALLER OR EQUAL
ISSET ISEMPTY PROP OBJ
ISSET ISEMPTY VAR
ISSET ISEMPTY DIM OBJ
ISSET ISEMPTY STATIC PROP
ISSET ISEMPTY THIS
ISSET EMPTY

<SEND VAR>

SEND VAR
SEND VAR NO REF EX
SEND VAR EX
SEND VAR NO REF

<SEND VAL>
SEND VAL
SEND VAL EX

In Table 3.6 we summarize the sizes of the datasets. The SD and SSD are the
only ones that have different sizes. Although they were obtained from as little as
522 PHP excerpts, the dataset is larger and more balanced. We also present the size
of the base vocabulary for each dataset. A base vocabulary comprises all previously

Figure 3.20: Diagram representing the dependencies between the different datasets.

Chapter 3. Datasets and Deep Learning Architectures for SQLi Detection 48

Table 3.6: Datasets sizes.

Dataset Vulnerable (%) Total Size Base Vocabulary Size
PHP Excerpt Dataset 858 (63%) 1362 -
Bytecode Excerpt Dataset 858 (63%) 1362 -
Opcode Dataset 858 (63%) 1362 198
Opcode + Operand Dataset 858 (63%) 1362 *208
Slice Dataset 772 (47%) 1650 *197
Simplified Slice Dataset 772 (47%) 1650 *106

* the size is variable

known tokens of a given dataset, without looking at the training set. OD is the only
dataset whose vocabulary is fixed. The rest, due to the different variable tokens
that may appear in the train dataset, will have different sizes. Before training, we
add to the vocabulary tokens that appear in the training set and not in the base
vocabulary.

Chapter 4

Implementation

In this chapter, we will go over some implementation details. We will start with
the construction of the datasets and then specify how the model configurations were
built and evaluated. For a better understanding, we will use conceptual modelling
and provide the algorithms implemented. Since the work was done in an iterative
manner, starting with the OD and finishing with the SSD, some algorithms only
represent the final implementation. We will also briefly explain how the algorithms
evolved when necessary.

We used Python scripts to execute all tasks. Furthermore, we chose the well-
known Python package Keras [12] to implement the various model configurations.
Keras provides a convenient and easy-to-use interface for developing deep neural
networks. It works as a wrapper for the Tensorflow package [9], which needs more
details to configure a model.

4.1 Dataset Construction

In this section, we will take a closer look at the strategy used to build the datasets.
After extracting the PHP code excerpts from SARD and obtaining the corresponding
bytecode, we gathered them in two directories: one for the code excerpts (which
comprise the PED), and another for the bytecode excerpts (the BED). The BED
was then used to collect information to create the OD and OOD. Moreover, the BED
was also utilized to create the BED with slices for the SD and SSD. For information
extraction, we implemented preprocess.py. This script creates a dataset in a given
directory by gathering the intended information from bytecode excerpts in the input
directory (BED or BED with slices).

Algorithm 1 presents the necessary steps to create the datasets. This procedure
receives as input the source directory where the bytecode files are located (srcdir),
the destination directory where the dataset will be stored (dstdir), the information
to include in the dataset (info - opcodes or opcodes+parameters), and two booleans

49

Chapter 4. Implementation 50

- one indicating whether we want to group the opcodes with similar meaning (opc-
group) and another indicating whether we want to group the operands belonging to
the same category (oprgroup). For each bytecode file in the source directory, the
algorithm extracts the bytecode (line 2) and then the intended information from
that bytecode, producing a sequence of opcodes or a sequence of opcodes+operands
(line 3). Afterwards, it applies the opcode and operand grouping taking into con-
sideration the value of the variables opcgroup and oprgroup (lines 5 and 8). Finally,
the resulting sequence is written to a file and stored in the dstdir directory.

input : A source directory with bytecode files srcdir;
A destination directory dstdir for the new dataset;
The information info to include in the new dataset;
Booleans opcgroup/oprgroup indicating whether the
opcodes/operands are grouped

output: A set of files in directory dstdir
1 foreach file in srcdir do
2 code ← GetCode(file);
3 seq ← GetSeq(code, info);
4 if opcgroup then
5 seq ← opc2tkn.TransformOpcodes(seq)
6 end
7 if oprgroup then
8 seq ← opr2tkn.TransformOperands(seq)
9 end

10 write seq to new file in dstdir;
11 end

Algorithm 1: How to create OD, OOD, SD, and SSD

To group opcodes and operands according to Tables 3.4 and 3.5, we created two
Python modules - opc2tkn.py and opr2tkn.py - that group opcodes and operands
to the corresponding tokens, respectively. The main functions of those modules are
TransformOpcodes (module opc2tkn.py) and TransformOperands (module opr2tkn.py),
which are executed in Algorithm 1 in lines 5 and 8. These two functions are similar:
they receive the sequence of a bytecode file and, for each statement representation,
they check whether it needs to be transformed or not. In the end, the functions
return the sequence with the transformations. Other functions in the modules check
which is the group of the opcode/operand being analyzed. These modules were
used to group the operands when building the OOD and SD, and to group both the
opcodes and operands for the SSD construction.

There are two functions that play a crucial role in this procedure: GetCode
and GetSeq. Algorithms 2 and 3 specify how these functions were implemented.
Function GetCode creates a dictionary containing the bytecode organized per class

Chapter 4. Implementation 51

and function, i.e., the keys in the dictionary are class or function names, whereas the
values are a list of statements if it is a function, or a dictionary with the functions
of the corresponding class. Thus, we need to extract each function’s definition from
the bytecode file. A function definition starts with a line stating the class/function
name. For example, the bytecode of a function named Foo would have a line,
previous to the actual bytecode of the function, stating Function Foo:. Therefore,
this function’s bytecode would be stored as a sequence, in dict, under the key Foo.
Analogously, classes’ bytecodes are stored in dict under a key with their name. The
difference is that, since classes normally have functions (or methods) themselves,
their bytecode is stored in dictionaries instead of sequences, which means those
dictionaries store the classes’ functions. Algorithm 2 receives a bytecode file file. It
starts by extracting the bytecode corresponding to the main part of the program,
and add it to the dictionary dict under the key main. After the main, it is possible
to have the user-defined functions and classes definitions. To store it in dict, we
look for lines starting with the word ’Class’ or ’Function’, as it indicates that the
following bytecode belongs to that class/function. For those cases, the bytecode is
stored in dict under a key with the name of the class/function.

This procedure is a little bit different for the OD. Since the OD was our first
approach, we chose not to work with the user-defined functions’ bytecode. Hence,
we did not apply the while block of the algorithm.

input : A bytecode file file
output: Dictionary dict with bytecode sequences for the bytecode in file file

1 i← 0;
2 i,main← GetMainCode(i);
3 dict[′main′]← main;
4 i← i+ 1;
5 while i < number of file lines do
6 if first word of line i is ’Class’ then
7 class name← GetClassName(i);
8 dict [class name] ← GetClassCode();
9 end

10 if first word of line i is ’Function’ then
11 function name← GetFunctionName(i);
12 dict [function name] ← GetFunctionCode();
13 end
14 i← i+ 1;
15 end
16 return dict;

Algorithm 2: Get the bytecode from a bytecode file (GetCode)

Algorithm 3 gives the details for the function GetSeq, where the final sequence

Chapter 4. Implementation 52

seq is constructed. This sequence is our representation of the bytecode for the
corresponding excerpt. In this algorithm, we feed the function with the bytecode
dictionary dict and the information info we want to extract. The sequence starts as
an empty list. Next, we go through the statements under the key main stored in dict.
Note that, as defined in Section 2.2, we call instruction to a line of code and statment
to a line of bytecode, i.e., an instruction may be translated into multiple statements.
If the statement corresponds to a call of a user-defined function (note that it may
be defined inside a class), it means the statement belongs to a code instruction that
executes a user-defined function. Hence, we must: 1) append to seq the rest of the
statements of the aforementioned instruction, and 2) look for the bytecode for the
user-defined function in dict to also append it to seq. Otherwise, the statement is
simply appended to seq. All statements pass through the ComposeStatement, where
the statement gets the desired information and format (i.e., the opcode or a list with
the opcode and its parameters).

input : A dictionary dict with the bytecode;
The information info to include in the new dataset

output: The final sequence seq
1 seq ← [];
2 for i← 0, . . . , len(dict[′main′])− 1 do
3 if statement i is a call to a user-defined function then
4 fname← function name;
5 while statement i belongs to the same instruction do
6 seq.Append(ComposeStatement(statement i, info));
7 i← i+ 1;
8 end
9 foreach statement ∈ dict [fname] do

10 seq.Append(ComposeStatement(statement, info));
11 end
12 else
13 seq.Append(ComposeStatement(statement i, info));
14 end
15 end
16 return seq;
17)
Algorithm 3: Get the desired information from a bytecode statement (Get-
Seq

4.2 Network Construction and Model Evaluation

To construct the various network configurations and evaluate the resulting models,
we implemented the Python script model.py. Algorithm 4 shows the overview of

Chapter 4. Implementation 53

this script. The algorithm receives as input:

• the directory where the dataset that will be used to train and test the model
is stored (srcdir);

• the directory where the collected metric values for each configuration will be
stored (dstdir);

• a dictionary hparam dict containing the values we want to experiment for each
hyperparameter (hidden size, dropout rate, and learning rate);

• the file base voc with the base vocabulary for the corresponding dataset.

It starts by executing the function GetData, which outputs the training and test
sets (X train, y train,X test, y test) and the base vocabulary. For each combina-
tion of hyperparameter values hparam grid, the algorithm performs the 10-fold cross
validation three times. Since the experiments with the OD did not use grid search,
the configuration values were manually set instead of storing them in a dictionary.
Next, the algorithm creates a dictionary dict test where the evaluation metrics of
each fold will be stored, and executes ExecCV (line 4), where the cross validation
is performed. The function ExecCV is also responsible for outputting the updated
dict test with the performance of every fold. On line 5, we write the dictionary to a
CSV file and store it in dstdir.

input : A dictionary hparam dict with all hyperparameter values to try A
source directory srcdir with the dataset;
A destination directory dstdir where the metrics results will be

stored;
A file base voc with the base vocabulary for the dataset

output: CSV files, each containing the metrics of each fold for a network
configuration

1 X train, y train,X test, y test, vocabulary ← GetData(srcdir,base voc);
2 foreach hparam grid ∈ ParameterGrid(hparam dict) do
3 dict test← {accuracies′ : [],′ precisions′ : [],′ recalls′ : []};
4 dict test← ExecCV(X train, y train, X test, y test, vocabulary,

hparam grid, dict test);
5 FromDictToCVS(dict test, GetCSVTestName(hparam grid));
6 end

Algorithm 4: Construct, train, and test the DL network.

To understand better how we get the dataset, we provide the implementation
of the function GetData (Algorithm 5), in which we prepare the train and test
datasets. The algorithm receives the source directory srcdir where the dataset is

Chapter 4. Implementation 54

stored, and the base vocabulary file base voc. For each file in srcdir, we append its
bytecode sequence to the list docs and its label (0 or 1) to the list y (lines 4 and
5, respectively). Next, we get the content of base voc into the variable vocabulary.
On line 10, we proceed to the split of the dataset (docs) into train and test. This
function produces the stratified train test split mentioned in Section 5.1, in which
the train and test sets keep the proportions between true and false labels equal to
the original dataset, as indicated by the instruction on line 9.

input : A source directory srcdir with the dataset;
A file base voc with the base vocabulary for the dataset

output: The dataset’s base vocabulary vocabulary;
The train and test datasets X train, y train, X test, y test

1 docs← [];
2 y ← [];
3 foreach file ∈ srcdir do
4 docs.Append(sequence in file);
5 y.Append(corresponding label for the sequence in file);
6 end
7 vocabulary← base voc content;
8 test size← 0.3;
9 stratify ← y;

10 X train, y train,X test, y test← TrainTestSplit(docs, test size, stratify);
11 return X train, y train, X test, y test, vocabulary;
Algorithm 5: Get the train and test data, and the base vocabulary (Get-
Data)

Algorithm 6 shows the implementation of the function ExecCV. The algorithm
starts by creating a data structure that stores the indices from X train that will be
used for train and test in each fold (line 3). Then, for each fold, we first obtain the
actual train and test sets (X subtrain,y subtrain, X subtest,y subtest) by executing
the function TrainTestRSFKIndices (line 5). In lines 6 to 8, we prepare the data to
have the appropriate format for our model (i.e., numeric sequence where all entries
have the same length). Thus, we completed the vocabulary with the remaining
tokens from the train setX subtrain (line 6). Afterwards, we transform the sequence
into a numeric sequence following the preprocessing described in Chapter 5 (line 7),
and we pad the data by checking the longest sequence size and adding ’0’ to the end
of the others.

We create the model on line 9 with the desired configuration (maximum length
of the input vectors, number of nodes for the LSTM layer, dropout rate and learning
rate) and, on line 11, the model is trained for the (X subtrain,y subtrain) dataset.
The batch size indicates how many training points are updated in an epoch. This
value relates to the machine used and the granularity of the optimization algorithm.
Although it can be tuned as a hyperparameter, we decided the value based only on

Chapter 4. Implementation 55

the machine used, a 64-bit machine. To finish, on line 12 we execute EvaluateFold,
which uses the trained model to predict the labels on the test set X subtest. It then
compares the predictions to the true labels y subtest, and adds the corresponding
evaluation metrics to dict test.

input : The train dataset X train, y train;
A dictionary with the hyperparameter values hparam dict;
The base vocabulary vocabulary;
The dictionary dict test with the evaluation metrics for each fold

output: A set of CSV files with the test results for each fold and each test
configuration;
An update on dict test, the dictionary with the evaluation metrics
for each fold

1 n splits← 10;
2 n repeats← 3;
3 rskf indices← RepeatedStratifiedKFoldIndices (n splits, n repeats);
4 for i ∈ n splits× n repeats do
5 X subtrain,X subtest, y subtrain, y subtest←

TrainTestRSKFIndices(X train, y train, i);
6 vocabulary← GetCompleteVocabulary(X subtrain, vocabulary);
7 X subtrain,X subtest← TokenToNumeric(X subtrain, X subtest);
8 X subtrain,X subtest,MAX LENGTH ← PadData(X subtrain,

X subtest);
9 model← CreateModel(MAX LENGTH, hparam dict [’hidden size’],

hparam dict [’delta’], hparam dict [’learning rate’]);
10 batch size← 64;
11 model.Fit(X subtrain, y subtrain, hparam dict [’num epochs’],

batch size);
12 dict test← EvaluateFold(X subtest, y subtest, model, dict test);
13 end
14 return dict test;
Algorithm 6: Perform the cross validation for a configuration of hyperpa-
rameters (ExecCV)

The implementation of the function CreateModel, invoked by ExecCV (Algo-
rithm 6), is provided in Algorithm 7. It creates a sequential model (line 1), to
which it sequentially adds the model layers (lines 3, 5, 6, 8, and 9) with the given
hyperparameters. The first layer added, the Embedding layer, keeps a matrix for
the embedding vectors. So, the operands V OCAB SIZE and hidden size of the
function Embedding indicate the matrix size; MAX LENGTH indicates the layer’s
input length, whereas the boolean trainable taking the value TRUE indicates we
want the embedding vectors to be learned along the other model’s parameters (in-

Chapter 4. Implementation 56

stead of being fixed). Then, we add the LSTM layer with input (and output) size
equal to hidden size and ask not to return the resulting sequences. For the experi-
ments with 2 LSTM layers, the first LSTM layer would have this parameter set to
True. Next, we add the Dropout layer and the two Dense layers with the appropriate
sizes discussed in Section 3.2.2. Finally, on line 12, we compile the model using the
loss function binary crossentropy and the optimization algorithm RMSProp (initial-
ized with the given learning rate). Again, for the first experiments with the OD,
we also used other optimization algorithms. Here, we also define which metrics the
model should track, which are binary accuracy, binary precision, and binary recall.
Section 5.1 provides further details on these metrics.

input : The maximum length MAX LENGTH for the input sequences;
The vocabulary size V OCAB SIZE;
The hidden size hidden size;
The dropout rate delta;
The learning rate learning rate

output: The parameterized model model
1 model ← Sequential();
2 trainable← True;
3 model.add(Embedding(VOCAB SIZE, hidden size, MAX LENGTH,

trainable));
4 return sequences← False;
5 model.add(LSTM(hidden size, return sequences));
6 model.add(Dropout(delta));
7 activation←′ relu′;
8 model.add(Dense(hidden size, activation));
9 model.add(Dense(1), Activation(’sigmoid’));

10 loss←′ binary crossentropy′;
11 metrics← [binary accuracy, binary precision, binary recall];
12 model.compile(loss, RMSprop(learning rate), metrics);
13 return model;

Algorithm 7: Implementation of the function CreateModel

Chapter 5

Experiments

In this chapter, we present the iterative experiments conducted to determine the final
configuration of the DL network. We used two fundamentally different approaches
for the experiment.

The first approach was a manual hyperparameter tuning, conducted with the
Opcode Dataset (OD), which yielded starting values for the hyperparameters. We
used those starting values for further experiments. Additionally, we also tested the
architecture with three different optimization algorithms (ADADELTA, RMSProp,
and Adam) and for 1 and 2 LSTM layers. The second approach was a grid search,
which we used for the remaining datasets. We performed grid search employing an
architecture composed of 1 LSTM layer and the RMSProp algorithm only, as it was
under these configurations that the model performed better.

All experiments followed the proceedure mentioned in Section 5.1, with the 10-
fold cross validation repeated three times on the training set. The accuracy, precision
and recall metrics were also computed during the experiments.

5.1 How to evaluate the model

To evaluate the model, we applied a 70/30 random stratified train-test split to the
dataset. Stratified operations maintain the proportion of vulnerable/non-vulnerable
samples in each set, so both train and test sets resulting from the split will have the
same proportion as the original dataset. Furthermore, we applied to the training
set a stratified 10-fold cross-validation three times to each model. Applying this
technique allows us to 1) train and validate each model 30 times on 70% of the data,
and 2) test the final model on 30% of never-seen test data.

In classification tasks like the one we aim to solve, it is common to measure
how good the model is at generalizing, by measuring its performance at a set of
metrics. Let TP, TN, FP and FN be, respectively, the number of true positives,
true negatives, false positives, and false negatives. We considered three well known

57

Chapter 5. Experiments 58

metrics: accuracy (Equation 5.1), precision (Equation 5.2), and recall (Equation
5.3).

Accuracy = TP + TN

TP + TN + FP + FN
(5.1)

Precision = TP

TP + FP
(5.2)

Recall = TP

TP + FN
(5.3)

The accuracy indicates the rate of correctly predicted examples. Precision yields
the proportion between correctly classified positive samples and positively classified
samples. Recall provides the true positive rate, that is, the rate of positive examples
correctly classified by the model. The three metrics are real numbers between 0 and
1. The higher the values of the three metrics, the more confident we are that the
generalization power of the model is powerful. Normally, a better precision can be
obtained at the cost of reducing the recall, so our goal is to balance the three metrics.

Since we train and validate each model 30 times, there will be 30 values for
each metric, allowing us to make better-informed decisions: by having 30 values per
metric, we can produce statistics that are more robust and trustworthy than a single
value, which could easily be obtained by chance and lead us to faulty conclusions.
This technique is even more relevant when working with a small dataset, such as
ours, where the variance of the estimator is usually higher.

5.2 Evaluation with the Opcode Dataset
The experiments with the OD provided the first results of applying DL models to
our vulnerability discovery task. To gain some practical understanding of the archi-
tecture and its appropriateness to the task, we decided to approach the experiments
with the OD differently than we did with the remaining datasets. In practice, this
translates to not optimizing the optimizer’s hyperparameters default values in these
first experiments (i.e., keeping them fixed). Table 5.1 lists these values.

Table 5.1: List of the default hyperparameters of each optimizer.

ADADELTA RMSProp ADAM
lr = 1 lr = 0.001 lr = 0.001
rho = 0.95 rho = 0.9 beta 1 = 0.9

beta 2 = 0.999

In the following sections, we present the specifications we used to run the exper-
iments for both the model with 1 LSTM and 2 LSTM layers.

Chapter 5. Experiments 59

5.2.1 Model with 1 LSTM layer
Configuration of the Experiments

Although we fixed the optimizer’s hyperparameters, we decided to test other vari-
ables, namely:

• Number of units in the LSTM layer, HIDDEN SIZE1 (since there is only one
LSTM layer, let us denominate it by HIDDEN SIZE). The number of units in
the LSTM layer is strongly related to the model’s learning capacity: the more
units the layer has, the more we expect it to learn from the data. However,
there is the usual trade-off: the more parameters a model has, the more likely
it is to overfit the data, which results in the loss of generalization capacity by
the model;

• Dropout rate, δ, a value between 0 and 1 associated with the Dropout Layer.
It corresponds to the probability that a specific unit in the layer receives a
‘corrupted’ input: instead of receiving the expected input, the input vector is
converted to a vector full of zeros. This process is called dropout, and its goal
is to force the model to learn a good generalization of the data using as few
parameters as possible;

• Number of epochs, which is the number of times the model cycles (i.e., updates
its parameters) on the training set. Increasing the number of epochs usually
results in a lower training loss. Once again, we need to be careful to tune this
parameter, so that the model does not overfit on the training data.

We performed individual and separate manual tuning for these parameters. We
also ran experiments for the three most suitable optimization algorithms for neural
networks: ADADELTA, RMSProp, and ADAM. Table 5.2 shows the configurations
tested for each possible parameter combination. For each parameter, we started
by testing a wider range of values: {10, 20, 40, 80, 160} for the HIDDEN SIZE and
number of epochs and {0.2, 0.3, 0.5} for δ. Next, we fine-tuned the search by testing
two values around the best result (one smaller and one greater), repeating the process
as it seemed fit. Each configuration was tested for 10 epochs, except, of course, when
tuning the number of epochs itself.

Results

According to the previously described approach, the results of each optimizer (trained
with the best values found for each hyperparameter) are shown in Table 5.3. We can
observe that ADADELTA is the optimizer with the worst performance. The values
for the metrics are high and ADADELTA achieves higher values in two out of three

Chapter 5. Experiments 60

Table 5.2: Configurations tested for each hyperparameter.

Optimizer HS δ NE

ADADELTA
10, 20, 40, 70 0.20, 0.30, 0.50 10, 20, 40,
80, 90, 160 70, 80, 90,

160, 200

RMSProp
10, 20, 40, 60 0.15, 0.20, 0.25, 10, 20, 40, 70,
70, 75, 80, 85 0.30, 0.50 80, 90, 160
90, 100, 160

ADAM
10, 20, 40, 0.20, 0.25, 0.30, 10, 20, 30, 35,
65, 70, 75, 0.35, 0.50 40, 45, 50, 70,
80, 90, 160 80, 90, 160

HS - HIDDEN SIZE, δ - dropout rate, NE - number of epochs

Table 5.3: Results of the accuracy, precision and recall for the various configurations
analysed.

Optimizer HS δ NE Accuracy Precision Recall
ADADELTA 80 0.30 160 0.9487 0.9837 0.9344
RMSProp 80 0.15 70 0.9535 0.9651 0.9614
ADAM 70 0.30 35 0.9413 0.9876 0.9189

HS - HIDDEN SIZE, δ - dropout rate, NE - number of epochs

metrics - accuracy and recall - than ADAM, but it takes the longest to converge
- it takes 160 epochs, against 70 epochs for RMSProp and 35 for ADAM. ADAM
and RMSProp have the best results in different metrics: RMSProp has the best
accuracy and recall, whereas ADAM has the best precision. Also note that ADAM
can nearly achieve an accuracy as high as RMSProp (0.9413 against 0.9535) with
only half the epochs (35 against 70) and less units (70 against 80). Since we are
more interested in metrics’ results (as opposed to computation cost), we consider
that RMSProp achieves the best results under this hypothesis.

Figure 5.1 shows 9 box-plots that result from the tuning of RMSProp. The plots
are organized in a 3 × 3 matrix, where each line corresponds to a hyperparameter,
and each column to a metric. As we can see, the values of the box-plots tend
to increase as the values of the horizontal axis increase, until they reach a point
after which they start to decrease. There are a few machine learning concepts we
should consider when analysing multiple box-pots and multiple metrics: i) although
accuracy is the most intuitive metric, one’s goal should always be to balance the
performance of the three metrics; ii) it is important to consider not only the mean
and median in each plot, but also the variance, represented by the height of the box;
and iii) finally, when comparing two relatively similar box-plots, one should prefer
the one that yielded fewer outliers. Based on these guidelines, we conclude that the

Chapter 5. Experiments 61

best parameter selection for a 1 LSTM layer neural network is the following: 80
hidden units, 0.15 dropout rate and 70 epochs for training..

Figure 5.1: Box-plots for the hyperparameter tuning of the hidden size of the LSTM
layer, dropout rate and number of epochs (respectively, the first, second and third
rows), using the RMSProp optimizer.

5.2.2 Model with 2 LSTM layers
Configuration of the Experiments

Although the results for the 1-LSTM-layer model were good, we wanted to verify
if it was possible to increase the model’s performance by adding an extra LSTM
layer. Therefore, we extended the experiments for a model with 2 LSTM+Dropout
blocks. The experiment setting was similar to the previous one, but we added two
new hyperparameters for the new layers. The new model’s hyperparameters are:
HIDDEN SIZE1, HIDDEN SIZE2, δ1, δ2, and the number of epochs. Once
more, we used manual hyperparameter tuning by firstly tuning HIDDEN SIZE1

and HIDDEN SIZE2, then δ1 and δ2, and finally the number of epochs. From
now on, we will only resort to the RMSProp optimizer because it produced the best
results for the 1-LSTM-layer model.

Table 5.4 shows the values tested for each hyperparameter. Considering that the
deeper a layer is the more specialized it is, the chosen values for HIDDEN SIZE2

are higher than the values chosen for HIDDEN SIZE1. That is, we expect the

Chapter 5. Experiments 62

second LSTM layer to learn finer details than the first one, thus it needs more
neurons. On the other hand, for the dropout rates δ1 and δ2 it is the opposite: the
deeper we go into the model the less we want to ”forget” because we are working
with representations already learned by the model.

Table 5.4: Configurations tested for each hyperparameter for the OD using RSMP.

Hyperparameter Values
HIDDEN SIZE1 35, 40, 45
HIDDEN SIZE2 75, 80, 85
Number of Epochs 10, 20, 40, 70, 80, 90
δ1 0.35, 0.40, 0.45
δ2 0.05, 0.1, 0.15

Results

Analogously to the box-plots presented in the previous subsection, Figure 5.2 shows a
3×3 matrix of box-plots corresponding to the experiments executed for the 2-LSTM-
layer model. Each row depicts the model’s performance for each hyperparameter
set, being the first row for (HIDDEN SIZE1, HIDDEN SIZE2), the second for
(δ1,δ2), and the third for the number of epochs. The columns correspond to the
box-plots for the accuracy, precision, and recall, respectively.

By using the same criteria followed in the previous subsection, we choose the
following values as the ones leading to the best performance:

• (45, 75) for the pair (HIDDEN SIZE1, HIDDEN SIZE2);

• (0.45, 0.05) for the pair (δ1, δ2);

• 80 for the number of epochs.

To compare the 1-LSTM-layer model with the 2-LSTM-layer model, we trained
the whole training set with the best configuration of each model and tested the result
on the test set. Table 5.5 shows the results obtained, for both models, for the training
and the testing. The first thing we notice is that, since the test values are just
slightly worse than the train values, there is no overfitting. We also note that both
models’ performance is also quite similar, especially regarding the accuracy. The
1-LSTM-layer model has a considerably better precision (more or less 4% better),
while the recall is worse (more or less 3% worse). Therefore, we can conclude that
the addition of an LSTM+Dropout block did not significantly improve the model’s
performance. Besides, the training time is considerately superior, which leads us to
prefer the 1-LSTM-layer model. In the following experiments, we focus our study
in a model with a single 1 LSTM+Dropout block.

Chapter 5. Experiments 63

Figure 5.2: Box-plots for the hyperparameter tuning of the hidden sizes of the 2
LSTM layers, dropout rates for the 2 Dropout layers and number of epochs (respec-
tively, the first, second and third rows), using the RMSProp optimizer.

Table 5.5: Performance of the best configurations in both the train and test sets for
the 1-LSTM and 2-LSTM models.

Train Test
Model Accuracy Precision Recall Accuracy Precision Recall
1-LSTM-layer 0.9559 0.9701 0.9605 0.9535 0.9614 0.9651
2-LSTM-layer 0.9570 0.9336 0.9982 0.9438 0.9189 0.9917

5.3 Evaluation with the remaining datasets

5.3.1 Configuration of the Experiments

After the experiments with the OD, we opted to automatize the remaining exper-
iments with the Opcode+Operand Dataset (OOD), the Slice Dataset (SD), and
Simplified Slice Dataset (SSD), by applying grid search. With grid search, we define
the values of the hyperparameters we want to test, and evaluate all possible combi-
nations. We only tested the 1-LSTM layer model because increasing the number of
hidden layers did not substantially improve the model’s performance, and the train-
ing and tuning were too time-consuming. Instead, we decided to add the learning
rate to the list of tunable hyperparameters. The learning rate is a crucial hyper-
parameter regarding learning speed and efficiency. In a first approach, it seemed

Chapter 5. Experiments 64

Table 5.6: Configurations tested for each hyperparameter with OOD, SD, and SSD,
using RMSProp.

Hyperparameters Values
HIDDEN SIZE 10, 15, 20, 30
Learning Rate 0.01, 0.001
Number of Epochs 60, 80, 100
δ 0.1, 0.2, 0.3

sufficient to use the predefined value, but to obtain better results, we decided to
introduce it for the rest of the experiments.

Table 5.6 shows the hyperparameters that were tuned and their values. As it
shows, these are similar as in the first experiments with the addition of the learning
rate.

5.3.2 Results

Tables 5.7, 5.8, and 5.9 exhibit the performance of each tested configuration for the
OOD, SD, and SSD, respectively. These contain the mean value for each metric,
obtained by cross-validating each configuration. The best values for each dataset
are displayed in bold.

From the results, it is apparent that the addition of the opcode’s operands did not
improve the model’s performance. The best configuration achieved around 64% of
accuracy and precision and almost 100% of recall. Although recall is almost perfect
(meaning the model predicts very well positive examples), the values for the other
metrics are considerably worse compared to the results for the OD. These results
are not unexpected since the dimension of the input space got higher, increasing
the problem’s complexity. However, we cannot dismiss the importance of including
operands in our model. Operands, as we saw in Chapter 3, play a crucial role in
detecting SQLi.

The results for the SD and SSD datasets confirm that, by linearizing the excerpts,
the model can learn to classify them easier. Our approach led to an improvement
of over 10% in accuracy and precision. We consider that the fact that the recall got
worse values does not impose an issue as the balance between the metrics is higher
than for the model trained with the OOD. It is still important to assert how the
model would behave if it included all original examples. As we saw in Section 3.3,
SD was manually created and, even though the final dataset contains more samples
than BED, these correspond to a small part of those samples.

To finish, the results to the SSD show a slight deterioration compared to the
SD results, which leads us to question the validity of the simplification approach.
Nevertheless, it is not wise to dismiss the opcode grouping approach before testing

Chapter 5. Experiments 65

Table 5.7: Performance of the model for the OOD in every configuration tested (HS
- hidden size, δ - dropout rate, LR - learning rate, NE - number of epochs). The
metrics presented are the mean value for the 30 folds run (Acc - accuracy, Prec -
precision, Rec - recall).

HS
10— 15
δ LR NE Acc Prec Rec δ LR NE Acc Prec Rec

0.1

0.01
60 0.6331 0.6326 1.0000

0.1

0.01
60 0.6174 0.5918 0.9328

80 0.6334 0.6329 0.9994 80 0.6345 0.6335 1.0000
100 0.6334 0.6330 0.9989 100 0.6262 0.6127 0.9667

0.001
60 0.6327 0.6324 1.0000

0.001
60 0.6261 0.6128 0.9661

80 0.6341 0.6333 1.0000 80 0.6345 0.6335 1.0000
100 0.6162 0.5910 0.9328 100 0.6262 0.6128 0.9661

0.2

0.01
60 0.6327 0.6324 1.0000

0.2

0.01
60 0.6331 0.6335 0.9944

80 0.6341 0.6333 0.9994 80 0.6278 0.6146 0.9628
100 0.6338 0.6332 0.9989 100 0.6191 0.5928 0.9328

0.001
60 0.6331 0.6326 1.0000

0.001
60 0.6327 0.6324 1.0000

80 0.6334 0.6329 0.9994 80 0.6362 0.6346 1.0000
100 0.6341 0.6334 0.9994 100 0.6296 0.6155 0.9633

0.3

0.01
60 0.6320 0.6320 0.9994

0.3

0.01
60 0.6327 0.6324 1.0000

80 0.6331 0.6327 0.9995 80 0.6338 0.6333 0.9989
100 0.6334 0.6328 1.0000 100 0.6355 0.6342 1.0000

0.001
60 0.6327 0.6324 1.0000

0.001
60 0.6331 0.6331 0.9972

80 0.6243 0.6116 0.9661 80 0.6247 0.6118 0.9667
100 0.6324 0.6322 0.9995 100 0.6341 0.6333 1.0000

HS
20 30
δ LR NE Acc Prec Rec δ LR NE Acc Prec Rec

60 0.6243 0.6115 0.9667 60 0.6261 0.6127 0.9667
80 0.6254 0.6130 0.9661 80 0.6303 0.6156 0.96560.01

100 0.6295 0.6150 0.9661
0.01

100 0.6436 0.6400 0.9972
60 0.6258 0.6126 0.9661 60 0.6261 0.6128 0.9661
80 0.6262 0.6128 0.9661 80 0.6369 0.6352 0.9994

0.1

0.001
100 0.6262 0.6130 0.9656

0.1

0.001
100 0.6156 0.5757 0.8972

60 0.6331 0.6326 1.0000 60 0.6247 0.6118 0.9667
80 0.6285 0.6143 0.9667 80 0.6306 0.6161 0.96450.01

100 0.6362 0.6353 0.9961
0.01

100 0.6225 0.5958 0.9289
60 0.6352 0.6340 0.9994 60 0.6345 0.6335 1.0000
80 0.6345 0.6335 1.0000 80 0.6201 0.5934 0.9333

0.2

0.001
100 0.6362 0.6348 0.9989

0.2

0.001
100 0.6439 0.6400 0.9977

60 0.6331 0.6326 1.0000 60 0.6338 0.6330 1.0000
80 0.6341 0.6333 1.0000 80 0.6366 0.6354 0.99670.01

100 0.6348 0.6341 0.9978
0.01

100 0.6443 0.6407 0.9956
60 0.6076 0.5705 0.8978 60 0.6345 0.6336 0.9994
80 0.6093 0.5710 0.9000 80 0.6352 0.6346 0.9961

0.3

0.001
100 0.6366 0.6348 1.0000

0.3

0.001
100 0.6429 0.6393 0.9984

Chapter 5. Experiments 66

Table 5.8: Performance of the model for the SD in every configuration tested (HS
- hidden size, δ - dropout rate, LR - learning rate, NE - number of epochs). The
metrics presented are the mean value for the 30 folds run (Acc - accuracy, Prec -
precision, Rec - recall).

HS
10 15
δ LR NE Acc Prec Rec δ LR NE Acc Prec Rec

60 0.6510 0.6079 0.6790 60 0.6782 0.6690 0.7389
80 0.7243 0.6901 0.7710 80 0.7171 0.6905 0.75930.01

100 0.7252 0.6866 0.8210
0.01

100 0.7411 0.7065 0.7975
60 0.6370 0.6134 0.6142 60 0.7018 0.6571 0.7883
80 0.6993 0.6545 0.7969 80 0.7365 0.6743 0.7944

0.1

0.001
100 0.6972 0.6675 0.7920

0.1

0.001
100 0.7296 0.6841 0.8457

60 0.6495 0.6199 0.6420 60 0.6750 0.6444 0.7253
80 0.6964 0.6549 0.7877 80 0.7034 0.6592 0.73770.01

100 0.7098 0.6719 0.7883
0.01

100 0.7397 0.7074 0.8148
60 0.6424 0.6437 0.6765 60 0.6713 0.6428 0.7525
80 0.6691 0.6310 0.7852 80 0.7198 0.6414 0.7938

0.2

0.001
100 0.7157 0.6614 0.8636

0.2

0.001
100 0.7078 0.6686 0.7753

60 0.6461 0.6200 0.7154 60 0.6790 0.6389 0.7457
80 0.6889 0.6446 0.7846 80 0.7267 0.6900 0.77040.01

100 0.6900 0.6467 0.7852
0.01

100 0.7431 0.7001 0.8272
60 0.6531 0.6244 0.6840 60 0.6860 0.6378 0.7302
80 0.6981 0.6529 0.7679 80 0.7224 0.6843 0.8000

0.3

0.001
100 0.7245 0.6945 0.7710

0.3

0.001
100 0.7356 0.7030 0.8173

HS
20 30
δ LR NE Acc Prec Rec δ LR NE Acc Prec Rec

60 0.7220 0.6667 0.8642 60 0.6857 0.6320 0.6920
80 0.7211 0.7148 0.7796 80 0.7324 0.7068 0.72900.01

100 0.7411 0.7061 0.8198
0.01

100 0.7838 0.7824 0.7988
60 0.7107 0.6471 0.7944 60 0.7230 0.6581 0.7525
80 0.7247 0.7047 0.7457 80 0.7224 0.7237 0.6846

0.1

0.001
100 0.7573 0.7389 0.8111

0.1

0.001
100 0.7633 0.7845 0.7210

60 0.6883 0.6391 0.7346 60 0.6989 0.7105 0.6846
80 0.7178 0.6993 0.7074 80 0.7452 0.7294 0.77350.01

100 0.7613 0.6943 0.8500
0.01

100 0.7667 0.7924 0.7426
60 0.7154 0.6549 0.7191 60 0.6840 0.6730 0.7210
80 0.7426 0.7406 0.7543 80 0.7408 0.7038 0.7704

0.2

0.001
100 0.7493 0.7237 0.8012

0.2

0.001
100 0.7789 0.7857 0.7667

60 0.7081 0.6673 0.7475 60 0.7020 0.6845 0.7444
80 0.7371 0.7073 0.8130 80 0.7289 0.7053 0.71170.01

100 0.7024 0.6377 0.7716
0.01

100 0.7616 0.7489 0.7907
60 0.7051 0.6547 0.8228 60 0.7054 0.6546 0.7105
80 0.7326 0.7013 0.8006 80 0.7529 0.7350 0.7852

0.3

0.001
100 0.7339 0.7117 0.7809

0.3

0.001
100 0.7783 0.7721 0.7969

Chapter 5. Experiments 67

other grouping configurations. It may be that we are losing vital information we did
not consider to be relevant at first.

Table 5.10 shows the final performance of the model when trained with each
dataset with the whole training data. The last three columns present the values for
the test set after training. Similarly to the previous results, the model performed
better with the SD, in which the metrics are more balanced. Accuracy and precision
are the highest of the three. Recall is the worst, but is still very good (above 80%)
and we consider the overall performance as being the best.

Summing up, we experimented five different approaches: using the OD with 1
LSTM+Dropout block, the OD with 2 LSTM+Dropout blocks, training with the
OOD, SD, and SSD. The best results occurred for the first case. Since it is not
very realistic that opcodes alone can be used to classify excerpts regarding SQLi
vulnerability, we believe the best approach is using the SD. A central issue that
affects the quality of these results is the simplicity of the original dataset. The
generated test cases extracted from SARD do not reflect well the web application
paradigm as samples are small and very similar to each other. Nevertheless, there
are no other open and ready to use datasets. It is our understanding that it is crucial
to create a more suitable original dataset to verify our conclusions.

Chapter 5. Experiments 68

Table 5.9: Performance of the model for the SSD in every configuration tested (HS
- hidden size, δ - dropout rate, LR - learning rate, NE - number of epochs). The
metrics presented are the mean value for the 30 folds run (Acc - accuracy, Prec -
precision, Rec - recall).

HS
10 15
δ LR NE Acc Prec Rec δ LR NE Acc Prec Rec

60 0.6268 0.6050 0.6704 60 0.6458 0.6340 0.6562
80 0.6610 0.5966 0.6401 80 0.7097 0.7019 0.75860.01

100 0.7091 0.6787 0.7611
0.01

100 0.7397 0.6838 0.7771
60 0.6339 0.5857 0.6105 60 0.6802 0.6448 0.7525
80 0.6901 0.6554 0.7364 80 0.6967 0.6697 0.7253

0.1

0.001
100 0.6974 0.6589 0.7759

0.1

0.001
100 0.7074 0.6949 0.6802

60 0.6052 0.5797 0.6272 60 0.6506 0.6154 0.6605
80 0.6548 0.6217 0.7229 80 0.6973 0.6759 0.73400.01

100 0.6941 0.6350 0.8549
0.01

100 0.7273 0.6985 0.8049
60 0.6393 0.5957 0.6346 60 0.6464 0.6183 0.7623
80 0.6465 0.6358 0.6630 80 0.7152 0.6729 0.7494

0.2

0.001
100 0.6762 0.6132 0.7123

0.2

0.001
100 0.7472 0.7241 0.7914

60 0.5925 0.5179 0.5253 60 0.6750 0.6341 0.8315
80 0.6364 0.6068 0.6765 80 0.6929 0.6890 0.72590.01

100 0.6737 0.6590 0.7475
0.01

100 0.7184 0.7141 0.7500
60 0.6545 0.6051 0.6710 60 0.6724 0.6290 0.7265
80 0.6479 0.6214 0.6710 80 0.7060 0.6643 0.7877

0.3

0.001
100 0.6569 0.6472 0.6636

0.3

0.001
100 0.7290 0.6578 0.7759

HS
20 30
δ LR NE Acc Prec Rec δ LR NE Acc Prec Rec

60 0.7071 0.6615 0.7432 60 0.6875 0.6781 0.7049
80 0.7107 0.6929 0.6920 80 0.7101 0.7433 0.61850.01

100 0.7256 0.7313 0.7333
0.01

100 0.7386 0.7646 0.6722
60 0.7117 0.6920 0.7185 60 0.6727 0.6300 0.6407
80 0.7429 0.7239 0.7580 80 0.7422 0.7537 0.7302

0.1

0.001
100 0.7471 0.7231 0.8043

0.1

0.001
100 0.7649 0.8059 0.7086

60 0.6756 0.6514 0.7321 60 0.7033 0.7062 0.6432
80 0.7148 0.7031 0.7611 80 0.7151 0.7281 0.71110.01

100 0.7614 0.7752 0.7370
0.01

100 0.7495 0.7536 0.7698
60 0.6759 0.6327 0.6914 60 0.7013 0.7021 0.6784
80 0.7331 0.6839 0.8259 80 0.6964 0.6841 0.6463

0.2

0.001
100 0.7357 0.7378 0.7642

0.2

0.001
100 0.7477 0.7439 0.6852

60 0.6927 0.6830 0.7160 60 0.7028 0.6788 0.6864
80 0.7373 0.7114 0.7846 80 0.7002 0.6998 0.60120.01

100 0.7291 0.7270 0.6870
0.01

100 0.7580 0.7495 0.7340
60 0.6788 0.6417 0.6850 60 0.6886 0.7301 0.6080
80 0.7304 0.6995 0.7826 80 0.7238 0.7667 0.6556

0.3

0.001
100 0.7364 0.7210 0.7096

0.3

0.001
100 0.7420 0.7481 0.7235l

Chapter 5. Experiments 69

Table 5.10: Performance of the best configurations in both the train and test sets
for the 1-LSTM and 2-LSTM models.

Train Test
Dataset Accuracy Precision Recall Accuracy Precision Recall
OOD 0.6406 0.6370 1.0000 0.6399 0.6355 0.9994
SD 0.7926 0.7295 0.8840 0.7811 0.7296 0.8455
SSD 0.7762 0.7030 0.9024 0.7590 0.6902 0.8798

Chapter 5. Experiments 70

Chapter 6

Conclusion

The developed work is a starting point for research on the use of DL models for the
discovery of web vulnerabilities, where code is represented in an IL. We focused on
SQLi vulnerabilities that are the most common and damaging web vulnerabilities.
We resorted to a DL architecture suitable for NLP by leveraging similarities between
bytecode and natural language. The model is composed of an Embedding layer,
followed by n blocks of LSTM+Dropout layers, and finishes with two Dense layers,
that work sequentially.

Initially, we planned on focusing the research on model’s architectures. However,
throughout the process, we noticed it was a good contribution to evaluate which type
of data to feed the model. Hence, we created several datasets that represent the
original PHP bytecode excerpts differently:

• the Opcode Dataset (OD), which represents excerpts as sequences of opcodes;

• the Opcode+Operand Dataset (OOD), that represents a bytecode excerpt by
their opcodes and operands;

• the Slice Dataset (SD), where we managed to separate each bytecode excerpt
into slices (execution paths) to obtain linear control flow;

• the Simplified Slice Dataset (SSD), similar to SD but with less unique opcodes,
and therefore, with fewer input features.

We ran a set of experiments on each dataset, by performing cross-validation on
different configurations of the model’s hyperparameters. The OD achieved the best
results, with more than 90% on all metrics. SD and SSD also performed well, with
results above 70%. The dataset that led to worse results was the OOD. We believe
the results support the validity of our slice approach over the OOD. Even though OD
got the best results, this is most likely due to the vocabulary’s size versus number of
available samples. It is essential to conduct other experiments where, for instance,
we expand PED.

71

Chapter 6. Conclusion 72

6.1 Future Work
This work can lead to a series of further research, such as:

• Building datasets from existing web applications. First, it is crucial to test our
model against such datasets to assert its performance with more complex and
realistic data. Then, it would be pertinent to retrain the model with some of
these datasets to raise the quality of the model and its usability in practice.

• Studying more complex DL architectures that incorporate different types of
layers suitable for NLP tasks (e.g., transformers, LSTM+CNN). Our research
did not focus much on the model construction, so it is probable that other
architectures with different layers known to work well in NLP could improve
the model’s performance.

• The use of the model to find other web vulnerabilities, such as Cross-site
Scripting. Although SQLi is the most common web vulnerability, there are
other web vulnerabilities that impose serious threats to web applications. It
would be interesting to see how to extend the model to other web vulnera-
bilities and compare the viability of having one general model for all types
of bugs against having different specialized models, one for each type of web
vulnerability.

• Investigating the slice approach with more data. In our work, we converted
excerpts into slices manually, which was too time consuming and did not allow
us to convert all available excerpts. It is essential to automate the converting
task to increase the dataset’s size and compare both approaches properly.

• Investigating other grouping options for the opcodes and operands to assert
the approach’s viability.

Chapter 6. Conclusion 73

Chapter 6. Conclusion 74

Bibliography

[1] C. C. Aggarwal et al. Neural Networks and Deep Learning. Springer, 2018.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, techniques and
tools. Addison Wesley, 7(8):9, 1986.

[3] F Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–19, 1970.

[4] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi. Efficient and
flexible discovery of php application vulnerabilities. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 334–349. IEEE, 2017.

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[6] T. Ben-Nun, A. Jakobovits, and T. Hoefler. Neural code comprehension: A
learnable representation of code semantics. In Advances in Neural Information
Processing Systems, pages 3585–3597, 2018.

[7] Y. Bengio, P. Simard, P. Frasconi, et al. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–
166, 1994.

[8] M. Boden. A guide to recurrent neural networks and backpropagation. The
Dallas Project, 2002.

[9] Time Google Brain. Tensorflow. https://www.tensorflow.org/, 2015.

[10] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
pages 1724–1734, 2014.

[11] F. Chollet. Deep Learning with Python. Manning Publications Company, 2017.

[12] F. Chollet et al. Keras. https://keras.io, 2015.

[13] J. Clarke-Salt. SQL Injection Attacks and Defense. Elsevier, 2009.

75

https://www.tensorflow.org/
https://keras.io

Bibliography 76

[14] M. Correia and P. Sousa. Segurança no software. Lisboa: FCA, 2010.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[16] J. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[17] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and
Systems (TOPLAS), 9(3):319–349, 1987.

[18] A. Fidalgo, I. Medeiros, P. Antunes, and N. Neves. Towards a deep learn-
ing model for vulnerability detection on web application variants. In 2020
Workshop on Testing of Configurable and Multi-variant Systems co-located with
the 2020 IEEE International Conference on Software Testing, pages 465–476.
IEEE, 2020.

[19] Y. Goldberg. Neural network methods for natural language processing. Syn-
thesis Lectures on Human Language Technologies, 10(1):1–309, 2017.

[20] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT press, 2016.

[21] G. Grieco, G. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier. Toward
large-scale vulnerability discovery using machine learning. In Proceedings of
the 6th ACM Conference on Data and Application Security and Privacy, pages
85–96. ACM, 2016.

[22] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and Xi. Xing. Lemna: Explaining
deep learning dased security applications. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, pages 364–379. ACM,
2018.

[23] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[24] Y. Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

[25] D. Kingma and J. Ba. Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[26] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep
convolutional neural networks. In Proceedings of Advances in Neural Informa-
tion Processing Systems, pages 1097–1105, 2012.

Bibliography 77

[27] J. Kronjee. Discovering vulnerabilities using data-flow analysis and machine
learning. Master’s thesis, Open Universiteit Nederland, 2018.

[28] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics, 3:211–225, 2015.

[29] Xin Li, Lu Wang, Yang Xin, Yixian Yang, and Yuling Chen. Automated vul-
nerability detection in source code using minimum intermediate representation
learning. Applied Sciences, 10(5):1692, 2020.

[30] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin. Vuldeelocator:
A deep learning-based fine-grained vulnerability detector. arXiv preprint
arXiv:2001.02350, 2020.

[31] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen. Sysevr: A frame-
work for using deep learning to detect software vulnerabilities. arXiv preprint
arXiv:1807.06756, 2018.

[32] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong. Vuldeep-
ecker: A deep learning-based system for vulnerability detection. arXiv preprint
arXiv:1801.01681, 2018.

[33] M. Luong, H. Pham, and C. Manning. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[34] I. Medeiros, N. Neves, and M. Correia. Detecting and removing web application
vulnerabilities with static analysis and data mining. IEEE Transactions on
Reliability, 65(1):54–69, 2015.

[35] I. Medeiros, N. Neves, and M. Correia. Statically detecting vulnerabilities
by processing programming languages as natural languages. arXiv preprint
arXiv:1910.06826, 2019.

[36] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[37] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recur-
rent neural network based language model. In Proceedings of the 11th Annual
Conference of the International Speech Communication Association, volume 2,
pages 1045–1048, 2010.

[38] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings
of Advances in Neural Information Processing Systems, pages 3111–3119, 2013.

Bibliography 78

[39] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. Understanding source
code evolution using abstract syntax tree matching. In Proceedings of the 2005
international workshop on Mining software repositories, pages 1–5, 2005.

[40] Karl Joseph Ottenstein. Data-flow graphs as an intermediate program form.
1978.

[41] PHP. Php supported versions. https://secure.php.net/
supported-versions.php, 2019.

[42] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Elling-
wood, and M. McConley. Automated vulnerability detection in source code
using deep representation learning. In Proceedings of the 17th IEEE Interna-
tional Conference on Machine Learning and Applications, pages 757–762, 2018.

[43] M. Schuster and K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

[44] T. J Sejnowski and Charles R. R. Parallel networks that learn to pronounce
english text. Complex Systems, 1(1):145–168, 1987.

[45] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[46] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research, 15(1):1929–1958, 2014.

[47] B. Stivalet and E. Fong. Large Scale Generation of Complex and Faulty PHP
Test Cases. In Proceedings of the IEEE International Conference on Software
Testing, Verification and Validation, pages 409–415, 2016.

[48] I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural
networks. In Proceedings of the Advances in Neural Information Processing
Systems, pages 3104–3112, 2014.

[49] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 4(2):26–31, 2012.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez,
 L. Kaiser, and I. Polosukhin. Attention is all you need. In Proceedings of the
Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

https://secure.php.net/supported-versions.php
https://secure.php.net/supported-versions.php

Bibliography 79

[51] W3Techs. Usage statistics of php for websites. https://w3techs.com/
technologies/details/pl-php, 2019.

[52] J. Williams and D. Wichers. Top 10-2017 the ten most critical web application
security risks. URL: owasp. org/images/7/72/OWASP Top 10-2017 % 28en,
29, 2017.

[53] Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al. Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[54] F. Yamaguchi, F. Lindner, and K. Rieck. Vulnerability extrapolation: Assisted
discovery of vulnerabilities using machine learning. In Proceedings of the 5th
USENIX Conference on Offensive Technologies, pages 13–13, 2011.

[55] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium
on Security and Privacy, pages 590–604. IEEE, 2014.

[56] M. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[57] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. In Advances in Neural Information Processing Systems, pages 10197–
10207, 2019.

https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Contributions
	Structure of the document

	Background and Related Work
	Web Vulnerabilities
	Intermediate Language
	Deep Learning for Natural Language Processing
	Convolutional Neural Networks
	Recurrent Neural Networks
	Input Representation

	Machine Learning in Vulnerability Detection
	Program Representation

	Datasets and Deep Learning Architectures for SQLi Detection
	Problem Definition
	Which data to use?
	Which model to define?

	SQLi Detection Network
	Preprocessing
	Deep Learning Model

	Datasets
	PHP Excerpt Dataset (PED)
	Bytecode Excerpt Dataset (BED)
	Opcode Dataset (OD)
	Upgrades to the Opcode Dataset

	Implementation
	Dataset Construction
	Network Construction and Model Evaluation

	Experiments
	How to evaluate the model
	Evaluation with the Opcode Dataset
	Model with 1 LSTM layer
	Model with 2 LSTM layers

	Evaluation with the remaining datasets
	Configuration of the Experiments
	Results

	Conclusion
	Future Work

	Abbreviations
	Bibliography

