
An Intrusion-Tolerant Firewall Design for Protecting
SIEM Systems

Miguel Garcia, Nuno Neves and Alysson Bessani
University of Lisbon, Faculty of Sciences, LASIGE

mhenriques@lasige.di.fc.ul.pt, {nuno,bessani}@di.fc.ul.pt

Abstract—Nowadays, organizations are resorting to Security
Information and Event Management (SIEM) systems to monitor
and manage their network infrastructures. SIEMs employ a data
collection capability based on many sensors placed in critical
points of the network, which forwards events to a core facility
for processing and support different forms of analysis (e.g.,
report attacks in near real time, inventory management, risk
assessment). In this paper, we will focus on the defense of the core
facility components by presenting a new firewall design that is
resilient to very harsh failure scenarios. In particular, it tolerates
not only external attacks but also the intrusion of some of its
components. The firewall employs a two level filtering scheme
to increase performance and to allow for some flexibility on the
selection of fault-tolerance mechanisms. The first filtering stage
efficiently eliminates the most common forms of attacks, while the
second stage supports application rules for a more sophisticated
analysis of the traffic. The fault tolerance mechanisms are based
on a detection and recovery approach for the first stage, while
the second stage uses state machine replication and voting.

Keywords—Intrusion Tolerance; Intrusion Prevention Systems;
Firewall;

I. INTRODUCTION

Security Information and Event Management (SIEM) sys-
tems offer various capabilities for the collection and analysis
of security events and information in networked infrastruc-
tures [1]. They are being employed by organizations as a way
to facilitate operations related to maintenance, monitoring and
analysis of networks, by integrating a large range of security
and network capabilities, which allow the correlation of thou-
sands of events and the reporting of attacks and intrusions in
near real-time [2], [3], [4].

A SIEM operates by collecting data from the monitored
network and applications through a group of sensors, which
then forwards the events towards a core facility for processing
at a correlation engine (see Figure 1). The engine performs an
analysis on the stream of events and generates alarms and other
information for post-processing by other SIEM components.
Examples of such components are an archival subsystem for
the storage of data needed to support forensic investigations,
or a communication subsystem to send alarms to the system
administrators.

As SIEMs play an increasingly relevant role in the network
and security management tasks of the organizations, it becomes
imperative to ensure their correct operation under a wide
range of fault scenarios. In particular, since security solutions
often have been the target of malicious actions (e.g., anti-virus
software [5], intrusion detection systems [6] or firewalls [7],
[8], [9], [10]) as part of a wider scale attack, SIEM systems

����������	�
�

�������������

������
�����

�������������������

��
�����������������
����

�	�������������

������

�������

������ 

!�����



����!���
���

��
�����������������
����"��������


����������

������#�$����%

������$

Fig. 1. Overview of a SIEM architecture, showing some of the core facility
subsystems.

should be built/deployed under the assumption that this sort of
actions will eventually occur. In this paper, we will focus on the
protection of the core facility components from outside attacks,
improving the security and dependability of such essential
processing.

The traditional solution to defend a critical network from
malicious outsiders is a firewall. Firewalls are intended to
separate security perimeters, such as a LAN from a WAN,
and their main goal is to control the traffic that flows in and
out of a facility. Typically, a firewall decides on letting a
packet go through (or drop it) based on the analysis of its
header and/or contents. Over the years, this analysis has been
performed at different levels of the OSI stack, but the most
sophisticated rules are based on the inspection of application
data included in the packets. State-of-the-art solutions for
application-level firewalls include network appliances provided
by several vendors, such as Juniper1, Palo Alto2, and Dell
SonicWall3.

Firewalls are in general a single point of failure, and as such
they have been the target of many attacks4. When successful,
these attacks can impact on the system’s security in different
ways — for instance, they can allow complete access to the
internal network resources or they can compromise availability
by preventing traffic from going through the firewall. To
address some of these issues, the paper presents a new resilient
firewall design that is able to remain operational under very
harsh failure conditions, including both accidental crashes or

1http://www.juniper.net/us/en/products-services/security/
2http://www.paloaltonetworks.com/products/platforms/PA-

5000 Series.html
3http://www.sonicwall.com/us/en/products/Next-Generation Firewall.html
4An inspection of the Open Source Vulnerability Database (OSVD) shows

that there have been many security issues in commonly used firewalls. During
the 4 year period between 2009 and 2012, there were for example the following
number of security reports: 36 for the Cisco Adaptive Security Appliance; 64
in Juniper Networks solutions; and 29 related to netfilter.



the compromise of some of its components.

A key design choice on the firewall architecture is to
divide filtering operations in two stages. The rationale for
this decision was related with optimizing performance under
attack and to give flexibility on the selection of the fault
tolerance mechanisms. Performance is increased if common
forms of attacks are handled earlier and with highly efficient
tests. Therefore, the first stage, which is called pre-filtering,
carries on lightweight checks on the messages and aims at
discarding all attacks from external adversaries. In particular,
it only lets messages go through that come from a pre-defined
set of senders (typically, the sensors of the SIEM) and that are
correctly authenticated. Denial-of-service (DoS) traffic from
external sources is immediately dropped, preventing these
messages from overloading the next stage. The second stage is
named filtering, and it is responsible for enforcing more refined
application level policies, which can require the inspection
of specific message fields and/or the observation of certain
ordering rules (e.g., a sensor can only send data after some
initial setup is performed with the engine).

Different fault tolerance mechanisms are employed at the
two stages. Pre-filtering is implemented by a dynamic group
components, whose size is adapted to the current demand.
Hence, as the traffic load grows or extra senders have to
be supported, the firewall creates more pre-filters to amplify
the aggregated processing capabilities (within the constraints
of the hardware). Since pre-filters face the external network,
they can experience various kinds of attacks and eventually
be intruded. Therefore, we take the conservative approach of
assuming that pre-filters can fail in an arbitrary (or Byzantine)
way, meaning that they may for instance crash or start to act
maliciously (when compromised by an adversary). The faults
are tolerated by forcing the recovery of the erroneous pre-
filters after their identification. The filtering stage is performed
by a static group of filter components that are organized as a
replicated state machine. Since we also want to consider filters
that fail with an arbitrary behavior, the replication protocol
needs to tolerate Byzantine faults and the final destination
needs to vote on the results that are produced (to eliminate
malicious data).

The rest of the paper is organized in the following way:
Section II discusses some of the design choices that guided our
design. The model of the system is presented in Section III,
and then the firewall operation is described in detail. Finally
we present an overview of possible deployment alternatives
(Section V), and the conclusions in Section VI.

II. DESIGN CHOICES

Traditional firewall designs are based on a single logical
component, and consequently, they are unable to tolerate most
failures. A simple crash prevents the firewall from fulfilling
its function, and more elaborated failure modes may allow
an adversary to penetrate into the protected network. Some
organizations deal with crashes (or DoS attacks) by replicating
the firewall to support multiple entry points. This solution is
helpful to address some (accidental) failures, but is incapable
of dealing with an intrusion in the firewall. In this case,
the adversary gains complete access to the internal network,
allowing an escalation of the attack, which at that stage can
only be stopped if other protection mechanisms are in place.

Over the past years, there has been a important amount
of research in the development of systems that are intrusion-
tolerant. To our knowledge, however, only very little work was
devoted to design intrusion-tolerant protection devices, such as
a firewalls (e.g., [11], [12]). Performance reasons might explain
this, as Byzantine fault-tolerant (BFT) replication protocols
are usually associated with reasonable overheads and limited
scalability. For example, a straightforward implementation of
a BFT firewall would require replicas to process every arriving
message and then agree on their delivery. BFT solutions based
on a leader can also become prey of an adversary, as they have
a natural bottleneck replica that can be selected for the attack
(instead of having to disperse the attack power over all replicas
[13]).

The main motivation for this work is to address these lim-
itations and propose a design for an intrusion-tolerant firewall.
The fundamental design options that guided our solution were:

1) Application-level filtering: Allow for sophisticated filter-
ing rules that take advantage of application knowledge.
To support these rules, the firewall has to maintain state
about the current communications. The state will have to
be consistently replicated using a BFT protocol.

2) Performance: a) Address the most probable attack scenar-
ios with highly efficient tests, and as earlier as possible
in the filtering stages. b) Reduce communication costs
with external senders, as these messages may have to
travel over high latency links (e.g., do not require message
multicasts).

3) Resilience: a) Tolerate a broad range of failure scenar-
ios, including: malicious external attackers; compromised
authenticated senders; and intrusions in a subset of the
firewall components. b) Prevent malicious external traffic
from reaching the internal network by requiring explicit
message authentication.

III. SYSTEM MODEL

Since we want to address faults both of an accidental
nature and also caused by a malicious adversary, we assume
that erroneous components can behave arbitrarily (or in a
Byzantine way). To be conservative, we assume that all failed
components are controlled by a single entity that will make
them act together to defeat the normal operation of the system.
Therefore, they can for instance stop sending messages, skip
some steps of the protocols, provide erroneous information to
correct components, or try to delay the system.

We address three failure scenarios on the components,
which provide increasingly more power to the adversary. The
most common scenario occurs when an external adversary
attempts to attack the internal network systems. He can deploy
a large number of (unauthenticated) senders, whose aim is
either to delay the communications or to bypass the firewall
protection and reach the internal network. In particular, he
can try to masquerade the messages as coming from normal
senders, or perform a DoS by transmitting many erroneous
packets to the firewall. However, as the firewall cannot stop
DoS attacks that completely overload its incoming channels,
which cause most of the normal messages to be dropped by the
routers, it is assumed that the network includes other defense
mechanisms to address this sort of attack (e.g., see [14]).



As the authenticated senders (e.g., the sensors of the SIEM)
are potentially spread over several outside networks, it is
advisable to consider a second scenario where the adversary
is also capable of taking control of some of these nodes.
When this happens, it is assumed that the adversary gains
access to all keys stored locally. Therefore, he will be able
to generate traffic that is accepted by the firewall as correctly
authenticated, but the packets will still be checked by the
application level filtering. In any case, if the messages follow
the rules, the firewall has to let them go through, as they are
indistinguishable from other valid messages.

A third scenario occurs when the adversary is able to
cause an intrusion in the firewall, and compromises a few of
the pre-filters and/or filters. We assume that at most fpf pre-
filters fail of a total of Npf = fpf + k (with k > 1), and that
out of the Nf = 3ff +1 filters at most ff fail. To enforce this
assumption it is necessary to ensure that firewall components
fail independently, which typically can be achieved with good
coverage if one employs diversity [15]. A failed pre-filter can
for instance modify the received traffic or generate invalid
messages that are given to the filtering stage. A malicious filter
can perform similar attacks, and in addition send erroneous
data to the final destination.

We assume that the communications with the firewall
can also suffer from accidental faults and/or attacks. Thus,
messages may be lost, delayed, reordered or corrupted. Most
of the faults will have to be tolerated by the applications, for
example, by retransmitting the messages.

FiltersPre‐filters

Sender Receiver

ne
l

O
M
 c
ha
nn

TO

Controller

Firewall

Fig. 2. Overview of the architecture and communication pattern with the
firewall.

IV. FIREWALL OPERATION

This section describes the firewall execution when mes-
sages arrive from the senders and are forwarded to the final
destination. Traffic identified as malicious by one of the
filtering stages is discarded. Figure 2 displays the architecture
of the firewall and shows the communication pattern among
the components.

A. Components of the Architecture

The main components involved in the operation of the
firewall are:

a) Sender-module: There is a communication module
deployed on the sender’s side that is responsible for the
interactions with the firewall. It performs the authentication
with the firewall, and encapsulates the data received from the
application to ensure its correct delivery. Each sender-module
is associated with one preferred pre-filter that is selected during
setup. Messages are transmitted towards the preferred pre-filter.

b) Pre-filters: They appear as the external interface of
the firewall, and perform basic filtering actions. Although tests
are kept simple to improve efficiency, they are nevertheless
effective at deterring most attempts of DoS. Pre-filters forward
to the filters the accepted messages using a Byzantine total
ordered multicast (TOM) protocol [16]. This protocol ensures
that all filters receive identical messages in the same order.

c) Filters: They implement a state machine replication
service that filters messages based on application knowledge.
Each of them acts as a replica, applying exactly the same rules
to every message that was deemed valid by the pre-filters.
Therefore, correct filters should reach to the same conclusion
regarding the validity of the messages. Accepted messages are
transmitted to the final destination.

d) Receiver-module: It is a communication module
deployed on the receiver’s side, whose responsibility is to
deliver the messages to the application. The main role of this
component is to vote Filters’ messages in order to accept only
correct messages (recall that compromised filters may send
invalid data). A message is considered correct is f f +1 filters
vouch for it.

e) Controller: Is a trusted component of the firewall
that runs with a higher privilege level (depending on the actual
firewall implementation, it can be developed in different ways;
see Section V for a discussion). The controller takes input from
the filters to decide on the creation of more pre-filters, or to
delete one of them.

The deployment of the firewall requires a key distribution
scheme to create shared keys between sender-modules and the
pre-filters, and between filters and receiver-modules. These
shared keys can be distributed based on some long term secrets
(e.g., private-public key pairs), using for instance protocols
similar to IPsec (the Internet Key Exchange [17]).

B. Transmitting a Message

The sender-module receives from the application a buffer
with DATA to be transmitted to a certain destination behind the
firewall. The buffer needs to be encapsulated in a message with
some extra information required to protect the communication.
It is necessary to add the sender-module identifier ci and a se-
quence number value sn. The sequence number is incremented
in every message, and is used to prevent certain replay attacks
either from the network or a compromised pre-filter.

Next, information is added to the message to protect its
integrity and allow for its authentication. A signature sign is
performed over the messages contents, and a MAC Mpf is
obtained for the pre-filter associated with this sender (covering
all fields, including the sign). The MAC is computed using
a shared key established with the pre-filter, and serves as an
optimization to speedup checks (as testing a MAC is faster than
a signature). The signature is calculated with the private key of



White List 
(a)

Pre

Sequence
Number (b)

MAC
(c)

e‐filter

Grant Check 
(d)

TOM

Seq. 
number & signat.

(e)Filte

Application
Rules (f)

ers

Discard

Fig. 3. Filtering stages at the firewall.

the sender-module (the corresponding public key is provided
to the firewall components for signature verification, during
the setup of the system). The message then is sent via UDP
to the pre-filter p f :

M = 〈ci,sn,DATA,sign〉Mp f

f) Pre-filter: Upon receiving the message, the pre-filter
applies a few checks to determine if the message should be
forwarded or discarded (see Figure 3):

(a) White list: each pre-filter maintains a list with the nodes
that are allowed to transmit messages (i.e., which were
authorized by the system administrator). Messages coming
from other nodes are simply dropped. This check is based
on the address of the sender of the message.

(b) Sequence number: determines if a message with sequence
number sn from sender ci was already seen. In the affir-
mative case, the message is discarded to prevent replay
attacks. Furthermore, messages are also dropped if their
sn is much higher than the largest sequence number ever
seen from that sender (a moving window of acceptable
sequence numbers is used).

(c) MAC test: MAC Mpf is verified to authenticate the mes-
sage contents. If the check is invalid, the message is
dropped and the sequence number information is updated
to indicate that this message was not seen.

(d) Grant check: each pre-filter controls the amount of mes-
sages that sender-module is transmitting. Messages that
fall outside the allocated amount are dropped, to ensure
that all senders get a fair share of the available bandwidth
(and to avoid DoS attacks by intruded senders).

Then, the pre-filter invokes the total order multicast channel
to forward the message to the filters. This channel ensures that

all filters receive the message in the same order.

g) Filter: Each filter applies identical checks to the
message:

(e) Sequence number and signature test: as the pre-filter
might have been intruded, it is necessary to perform an
extra check on the integrity/authenticity of the message
fields. The test on the sequence number is similar to the
pre-filter, but then the signature is used to ensure that all
filters reach the same decision regarding the validity of
the contents.

(f) Application-level rules: apply the application-level filter-
ing rules to determine if the message is acceptable. These
rules may look into the contents of DATA and relate
it with context information about messages that were
previously processed, i.e., we support iptable rules.

Although uncommon in several deployment scenarios, it
can happen that the network re-orders the delivery of messages.
The impact of this problem is that application-level rules may
drop some of the out of order messages, which later on will
have to be re-transmitted by the application. For example, if
messages A and B should appear in this sequence but are re-
ordered, then the rules may consider B invalid and then accept
message A. At some point, the application would determine
that B was lost, and would re-send it.

To address this issue, each filter enqueues for a while
messages with a sequence number greater than the expected
(but that do not exceed a threshold above the last processed
sequence number). Next, it will continue to process other
messages, until either: 1) the missing message(s) arrive, and
then they are all tested in order, or 2) it gives up on waiting, and
checks the message. This last decision is made after processing
a pre-determined number of other messages.

Messages that are considered valid are encapsulated in a
new format, and are then sent to the final destination. Basically,
the filter removes the signature and substitutes the MAC with a
new one M f . This MAC is created using a shared key between
the filter and the receiver-module.

M1 = 〈ci,sn,DATA〉M f

The receiver-module accumulates the messages that arrive
from the various filters, until a quorum is collected to ensure
correctness. Furthermore, it validates the MACs to authenticate
the content. A message can be delivered to the application
when there is a quorum of f f +1 equal copies, as this indicates
that at least one correct filter accepted the message.

C. Handling Component Failures

In the Byzantine model, every failed component can behave
in an arbitrary way, intentionally or accidentally. Therefore,
when designing the firewall, it is necessary to incorporate
mechanisms that are resilient to very harsh failure scenarios.
Given the architecture of Figure 2, one has to address faults in
the pre-filters and filters, and needs defenses against erroneous
(authenticated) senders and external attackers (regarding the
receiver-module, there is not much that can be done about its
failures).



Although pre-filters carry out the same function, i.e., check
the messages arriving from a few sender-modules, they are
not replicated. Furthermore, since pre-filters face the external
firewall interface, there is a higher risk of being compromised.
As such, in order to keep the firewall operational, it is required
that failed pre-filters are identified and recovered. We leverage
from the filter setup to perform the fault detection (of either
crashes or misbehavior), and then use the controller to re-start
erroneous pre-filters.

Filters implement state machine replication, and as long as
they process the same messages in identical order, identical
results should be produced. Consequently, filter faults can be
tolerated by employing a voting technique that selects results
supported by a sufficiently large quorum (as explained above,
an output with at least f f +1 votes).

1) Pre-Filter failures: Since pre-filters can fail arbitrarily,
they can exhibit very different invalid behaviors. Moreover,
sometimes they may look as acting in a flawed way, but in
fact they are correct. For example, when a pre-filter is under a
DoS attack, messages can start to be lost on the network due
to buffer overflows, but this is indistinguishable from a failure
that causes omissions. This sort of ambiguity precludes exact
failure detection, and therefore, our aim should be to provide
a number of mechanisms that allow the firewall to recover
from failures and continue to deliver a correct service (i.e.,
let clients send messages to a given destination). One however
should accept right from the start that occasionally there might
be mistakes on the fault detection — a good pre-filter may be
erroneously considered failed (e.g., it is just overloaded), while
a flawed one might go undetected (e.g, if messages are only
dropped rarely).

An initial step on the detection process is for the pre-
filter to evaluate its own conduct. In particular, it observes the
amount of traffic that is arriving to determine if there is a risk
of becoming overloaded. An easy way to carry out the analysis
is to measure the waiting intervals for message arrivals over a
certain period. If those intervals are very small on average, then
the per-filter is working at its full capacity or there is already
some overload. When this happens, the pre-filter sends over
the TOM channel a WARNREQ request to the filters, so that
they may take some action to solve the problem (see below).

To detect failures in general, it is necessary the cooperation
of the filters and the senders. Since a sender generates the
data that is transmitted to a pre-filter, it knows how many
messages should have arrived to the filters. Consequently, by
providing a mechanism where a sender can tell the filters how
many messages were supposed to be delivered, it is possible to
determine if many omissions are occurring on a pre-filter (or in
the network connecting to it). The procedure is the following:

• Periodically, the sender-module transmits to the fil-
ters a special ACKREQ request, where it indicates
the sequence number of the last message that was
transmitted (plus a signature and a MAC to ensure
authenticity). This request is first sent to the preferred
pre-filter, but if no answer is received within some
time, it is forwarded over the other pre-filters. The
waiting period is adjusted in each retransmission by
doubling its value.

• When the filters get the request, they use the in-
cluded sequence number together with some local
information, to find out how many messages have been
missing. The local information is basically the set of
sequence numbers of the messages that were correctly
delivered since the last ACKREQ.

• Based on the number of missing messages, the fil-
ters transmit through the same pre-filter a response
ACKRES to the sender-module, where they state the
observed failure rate and other control information
(plus a signature). Filters may also specify some
recovery action if the failure rate is too high (see
below).

Finally, filters can also learn about failures based on the
validations performed on the messages. For example, an invalid
signature check is highly suspicious because all messages
corruptions should be captured by the pre-filters with the MAC
test. This would indicate that either the pre-filter or/and the
sender is failed (since it could have generated a wrong signa-
ture but a good MAC). Filters may also become suspicious if
there is a sudden increase on the level of out-of-order message
arrivals. This could indicate an attack on the network or a
malicious pre-filter. The filters should attempt to fix these
behaviors when they are observed.

Three kinds of recovery actions are used to solve the above
mentioned problems. These actions are taken depending on the
extent of the perceived failures, but they should be safe from
the point of view of the firewall operation:

• Redistribute load: For example, if a pre-filter provides
a warning about its load, or high failure rates start to
be observed for a specific pre-filter, the first course
of action is to move some of the message flows to
other pre-filters. This is achieved by specifying in the
ACKRES response of a sender-module the identifier
of a new pre-filter that should be used. At that point,
the sender-module is expected to contact the chosen
pre-filter to initiate communications through it.

• Increase pre-filtering capacity: If the existing pre-
filters are unable to process the current load, a second
course of action is to create more pre-filters (until
a certain maximum is reached, depending on the
hardware resources). To accomplish this, the filters
contact the controller informing that a extra pre-filter
should be started. When the controller receives f f +1
of such messages, it performs the necessary steps to
fulfill the request (which are dependent on the actual
deployment of the firewall). The new pre-filter begins
by doing a few startup operations, which include the
creation of a communication endpoint, and then it uses
the TOM channel to inform the filters that it is ready
to accept messages from the sender-modules.

• Kill pre-filters: When there is a reasonable level of
suspicion on a pre-filter, the safest course of action
is to have the filters ask the controller to destroy it.
Moreover, if the load on the firewall is perceived as
having decreased substantially, the filters select the
oldest pre-filters for elimination, allowing eventual
aging problems to be addressed. The controller carries



out the needed actions when it gets f f + 1 of such
requests (once again, these depend on how the firewall
was deployed). The sender-modules that may have had
their flows affected, will be informed about the re-
placement pre-filter through the ACKREQ mechanism
(they will use another pre-filter to send the request,
and get the information about a new pre-filter to be
used in the response).

2) Filter failures: Since filters receive the same messages
and execute in a deterministic way, they are expected to
produce the same results. Therefore, it is possible to detect
erroneous behaviors by comparing the outputs of the filters.
Namely, when a receiver-module sees divergent messages
being forwarded, for a specific sequence number of a given
sender, this provides evidence that filters may have failed.
Additionally, the controller should receive similar requests to
update the pre-filters configuration, and missing or disagreeing
messages also give an indication of a problem. Since we
anticipate that filter failures will be rare, we decided to exclude
automatic filter recovery — the component that discovers a
misbehaving filter sends a warning to the system administrator,
so that recovery can be initiated manualy.

3) Sender-module failures: By looking at the arriving mes-
sages, the filters may also detect some sender-module failures.
In particular, we are concerned with behaviors that may
influence the normal execution of the firewall. For example,
if a correctly signed message arrives with a much larger than
expected sequence number, this gives a clue that something
may be wrong with the sender. More serious is a sender-
module that is constantly complaining about the pre-filters
(e.g., by apparently showing high failure rates), or that is
transmitting at a speed above the allowed by the grant check
(test (d) of Figure 3). Here, some defense action needs to be
carried out, as these cause the firewall to spend extra resources
(e.g., constantly moving the sender through the various pre-
filters, or wasting network bandwidth).

To be conservative, we decided to follow a simple proce-
dure to protect the firewall from a specific sender-module:

Filters maintain a counter per sender that is increased
whenever new evidence of failure can be attributed to it. When
the counter reaches a pre-defined value, the sender is disal-
lowed from communicating with the firewall by temporarily
removing it from the white list (test (a) of Figure 3) and a
warning is sent to the system administrator. To let excluded
senders regain access to the service, the counter is periodically
decreased. When the counter falls below a certain threshold,
the sender is moved back into the white list.

V. OVERVIEW OF DEPLOYMENT ALTERNATIVES

The firewall requires several separate components (filters
and pre-filters) for effective deployment. However, costs are
a major concern of any administrator. Therefore, we present
a few deployment alternatives that can be made based on our
solution. In any case, one must keep in mind that resilience
usually has associated costs.

Figure 4 presents the rational for making deployment
decisions. The considered solutions try to tradeoff costs with
the use of virtualization [18], [19], [20]. In all options, different

Low High 

High 

Low 

Performance 

C
ri

ti
ca

li
ty

 

FPR 

FVR 

VFR 

PFR 

Fig. 4. Tradeoffs in some deployment alternatives.

components run in separate virtual machines and/or physical
machines (or hardware boards). A solution with more physical
machines is desirable for more critical systems, due to the
higher fault isolation and also because of the potentially better
performance. With virtualization, each physical machine sup-
ports several virtual machines, which means that there might
be less machinery costs but performance can be reduced as
resources are shared. Although virtual machines provide some
level of isolation among the different components, preventing
in most cases intrusions from propagating from one replica to
the others, hardware faults may have an impact in all replicas.

• Full Physical Replication (FPR): every pre-filter and
filter runs in a different physical machine.

• Full Virtual Replication (FVR): every pre-filter and
filter runs in different virtual machines in the same
physical hardware.

• Virtual Filter Replication (VFR): pre-filters and filters
run in virtual machines, but the pre-filters are in a
physical machine and the filters are in another physical
machine.

• Physical Filter Replication (PFR): pre-filters run in
virtual machines of the same physical machine, and
each filter runs in a separate physical machine.

The controller should be run in a separate component that
is protected from failures in the rest of the system. In the case
of a virtualized environment, it can be implemented in the
hypervisor, allowing complete access to the other components.
With physical replication, there are a few alternatives, such
as implementing it in a separate hardware module that can
force the rebooting of a machine, or hybrid solutions that use a
separate control network and a privileged software module [11]

VI. CONCLUSIONS

This paper presents a design for a resilient firewall that
we are developing to protect the core services of a SIEM
system. The firewall employs a two-level filtering strategy
to improve performance and allows for some flexibility on
the selection of fault tolerance mechanisms. The pre-filtering
stage eliminates the most common forms of attacks in a very
efficient way, while the filtering stage supports application
rules for a more sophisticated analysis of the traffic. The



fault tolerance mechanisms consider a harsh failure scenario,
where the components of the firewall may be compromised
and behave arbitrarily. Two approaches are followed to address
failures: the pre-filters use a detection and recovery solution,
while the filters use BFT state machine replication and voting.

ACKNOWLEDGMENT

This work was partially supported by the EC through
project FP7-257475 (MASSIF) and by the FCT through the
Multiannual (LaSIGE) Program.

REFERENCES

[1] D. Miller, Z. Payton, A. Harper, C. Blask, and S. VanDyke, Security
Information and Event Management (SIEM) Implementation. McGraw-
Hill Education, 2010.

[2] The Security Division of EMC, “Security information and event man-
agement: Expectations for mid-sized organizations,” RSA, Tech. Rep.,
2010.

[3] M. Nicolett and K. Kavanagh, “Magic quadrant for security information
and event management,” Gartner RAS Core Research, Tech. Rep., 2011.

[4] ——, “Magic quadrant for security information and
event management,” May 2012. [Online]. Available:
http://www.gartner.com/technology/reprints.do?id=1-1AOG9W9&ct=
120529&st=sb&elq=1aacb714c9db45019551292e9050da2f

[5] J. Chauhan and R. Roy, “Is Firewall and Antivirus Hackers Best
Friend?” iViZ Techno Solutions Pvt Ltd, Tech. Rep., Jan 2011.

[6] R. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, 1st ed. John Wiley & Sons, Inc., 2001.

[7] S. Kamara, S. Fahmy, E. E. Schultz, F. Kerschbaum, and M. Frantzen,
“Analysis of vulnerabilities in Internet firewalls,” Computers & Security,
vol. 22, no. 3, pp. 214–232, 2003.

[8] S. Surisetty and S. Kumar, “Is McAfee securitycenter/firewall software
providing complete security for your computer?” in Proceedings of the
International Conference on Digital Society, Feb 2010, pp. 178–181.

[9] Cisco, “Multiple vulnerabilities in firewall services module,” Feb.
2007. [Online]. Available: http://tools.cisco.com/security/center/content/
CiscoSecurityAdvisory/cisco-sa-20070214-fwsm

[10] ——, “Multiple vulnerabilities in Cisco firewall services module,”
Oct. 2012. [Online]. Available: http://tools.cisco.com/security/center/
content/CiscoSecurityAdvisory/cisco-sa-20121010-fwsm

[11] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verissimo, “Highly
available intrusion-tolerant services with proactive-reactive recovery,”
IEEE Transactions on Parallel and Distributed Systems, vol. 21, pp.
452–465, 2010.

[12] T. Roeder and F. Schneider, “Proactive obfuscation,” ACM Transactions
on Computer Systems, vol. 28, no. 2, pp. 4:1–4:54, 2010.

[13] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 8, no. 4, pp. 564–577, 2011.

[14] A. Mishra, B. B. Gupta, and R. Joshi, “A comparative study of
distributed denial of service attacks, intrusion tolerance and mitigation
techniques,” in Proceedings of the Intelligence and Security Informatics
Conference, Sep 2011, pp. 286–289.

[15] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “Anal-
ysis of OS diversity for intrusion tolerance,” Software: Practice and
Experience (accepted for publication), 2013.

[16] J. Sousa and A. N. Bessani, “From Byzantine consensus to BFT state
machine replication: A latency-optimal transformation,” in Oroceedings
of the European Dependable Computing Conference, May 2012, pp.
37–48.

[17] D. Harkins and D. Carrel, “The Internet Key Exchange,” 1998.
[Online]. Available: http://tools.ietf.org/rfc/rfc2409.txt

[18] H. Reiser and R. Kapitza, “Fault and intrusion tolerance on the basis of
virtual machines,” in Tagungsband des 1. Fachgesprch Virtualisierung,
2008.

[19] Xen, “http://www.xen.org/,” 2013.

[20] Vmware, “http://www.vmware.com/,” 2013.


