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Summary & Coenclusions — The limited stable storage
available in mobile-computing environments can make tradi-
tional checkpointing and message logging unsuitable. Since
storage on a mobile host is not considered stable, most pro-
tocols designed for these environments save the checkpoints on
base stations. Previous approaches have assumed that the base
station always has sufficient disk space for storing checkpoints,
If there is not enough storage available, checkpoints might need
to be aborted,

This paper describes an adaptive protocol that manages stor-
age for base stations. The protocol integrates leasing stor-
age management with a time-based coordinated checkpointing
mechanism. The leasing enables storage managers to control
disk-space effectively. Leasing prevents hanged processes from
indefinitely retaining storage and, in addition, garbage collec-
tion is simple. Time-based checkpointing is integrated with
leasing to reduce the number of messages for establishing con-
sistent global states. The checkpointing mechanism uses a 3-
level storage hierarchy to improve checkpointing performance.

Performance was evaluated by both implementation experi-
ments and simulations. The results show that:
- the adaptive protacol reduces checkpointing overhead,

+ the leasing mechanism maintains the desired storage assign- .

ment for base stations.

1. INTRODUCTION

Wireless networking [1] is an enabling technology for
mobile computing. Wireless signals are subject to disper-
gsion & interference, and thus wireless communication is
inherently susceptible to data loss & disconnection. The
challenges to dependable mobile computing include, but
are not limited to [2 - 4]:

- varying communication bandwidths,
- high failure rates,
- frequent disconnections,

- heterogeneous networks,

- security risks,

- limited battery power,

« host mobility.

It is not appropriate to apply directly many of the check-
pointing and recovery protocals [5 — 11] designed for fixed
network distributed systems:to mobile environments.

Several checkpointing protocols for wireless mobile en-
vironments have been proposed [12 — 18]. These proto-
cols generally require the availability of extensive stable
storage. Because storage on the mobile host is typically
not considered stable, most of these prdtocols store check-
points and message-logs on local base stations. Stable stor-
age on the base station is also used to keep temporary in-
formation for better pérformance (eg, caching data), and
hence the amount of storage in use changes dynamically.
Previous checkpointing protocols assume that base sta-
tions have sufficient available storage to save checkpoints
at all times. When stable storage on base stations is de-
pleted, these previous protocols can fail.

This paper describes a leasing mechanism to man-
age storage for checkpoints. Before checkpointing, each
process negotiates with a storage manager to determine
the size & duration of the lease. Once the lease is agreed
upon, a process can use the allocated storage for check-
points. Storage space is returned to the manager when
the lease expires. The process is allowed to request re-
newal of the lease before expiration. The storage manager
can accept or decline the request, based on management
protocols. The leasing mechanism not only manages sta-
ble storage effectively but also prevents storage retention
by failed processes. A coordinated checkpointing protocol
integrated with the leasing management is also described
in this paper, The checkpointing protocol

- uses time for coordination to reduce communication
overhead,
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- dynamically adjusts the locations used to store check-
points in order to reduce transmission overhead.

Our experiments were implemented & evaluated in a
specific wireless mobile network. The experimental results
show that the adaptive checkpointing protocol achieved
better performance through hierarchical checkpoint
arrangements. Four negotiation protocols with the leasing
mechanism were also evaluated. The results demonstrate
that the adaptive protocol effectively managed the desired
storage allocation for base stations using the 4 negotiation
protocols.

2. RELATED WORK

2.1 Mobile Checkpointing

Ref [12] proposed a 2-phase (phase SEND and phase
RECV) checkpointing protocol to store consistent global

states for distributed mobile environments. The protocol

creates a checkpoint whenever a mobile host receives a
message in the SEND phase. All messages sent & received
by the mobile host are logged. The mobile host’s message-
logs and checkpoints are saved on stable storage of the
current base station. As the mobile host moves through
cells, the checkpoints are scattered among base stations.
Ref [13] presented 2 independent checkpointing proto-
cols for recoverable mobile environments. Protocol #1
establishes a checkpoint whenever a message is received.
Protocol #2 performs checkpointing periodically, and logs
all messages received, Both protocols sugpest saving
checkpoints in the stable storage on the base stations in-

stead of on the mobile hosts.. Ref [18] developed an ap-

proach to independent checkpointing with receiver-based
logging for fast recovery and eflicient garbage collection.

Ref [14] developed a non-blocking coordinated check-
pointing protocol that requires a minimum number of mo-
bile hosts to participate in checkpointing. Ref [16] showed
that the protocol can result in inconsistent global states
that cannot be used for recovery. In [17] the authors
proposed an alternative non-blocking protocol that saves
process state as mutable checkpoints on the local mem-
ory or stable storage. The mutable checkpoints are ei-
ther discarded or transmitted to the base station, based
on specific patterns of checkpointing and communication
(z-dependencies) [19].

Ref [15] developed a time-based checkpointing & recov-
ery protocol for wireless mobile systems. This protocol
uses time to coordinate processes indirectly to establish
consistent recovery points {15, 20]. The technique avoids
many forced checkpoints and logs only unacknowledged
messages, This protocol assumes that base stations are
controlled by external organizations and mobile users can-
not allocate any space on the base stations; thus all check-
points are saved in the stable storage of the home network.

2.2 Storage Management & Leasing

IBM developed a data facility storage management sub-
system {DFSMS) that used computer technology to
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Figure 1: Example of the Wireless Mobile Environment

reduce the human effort needed to manage storage data
[21, 22]. Ref [23] introduced volume leases for providing
server-driven cache consistency for large-scale distributed
systems. The leasing approach reduced message traffic at
servers for a trace-based workload of web accesses.

Our approach of adaptive checkpointing with leasing,
manages storage on local mobile hosts, base stations, and
home hosts, to reduce checkpointing overhead. This pro-
tocol dynamically determines the appropriate location to
store checkpoints based on available resources.

3. WIRELESS MOBILE ENVIRONMENTS

The system environment for wireless mobile computing
in this paper is based on the mobile II’ network architec-
ture [24]. Mobile hosts are equipped with wireless inter-
faces to support mobility and connectivity, Fixed hosts
with both wireless interfaces and wired network interfaces
are called base stations. A mobile host communicates with
base stations through a wireless channel and relies on base
stations to maintain its network connection. Messages des-
tined for the mobile host are first sent to its home host.
The home host maintains location information of the mo-
bile host, and forwards the messages to the mobile host
through the base station. The geographical area covered
by a wireless interface is called a cell. The mobile-hosts
in the same cell have the same local base station. As the
mobile-host moves to another cell, it disconnects the orig-
inal wireless channel and requests the new base station to
establish another communication channel. Figure 1 is an
example of the wireless mobile environment,

There are two typical wireless environments for mobile
computing —

+ Local environment: Base stations belong to the individ-
uals that use the mobile hosts. The users can freely access
& store data in the base stations.

+ Global environment: The mobile stations typically be-
long to a telecommunications company and the users can
rent the stations for a period of time. Users might not be
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able to control the storage in the base stationa.
The wireless systems discussed in this paper include
both environiments.

4. STORAGE MANAGEMENT FOR BASE STATIONS

In mobile enviromments, users move from one cell to an-
other at their own will. Because the number of users in a
wireless cell is not fixed, managing storage based on a fixed
number of users is inappropriate. A more flexible storage
management mechanism is therefore needed for mobile en-
vironments,

4.1 Leasing

Leasing is a mechanism that can be applied to managing
stable storage for base stations, It —

- provides flexibility when requested storage is less than
the system capacity limit,

. can control usage when the storage exceeds that limit.
From information gathered at lease negotiation, the stor-
age manager knows the exact storage amount at any spe-
cific time, So it can appropriately arrange for future space
allocation, Leasing can also prevent storage resources from
being held indefinitely by failed or hanged processes. Both
the requesting process and the mmanager know the expira-

- tion time of a lease, thus garbage collection is simplified.

The leasing mechanism in this paper is described in this
section 4.1. Every process that needs to use stable storage
negotiates with the manager for the size & duration of the
lease. When the leage expires, the process must either ob-
tain a leage extension (new lease) or the space is returned
to the manager. The size & duration of the new lease can
vary from the original lease. The storage manager can
elther grant or decline the renewal, based on the manage-
ment policy. The leasing mechanisin has 4 features:

- Negotiation: The storage manager and the process nego-
tlate the duration of the lease and the size of the storage.
The lease is valid only when the manager & process agree
on the lease.

« Cancellation: The process can cancel the lease and re-
turn the space to the storage manager at any time hefore
the lease expires. The manager, however, does not have
the right of cancellation.

- Renewal: The process has the right to request a new
lease before the expiration time of the lease. The renewal
request is either granted or declined.

- Expiration: Every lease Las an expiration time. The
process must return the storage to the manager if its lease
is not successfully renewed.

4.2 Negotiation Protocols

The storage manager uses negotiation protocols to es-
tablish leases with processes and to control system behav-
ior. Four alternative protocols are described in this section
4.2, The storage manager can switch between protocols,
based on system states.

4.2.1 Greedy

With the Greedy protocol, a process simply requests
the desired time-duration and necessary storage-size. The
manager examines the lease schedules for available stor-
age. The manager agrees to the lease if there is sufficient
available space to satisfy the request, otherwise, the lease
request is declined. There are no further negotiations be-
tween the process and the manager in this protocal. The
Gready protocol is easy to implement but it is not bal-
anced in assigning storage space. For example, processes
that issue multiple small requests have advantages over
processes that make a single large request.

4.2.2 Greedy with delay

Instead of declining requests that cannot be immediately
satisfled, the Delay protocol examines the schedules for
possible leases. A process can accept the manager’s pro-
posal for the modified lease as long as the delay is within
the process’s allowable range. This flexibility provides an
advantage over the simple Greedy protocol. The Delay
protocol improves the average ratio of successful requests
when requests are not uniformly distributed.

4.2.3 Reservation

Unlike the Greedy & Greedy with delay protocols, the
Reservation protocol provides a mechanism for more bal-
anced storage management by ensuring that the ratios of
suceessful requests for all processes are roughly the same.
With this protocol, the storage manager first calculates
the ratic of successful requests in the current cell for the
process asking for the lease. The manager then reserves
the storage for the processes with lower ratios of successful
requests. The lease is granted only if there is enough avail-
able space remaining after reservations are committed.

4.2.4 Partial reservation

The Reservation protocol limits the use of available
starage, to maintain balanced storage assignments, How-
ever, some reserved space might not be subsequently used
because those processes that have lower success request
ratios might terminate or leave the cell before their next
checkpoints. Use of stahle storage is reduced due to unnec-
essary reservations. Therefore, the Partial reservation
protocol reserves only a portion of the requested space to
improve storage utilization.

5. ADAPTIVE CHECKPOINTING WITH LEASING

Our approach uses time & leasing to cocrdinate check-
point creation adaptively and indirectly. Ref [15] demon-
strates that time can be used to implement coordinated
checkpointing efficiently. Our storage manager uses the
leasing mechanisms presented in section 4. A 3-level stor-
age hierarchy is used to save checkpoints.

5.1 Checkpoint Creation

.When the application begins, the protocol sets the
checkpoint timers in all processes with a value equal to the
checkpoint interval. Whenever a timer expires, a process
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takes a checkpoint and resets the timer. The protocol
uses a simple re-synchronization mechanism to roughly-

synchronize the checkpoint intervals of the processes, even’

if drift rates of clocks are different. The content of the
local timer is attached to each outgoing message. When-
ever a process receives a message, the timer in the mes-
sage is compared with the local timer. The process re-
synchronizes the local timer if the value of the attached
timer is larger.

To ensure that processes save consistent checkpoints,
the protoco!l keeps a checkpoint number counter in each
process. The counter is incremented whenever the process
creates a checkpoint, and its current value, CN, is appended
to each outgoing message. If a process receives a check-
point number larger than the local one, the process creates
a forced checkpoint before processing the message. For
example, in figure 2, message ml with checkpoint number
CN is received by process P2 in checkpoint state (CN - 1)
forcing a new checkpoint. The protocol logs all possible in-

{ransit messages at the sender process to guarantee that .

they can be replayed during recovery. The sender process
also logs both the send & receive sequence number coun-
ters. These counters are used for detecting lost & duplicate
messages during retransmissions or failure recovery [25].

CN

P1 I
Tene

P2 -
]113(CN-],[3) ! CN ' ITI4(CN,[2)
CN  Forced checkpoint ‘ o Tontt
P3 = : )

Synchronize timer

TCNH

mi(CN,tl) mz{CNJz)

Figure 2: Time-Based Checkpoint Creation

5.2 Hierarchical Storage Management

The protocol uses a 3-level storage hierarchy to save
checkpoints {26]. Checkpoints stored in level #1 are called
soft checkpeints {SC); they are saved in the mobile host (eg,
in a local disk or flash memory). Level #2 is the stable
storage available in the base stations; level #3 corresponds
to the home host. Levels #2 & #3 are both referred to
as hard checkpoints (HC). Soft checkpoints are less reli-
able than hard checkpoints because they will be lost if the
mobile host fails permanently. Hard checkpoints can sur-
vive mobile-host permanent failures but have higher over-
heads since they must be transmitted through the wireless

channels. Based on the quality of service of the current .

network, this protocol can specify a ratio between soft &
hard checkpoints for the best reliability & performance,
For example, it can send a hard checkpoint to stable stor-
age whenever a fixed number of soft checkpoints have been
created on the local disk of the mobile host.

Negotiation schemes

»---"""*——' el
& *Greedy e
+Greedy with delay
*Regervation

a1y, Obtain a lease
\E_\/

Mobile host

e

Fail to renew a lease Fail to obtain a lease

Home host

Figure 3: Leasing for the Base Station

There are distinct space requirements throughout the
storage hierarchy. In the mobile host, it is only necessary
to have space for 2 soft checkpoints. The stable storage
on a base station must be shared among the mobile hosts
currently in the cell. These mobile hosts can be executing
different applications with distinct checkpoint intervals &
sizes. Therefore, the base stations usé the leasing mecha-
nism to manage the stable storage. In the worst case, the
home host must store 1 checkpoint for each process exe-
cuting the application. It is assumed that there is enough
space to store the checkpoints in the mobile & home hosts.
This assumption is reasonable since these hosts likely be-
leng to the same organization, which means that they can
be conflgured to support the storage requirements of the
applications.

The protocol first attempts to save the hard checkpoints
in the base stations instead of the home host, due to per-
formance advantages. The failure-free performance is bet-
ter because 1 transmission-step is avoided. A checkpoint
must pass through the base station first, before it is sent
to the home host. Moreover, recovery is faster because
checkpoints are closer to the mobile hosts. Requests for
storage sometimes might not be immediately granted if
there is sufficient space is not available in the base station.
In this case, the protocol has to either postpone the hard
checkpoint, or save it in another location.

As illustrated in figure 3, our protocol negotiates with
base stations and the home host to determine the loca-
ticn to save the hard checkpoints. Whenever it is time to
store a new hard checkpoint, the process contacts the lo-
cal base station and tries to obtain a lease for the required
space. Then, it transmits the checkpoint through the wire-
less link, and sends a completion notification to the home
host. If it is unable to obtain a lease (within an allow-
able delay), the process stores the checkpoint directly in
the home host. At this momens, the process has finished
the checkpoint creation. On the home host, a monitor-
ing process is initiated after arrival of the first completion
notification. The monitoring process ensures that a new
global state is saved in stable storage before the previous
checkpoint is garbage collected by the storage manager.
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Figure 4. Soft & Hard Checkpoints

The monitor anticipates receiving a notification from all
processes within a given monitoring time; otherwise it as-
sumes that a failure could have occurred. In the latter
case, the monitor requests from the base stations a copy
of the previous checkpoint and saves them in the local sta-
ble storage.

The lease time must ensure that the current hard check-
point of the process is safely stored in the base station until
the next hard checkpoint 'is created. Moreover, it has to
be sufficiently long to allow the home host to obtain the
checkpoint copies in case of failures. Therefore, the lease
time is set to be the sum of the

- hard checkpoint interval,

- monitoring time,

. time to transfer the checkpoint from the mobile host to
the home host (see figure 4).

With this establishmient of the lease time and the moni-
toring operation, at least 1 consistent global state can be
preserved. Even if (see figure 4)

. timers are not well synchronized, and

. a permanent failure occurs during the time when some
processes have completed their checkpoints while others
are in progress,

the protocol still guarantees that there is a consistent state
available for recovery. With failure-free execution, the
global state will typically have been created before the
leases expire. The monitoring process can send lease ter-
mination requests to the storage manager once all the no-
tifications have been received.

5.3 Hand-Off Procedures

Before moving to another cell, the process notifies the
storage manager at the current base station. The manager
then forwards the hard checkpoint(s) of the process to the
" home host. After the checkpoint is saved safely by the
home host, the checkpoint on the base station is removed.
If the new cell provides storage service, and the process
gats a lease, then the hard checkpoint can alternatively be

sent to the new base station. This hand-off procedure sim-
plifies garbage collection on base stations. When the mo-
bile host leaves the current cell, the space occupied by its
checkpoints becomes available for reallocation. This fea-
ture avoids having checkpoints scattered throughout the
network while the mobile host moves around. The mobile
host also does not have to maintain extra links to locate
previcus checkpoints,

5.4 Failure Detection & Recovery

The leasing mechanism provides enhanced fault detec-

tion for -mobile applications. The storage manager antic-

ipates receiving renewal or termination requests from the

process before the lease expires. If there are no notifica-

tions concerning the lease, the manager assumes that the
process that owns the lease has failed. The hard check-
point is transmitted to its home host and the storage is
returned to the manager. This scheme prevents losing
‘necessary checkpoints® and ‘wasted storage occupied by
faited processes’.

Recovery is achieved hy restarting the application pro-
cess from a consistent global state. Depending on the type
of failure, there can be 1 or 2 global states available, There
can be a global state saved in the mobile hosts and another
in the base stations or home host. The protocol determines
the most recent checkpoint, using the checkpoint numbers.
If the failure was permanent then at least one of the soft
checkpoints is lost, which means that processes have to
use the checkpoints saved in stable storage. The restarted
processes replay the logged messages. Duplicated messages
are detected using the received sequence numbers.

6. EVALUATION
6.1 Checkpointing Overhead

The overhead for saving checkpoints on a base station
and on a home host was measured for a specific mobile
environment. The mobile host was a Pentium II 300 MHz
PC with 256 MB RAM and Red Hat Linux 5.0. The base
station was a Sun Ultra Sparc 2 workstation with 512 MB
RAM and Solaris 2.6. The connection between the mobile
host and the base station was supported by the 2 Mbps Lu-
cent WaveLAN and WavePOINT-II wireless interfaces. A
Sun Ultra Sparc 1 workstation with Solaris 2.5 at another
site 100 miles (160 km) away served as a home host.

The experiment was measured when the external loads
on the machines & networks were very low {1:00 AM to
6:00 AM, during times of no backups). The mobile host
started the timer and transmitted the checkpoints that
ranged in size from 5 MB to 60 MB to the base station
and the home host, respectively. The base station and the
home host received the checkpoints, saved them to stable
storage, and then sent an acknowledgment to the mobile
host. The mobile host stopped the timer after the acknowl-
edgment was received. Figure 5 shows the transfer-time for
both the home host and the base station for the specified
range of checkpoint sizes.
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Figure 5. Comparison of Checkpoint Transfer-Time

6.2 Experimental Results

The checkpointing protocol with leasing was evaluated
with the 4 negotiation schemes. Simulations were per-
formed in a wireless cell containing mobile hosts and a base
station. The mobile hosts communicated with a fixed net-
work and obtained storage service from the base station.
Processes on the mobile hosts periodically sent requests
to the base station for storage space hefore taking hard
checkpoints. The storage manager for the base station
used leasing with the negotiation protocols to process the
storage requests. Failure-free execution was assumed in
the simulations.

Table 1 shows all parameters used for the simulations.

» The base station had 10 GB for storing checkpoints.

- The checkpoint size of a process ranged from 5 MB to
50 MB. :

- The hard checkpoint interval was 30 minutes.

+ A Gamma(3,1) distribution was used for the exacution
time of the process.

« A Poisson(3) distribution was used for the process arrival
rate.

This arrival rate led to a slightly overloaded system (av-
erage storage requested: 13275 MB; standard deviation:
645 MB). The lease time of the process contained its hard
checkpoint interval and the extra time required to trans-
mit a checkpoint from the mobile host to its home host.
The time used to transfer a checkpoint was based on the
experimental results in section 6.1. The simulations were
conducted for 110k simulation minutes. The boundary
data collected during the first 5k minutes and the last 5k
minutes were discarded.

The request time in our simulations is the time between
‘when a process requests stable storage’ to the time ‘when
it performs checkpointing’. The value of the request time
is essential for the Delay protocol to re-synchronize the
timers. A process obhtaining a delayed lease propagates
its timer to notify other processes. For the processes that
communicate frequently, the values of the request time are
typically smaller; for those processes that rarely exchange
messages, the values are typically larger. If the request
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time is not long encugh, the processes might not have suf-
ficient time to synchronize the timers, and it could result
in inconsistent global states. The value of the request time
can affect success request ratios. The advantage in using
the longer request time is that the process can request &
obtain the required space earlier; the drawhack is that the
storage manager can only provide current storage informa-
tion. The process might miss a chance to obtain storage
released later, On the other hand, the process with shorter
request time has the most recent information on available
storage but loses the first opportunity to request a lease.

08 -

Ratio of successful requests

0.75 4

0.7 !
5 10 15 20 25 30 35 40 45 50
Checkpoint size (MB)

Figure 6: Comparison of Request Times

Figure 6 compares the performance of the Greedy pro-
tocol with various request times, The processes with 5-
minute request time had higher success request ratios for
all checkpoint sizes. However, this does not imply that
the earlier request is always advantageous. Figure 6 shows
that when the checkpoint size was larger than 15 MB, the
processes with l-minute request time had higher proba-
bility to obtain leases than the processes with 3-minute
request time. Since mobile applications typically interact
frequently, the simulations in the remainder of this paper
uged only the 1-minute request time.

The Delay protocol generally produced more successful
requests than the Greedy protocol in the overloaded sys-
tem (see figure 7). This result is due to two reasons:

1. Delay typically provided more opportunity to obtain
leases. As demonstrated in figure 7, more delay time gives

-higher suecess request ratios.

2. Delay slightly decreased the number of total requests.
Table 2 shows the average number of requests for processes
with varying checkpoint sizes. Larger delay time did con-
tribute to botter success request ratios. However, this
could be detrimental to the hard checkpoint interval.

Figure 8 compares the average ratios of successful re-
quests for various negotiation protocols.

- 5-minute Delay protocol achieved the highest average
success ratios,
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Table 1; Simulation Parameters

Parameter Value or Range Remark

Checkpoint size 5 -50 MB per b MB

Hard checkpoint interval 30 minutes

Time to transfer a checkpoint | 1 — 9 minutes based on the results in section 6.1
Arrival rate Poisson(3) number of new processes in a minute

Gamma(3,1) hours
3, 5, 7 minutes

Execution time
Delay time allowed

Request time 1 minute
Partial reservation ratio 0.005
Maximum size of storage 10 GB

Simulation time 110k minutes

battery limited

Table 2: Average Number of Requests

Delay Time Checkpoint Size (MB) -
(min) 5 10 15 20 25 30 40 45 5D
0 561 560 561 561 b6l 560 563 5.62 5H63 559
3 555 5.53 555 5.58 557 5.61 559 b5.62 5,66 5.57
5 533 524 524 526 525 532 535 548 547 5.45
7 5922 510 514 507 508 511 511 518 518 5.33
1 - ! e
2 095 - 2 L I “\'\lﬁ;‘ ____________
=) § - ’ T
? g 0.8
2 09 1 &
% 085 2
= 2 06
= —— Greedy 8 e
e os 4 T Greedy with 3 min delay e - == Greedy
B Greedy with 5 min delay 0.5 1 --=+= Greedy with 5 min delay
- Greedy with 7 mindelay | | Reservation
----- Partial reservation
0.75 . - 0.4

5 10 15 20 25 30 35 40 45 30
Checkpoint size (MB)

Figure 7: Performance vs Delay

- Reservation protocol achieved approximately equal
success request ratios for various sizes of storage requests
but had the lowest average ratios.

- Partial Reservation protocol with 0.005 reservation
portion maintained balanced storage-assignment for vari-
ous request sizes, and increased the average success request
ratios by almost 30%.

The —
+ Greedy,
+ b-minute Delay,
- Partial reservation,
were not ideal protocols for storage management with
checkpointing, althongh these protocols had good aver-
age ratios of sueccessful requests. The standard deviations
in successful requests produced by these 3 protocols were

5 10 15 20 25 30 35 40 45 50
Checkpoint size (MB)

Figure 8: Average Success Ratios

higher than the Reservation approach (see figure 9). The
high standard deviation implied that some processes cre-
ated hard checkpoints in the base station more frequently .
than other processes. The higher standard deviation also
led to more ‘consecutive aborted checkpoints’ that affected
the performance of the processes. The aborted checkpoint
forced the processes to transfer hard checkpoints to the
home host. These two behaviors resulted in widely vary-
ing checkpoint-overhead for the processes. Figure 10 shows
that the Non-leaging and the Greedy protocols had more
consecutive aborted checkpoints than other protocols in
most cases., With the Reservation protocol, no process
aborted checkpointing repetitively'. When a protocol has

In figure 10, the average numbers of consecutive aborted check-
points for the Reservation pratocol are all zero.
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Figure 9: Standard Deviation of the Ratios
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Figure 10: Number of Consecutive Aborted Checkpoints per
Process

few consecutive aborted checkpoints, the processes can
postpone the aborted hard checkpoint for enhanced ex-
ecution performance since it is not as likely to miss its
next hard checkpoint.

The Reservation protocol maintained the smallest
worst-case hard checkpoint intervals on the base station
but sacrificed storage utilization dramatically (see figure
11). The Partial reservation approach improved upon

0 0.2 04 0.6 0.8 1

Figure 11: Storage Utilization

the Reservation protocol and achieved 0.98 storage uti-
lization. Other negotiation protocols did not reserve stor-
age for any processes so they had better storage utilization.

The experimental results showed that the adaptive
checkpointing protocol successfully integrated with the
various negotiation schemes. With the protocol, applica-
tions always have consistent global checkpoints and stor-
age managers can use a variety of negotiation schemes to
maintain desired space allocation.
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