
Finding Local Resource Exhaustion Vulnerabilities∗

João Antunes Nuno Neves Paulo Veríssimo
LaSIGE, Fac. de Ciências da Univ. de Lisboa

{jantunes,nuno,pjv}@di.fc.ul.pt

Abstract

Computer systems connected to the Internet are highly sus-
ceptible to hackers that can compromise the service availabil-
ity through denial of service attacks, causing damage to cus-
tomers and service providers. Our work focuses on using the
attack injection methodology with some advanced monitoring
capabilities to detect and identify local resource exhaustion
vulnerabilities. It goes even further by providing valuable in-
sight about the effort necessary for an attacker to exploit them
and for the target system to be able to sustain the attacks.

1. Introduction

Every service provided through the Internet can suffer de-
nial of service (DoS) attacks aiming at its disruption. Attack-
ers can perpetrate a DoS either by overwhelming the target
system or its network connection with an excessive load, or
by making use of some specific and well-crafted packets that
exploit some known DoS vulnerability. Our work focuses on
the identification and detection of a particular kind of DoS
vulnerabilities that allows an attacker to deplete some local
resource on the target system. In this context we define a local
resource exhaustion vulnerability as a specific type of fault
that by causing the consumption or allocation of some unnec-
essary resource, or the failure to release it when no longer
needed, makes the resource susceptible of being eventually
depleted. Consuming unnecessary resources happens when
some component allocates more resources than what is re-
quired to perform the task. For instance, a badly designed
algorithm executes too many instructions or reserves huge
chunks of memory that will not be used. If the resource was
indeed necessary but it was not made available after its use,
such as by neglecting to close a temporary file descriptor, to
free some allocated chunk of memory, or to delete a no longer
necessary file log, the component is leaking the resource.

The attack injection methodology presented here differs
greatly from other fault injection methodologies. Classic fault

∗This work was partially supported by the EC through project IST-2004-
27513 (CRUTIAL) and NoE IST-4-026764-NOE (RESIST), and by the FCT
through projects POSC/EIA/61643/2004 (AJECT) and the Large-Scale In-
formatic Systems Laboratory (LASIGE).

injectors [1, 2, 5] inject simple software or hardware faults
in a target system, usually for hardware validation or for the
verification of fault handling mechanisms. However, the low-
level mimicked faults (e.g., pin-level faults or single bit-flips
in memory) are too simple to be applied in the detection of
security vulnerabilities, where the universe of the possible
faults escalates to an intractable problem. Fuzzers [3, 6] deal
with this intractability by injecting random samples as input
to the target system. Though these tools have evolved into
more intelligent vulnerability detectors, they are only capa-
ble of detecting crash-related faults. AJECT [4], our first at-
tack injection tool, is able to fuzz protocol specifications with
some known malicious attack patterns (e.g., very long strings,
strange characters, known usernames and filenames) to detect
security vulnerabilities. A vulnerability is detected upon the
observation of a anomalous server behavior, such as the re-
ception of SIGSEGV signal. It must be noted that AJECT
is not required to actually exploit the vulnerability but only
to cause some detectable disturbance in the target system. In
other words, for instance, to detect a buffer overflow the at-
tack does not need to actually fill the overflown buffer with
some root shell command. A simple out-of-bounds of arbi-
trary content is sufficient for the detection of the illegal mem-
ory access. AJECT, however, lacks a finer monitoring sys-
tem capable of detecting more subtle kinds of vulnerabilities.
Local resource exhaustion vulnerabilities can be particularly
difficult to locate because normally they are only perceived
when some resource has been depleted (e.g., disk or CPU).
The paper presents a new attack injection tool, PREDATOR,
that aims at detecting DoS and local resource exhaustion vul-
nerabilities.

2. The PREDATOR Tool

PREDATOR (PREDict ATtacks On Resources) is an at-
tack injection tool with some very interesting characteristics:
it provides a thorough resource and process monitoring, capa-
ble of automatically detecting small resource usage variations
in servers, such as in CPU work, wall time, number of pro-
cesses, memory, disk, or open files; it performs on-line anal-
ysis of the monitoring data to refine its attack injection and
detection mechanism to the most promising attacks; and it is

MonitorTSInjection

C
o
m
p
a
ri
s
o
n

P
ro
je
c
ti
o
n

G
e
n
e
ra
ti
o
n

Attacks

 Exploration phase

 Specialization phase

1

5

2

9

7
46 3

8

Figure 1. PREDATOR’s architecture.

able to provide a prediction on the resource usage which can
be utilized to compare the behavior of distinct target servers
in a given system. This prediction is an estimate for the re-
source consumption for the long-term, giving the ability to
pinpoint the most dangerous protocol interactions and predict
when the resource utilization may reach a fatal threshold.

The general architecture of the tool is represented in Fig-
ure 1. PREDATOR can perform the injections of the attacks
under the same conditions of the attackers, outside the target
machine (e.g., from the Internet). However, the specificity of
the OS monitoring facilities demands that the monitor com-
ponent be placed in the operating environment of the target
system (TS), and consequently in the same machine.

The injection and monitoring is attained in several steps, as
depicted by the numbers in the figure. The attacks are gener-
ated from a specification of the server’s communication pro-
tocol and according to an attack generation algorithm (step 1).
Then, each attack is injected several times in order to obtain
a relevant amount of monitoring data needed to generate a re-
source usage trend (step 2). The monitoring data for each at-
tack injection is used to obtain a resource usage projection or
trend (steps 3 and 4). The injector performs linear regression
on the utilization of each resource in order to select the poten-
tially more dangerous attacks (step 5). Therefore, a resource
usage profile for each pair of attack/resource is modeled af-
ter the resulting linear function. This trend can be used to
predict the resource usage for any number of client requests.
The growth rate for a particular resource is given by the line’s
slope. The higher the slope, the worse the server’s perfor-
mance and resource usage efficiency is. Figure 2 shows
the PREDATOR’s prediction for the CPU consumption under
the same attack (protocol request) of two widely used DNS
servers. The prediction is a projection of the real resource us-
age data for a larger number attacks. The attacks with higher
projection values are selected for a more exhaustive and spe-
cialized injection campaign (step 6). Finally, the resulting
monitoring data from the selected attacks allows the different
servers to be compared on an equal basis (steps 7, 8, and 9).

Naturally, the final prediction for these selected attacks get

CPU time consumption
(attack 17181)

y = 0.1265x + 24.825

y = 0.0613x + 3.3685

0

200

400

600

800

1000

1200

1400

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

injections

M
 c

yc
le

s

bind-9.4.0 maradns-1.2.12.05

projection (bind-9.4.0) projection (maradns-1.2.12.05)

Figure 2. DNS servers CPU consumption.

an even higher estimate accuracy. Figure 2 is actually the final
prediction for 10,000 repeated attacks, based on the monitor-
ing data obtained from 1024 injections. With the collected re-
sults one can, for instance, determine how vulnerable a given
server is for each attack, or compare the expected behavior of
distinct servers on the same platform (i.e., determine which
server would collapse first under a specific attack).

In our preliminary experimental results with a few of the
most used DNS servers, PREDATOR indicated the most rel-
evant resource usage trends and predicted the potential re-
source depletion. Figure 2, for instance, shows that the BIND
server performs worse than MaraDNS under the same attack,
which means that the later is able to sustain a larger number of
attacks than the first. Similarly, other local resources, such as
wall time, memory, disk, children/threads and file descriptors,
are also analyzed and their exhaustion estimated. This predic-
tive analysis can be of invaluable help in preventing DoS by
either providing useful information on the hardware limita-
tions, or by identifying resource bottlenecks.

References

[1] J. Arlat, Y. Crouzet, and J.-C. Laprie. Fault injection for de-
pendability validation of fault-tolerant computing systems. In
Proc. of the Int. Symp. on Fault-Tolerant Computing, 1989.

[2] J. Carreira, H. Madeira, and J. G. Silva. Xception: Software
fault injection and monitoring in processor functional units. In
Proc. of the Int. Working Conf. on Dependable Computing for
Critical Applications, 1995.

[3] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of UNIX utilities. Comm. of the ACM, 33(12), 1990.

[4] N. Neves, J. Antunes, M. Correia, P. Veríssimo, and R. Neves.
Using attack injection to discover new vulnerabilities. In Proc.
of the Int. Conf. on Dependable Systems and Networks, 2006.

[5] T. K. Tsai and R. K. Iyer. Measuring fault tolerance with the
FTAPE fault injection tool. In Int. Conf. on Modeling Tech-
niques and Tools for Computer Performance Evaluation, vol-
ume 977 of LNCS. 1995.

[6] University of Oulu. PROTOS, 1999–2003.
http://www.ee.oulu.fi/research/ouspg/protos/.

