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Abstract. Fault-tolerant protocols, asynchronous and synchronous alike,
make stationary fault assumptions: only a fraction f of the total n
nodes may fail. Whilst a synchronous protocol is expected to have a
bounded execution time, an asynchronous one may execute for an arbi-
trary amount of time, possibly sufficient for f +1 nodes to fail. This can
compromise the safety of the protocol and ultimately the safety of the
system.
Recent papers propose asynchronous protocols that can tolerate any
number of faults over the lifetime of the system, provided that at most
f nodes become faulty during a given window of time. This is achieved
through the so-called proactive recovery, which consists of periodically
rejuvenating the system. Proactive recovery in asynchronous systems,
though a major breakthrough, has some limitations which had not been
identified before.
In this paper, we introduce a system model expressive enough to repre-
sent these problems which remained in oblivion with the classical models.
We introduce a classification of system correctness based on the predi-
cate exhaustion-safe, meaning freedom from resource exhaustion. Based
on it, we predict the extent to which fault/intrusion-tolerant distributed
systems (synchronous and asynchronous) can be made to work correctly.
Namely, our model predicts the impossibility of guaranteeing correct be-
havior of asynchronous proactive recovery systems as exist today. To
prove our point, we give an example of how these problems impact an
existing fault/intrusion tolerant distributed system, and having identi-
fied the problem, we suggest one (certainly not the only) way to tackle
it.

1 Introduction

Nowadays, and more than ever before, system dependability is an important
subject because computers are pervading our lives and environment, creating
an ever-increasing dependence on their correct operation. All else being equal,
the dependability or trustworthiness of a system is inversely proportional to the
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number and strength of the assumptions made about the environment where
the former executes. This applies to any type of assumptions, namely timing
and fault assumptions.

Synchronous systems make timing assumptions, whereas asynchronous ones
do not. For instance, if a protocol assumes the timely delivery of messages by the
environment, then its correctness can be compromised by overload or unexpected
delays. These are timing faults, that is, violations of those assumptions. The ab-
sence of timing assumptions about the operating environment renders the system
immune to timing faults. In reality, timing faults do not exist in an asynchronous
system, and this reduction in the fault space makes them potentially more trust-
worthy. For this reason, a large number of researchers have concentrated their
efforts in designing and implementing systems under the asynchronous model.

Fault assumptions are the postulates underlying the design of fault-tolerant
systems: the type(s) of faults, and their number (f). The type of faults influences
the architectural and algorithmic aspects of the design, and there are known clas-
sifications defining different degrees of severity in distributed systems, according
to the way an interaction is affected (e.g., crash, omission, byzantine, etc.), or to
the way a fault is produced (e.g., accidental or malicious, like vulnerability, at-
tack, intrusion, etc.). The number establishes, in abstract, a notion of resilience
(to f faults occurring). As such, current fault-tolerant systems models feature a
set of synchrony assumptions (or the absence thereof), and pairs 〈type, number〉
of fault assumptions (e.g. f omission faults; f compromised/failed hosts).

However, a fundamental goal when conceiving a dependable system is to
guarantee that during system execution the actual number of faults never ex-
ceeds the maximum number f of tolerated ones. In practical terms, one would
like to anticipate a priori the maximum number of faults predicted to occur dur-
ing the system execution, call it Nf , so that it is designed to tolerate f ≥ Nf

faults. As we will show, the difficulty of achieving this objective varies not only
with the type of faults but also with the synchrony assumptions. Moreover, the
system models in current use obscure part of these difficulties, because they are
not expressive enough.

Before delving into the formal embodiment of our theory, we give the intuition
of the problem. Consider a system where only accidental faults are assumed to
exist. If it is synchronous, then its execution time is bounded. In consequence,
one can forecast the maximum possible number of accidents (faults) that can
occur during the bounded execution time, say Nf . That is, given an abstract
f fault-tolerant design, there is a justifiable expectation that, in a real system
based on it, the maximum number of tolerated faults is never exceeded. This
can be done by providing the system with enough redundancy to meet f ≥ Nf .

If the system is asynchronous, then its execution time has not a known
bound— it can have an arbitrary finite value. Then, given an abstract f fault-
tolerant design, it becomes mathematically infeasible to justify the expectation
that the maximum number of tolerated faults is never exceeded, since the max-
imum possible number of faults that can occur during the unbounded execution
time is also unbounded. One can at best work under a partially-synchronous



framework where an execution time bound can be predicted with some high
probability, and forecast the maximum possible number of faults that can occur
during that estimated execution time.

Consider now a system where arbitrary faults of malicious nature can happen.
One of the biggest differences between malicious and accidental faults is related
with their probability distribution. Although one can calculate with great accu-
racy the probability of accidents happening, the same calculation is much more
complex and/or less accurate for intentional actions perpetrated by malicious
intelligence. In the case of a synchronous system, the same strategy applied to
accidental faults can be followed here, except that: care must be taken to en-
sure an adequate coverage of the estimation of the number of faults during the
execution time. If the system is asynchronous, the already difficult problem of
prediction of the distribution of malicious faults is amplified by the absence of an
execution time bound, which again, renders the problem unsolvable, in theory.

An intuition about these problems motivated the groundbreaking research
of recent years around proactive recovery which made possible the appearance
of asynchronous protocols and systems [3, 20, 2, 14] that allegedly can tolerate
any number of faults over the lifetime of the system, provided that fewer than a
subset of the nodes become faulty within a supposedly bounded small window
of vulnerability. This is achieved through the use of proactive recovery protocols
that periodically rejuvenate the system.

However, having presented our conjecture that the problem of guaranteeing
that the actual number of faults in a system never exceeds the maximum number
f of tolerated ones, has a certain hardness for synchronous systems subjected to
malicious faults, and is unsolvable for asynchronous systems, we may ask: How
would this be possible with ‘asynchronous’ proactive recovery?

This is what we are going to discuss in the remainder of the paper. Firstly,
we recall a concept well-known in classical fault-tolerant hardware design, spare
exhaustion, and generalize it to resource exhaustion, the situation when a system
no longer has the necessary resources to execute correctly (computing power,
bandwidth, replicas, etc.). We propose to complement system models with the
notion of their environmental resources and their evolution along the execution
time. Furthermore we introduce a classification of system correctness based on
the predicate exhaustion-safe, meaning freedom from resource exhaustion. Based
on it, we introduce precise criteria to describe the dependability of fault and/or
intrusion-tolerant distributed systems under diverse synchrony assumptions, and
we discuss the extent to which systems (synchronous and asynchronous) can be
made to work correctly.

Our findings reveal problems that remained in oblivion with the classical
models, leading to potentially incorrect behavior of systems otherwise apparently
correct. Proactive recovery, though a major breakthrough, has some limitations
when used in the context of asynchronous systems. Namely, some proactive re-
covery protocols depend on hidden timing assumptions which are not represented
in the models used. In fact, our model predicts the impossibility of guaranteeing



correct behavior of asynchronous proactive recovery systems as exist today. To
prove our point, we give an example of how these problems impact an exist-
ing fault/intrusion tolerant distributed system, the CODEX system, and having
identified the problem, we suggest one (certainly not the only) way to tackle it.

2 The Physical System Model

2.1 Additional Insight into System Correctness

Typically, a computational system is defined by a set of assumptions regarding
aspects like the processing power, the type of faults that can happen; the syn-
chrony of the execution, etc. From these collectively one can define the resources
the protocol has access to, both in the abstract and in the real target compu-
tational system, both at design and at run time. These resources may include
CPU, memory, clock and network with a given capacity. In the case of fault-
tolerant protocols, it may also include a certain level of replicated components.
The violation of these resource assumptions may affect the safety or liveness of
the protocols and hence of the system.

In this paper we are precisely concerned with the ‘event of violation of any
of the resource assumptions’, which we call resource exhaustion, and on the
conditions for its avoidance. We define exhaustion-safety in the following manner.

Definition 1. Exhaustion-safety is the ability of a system to assure that it does
not fail due to accidental or provoked resource exhaustion.

Consequently, an exhaustion-safe system is defined in the following way.

Definition 2. A system is said to be exhaustion-safe if it satisfies the exhaustion-
safety property.

In the IEEE standard computer dictionary, correctness is defined as “the
degree to which a system or component is free from faults in its specification,
design, and implementation” [12].

We argue that not considering exhaustion-safety as part of a system specifica-
tion, constitutes a specification fault, and ultimately affects system correctness.

In the remainder of the paper, we are going to assess how an f fault/intrusion-
tolerant replicated distributed system behaves with regard to exhaustion-safety,
for different combinations of synchronous/asynchronous timing and acciden-
tal/malicious faults. We will mainly consider static replication schemes where
the system starts with a number of replicas, and continues to provide correct
responses as long as sufficient replicas exist.

2.2 The model

Our system model should be expressive enough to allow for an outside omni-
scient observer to assess system correctness, not only as usual, but also taking in
consideration the property exhaustion-safety. In consequence, the system model



must encompass the system resources and their evolution with time, that is, it
must represent the physical environment where all computational components
execute, and its laws of evolution. For this reason, and short of a better name,
we called it the Physical System Model.

An outside observer capable of measuring real times knows exactly when a
system begins operating, its execution interval and when it terminates. Moreover,
it can also find out when, with what rate, and in what way, components fail in
the system. One should notice however that these times are independent from
any internal timebase of the system, which can even be asynchronous. An outside
observer with complete knowledge of the system is also able to make predictions
about the future system behavior. For instance, it can calculate a minimum time
necessary for system corruption by resource exhaustion by estimating how long
it takes for a certain number of components to fail.

We now formally define our model.

Definition 3. Given a system A, the Physical System Model that allows to as-
sess A correctness, according to the exhaustion-safety property, is defined by a
triple:

A = 〈Atstart , Atend
, Atcorrupt〉, where

– Atstart ∈ <+
0

represents system A real time start instant.

– Atend
∈ [Atstart , +∞[

represents system A real time termination instant.

– Atexhaust
∈ [Atstart , +∞[

if Atexhaust
≤ Atend

, it represents the real time instant when resource exhaus-
tion occurs. After this instant, system correctness may be corrupted. Other-
wise, if Atexhaust

> Atend
, it represents the real time instant when resource

exhaustion would occur.

We can now prove a necessary and sufficient condition for system exhaustion-
safety under the A model.

Proposition 1. A system A is exhaustion-safe under the A model if and only
if Atend

< Atexhaust
.

Proof. First we will prove the necessary condition and then the sufficient condi-
tion.

– A is exhaustion-safe ⇒ Atend
< Atexhaust

.
If A is exhaustion-safe, it means that it is guaranteed that A does not fail
due to resource exhaustion. This guarantee can only be given if resource
exhaustion does not occur, which implies Atend

< Atexhaust
.

– Atend
< Atexhaust

⇒ A is exhaustion-safe.
If Atend

< Atexhaust
, it means that resource exhaustion does not occur, and

thus it is guaranteed that the system does not fail due to resource exhaustion.
Therefore, A is exhaustion-safe.



Depending on the relation of Atexhaust
with Atstart

and Atend
, it is possible

to distinguish two classes of correctness:

Permanently Correct Systems that satisfy the condition of Proposition 1.
That is, a system A is permanently correct (PC) if and only if Atexhaust

>
Atend

.
Temporarily Correct Systems that execute for at least one instant before

resource exhaustion occurs. That is, a system A is temporarily correct (T C)
if and only if Atexhaust

> Atstart
.

In terms of resource exhaustion, PC systems are more dependable than T C
systems. Notice also that we could have enumerated a third class of “always
incorrect” systems (where Atexhaust

= Atstart
), but this class would be empty

because no practical system should have its resources permanently exhausted.
So, under the A model, all systems belong to the T C class and a subset of them,
those that are always correct w.r.t. resource exhaustion, belong to the PC class.

3 Dependability Under The New Classification

In the next sections we analyze and evaluate both worlds of synchronous and
asynchronous systems, according to the new classification. We will also consider
that systems either suffer from accidental or malicious failures.

3.1 Synchronous Systems

Systems developed under the synchronous model are relatively straightforward
to reason about and to describe. This model has three distinguishing properties
that help us understand better the system behavior: there is a known time bound
for the local processing of any operation, message deliveries are performed within
a well known delay, and components have access to local clocks with a known
bounded drift rate with respect to real time [9, 19].

If one considers a synchronous system A under the A model described in
the previous section, then we can use the worst-case bounds defined during the
design phase to evaluate the correctness.

Theorem 1. Consider a synchronous system A under the A model. Let Tbound

designate a known bound on A execution time, such that Atend
≤ Atstart +Tbound.

If Atexhaust
> Atstart + Tbound, then A is PC.

Proof. If Atend
≤ Atstart + Tbound and Atexhaust

> Atstart + Tbound, then Atend
<

Atexhaust
.

Therefore, if a designer wants to build a PC synchronous system, then she or
he will have to guarantee that no resource exhaustion occurs during the limited
period of time Tbound. If, for some reason, the assumed bound Tbound is not guar-
anteed during system operation, then, albeit PC in theory, system correctness
may be compromised.



In fact, synchronous systems may be subject to accidental or malicious faults.
These faults may have two bad effects: provoke timing failures that increase
Atend

; cause resource degradation which decreases Atexhaust
. Therefore, depend-

able synchronous (or real-time) systems address this issue by including enough
redundancy in the implementation. If the system can experience malicious faults
the solution (achieving intrusion tolerance) becomes much harder. In a synchro-
nous system, an adversary can not only perform attacks to either crash or control
some resources, but also violate the timing assumptions, even if during a lim-
ited interval. For this reason, there is currently among the research community
a common belief that synchronous systems are fragile, and that secure systems
should be built under the asynchronous model.

3.2 Asynchronous Systems

The distinguishing feature of an asynchronous model is the absence of timing
assumptions, which means arbitrary delays for the execution of operations and
message deliveries, and unbounded drift rates for the local clocks [7, 13, 6]. This
model is quite attractive because it leads to the design of programs and com-
ponents that are easier to port or include in different environments. Moreover,
these programs and components are more tolerant to variable or unexpected
delays, caused for instance by temporary system overloads.

If one considers an asynchronous system A under the A model presented
in Section 2, then A can be built in such a way that completion is eventually
guaranteed (sometimes only if certain conditions become true). However, it is
impossible to determine exactly when termination will occur. In other words,
the termination instant Atend

is not known. Therefore, it is necessary to analyze
the relation between Atend

and Atexhaust
, in order to classify system A according

to the PC and T C dependability classes.
Can an asynchronous system A be PC? Despite the arbitrariness of Atend

,
Atexhaust

must always be maintained above its value to ensure permanent correct-
ness. This can only be guaranteed in two situations: if Atexhaust

has an infinite
value or if Atexhaust

is correlated with Atend
. Whereas the former condition would

mean the impossibility of a failure occurring in the system (which common sense
indicates as a very difficult or impossible goal to attain), the latter one can only
be achieved through an adequate system architecture, as we will explain later in
the paper.

Traditionally, dependable asynchronous systems resort to some form of re-
dundancy to be able to handle component failures. A usual assumption in the
design of these systems is to impose a limit on maximum number of compo-
nents that can fail during execution. For instance, a reliable broadcast protocol
requires that at most bn−1

3 c out of n components can fail maliciously [1]. That
is, faults are assumed to be stationary.

On a system that starts with a certain level of redundancy, the assump-
tion that a fixed number of f components may fail results in a (not necessarily
known) bounded value for Atexhaust

– that results from the time necessary to
crash/corrupt f +1 components. Notice that this sort of “doom timer” is started



at system boot and tends to decrease as the system evolves. Many protocols
naively assume that all components are correct when the protocol is initiated.
Unless a protocol begins to run at system boot, or the system is completely re-
constructed whenever the protocol starts, this assumption is not plausible and
can result in a failure. Therefore, although asynchronous systems are designed
without timing considerations, they have an indirect relation with time through
Atexhaust

, and their correctness is time dependent. Given that Atend
does not

have a known bound on these systems, one can prove the following theorem:

Theorem 2. Consider an asynchronous system A under the A model. If Atexhaust

has a bounded value, then A is not PC.

Proof. In order to prove by contradiction, assume that system A is PC and
that Atexhaust

is bounded. Let tk be the real time instant corresponding to the
bound of Atexhaust

, that is, Atexhaust
≤ tk. If a system is PC then it is true that

Atend
< Atexhaust

. Therefore, Atend
< Atexhaust

≤ tk. But, if A is asynchronous,
Atend

does not have a defined bound, which means that there is a contradiction.

Even though practical asynchronous systems have a bounded Atexhaust
, they

have been used with success for many years. This happens because, until recently,
only accidental faults (e.g., crash or omission) were a threat to systems. This type
of faults, being accidental by nature, occurs in a random manner. Therefore, by
studying the environment in detail and by appropriately conceiving the system,
one can achieve an asynchronous system that behaves as if it were permanently
correct w.r.t. resource exhaustion, with a high probability. That is, despite having
the failure syndrome as we have proved, it would be very difficult to observe it
in practice.

However, when we start considering malicious faults, a different reasoning
must be made. This type of faults is intentional (not accidental) and therefore
their distribution is not random: the actual distribution may be shaped at will
by an adversary whose main purpose is to break the system. In these conditions,
having a bounded Atexhaust

(e.g., stationary maximum bound for node failures)
in an asynchronous system A may turn out to be catastrophic for the safety of
the system. That is, our moderating comments above do not apply to ‘practical
intrusion-tolerant asynchronous systems’.

Consequently, Atexhaust
should not have a bounded value if A is an asynchro-

nous system operating in a environment prone to anything more severe than
accidental faults. The goal should then be to somehow unbound Atexhaust

and
maintain it always above Atend

.

3.3 Proactive Recovery in Asynchronous Systems

One of the most interesting approaches to avoid resource exhaustion due to ma-
licious compromise of components is through proactive recovery [15] (which can
be seen as a form of dynamic replication [16]). The aim of this mechanism is con-
ceptually simple – components are periodically rejuvenated to remove the effects
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asynchronous

Fig. 1. A system A enhanced with a proactive recovery subsystem A′. Both A and A′

run asynchronously.

of malicious attacks/failures. If the rejuvenation if performed frequently often,
then an adversary is unable to corrupt enough resources to break the system.
Proactive recovery has been suggested in several contexts. For instance, it can be
used to refresh cryptographic keys in order to prevent the disclosure of too many
secrets [11, 10, 8]. It may also be utilized to restore the system code from a secure
source to eliminate potential transformation carried out by the adversary [15,
3]. Moreover, it may include substituting the programs to remove vulnerabilities
existent in previous versions (e.g., software bugs that could crash the system or
software errors exploitable by outside attackers). Therefore, proactive recovery
allows a constant increase in Atexhaust

, in particular in the parts of the system
that are most vulnerable to attacks.

For simplicity let us imagine that whenever rejuvenation occurs the system
is completely regenerated. A system with proactive recovery is represented as in
Figure 1. The asynchronous system A is enhanced with a subsystem A′ respon-
sible for the proactive recovery operations. As expected, A′ is also asynchronous
because it is part of A. Subsystem A′ periodically rejuvenates system A and,
by doing so, indirectly increases Atexhaust

. Therefore, apparently, by using a well
planned strategy of proactive recovery, Atexhaust

can be constantly increased in
order that resource exhaustion never happens before Atend

.
Now let us consider subsystem A′. A′ correctness is a necessary condition

for A correctness, which means that it is mandatory that A′ is also PC. Since
A′ is asynchronous it is bound by Theorem 2. Consequently, A′ must have an
unbounded A′texhaust

, otherwise, it will not be PC.
Several proactive recovery protocols for asynchronous systems proposed in

the literature [11, 10, 8, 21, 3], despite having different goals, are all based on the
same assumptions: periodic and timely execution. They assume that the proac-
tive subsystem is regularly executed, and that the rejuvenation operation does
not take a very long period to complete. In other words, these proactive recovery
works make timing assumptions about the environment, which by definition, can
be violated in an asynchronous setting. In this context, A′texhaust

can be defined
as the instant after which the assumptions of subsystem A′ may be broken.

As explained in the previous section, if one considers malicious failures, we
cannot assume that we can construct A′ in a way that guarantees that A′texhaust

≤



A′tend
never happens. This is because the adversary will attack the weakest point

in the system, which in this case is A′.
Consequently, the asynchronous proactive recovery subsystem A′ is only T C,

and for that reason it cannot permanently guarantee the correctness of the asyn-
chronous system A. Thus:

– Asynchronous systems with a bounded Atexhaust
can only be T C even when

enhanced with (asynchronous) proactive recovery subsystems.

To illustrate these conclusions in a real system, we will describe in the next
section a possible attack to CODEX [14] that is based on the time-related vul-
nerability of the proactive recovery protocols it uses, predicted by our results
under the A model and exhaustion-safety.

4 An Attack to the Proactive Recovery Scheme of
CODEX

CODEX (COrnell Data EXchange) is a recent distributed service for storage
and dissemination of secrets [14]. It binds secrets to unique names and allows
subsequent access to these secrets by authorized clients. Clients can call three
different operations that allow them to manipulate and retrieve bindings: create
to introduce a new name; write to associate a (presumably secret) value with a
name; and read to retrieve the value associated with a name.

The service makes relatively weak assumptions about the environment and
the adversaries. It assumes an asynchronous model where operations and mes-
sages can suffer unbounded delays. Moreover, messages while in transit may be
modified, deleted or disclosed. An adversary can also insert new messages in the
network. Nevertheless, it is assumed fair links, which means that if a message is
transmitted a number of times from one node to another, then it will eventually
be received.

CODEX enforces three security properties. Availability is provided by repli-
cating the values in a set of n servers. It is assumed that at most f servers
can (maliciously) fail at the same time, and that n ≥ 3f + 1. Cryptographic
operations such as digital signatures and encryption/decryption are employed
to achieve confidentiality and integrity of both the communication and stored
values. These operations are based on public key and threshold cryptography.
Each client has a public/private key pair and has the CODEX public key. In
the same way, CODEX has a public/private key pair and knows the public keys
of the clients. The private key of CODEX however is shared by the n CODEX
servers using an (n, f +1) secret sharing scheme1, which means that no CODEX
server is trusted with that private key. Therefore, even if an adversary controls
a subset of f or less replicas, she or he will be unable to sign as CODEX or to
decrypt data encrypted with the CODEX public key.
1 In a (n, f +1) secrete sharing scheme, there are n shares and any subset of size f +1

of these shares is sufficient to recover the secret. However, nothing is learnt about
the secret if the subset is smaller than f + 1.



In CODEX, both requests and confirmations are signed with the private key
of, respectively, the clients or CODEX (which requires the cooperation of at least
f+1 replicas). Values are stored encrypted with the public key of CODEX, which
prevents disclosure while transit through the network or by malicious replicas.
The details of the CODEX client interface, namely the message formats for each
operation, can be found in [14]. At this moment, we just want to point out that
by knowing the CODEX private key, one can violate the confidentiality property
in different ways.

4.1 Overview of the Proactive Recovery Scheme

An adversary must know at least f +1 shares in order to construct the CODEX
private key. CODEX assumes that a maximum of f nodes running CODEX
servers are compromised at any time, with f = n−1

3 . This assumption excludes
the possibility of an adversary controlling f+1 servers, but as the CODEX paper
points out, “it does not rule out the adversary compromising one server and
learning the CODEX private key share stored there, being evicted, compromising
another, and ultimately learning f +1 shares”. To defend against these so called
mobile virus attacks [15], CODEX employs the APSS proactive secret sharing
protocol [21]. This protocol is periodically executed, each time generating a new
sharing of the private key but without materializing the private key at any
server. Because older secret shares cannot be combined with new shares, the
CODEX paper concludes that “a mobile virus attack would succeed only if it is
completed in the interval between successive executions of APSS”. This scenario
can be prevented from occurring by running APSS regularly, in intervals that
can be as short as a few minutes.

4.2 An Example Attack

We now describe an attack that explores the asynchrony of APSS with the goal
of increasing its execution interval, to allow the retrieval of f + 1 shares and the
disclosure of the CODEX private key. Once this key is obtained, it is trivial to
breach the confidentiality of the service.

The attack is carried out by two adversaries, ADV1 and ADV2. ADV1 takes
the system into a state where the actual attack can be performed by the second
adversary. ADV1 basically delays some parts of the system – it slows down some
nodes and postpones the delivery of messages between two parts of the system
(or temporally partitions the network). The reader should notice that after this
first attack the system will exhibit a behavior that could have occurred in any
fault-free asynchronous system. Therefore, this attack simply forces the system to
act in a manner convenient for ADV2, instead of having her wait for the system
to naturally behave in such way. As expected, both adversaries will execute
the attacks without violating any of the assumptions presented in the CODEX
paper.



Attack by adversary ADV1: ADV1 performs a mobile virus attack against f +1
servers. However, instead of retrieving the CODEX private key share of each
node, it adjusts, one after the other, the drift rate of each local clock. The
adjustment increases the drift rate to make the clock slower than real time. In
other words, 1 system second becomes λ real time seconds, where λ À 1.

APSS execution is triggered either by a local timer at each node or by a
notification received from another node2. This notification is transmitted during
the execution of APSS. The mobile virus attack delays at most f +1 nodes from
starting their own APSS execution, but it does not prevent the reception of a
notification from any of the remainder n − (f + 1) nodes. Therefore, various
APSS instances will be run during the attack.

After slowing down the clock of f +1 nodes, ADV1 attacks the links between
these nodes and the rest of the system. Basically, it either temporally cuts off the
links or removes all messages that could (remotely) initiate APSS. The links are
restored once ADV2 obtains the CODEX private key, which means that messages
start to be delivered again and the fair links assumption is never violated.

The reader should notice that the interruption of communications is not
absolutely necessary for the effectiveness of the ADV2 attack. Alternatively, one
could extend the mobile attack to the n nodes and in this way delay APSS
execution in all of them.

Attack by adversary ADV2: ADV2 starts another mobile virus attack against
the same f + 1 nodes that were compromised by ADV1. Contrarily to the pre-
vious attack, this one now has a time constraint: the APSS execution interval.
Remember that f + 1 shares are only useful if retrieved in the interval between
two successive executions of APSS. However, since clocks are slow, the actual
APSS interval is much larger than expected. For all practical considerations,
there is no time constraint since the clocks were delayed by a helping accomplice
– ADV1.

Without any time constraint, it suffices to implement the mobile virus attack
suggested in the CODEX paper, learning, one by one, f +1 CODEX private key
shares. The CODEX private key is disclosed using these shares. Using this key,
ADV2 can decrypt the secrets stored in the compromised nodes. Moreover, she
can get all new secrets submitted by clients through write operations.

The described attack explores one flaw on the assumptions of CODEX. It
implicitly assumes that although embracing the asynchronous model, it can have
access to a clock with a bounded drift rate. But, by definition, in an asynchronous
system no such bounds exist [7, 13, 6]. Typically, a computer clock has a bounded
drift rate ρ guaranteed by its manufacturer. However, this bound is mainly useful
in environments with accidental failures. If an adversary gains access to the clock,
she or he can arbitrarily change its progress in relation to real time.

More generally, the concept of proactive recovery has some compatibility
problems with the asynchronous model. These systems evolve at an arbitrary

2 These triggering modes can be confirmed by the inspection of the CODEX code,
which is available at http://www.umiacs.umd.edu/∼mmarsh/CODEX/.
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Fig. 2. A system A enhanced with a proactive recovery subsystem A′. A runs asyn-
chronously, but A′ runs synchronously in the context of a local time wormhole.

pace, while proactive recovery has natural timeliness requirements: proactive re-
covery leverages the defenses of a system by periodically “removing” the work of
an attacker. Asynchronous systems enhanced with proactive recovery subsystems
are in fact promising but care must be taken in their design.

4.3 Combining Proactive Recovery and Wormholes

In this section, we propose one (certainly not the only) solution to the problem of
ensuring permanently correct (PC) operation of proactive recovery systems. The
solution is based on the concept of wormholes: subsystems capable of providing
a small set of services, with good properties that are otherwise not available in
the rest of the system [17]. For example, an asynchronous system can be aug-
mented with a synchronous wormhole that offers a few and well-defined timely
operations. Wormholes must be kept small and simple to ensure the feasibility of
building them with the expect trustworthy behavior. Moreover, their construc-
tion must be carefully planed to guarantee that they have access to all required
resources when needed. In the past, two incarnations of distributed wormholes
have already been created, one for the security area [5] and another for the time
domain [18].

Remember that as explained in Sections 3.2 and 3.3, it is impossible to guar-
antee the permanent correctness of an asynchronous system A when Atexhaust

has a bounded value, even with an asynchronous proactive recovery scheme. The
reader however should notice that the main difficulty with proactive recovery is
not the concept but its implementation – this mechanism is useful to artificially
increase Atexhaust

as long as it has timeliness guarantees. Therefore, we probably
can find a solution to this problem by revisiting the system and the proactive
recovery subsystem under an architecturally hybrid distributed system model,
and using a wormhole to implement the latter.

The Trusted Timely Computing Base (TTCB) wormhole [5] deals with the
problem of handling application timeliness requirements in insecure environ-
ments with loose real-time guarantees. A representation of a system with a
TTCB wormhole is depicted in Figure 2. This wormhole offers, among others,
the following Timely Execution service [18]:



Timely Execution Service Given any function func with an execution time
bounded by T , the TTCB is able to execute func within T from the execution
start instant.

This service could be clearly used to timely execute proactive recovery pro-
tocols. The feasibility of building such a service in a real system is confirmed by
the already available implementation3 of the TTCB for the RTAI [4] operating
system.

5 Conclusions and Future Work

This paper has made a discussion about the actual dependability of synchronous
and asynchronous systems. We showed that it is impossible to have permanently
correct f fault/intrusion-tolerant asynchronous systems. Even proactive recovery
in asynchronous systems, though a major breakthrough in that context, has
some limitations which had not been identified before. We introduced a system
model expressive enough to represent these problems, and a classification of
system correctness based on the predicate exhaustion-safe, meaning freedom
from resource exhaustion.

Based on it, we predicted the extent to which fault/intrusion-tolerant distrib-
uted systems (synchronous and asynchronous) can be made to work correctly.
Namely, we explained why proactive recovery has limitations when used in the
context of asynchronous systems and showed them in practice through an attack
to the CODEX system that does not violate any of the assumptions underlying
its operation. Finally, we proposed the combined use of proactive recovery and
wormholes as a possible approach to circumvent these limitations.

As future work, we intend to study in more detail this combination of proac-
tive recovery and wormholes. Our goal is to define a hybrid wormhole-enhanced
architecture that guarantees the safety of the asynchronous (or synchronous)
payload part, despite any number of arbitrary faults, through the wormhole-
based timely execution of proactive recovery protocols.
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