
Chapter 14

DEPENDABLE DISTRIBUTED AND MOBILE COMPUTING
– UTILIZING TIME TO ENHANCE RECOVERY
FROM FAILURES

W. Kent Fuchs
fuchs@purdue.edu

Electrical and Computing Engineering, Purdue University, West Lafayette IN 47907

Nuno Neves
nuno@di.fc.ul.pt

Computer Science Department, University of Lisbon, Portugal

Kuo-Feng Ssu
ssu@ecn.purdue.edu

Coordinated Science Laboratory, University of Illinois, Urbana IL 61801

Abstract Mobile computing allows ubiquitous and continuous access to computing re-
sources while users travel or work at a client's site. The flexibility introduced by
mobile computing brings new challenges to dependability and fault tolerance.
Failures that were rare with fixed hosts become common, and host disconnections
make fault detection and message coordination difficult. This chapter describes
checkpointing and failure recovery procedures that are well adapted to both
distributed and mobile environments. The protocols use time to indirectly coor-
dinate the creation of new global states and thereby avoid message exchanges.
The mobile protocol uses two different types of checkpoints to adapt to network
characteristics. Procedures for integrating adaptive mobile checkpointing with
storage management are also described.

Keywords: checkpointing, mobile computing, dependable computing, fault tolerance, roll-
back recovery



1. INTRODUCTION

One effective way to recover from failures in distributed systems is to use
checkpointing and rollback recovery. Typically, a checkpoint protocol period-
ically saves the state of the application in stable storage. After a failure, the
application rolls back to the last state that was saved and starts its re-execution.
Checkpoint protocols are usually divided into two groups, uncoordinated (Borg
et al., 1989) (Johnson and Zwaenepoel, 1987) (Neves et al., 1994) (Strom and
Yemini, 1985) (Wang and Fuchs, 1993) (Wang and Fuchs, 1992) (Yao et al.,
1999) (Ssu et al., 1999) and coordinated (Chandy and Lamport, 1985) (Cristian
and Jahanian, 1991) (Kim and Park, 1993) (Koo and Toueg, 1987) (Neves
and Fuchs, 1996) (Neves and Fuchs, 1998a) (Plank, 1993). In uncoordinated
checkpoint protocols, each process determines independently from the oth-
ers the instant when its state should be saved. To avoid the domino effect,
the checkpoint protocol also saves information about the messages that were
exchanged among processes.

In coordinated checkpoint protocols, processes coordinate among them-
selves to determine which process states should be included in the application
checkpoint. The coordination is necessary to guarantee that the application
checkpoint is consistent and recoverable (section 2.2 explains these concepts).
These protocols usually select one of the processes, the coordinator, to initi-
ate the creation of the checkpoints and to ensure that each process saves its
state (Elnozahy et al., 1992) (Plank, 1993) (Silva and Silva, 1992). This task is
accomplished with the exchange of a set of messages. The protocol adds infor-
mation to each message to detect in-transit messages. Whenever an in-transit
message arrives, the protocol saves the message in stable storage, together with
the state of the processes.

Both types of protocols have their own advantages. However, coordinated
protocols have shown better performance than uncoordinated protocols when
used with parallel applications (Elnozahy and Zwaenepoel, 1994) (Neves and
Fuchs, 1998b). Additionally, coordinated protocols do not need any piece-wise
determinism assumption about the execution of the processes (Goldberg et al.,
1990) and can typically tolerate failures that affect multiple processes simulta-
neously. Nevertheless, previous coordinated protocols have performance and
implementation costs that can be avoided. In a typical coordinated protocol, the
coordinator has to exchange three messages with each process. This overhead
can become significant if the number of processes increases and the network is
slow. The addition of information to messages to detect in-transit messages can
also be an important overhead, depending on the level at which the protocol is
implemented. If the protocol is implemented in a library, the overhead can be
considerable, because each message may have to be copied. The third overhead



is related to the in-transit messages. A process has to make an access to stable
storage to save each in-transit message that it receives.

Time-based protocols relying on synchronized clocks have been developed
in the past to avoid the first overhead (Tong et al., 1989) (Cristian and Jahanian,
1991) (Ramanathan and Shin, 1993), the exchange of coordination messages.
These protocols assume that processors' clocks are approximately synchro-
nized, and use time to indirectly coordinate the checkpoint creation. Each
process saves its state whenever the local clock signals a checkpoint.

This chapter presents a time-based protocol for distributed systems that also
uses time to coordinate the checkpoint creation. However, this protocol does
not rely on synchronized clocks. It uses a simple initiation procedure to set
checkpoint timers for the different processes, and then saves new checkpoints
whenever the timers expire. Contrary to the previous time-based protocols, it
also avoids the two other overheads that were mentioned previously.

We demonstrate that time-based checkpointing protocols can also be uti-
lized for mobile computing. Checkpoint protocols proposed in the past are
not adequate for mobile environments due to disconnections. These proto-
cols have either to exchange messages during the creation of an application
checkpoint (Chandy and Lamport, 1985) (Plank, 1993), or during recovery
to collect stored information (Elnozahy and Zwaenepoel, 1992) (Johnson and
Zwaenepoel, 1990). Protocols previously proposed for mobile computing have
relied on the foreign agent for storing the checkpoint (Acharya and Badrinath,
1994) (Pradhan et al., 1996). Previous protocols also have not adapted their
behavior to the characteristics of the current network connection.

The time-based mobile checkpointing procedure of this chapter is designed
to take into consideration the special characteristics of mobile environments.
The protocol is able to store consistent recoverable states of the application
without having to exchange messages. Processes use a local timer to determine
the instants when new checkpoints are to be saved. The protocol uses two
different types of process checkpoints to adapt to the current characteristics of
the network and to provide differentiated recoveries.

Finally, storage management for foreign agents is examined. The integra-
tion of leasing and adaptive checkpointing is shown to enhance checkpointing
performance through hierarchical storage management. The approach enables
simple garbage collection, efficient management of limited storage resources,
and the reduction of consecutive missed checkpoints.

2. RECOVERY IN DISTRIBUTED SYSTEMS

2.1 SYSTEM ENVIRONMENT
The distributed systems under consideration are composed of a set of nodes

interconnected by a network. A node contains a processing unit, a local



memory and a local hardware clock. Clocks do not need to be synchronized
among nodes. However, it is assumed that local clocks drift from real time
with a maximum drift rate, �. This assumption implies that local clocks have
at most an error of ��e � s� seconds at the end of the real-time interval [s,e]
seconds. The bounded drift rate condition applied to the local clock of a node
n is

��� ���e� s� � Cn�e�� Cn�s� � �� � ���e� s�

where Cn�t� is time returned by the local clock when the real-time is t. The
bounded drift equation can be used to derive a maximum deviation between
the expiration of two timers. If two timers are started in two nodes exactly at
the same time with the same initial value T , then they will expire by at most
��T��� � ��� seconds from each other (we will approximate this value by
��T ). Drift rates are in the order of ���� or ���� for most quartz clocks that
are available in commodity computers, and for high precision clocks � is in the
order of ���� or ���� (Cristian and Fetzer, 1994).

Every node can store data in stable storage, and this data can be obtained
after a failure by the correct nodes. Nodes fail according to the fail-stop model.
In this model, a node affected by a fault stops its execution and remains stopped
until recovery is initiated. All correct nodes can determine which nodes have
failed.

Each node provides a computational environment for one or more pro-
cesses. Each process executes a program and exchanges messages with the
other processes. Messages are delivered in any order (no FIFO requirement)
and communication channels can be unreliable, i.e., channels can lose or dupli-
cate messages. However, if channels are unreliable, a simple mechanism based
on sequence numbers and timeouts can be used to guarantee that a process
receives all messages sent to it without duplicates. Messages are delivered to
processes with a bounded delivery time, tdmax. The total time to send a mes-
sage, transmit the message through the network, and then receive the message
is smaller than tdmax.

2.2 RECOVERABLE CHECKPOINTS

A distributed application is executed by a set of processes that run on several
nodes. The main responsibility of a coordinated checkpoint protocol is to save
global states of the application. A global state includes the state of each process
belonging to the application and possibly some messages. A process state
contains the send event send�mi� if it has sent message mi. A process state
contains the receive event rcv�mi� if it has received message mi. A generic
coordinated protocol should record recoverable consistent global states, which
satisfy the following two properties:



Consistency : If the global state includes a process state containing the receive
event rcv�mi� then another process state must contain the corresponding
send event send�mi�.

Recoverability : If the global state includes a process state containing the send
event send�mi� but no other process state contains the corresponding
receive event rcv�mi� then the checkpoint protocol must save message
mi.

Global states saved by the checkpoint protocol are used to recover the appli-
cation from failures that have affected one or more of its processes. Typically,
the application rolls back to the last stored state and then starts to re-execute.
The external results of the application re-execution should be equivalent to one
of the results of a failure-free execution. This can only be accomplished if
the application restarts from a global state that could have occurred during one
execution with no failures (Chandy and Lamport, 1985). For this reason, the
global state can only contain receive events whose corresponding send events
are also included. This characteristic is guaranteed by the consistency property.
On the other hand, global states must include all messages that were in-transit
at checkpoint time. Otherwise, these messages become lost during recovery
because they are not re-sent by the processes. The recoverability property
guarantees that all in-transit messages are available after the failure.

3. TIME-BASED CHECKPOINTING

The time-based checkpoint protocol of this chapter uses an initializationpro-
cedure to synchronize checkpoint timers and a checkpoint creation procedure to
record recoverable consistent states of the application. The checkpoint creation
procedure is executed periodically by each process whenever the local check-
point timer expires. All processing is done locally without any exchanges of
coordination messages. To guarantee that the consistency property is verified,
the protocol disallows message sends during an interval after the expiration of
the checkpoint timer. This interval is not constant, and increases as clocks drift
apart. In an actual implementation, the blocking of message sends should not
bring performance losses, because each process uses the interval to save its
state. Timers are resynchronized when the interval becomes higher than the
time taken to store a checkpoint. The recoverability property is ensured by
preventing in-transit messages from occurring. The protocol disallows mes-
sage sends during an interval before the checkpoint time. This interval is
proportional to the maximum message delivery time.



Initialization:
Coordinator:
ckpTime = getTime() + T ;
setTimer(createNewCkp� ckpT ime);
setTimer(stopSMesg� ckpT ime � �D� �T�� tdmax�);
while (TRUE) f
time = getTime();
broadcast(ckpT ime � time);
for each(pi � Processes) do receive(pi );
if (�getTime() � time� � �� � tdmin �D�) f

broadcast(FALSE);
break;

g else broadcast(TRUE);
g

Process i:
continue = TRUE;
while (continue) f

receive(coord� interval);
time = getTime();
send(coord);
receive(coord� continue);

g
ckpTime = time� interval � tdmin;
setTimer(createNewCkp� ckpT ime);
setTimer(stopSMesg� ckpT ime � �D� �T�� tdmax�);

Figure 14.1 Initialization procedure.

3.1 INITIALIZATION PROCEDURE

The initialization procedure starts the processes' checkpoint timers in such
a way that timers will expire within an interval of D seconds (if � � �).
Ideally, D should be made as small as possible, because that reduces the
periods in which processes are not allowed to send messages (see next section).
The initialization procedure is executed in three situations: to initialize the
checkpoint protocol when the application starts, to initialize new processes that
are added during the application execution, and to resynchronize the checkpoint
timers. The resynchronization frequency depends on the value of the drift rate,
but is relatively small.

The initializationprocedure selects one of the processes to be the coordinator
(the coordinator is usually the process that starts the application). The respon-
sibility of the coordinator is to initiate the timers of the other processes. The
coordinator cannot send an absolute time to the other processes, because clocks
are not synchronized. It has to send a time interval. To calculate the interval



Figure 14.2 Consistency problem.

interc, the coordinator subtracts its local time from the time when its timer ex-
pires. The timer at process pi is set to timeri� currentT imei�interc�tdmin

(where tdmin is the minimum time to deliver a message).
There are several ways to distribute the time interval among the processes,

and their complexity depends on the system that is being considered. Fig-
ure 14.1 shows one implementation of the initialization procedure. First, the
coordinator adds to its local time the checkpoint period T � to obtain the first
checkpoint time, ckpTime. Then, it sets two timers that will call the functions
createNewCkp and stopSMesg (the next section explains the time values
that were used), and broadcasts the interval. The other processes execute the
code Process i. This code receives the interval and initiates two similar
timers. Since different messages can experience distinct network delays, the
coordinator loops sending the interval until it receives all answers within a time
period smaller thanD� � � tdmin . This guarantees that checkpoint timers will
expire at most D seconds apart (if � � �). In our experiments, D was set to
10 ms, which in most cases allowed the initialization of the timers in a single
iteration.

3.2 CHECKPOINT CREATION

3.2.1 Consistency. The checkpoint creation procedure has to save ap-
plication states that verify the consistency property. Figure 14.2 shows an
example of an execution that violates the consistency property. Process Pi
saves its state whenever its checkpoint timer expires at Ti. Since timers are not
exactly synchronized, processP� sends a messagem� after saving its state, and
P� receives m� before storing its state. The consistency property is violated
because the global state contains recv�m�� but does not include send�m��.
To avoid this problem, the time-based protocol disallows message sends during
an interval after the checkpoint timer has expired.

Consistency condition : The nth application checkpoint satisfies the consis-
tency property if no process is allowed to send messages MD � tdmin

seconds after saving its nth checkpoint.



Figure 14.3 Total blocking interval.

The consistency condition (CC) defines an interval in which processes can
not send messages. This interval is equal to the maximum deviation, MD,
between timers minus the minimum time required to deliver a message. Timers
in different processes do not expire at the same time, because they are not exactly
synchronized. The maximum deviation is the maximum time interval that can
separate the expiration of any two timers, and is equal to MD � D � �nT�.
It depends on two quantities, the initial deviation between timers, D, and the
clock drift since the last initialization, �nT�. The first quantity is constant, but
the second one increases with time. This means that the amount of blocking
can grow with time. However, MD increases slowly because drift rates are
small. For instance, the initialization procedure can be used to start timers with
D � �� ms. If we assume a clock drift of � � ����, then MD is equal to 100
ms after 12.5 hours.

The performance losses introduced by the CC condition are usually small
in real systems. The CC condition does not prevent processes from continuing
their execution. The CC condition only blocks a process if it attempts to send
messages (actually, the process only has to block if it sends a synchronous
message, because asynchronous messages can be queued). Also, the blocking
interval can be used to save the processes' state. In current systems, disk
accesses consume a large amount of time, which means that most or all MD
time is used to store the process checkpoint (a typical process checkpoint takes
at least 500 ms).

3.2.2 Recoverability. The easiest way to guarantee the recoverability
property consists of avoiding the creation of messages that might become in-
transit. This approach simplifies the implementation of the protocol during
both the failure-free periods and recovery. The checkpoint protocol does not
need to log any messages or to re-send or re-read messages. However, in this
solution, processes can not send messages during an interval before their timers
expire.



stopSMesg()
stopSendMesg = TRUE;
setTimer(stopSMesg� ckpT ime� T�

�D� ��CN � ��T�� tdmax�);
createNewCkp()

saveProcessState();
CN = CN � �;
ckptT ime = ckpTime� T ;
setTimer(createNewCkp� ckpT ime);
if (�getTime() � �ckpTime � T �� �

�D� ��CN � ��T� � tdmin�)
resynchronizeTimers();

stopSendMesg = FALSE;
sendQueuedMessages();

Figure 14.4 Checkpoint creation procedure.

Recoverability condition : The nth application checkpoint satisfies the re-
coverability property if no process is allowed to send messages MD �
tdmax seconds before its timer expires.

The example from Figure 14.3 can be used to illustrate the recoverability
condition (RC). A message can become in-transit if it is sent before a process
creates its checkpoint and is received after the other process has saved its state.
In the figure, process P� sends two messages, m� and m�. Message m� does
not have to be stored, but message m� would have to be saved if process P�
was allowed to send it. The maximum interval that prevents the existence of
messages like m� is equal to MD � tdmax. The reader should note that RC
does not prohibit processes from continuing their executions until they start to
save their checkpoints. The process needs to block only if it attempts to send a
synchronous message. If the message can be sent asynchronously, the process
simply queues the message and continues with the computation. The message
is sent after CC is verified.

3.2.3 Creation of a Checkpoint. The time-based checkpoint protocol
uses the CC and the RC conditions to create recoverable consistent check-
points. The protocol can be implemented using the initialization procedure
from Figure 14.1 and the checkpoint creation procedure from Figure 14.4. The
creation procedure uses two timers: one that expires MD � tdmax seconds
before checkpoint time, and another that expires at checkpoint time. Whenever
the first timer terminates, it calls the function stopSMesg. This function sets
a flag indicating that messages should be queued, and resets the timer. The
function createNewCkp saves the process state, increments the checkpoint



time by the checkpoint periodT , and re-sets the timer. The variableCN counts
the number of checkpoints that have been created since the last resynchroniza-
tion. Then, createNewCkp tests the CC condition. If the condition is not
verified, the function resynchronizeTimers is called to resynchronize
the timers. This function sends a request for synchronization to the coordina-
tor. The resynchronization procedure is similar to the initialization. Before
returning, createNewCkp resets the flag and sends the messages that were
queued.

4. MOBILE COMPUTING

4.1 UNIQUE ASPECTS OF MOBILITY

Mobile computing enables users to access and exchange information while
they travel, roam in their home environment, or work at a client's site. Currently,
mobile computing can only be used in restricted contexts; however, the growing
investment by industry, researchers, and users indicates that the capabilities
and applications of mobile computing will significantly increase (Forman and
Zahorjan, 1994) (Nemzow, 1995) (Perkins, 1997).

Mobile hosts have a variety of computational and networking capabilities.
For instance, pagers mainly serve to receive or send small messages. Personal
digital assistants can have more sophisticatedapplications, such as an electronic
organizer, and in the future will be able to receive and send external information
such as airline schedules and reservations. Portable computers already provide
computational power comparable to fixed hosts. These devices can execute
general applications such as editors, spreadsheets, and databases. Portable
computers can also have flexible networking capabilities, which allow them to
connect either to hard-wired or wireless networks.

Wireless networking is useful in environments where hard-wired networks
are not feasible or economically rewarding. Temporary networks can also be
built faster and in a more cost-effective way by using wireless instead of hard-
wired LANs. This quality is particularly interesting for disaster recovery after
a fire, flood or earthquake (Nemzow, 1995). Currently several vendors are
selling hardware support for wireless communication, using technologies like
infrared transmitters and cellular telephone systems.

Mobile hosts have several characteristics that make them different from fixed
hosts. Checkpoint protocols designed for mobile environments should consider
these distinguishing features in their definition. Otherwise, they will incur high
overheads, or they will simply not work correctly.

1. Location is not fixed: As the user moves from one place to another, the
location of the mobile host in the network changes. The checkpoint
protocol can store the processes' states in a well known site or in a
computer near the current location of the mobile host. In the second



case, the checkpoint protocol has to keep track of the places where
processes' states were saved.

2. Disconnection: A mobile host becomes disconnected when it goes out-
side the transmitting range of the emitters. While disconnected, the
mobile host is not able to send or receive any messages. Protocols that
need to exchange messages will not work correctly in this situation.
During disconnection, the checkpoint protocol should provide a local
recovery mechanism that allows the mobile host to recover from its own
failures.

3. Batteries store a limited amount of power: The mobile host is often
powered by batteries. Network transmissions and disk accesses are two
of the most important sources of power consumption (Forman and Za-
horjan, 1994). To minimize power consumption, the checkpoint protocol
should reduce the amount of information that it adds to the application's
messages, and it should avoid sending extra messages. The protocol
should also make a small number of accesses to disk.

4. Network characteristics are not constant: The various wireless technolo-
gies have completely different qualities of service (Nemzow, 1995). For
instance, typical radio frequency LANs currently have bandwidths be-
tween 2 and 20 Mbps, but a wide-area LAN using cellular digital packet
data may have a bandwidth of 19.2 Kbps. Other different characteristics
are cost, packet loss rates, and latency. The checkpoint protocol should
adapt its behavior to the current network.

5. Different types of failures: Mobile host failures can be separated into
two different categories. The first one includes all failures that can not
be repaired; for example, the mobile host falls and breaks, or is lost or
stolen. The second category contains the failures that do not permanently
damage the mobile host; for example, the battery is discharged and the
memory contents are lost, or the operating system crashes. The first type
of failures will be referred to as hard failures, and the second type as soft
failures. The protocol should provide different mechanisms to tolerate
the two types of failures.

4.2 MOBILE IP

The mobile environment model used in this chapter is based on the mobile
IP protocol (Perkins, 1997). The system contains both fixed and mobile hosts
interconnected by a backbone network (see Figure 14.5). A mobile host uses
a wireless interface to maintain network connections while it moves, and it is
identified by a long term address. The address also serves to localize the mobile



Foreign Agent

Mobile
Host

Backbone Network

Corresponding Node

Home Agent

Network 1
Home Network

Foreign Network

Figure 14.5 Mobile environment.

host's home network. While at home, the mobile host receives the packets as
a normal fixed host. When it moves to another network, the mobile host relies
on the services of a foreign agent to be able to communicate. Typically, the
foreign agent has a wireless interface and is able to forward packets to and
from the mobile host (the mobile host can also be directly connected to the
wired network). The geographical cover area of the wireless interface is called
the cell. Disconnection occurs when the mobile host moves outside the range
of all the cells. The home agent represents the mobile host when it is away
from the home network. The home agent intercepts the packets directed to the
mobile host and forwards them to the current foreign agent�. The home node
is informed by the mobile host about foreign agent changes.

The example from Figure 14.5 can be used to illustrate the communication
between the mobile host and another host. The corresponding host sends
packets to the long term address of the mobile host. These packets are routed
by the backbone network to the home network. The routing protocol is the
same as for packets that are sent to a fixed host. On the home network, the
home agent intercepts the packets and forwards them to the foreign agent. The
foreign agent transmits the packets through the wireless network to the mobile
node. Packets sent by the mobile node do not have to be forwarded by the
home agent. The foreign agent sends the mobile host's packets directly to the
corresponding node.



// S = Sender's identifier
// CN = Current checkpoint number of the sender
// timeToCkp = Time interval until next checkpoint
// mesg = Message contents
receiveMesg(S�CN� timeToCkp�mesg)

if ((CN local �� CN ) and (timeToCkp() � timeToCkp))
resetTimer(timeToCkp);

else if (CN local � CN ) f
createCkp();
resetTimer(timeToCkp);

g
deliverMesgToApplication(mesg);

Figure 14.6 Message reception.

5. ADAPTIVE MOBILE RECOVERY

The adaptive checkpoint protocol uses time to indirectly coordinate the
creation of global states. Processes save their states periodically, whenever
a local checkpoint timer expires. The protocol can set different checkpoint
intervals to ensure distinct recovery times. Higher checkpoint intervals require
on average larger periods of re-execution, but reduce the protocol's overheads.

The protocol creates two distinct types of checkpoints (Neves and Fuchs,
1997a). The protocol uses checkpoints saved locally in the mobile host to
tolerate soft failures, and it uses checkpoints stored in stable storage to recover
hard failures. The first type of checkpoint is called soft checkpoints, and
second type hard checkpoints. Soft checkpoints are necessarily less reliable
than hard checkpoints, because they can be lost with hard failures. However,
soft checkpoints cost much less than hard checkpoints because they are created
locally, without any message exchanges. Hard checkpoints have to be sent
through the wireless link, and then through the backbone network, until they
are stored in stable storage.

5.1 TIME-BASED CHECKPOINTING

As described earlier for general distributed systems, the adaptive protocol
uses time to avoid having to exchange messages during the checkpoint cre-
ation. A process saves its state whenever the local timer expires, independently
from the other processes. The protocol keeps the various timers roughly syn-
chronized to guarantee that processes' states are stored approximately in the
same instant. When the application starts, the protocol sets the timers in all
processes with a fixed value, the checkpoint period. The protocol uses a simple
re-synchronization mechanism to adjust timers during the application execu-



P1

P2

m1(tc1,CN) m2(tc2,CN-1)

CN

P3
CN

CN+1

CN

CN+1

CN+1

m3(tc3,CN)

Reset timerMessage-induced
checkpoint

Reset timer

Figure 14.7 Time-based checkpointing.

tion. Each process piggybacks in its messages the time interval until the next
checkpoint. When a process receives a message, it compares its local interval
with the one just received (see Figure 14.6). If the received interval is smaller,
the process resets its timer with the received value. The re-synchronization
mechanism serves to solve initial timer inaccuracies and other causes of timer
incorrections, such as clock drifts.

The protocol maintains a checkpoint number counter, CN local, at each
process to guarantee that the independently saved checkpoints verify the con-
sistency property. The value of CN local is incremented whenever the process
creates a new checkpoint, and is piggybacked in every message. The consis-
tency property is ensured if no process receives a message with a CN larger
than the current local CN local. The process creates a new checkpoint before
delivering the message to the application ifCN is larger than the local CN local
(see Figure 14.6). The recoverability property is guaranteed by logging at the
sender all messages that might become in-transit. These are the messages that
have not been acknowledged by the receivers at checkpoint time. The sender
process also logs the send and receive sequence number counters. During nor-
mal operation, these counters are used by the communication layer to detect
lost messages and duplicate messages due to retransmissions. After a failure,
each process re-sends the logged messages. Duplicate messages are detected
as they are during the normal operation.

The example from Figure 14.7 will be used to illustrate the execution of the
protocol. This figure represents the execution of three processes (to simplify the
figure, message acknowledgments are not represented). Processes create their
checkpoints at different instants, because timers are not synchronized. After
saving its CN checkpoint, process P� sends message m�. When m� arrives,
process P� is still in its CN � � checkpoint interval. To avoid a consistency
problem, P� first creates its CN checkpoint, and then delivers m�. P� also



Table 14.1 Configuration Table for maxSoft.

Quality of Service maxSoft Network Example
Low High

QoS � �� 1 2 ethernet, ATM
� � QoS � �� 2 8 radio, infrared
� � QoS � � 4 32 cellular
� � QoS � � 8 128 satellite
QoS � � � � disconnected

resets the timer for the next checkpoint. Message m� is an in-transit message
that has not been acknowledged when process P� saves its CN checkpoint.
This message is logged in the checkpoint of P�. Message m� is a normal
message that indirectly re-synchronizes the timer of process P�. It is possible
to observe in the figure the effectiveness of the re-synchronization mechanism.

5.2 SOFT VS. HARD CHECKPOINTS

The protocol adapts its behavior to the characteristics of the network. For
instance, if the network has a poor quality of service, the protocol saves many
soft checkpoints before it sends a hard checkpoint to stable storage. The number
of soft checkpoints that are stored per hard checkpoint is calledmaxSoft, and
it depends on the quality of service of the current network. The assignment
of maxSoft values to the different networks is made statically, and saved in
a table. Table 14.1 gives two examples of possible assignments. The minimal
quality of service corresponds to a disconnected mobile host. In this case,
maxSoft is set to infinity, which means that only soft checkpoints are created.
The low maxSoft column represents an assignment where hard checkpoints
are created frequently, which guarantees a small re-execution time after a hard
failure. The high maxSoft column corresponds to the opposite case.

Application processes run on hosts that might be connected to different
networks, each corresponding to a distinct maxSoft value. This means that
a global state can include both soft and hard checkpoints. To ensure that
recovery is always possible, the protocol has to keep at each moment a global
state containing only hard checkpoints. This global state is used to recover the
application from hard failures. Otherwise, the domino effect can occur, and
recovery might not be possible. The protocol guarantees that new hard global
states are saved by correctly initializing the maxSoft table. The process that
creates hard checkpoints less frequently is the one running in the host connected
to the network with worse quality of service (we will discuss the disconnect
case in the next section). The protocol guarantees that a new hard global state



Application process:
createCkp()
CN local � CN local � �;
resetTimer(T );
if ((CN localmodmaxSoft) �� �) sendCkpST(getState());
else storeState(getState(), CN local);

Stable storage:
// The function arguments are the same as in receiveMesg()
receiveCkp(S�CN� timeToCkp� state)
CN local � max(CN local�CN );
setBit(CN� S);
if (row(CN ) �� �) f
CN hard � CN ;
garbageCollect(CN hard);

g

Figure 14.8 Functions to create a new checkpoint.

is stored every time this process creates a hard checkpoint, by initializing the
table in such a way that maxSoft values are multiples of each other. For
example, if processes P� and P� have maxSoft values 4 and 8, this means
that a new hard global state is stored every 8 checkpoints. Process P� creates
hard checkpoints whenever CN local is equal to 4, 8, 12, 16, ..., and processP�
whenever CN local is equal to 8, 16, ... The protocol also keeps the last global
state that was stored (which can include soft checkpoints) to recover from soft
failures.

The functions from Figure 14.8 are used to create a new checkpoint. Function
createCkp is called to save a new process state. It starts by incrementing
the CN local, and then it resets the timer with the checkpoint period. Next,
the function determines if the checkpoint should be saved locally or sent to
stable storage. The function storeState stores locally the process state,
and the function sendCkpST sends the process state to stable storage. The
function receiveCkp is called by the stable storage to store newly arrived
checkpoints. It first writes the received state to the disk, and then updates the
local checkpoint counter. Then, it determines if a new hard global state has
been stored using a checkpoint table. The checkpoint table contains one row
per CN , and one column per process. The table entries are initialized to zero.
An entry is set to one whenever the corresponding checkpoint is written to
disk. The table only needs to keep one bit per entry, which means that it can
be stored compactly. A new hard global state has been saved when all entries
of a row are equal to one. The variable CN hard keeps the checkpoint number



of the new hard global state. The function garbageCollect removes all
checkpoints with checkpoint numbers smaller than CN hard.

5.3 MOBILE HOST DISCONNECTION

A mobile host becomes disconnected whenever it moves outside the range
of all the cells, or whenever the user turns off the network interface. While
disconnected, the mobile host can not access any information that is stored
in the stable storage. For this reason, the protocol must be able to perform
its duties correctly using only local information. The protocol continues to
save soft checkpoints in order to recover from soft failures. We consider two
different types of disconnection. An orderly disconnection allows the protocol
to exchange a few messages with the stable storage just before the mobile
becomes isolated. Examples of this type of disconnection include situations in
which the user calls a logout command, or the communication layers inform the
protocol when the mobile is about to move outside the range of the cells (when
the wireless signal becomes weaker). A disorderly disconnection corresponds
to the opposite case, in which the protocol is not able to exchange any messages
with stable storage. This happens, for instance, when the user unplugs the
ethernet cable without turning off the application (Neves and Fuchs, 1997b).

The creation of a new global state before disconnection is advantageous for
both the mobile host and the other hosts. This new global state is important
because it prevents the rollback of work that was done while the mobile host
was disconnected. If the new global state is not saved and another host fails
after the disconnection, the application rolls back to the last global state that
was stored (without warning the mobile host). Later, during re-connection, the
mobile's process will be warned about the failure and will also have to rollback,
undoing the work executed during the disconnection. The same principle can
be applied to the failures of the mobile host and the work done by the other
hosts.

The mobile host cooperates with the stable storage to create a new global
state before disconnection. Just before the mobile host becomes isolated, the
protocol sends to stable storage a request for checkpoint, and saves a new
checkpoint of the process (hard or soft, depending on the network). Then,
the stable storage broadcasts the request to the other processes. Processes
save their state as they receive the request. New global states can only be
created before the mobile host detaches from the network if disconnections are
orderly. Otherwise, the protocol is not able to determine when disconnections
occur. In any case, the protocol can always create a local checkpoint. This
soft checkpoint allows independent recovery of soft failures, and minimizes the
probability of global rollbacks due to failures of the mobile host.



Negotiation schemes

•FFFS

•FFFS with delay

•Reservation

Home host

Mobile host

Obtain a leaseLease expires

Storage space

Fail to obtain a leaseFail to renew a lease

Foreign agent

Figure 14.9 Leasing for the foreign agent.

When the mobile host re-connects, the protocol sends a request to stable
storage, asking for the current checkpoint number and the CN of the last
hard global state. When the answer arrives, the protocol updates the local
CN local using the current checkpoint number. The protocol also creates a hard
checkpoint if the mobile host has been isolated for a long time. If the difference
between CN local and CN hard is larger than the maximum maxSoft (in the
example from Table 14.1, 8 or 128 depending on the assignment), the mobile
sends a new hard checkpoint to stable storage. This checkpoint allows the hard
global state to advance.

6. FOREIGN AGENTS

6.1 LEASING AND STORAGE

Some foreign agents provide temporary storage service for mobile users.
The concept of leasing can be used for managing stable storage on foreign
agents (Yin et al., 1998). With information provided through leasing, the
storage manager knows the exact minimum available storage at any specific
time and thus is able to appropriately arrange for future space utilization.
Leasing can also prevent storage resources from being held indefinitely by
failed or blocked processes. Both the process and manager know the expiration
time of a lease and thus garbage collection is simplified.

The leasing mechanism of this chapter is described as follows (see Fig-
ure 14.9). Every process that needs to utilize stable storage negotiates with
the manager for the size of the space and the length of the lease. As the lease



expires, the process must either obtain a lease extension (new lease) or the
space is returned to the manager. The amount of space and the length of a
new lease may vary from the original lease. The storage manager may either
grant or decline the renewal based on the management protocol. The leasing
mechanism has the following four properties:

Negotiation: The storage manager and the process negotiate the expiration
time of the lease and the size of the storage. The lease is valid only when
the manager and process both agree to the lease.

Cancellation: The process can cancel the lease and return the space to the
storage manager at any time before the lease expires. The manager,
however, does not have the right of cancellation.

Renewal: The process has the right to request a new lease before the expiration
time of the lease. The storage manager may either grant or decline the
request based on the storage management policy.

Expiration: Every lease has an expiration time. The process must return the
storage to the manager if the lease is not successfully renewed.

6.2 ADAPTIVE CHECKPOINTING
Our approach to adaptive checkpointing with leasing uses time to indirectly

coordinate the creation of the checkpoints and it utilizes a three-level storage
hierarchy to save the checkpoints. This chapter previously described how
time can be an efficient mechanism for implementing mobile checkpointing.
This section describes how leasing can be integrated with adaptive time-based
checkpointing to enhance the performance of hierarchical storage management.

The protocol uses a three-level storage hierarchy to save the checkpoints of
the processes. Checkpoints stored in the first level are soft checkpoints (SC),
and they are saved in the mobile host (e.g., in a local disk or flash memory).
The other two levels correspond to the stable storage available in the foreign
agents and home host and are hard checkpoints (HC). Soft checkpoints are
less reliable than hard checkpoints because they can be used to tolerate only
temporary failures of the mobile host. The hard checkpoints are able to survive
permanent failures but have higher overheads due to their transmission through
the wireless channels. Based on the quality of service of the current network,
the protocol selects a specified ratio between soft and hard checkpoints for the
best reliability and performance. For example, it can send a hard checkpoint
to the stable storage whenever a fixed number of soft checkpoints have been
created in the local disk.

There are distinct space requirements throughout the storage hierarchy. In
the mobile host it is only necessary to save a soft checkpoint for the process



���
���
���
���

�������
�
�
�

��
��
��
��

��
��
��
��

��������

P2
HC1

HC1
P1

HC4

Failure

SC2

SC2

SC3

SC3 HC4

Lease time

Monitoring timeHard checkpoint interval

Checkpoint transmission time from a mobile host to a foreign agent

Checkpoint transmission time from a foreign agent to a home host

Figure 14.10 Leasing time.

locally executing the application. The stable storage in a foreign agent has to
be shared among the mobile hosts currently in the cell. These mobile hosts
may execute different applications with distinct checkpoint intervals and sizes.
Therefore, the foreign agents use the leasing mechanism to manage the stable
storage. The home host retains global states of the application. A global
state contains one checkpoint per each process executing the application. We
assume that there is enough space to store the checkpoints in the mobile and
home hosts. This assumption is reasonable since these hosts likely belong to
the same organization, which means that they can be configured to support the
storage requirements of the user applications.

The protocol first attempts to save the hard checkpoints in the foreign agents
instead of the home host due to performance advantages. The failure free
performance is better because one transmission step is avoided. A checkpoint
has first to pass through the foreign agent before it is sent to the home host.
Moreover, recovery is faster because checkpoints are closer to the hosts. Storing
checkpoints in the foreign agents, however, raises problems that have to be
addressed by the checkpoint protocol. For instance, since the timers may not
be well synchronized, a permanent failure can occur during the time when
some processes have completed their checkpoints while others are in progress
(see HC4 in Figure 14.10). If the failure is detected before the termination
of the leases on the previous checkpoints that form a consistent recovery line
(HC1 of P1 and P2), then recovery can be achieved. Otherwise, the protocol
will not have a consistent set of checkpoints for recovery. Requests for storage
sometimes may not be immediately granted if there is no sufficient available



space in the foreign agent. In this case, the protocol has to either postpone the
hard checkpoint or save it in another location.

The protocol negotiates with the foreign agents and home host to determine
the location to save the hard checkpoints. Whenever it is time to store a new
hard checkpoint, the process contacts the local foreign agent and tries to obtain
a lease for the required space. Then, it sends the checkpoint through the
wireless link and transmits a completion notification to the home host. If it is
impossible to obtain a lease within an allowable delay, the process stores the
checkpoint directly in the home host. At this moment, the process has finished
the checkpoint creation. On the home host, a monitoring process is initiated
after arrival of the first completion notification. The monitoring process ensures
that a new global state is saved in stable storage before the previous checkpoint
is garbage collected by the storage manager. The monitor expects to receive
a notification from all processes within a given monitoring time, otherwise it
assumes that a failure may have occurred. In this case, the monitor requests
from the foreign agents a copy of the previous checkpoint and saves them in the
local stable storage. This operation guarantees that there is a complete global
state available for recovery.

The lease time must ensure that the current hard checkpoint of the process
will be safely stored in the foreign agent until the next hard checkpoint is
created. Moreover, it has to be sufficiently large to allow the home host to
collect the checkpoint copies in case of failures. Therefore, the lease time is
set to be the sum of the hard checkpoint interval and the extra time that is
the monitoring time and the time to transmit the checkpoint from the mobile
host to the home host (see Figure 14.10). With this establishment of the lease
time, at least one consistent global state can be preserved. With failure-free
execution, the global state will typically have been created before the leases
expire. The monitoring process can send lease termination requests once all
the notifications have been received.

6.3 HAND-OFF PROCEDURES

Before moving to another cell, the process notifies the storage manager of
the current foreign agent. The manager then forwards the hard checkpoint(s)
of the process to the home host. After the checkpoint is saved safely by the
home host, the checkpoint on the foreign agent is removed. If the new cell
provides storage service and the process gets a lease, the hard checkpoint
can alternatively be sent to the new foreign agent. This hand-off procedure
simplifies the garbage collection on foreign agents. When the mobile host
leaves the current cell, the space occupied by its checkpoints will be available
for reallocation. This feature avoids having checkpoints scattered throughout



the network as the mobile host moves around. The mobile host also does not
have to maintain extra links to locate previous checkpoints.

7. SUMMARY

A checkpoint protocol was described that uses time to avoid performance
penalties introduced by traditional coordinated protocols. The protocol does not
rely on synchronized clocks to eliminate the message coordination overhead. It
uses a simple initialization procedure to start the checkpoint timers. Contrary
to previous time-based protocols, it also eliminates the overheads of in-transit
message storage and addition of information to messages. This is accomplished
by preventing processes from sending messages during an interval before the
checkpoint time.

This chapter also described how the checkpoint protocol can be adapted to the
characteristics of mobile environments. The protocol is able to save consistent
recoverable global states without needing to exchange messages. As with
general distributed systems,a process creates a new checkpoint whenever a local
timer expires and a simple mechanism is used to keep the checkpoint timers
approximately synchronized. The protocol saves soft checkpoints locally in the
mobile host, and stores hard checkpoints in stable storage. The protocol adapts
its behavior to different networks by changing the number of soft checkpoints
that are created per hard checkpoint. When the mobile host is disconnected,
the protocol creates soft checkpoints for recovery from soft failures.

The chapter demonstrated how adaptive checkpointing can be integrated with
leasing. With this feature, processes that do not immediately obtain storage for
necessary checkpoints are not forced to miss checkpoints. The protocol utilizes
hierarchical storage management to improve checkpointing performance.

Acknowledgments

Portions of this chapter are from the following papers by the authors, Neves and Fuchs,

“Adaptive Recovery for Mobile Environments,” Communications of the ACM, vol. 40, no. 1, pp.

68–74, Jan. 1997, and “Using Time to Improve the Performance of Coordinated Checkpointing,”

Proceedingsof the International Computer Performance & Dependability Symposium, pp. 282–

291, Sept. 1996. This research was supported in part by the Defense Advanced Research

Projects Agency (DARPA) under contract DABT 63-96-C-0069, and in part by the Office of

Naval Research under contract N00014-97-1-1013.

Notes

1. For simplicity, checkpoints are created periodically with a constant period T . In a more general
case, T can be different for each checkpoint as long as processes agree on the same value.

2. Mobile IP also allows messages to be directly forwarded to the mobile host, if it has a temporary
address belonging to the foreign network.



References

Acharya, A. and Badrinath, B. R. (1994). Checkpointing distributed appli-
cations on mobile computers. In Proceedings of the Third International
Conference on Parallel and Distributed Information Systems, pages 73–80.

Borg, A., Blau, W., Graetsch, W., Herrmann, F., and Oberle, W. (1989). Fault
tolerance under UNIX. ACM Transactions on Computer Systems, 7(1):1–24.

Chandy, K. M. and Lamport, L. (1985). Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer Sys-
tems, 3(1):63–75.

Cristian, F. and Fetzer, C. (1994). Probabilistic internal clock synchronization.
In Proceedings of the 13th Symposium on Reliable Distributed Systems,
pages 22–31.

Cristian, F. and Jahanian, F. (1991). A timestamp-based checkpointing pro-
tocol for long-lived distributed computations. In Proceedings of the 10th
Symposium on Reliable Distributed Systems, pages 12–20.

Elnozahy, E. N., Johnson, D. B., and Zwaenepoel, W. (1992). The perfor-
mance of consistent checkpointing. In Proceedings of the 11th Symposium
on Reliable Distributed Systems, pages 39–47.

Elnozahy, E. N. and Zwaenepoel, W. (1992). Manetho: Transparent rollback-
recovery with low overhead, limited rollback and fast output commit. IEEE
Transactions on Computers, 41(5):526–531.

Elnozahy, E. N. and Zwaenepoel, W. (1994). On the use and implementation
of message logging. In Proceedings of the 24th International Symposium on
Fault-Tolerant Computing, pages 298–307.

Forman, G. H. and Zahorjan, J. (1994). The challenges of mobile computing.
Computer, 27(4):38–47.

Goldberg, A., Gopal, A., Li, K., Strom, R., and Bacon, D. (1990). Transparent
recovery of Mach applications. In Proceedings of the Usenix Mach Work-
shop, pages 169–184.

Johnson, D. B. and Zwaenepoel, W. (1987). Sender-based message logging. In
Proceedings of the 17th International Symposium on Fault-Tolerant Com-
puting, pages 14–19.

Johnson, D. B. and Zwaenepoel, W. (1990). Recovery in distributed systems
using optimistic message logging and checkpointing. Journal of Algorithms,
11(3):462–491.

Kim, J. L. and Park, T. (1993). An efficient protocol for checkpointing recov-
ery in distributed systems. IEEE Transactions on Parallel and Distributed
Systems, 4(8):231–240.

Koo, R. and Toueg, S. (1987). Checkpointing and rollback-recovery for dis-
tributed systems. IEEE Transactions on Software Engineering, SE-13(1):23–
31.



Nemzow, M. (1995). Implementing wireless networks. McGraw-Hill Series on
Computer Communications. McGraw-Hill, Inc., New York.

Neves, N., Castro, M., and Guedes, P. (1994). A checkpoint protocol for an
entry consistent shared memory system. In Proceedings of the Thirteenth
Annual Symposium on Principles of Distributed Systems, pages 121–129.

Neves, N. and Fuchs, W. K. (1996). Using time to improve the performance of
coordinated checkpointing. In Proceedings of the International Computer
Performance & Dependability Symposium, pages 282–291.

Neves, N. and Fuchs, W. K. (1997a). Adaptive recovery for mobile environ-
ments. Communications of the ACM, 40(1):68–74.

Neves, N. and Fuchs, W. K. (1997b). Fault detection using hints from the
socket layer. In Proceedings of the 16th Symposium on Reliable Distributed
Systems, pages 64–71.

Neves, N. and Fuchs, W. K. (1998a). Coordinated checkpointing without direct
coordination. In Proceedings of the International Computer Performance &
Dependability Symposium, pages 23–31.

Neves, N. and Fuchs, W. K. (1998b). RENEW: A tool for fast and efficient
implementation of checkpoint protocols. In Proceedings of the 28th Inter-
national Symposium on Fault-Tolerant Computing, pages 58–67.

Perkins, C. E. (1997). Mobile IP Design Principles and Practices. Addison–
Wesley.

Plank, J. S. (1993). Efficient checkpointing on MIMD architectures. PhD thesis,
Princeton University.

Pradhan, D. K., Krishna, P., and Vaidya, N. H. (1996). Recovery in mobile
environments: Design and trade-off analysis. In Proceedings of the 26th
International Symposium on Fault-Tolerant Computing, pages 16–25.

Ramanathan, P. and Shin, K. G. (1993). Use of common time base for check-
pointing and rollback recovery in a distributed system. IEEE Transactions
on Software Engineering, 19(6):571–583.

Silva, L. M. and Silva, J. G. (1992). Global checkpointing for distributed
programs. In Proceedings of the 11th Symposium on Reliable Distributed
Systems, pages 155–162.

Ssu, K. F., Yao, B., and Fuchs, W. K. (1999). An Adaptive Checkpointing
Protocol to Bound Recovery Time with Message Logging. In Proceedings
of the 18th Symposium on Reliable Distributed Systems.

Strom, R. E. and Yemini, S. (1985). Optimistic recovery in distributed systems.
ACM Transactions on Computer Systems, 3(3):204–226.

Tong, Z., Kain, R. Y., and Tsai, W. T. (1989). A low overhead checkpointing
and rollback recovery scheme for distributed systems. In Proceedings of the
8th Symposium on Reliable Distributed Systems, pages 12–20.



Wang, Y.-M. and Fuchs, W. K. (1992). Optimistic message logging for inde-
pendent checkpointing in message-passing systems. In Proceedings of the
11th Symposium on Reliable Distributed Systems, pages 147–154.

Wang, Y.-M. and Fuchs, W. K. (1993). Lazy checkpoint coordinationfor bound-
ing rollback propagation. In Proceedings of the 12th Symposium on Reliable
Distributed Systems, pages 86–95.

Yao, B., Ssu, K. F., and Fuchs, W. K. (1999). Message logging in mobile
computing. In Proceedings of the 29th International Symposium on Fault-
Tolerant Computing, pages 294–301.

Yin, J., Alvisi, L., Dahlin, M., and Lin, C. (1998). Using leases to support
server-driven consistency in large-scale systems. In Proceedings of the 18th
International Conference on Distributed Computing Systems, pages 285–
294.


