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Abstract

Byzantine-tolerant protocols are currently being used as building blocks in the construction of secure ap-
plications, therefore their performance has a practical impact. Work in message-passing distributed protocols
typically considers a set of nodes interconnected by a network. This paper investigates the benefits for the perfor-
mance of Byzantine-tolerant protocols of including a secure component in the nodes. We have been exploring
this kind of hybrid fault models by calling these subsystemswormholes. The present paper follows this line
but considers local wormholes, while in previous work wormholes were distributed, i.e., they included their own
communication channel. The paper presents the architecture of systems with local wormholes and several flavors
of consensus based on this model. The paper also presents the first work with asynchronous wormholes, using
randomization to circumvent FLP, while also providing the first formalization of wormholes-based protocols
using I/O automata. The benefits of the approach are discussed.

1 Introduction

The development of efficient distributed protocols has both theoretical and practical interest. Today, Byzantine-
tolerant protocols are being used as important building blocks in the construction of secure applications based on a
recent approach:intrusion tolerance[30]. This approach can be considered to be part of the ongoing effort to make
computing systems more secure, Internet included, vis-a-vis the large number of security incidents permanently
reported by entities like CERT/CC1.

Work in message-passing distributed protocols typically considers a set of nodes, running a software compo-
nent called process, interconnected by a network. Here, we consider distributed systems prone to Byzantine faults,
including malicious faults. Work in the area assumes that processes can fail in a Byzantine way (violate the protocol
in any possible way) and that the network can corrupt the communication, e.g., by dropping, modifying or repeating
messages [2, 3, 4, 9, 10, 11, 20, 25]. This system architecture is depicted in Figure 1(a). In terms of timeliness,
these systems are usually considered to be mostly asynchronous, but extended with some oracle [2, 10, 9, 20] or
time assumption [11] to circumvent the Fischer, Lynch and Paterson (FLP) impossibility result [13]. This result
can also be circumvent using randomization [3, 4, 25] (a survey of early work is in [6]).

This paper investigates the benefits for the performance of Byzantine-tolerant protocols of making this picture
slightly more complicated. Suppose each node now includes a second componentw that can communicate both
with the processp (locally) and with similar components in other nodes (through the network). This architecture is
shown in Figure 1(b). Notice that we are not saying at this stage what isw: it might be either hardware or software.
However,w has an important characteristic: it can only fail by crashing (fail-stop), not in a Byzantine way, i.e., it is
secure or tamperproof. Therefore, we have ahybrid fault model: nodes include parts that can only fail by crashing
(w) and parts that can fail arbitrarily, or in a Byzantine way (everything exceptw)2. Each of these oracles includes
a random oracle, i.e., a random number generator. We do not consider any other oracles or time assumptions.

∗This work was partially supported by the FCT through project POSI/EIA/60334/2004 (RITAS) and the Large-Scale Informatic Systems
Laboratory (LASIGE).

1http://www.cert.org
2This kind of fault model is clearly different from some previous work in hybrid fault models, starting in [21], in which fault distributions

are simply assumed. Here we design the secure component with the purpose of enforcing its fault model, an obvious requirement in
environments prone to malicious faults.
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Figure 1: (a) Typical system architecture. (b) System architecture we explore in the paper.

Two concerns may reasonably be raised about this model. First: is it possible to implement such a model or is
it of purely theoretical interest? The answer is simple: there are many ways of implementingw. Most computers,
either laptops, desktops or servers can be extended with some kind of secure hardware that can be used to runw,
e.g., USB tokens, Smartcards, secure coprocessors and PC/104 appliances3. Software solutions include runningw
as a special process in a security kernel.

The second problem is: is this model relevant? Why cannot we just makep secure, i.e.,p = w, and end up
with a fail-stop model? The first answer is that sometimes it is possible to do so and a system designer should
consider that possibility. However, in generalp is part of a complex application with millions of lines of code that
cannot be put insidew (USB tokens and Smartcards have very limited resources) and cannot even be secured in
that way because it has complex interactions with its environment, e.g., with people and networked services. If
we want to makew secure or fail-stop, it has to satisfy two properties derived from the classical reference monitor
properties [15]4:

• Isolation. The wormhole must be tamperproof or secure. This is considered to be an assumption throughout
the paper, although it has to be enforced in an implementation.

• Verifiability. Its security has to be formally verifiable. This is true for the instances ofw we present in the
paper, since they implement reasonably simple distributed protocols.

The issue explored in the paper is: what are the benefits for the performance of Byzantine-tolerant protocols
of the model in Figure 1(b)? Is there any interest for such protocols of having a secure component in the nodes?

Context and related work. We have been exploring this kind of hybrid fault models by calling these subsystems
wormholes[28]. The metaphor comes from an astrophysics concept that some Science Fiction has presented as
shortcuts that might be used to travel fast to faraway places in the Universe5. The idea we have been exploring is
to take advantage of components with stronger properties to handle some kind of uncertainty. The first work in this
line used a distributed real-time wormhole to handle uncertainty in terms of time [29]. Afterwards, a distributed
real-time and secure wormhole was used to build Byzantine fault-tolerant protocols, i.e., to handle uncertainty in
terms of malicious faults [8, 7, 23].

The present paper follows this work on wormholes but has an important difference: here the wormholes are
componentsexisting locally inside the nodes, while in previous work wormholes were distributed. These distributed
wormholes included not only local components in the nodes, but these components were interconnected by a
dedicated communication channel or network. Therefore, in this paper we simplify the architecture by removing
this channel/newtork. We use randomized oracles to avoid synchrony assumptions about the network.

Several security protocols have been previously proposed that use different types of (local) secure compo-
nents to prevent intrusions in critical modules. Tygar and Yee show how a secure coprocessor can be used, e.g.,
to guarantee the security of an electronic payment scheme [27]. Itoi and Honeyman use smartcards for secure

3Several cryptographic modules that might be used with this purpose were validated for conformance to FIPS PUB 140-1 and FIPS PUB
140-2 (Security Requirements for Cryptographic Modules) by the National Institute of Standards and Technology. A list is available at:
http://csrc.nist.gov/cryptval/140-1/1401val.htm.

4The third property that a reference monitor must satisfy is specific for access control (completeness).
5See, e.g., http://en.wikipedia.org/wiki/Wormhole
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authentication with Kerberos [17]. Shoup and Rubin use also smartcards to enhance the security of session key
distribution [26]. Avoine and colleagues present an algorithm for deterministic fair exchange also based on secure
components [1]. Several other examples might be listed. However, all these works use secure components with
the purpose of ensuring some of the security properties of the protocols. To the best of our knowledge this paper
is the first that uses local secure components with the purpose ofimproving the performance of distributed systems
algorithmslike consensus. Here the purpose is not to prevent intrusions in certain components and ensure certain
security properties, but to improve the performance of protocols that tolerate intrusions in some of the nodes.

Paper results. The contributions of the paper are the following:

• it presents the architecture of systems with local wormholes (the possibility of using local wormholes was
envisaged when the concept was introduced but never explored [24, 28]);

• it discusses the benefits of distributed algorithms based on local wormholes and presents consensus protocols
of several flavors with time-complexities similar to the complexities of fail-stop consensus protocols: binary
consensus, multi-valued consensus and vector consensus; it also provides the first formalization of wormhole-
based protocols using I/O automata;

• it presents the first work with strictly asynchronous wormholes, using randomization to circumvent FLP.

2 System Model

We formalize the system using I/O automata, a formalism introduced by Lynch and Tuttle [19, 18]. In this formal-
ism, system components are modelled by I/O automata. An automaton receives input actions and generates output
and internal actions. A system is represented by a composition of automata.

The system we consider in the paper is asynchronous, i.e., we assume no bounds on processing and commu-
nication delays. There is a set ofn processesΠ = {p1, p2, ...pn} and a set ofn wormholesΥ = {w1, w2, ...wn}.
Each nodei contains a processpi that can access the wormholewi (see Figure 1(b)).

Each wormhole includes a random oracle module. This oracle provides random numbers from a finite setU
with uniform distribution. We postpone the discussion about the content ofU to Section 2.2.

2.1 Fault Model

The architecture we are considering is more complex than what is commonly considered in message-passing dis-
tributed algorithms so there is also more to be said about the fault model.

A process is said to becorrect if it does notfail during the execution of the protocol, i.e., if it follows the
protocol. If a process fails it is said to becorrupt or failed. We use the letterf to denote the maximum number of
processes assumed to fail during an execution of the protocol.

A process can fail in the usual Byzantine ways, for instance: it can stop, delay the communication, send
spurious messages, or transmit several messages with the same identifier. Corrupt processes can pursue a plan of
breaking the properties of the protocol alone or in collusion with other failed processes.

There are also new modes of failure that are architecture related. A wormhole is also said to becorrect if it
does not fail, i.e., if it does notcrash. Otherwise it is said to becrashedor failed. In addition to the situations listed
before, a processpi can fail if wi crashes, ifpi does not manage to communicate withwi for some reason (e.g.,
because an attacker controls the node) or if its communication withwi is modified in some way.

Typically all processes would be connected by communication channels, but in the simple protocols we present
in the paper processes do not communicate directly but only through the wormholes, so we do not need to make
any statement about these channels. The wormholes are fully-connected by reliable channels with two properties:
if the sender and the recipient of a message are both correct then (1) the message is eventually received and (2) the
message is not modified in the channel. In practice, these channels can be implemented in common LANs or the
Internet using secure communication protocols such as the Secure Socket Layer [14]. Notice that the assumption
of reliable channels is a way of hiding (masking) the failures in the channels: message modifications, replays,
omissions and spurious messages. The communication can be delayed arbitrarily, but all messages are eventually
delivered correctly.
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2.2 Formal System Model

Each processpi is modelled as an automaton with five actions (see Figure 2):

• inputpropose(v)i – invocation of the protocol by userUi;

• outputdecide(v)i – response to userUi with the value decided by the protocol;

• outputw call(v)i – passage of a value to the wormholewi;

• inputw resp(v)i – response from the wormholewi;

• input byz failurei – signals the Byzantine failure of the automaton.

The userUi represents the application that calls processpi. The automata composition in the figure represents
the system that executes the protocols we are going to describe, therefore it does not include that user. However,Ui

might also be modelled as an automaton.
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Figure 2: Automata composition for all protocols in the paper. The automatonpi models processpi, automatonwi

models wormholewi, automatonFSB a fail-stop broadcast, andFSC a fail-stop consensus.

Wormholewi is modelled as an automaton with several actions, some of which are (see the same figure):

• inputw call(v)i – corresponds to the output with the same name in processpi;

• outputw resp(v)i – corresponds to the input with the same name in processpi;

• inputstopi – signals the crash of the wormhole.

The composition includes a broadcast channel FSB with a semantics equivalent to the sender wormhole indi-
vidually sending the message to all wormholes inΥ (including itself) using the reliable channels presented in the
previous section. The primitive is used by the wormholes that are fail-stop, therefore all recipients receive the same
message unless a wormhole crashes. The signature is the following:

• inputfs bcast(v)i – send the valuev to every wormholewi ∈ Υ;

• outputfs receive(j, v)i – receive a valuev from processj.

The signature includes two actions related to the fail-stop consensus automatonFSC, which we describe in
the next section:fs propose(v)i andfs decide(v)i.

The failures of wormholes (crash) and processes (Byzantine) are modelled by inputs with distinct meanings.
The inputstopi is the usual way of modelling the crash of an automaton [18] and is handled explicitly in the code of
the automaton (see Algorithm 2). The use of an inputbyz failurei to model Byzantine failures was first suggested
in [5]. When this event occurs, the automaton is substituted by another automaton with the same signature but with
arbitrary behavior.
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Consensus Among Wormholes

The protocols we present in the paper use as building block a consensus protocol executed by the wormholes.
This protocol does not need to tolerate Byzantine faults since the wormholes are assumed to be fail-stop and
fully-connected by reliable channels (Section 2.1), therefore the protocol is essentially afail-stop consensus. The
protocol circumvents FLP using the above mentioned random oracle modules.

We model the fail-stop consensus as a single automaton FSC (Figure 2). In terms of system architecture,
this automaton models part of the behavior of the wormholes (the fail-stop consensus) plus the reliable channels
connecting the wormholes. Therefore, in reality, any wormholewi is modelled by the automatawi andFSC. The
objective of modelling the fail-stop consensus as an automaton separate from the wormholes is to have modularity,
thus allowing us to plug-in different consensus modules into our algorithms.

The problem of consensus is, informally, the problem of making a set of entities (processes, wormholes) agree
on a common value. A wormholewi is said toproposea valuev ∈ V for an execution of the consensus protocol
when an output actionfs propose(v)i occurs inwi. The wormhole is said todecideon a valuev when an input
actionfs decide(v)i occurs inwi. Consensus is formally defined in terms of the following properties:

• Validity-1: If a correct wormholes decidesv, thenv was proposed by some wormhole.

• Agreement:No two correct wormholes decide differently.

• Termination:Every correct wormhole eventually decides with probability 1.

In the paper we use two variants of the consensus protocol: binary consensus (V ≡ {0, 1}) and multi-valued
consensus (V is a finite set of values). An example of a fail-stop binary consensus protocol is presented in [3],
while a fail-stop multi-valued consensus can be found in [12]. The random oracle used in the former provides
values in the setU ≡ {0, 1}, while in the latter provides values inU ≡ {1, 2, ..., n} (wheren is the total number
of processes). A transformation from binary to multi-valued fail-stop consensus is presented in [22]. All these
protocols tolerate the failure of at most half less one processes/wormholes(f = bn−1

2 c).

3 Byzantine Consensus

Consensus is an important distributed systems problem since it can be used as the main building block to solve
several other agreement problems [16, 9]. Several protocols for Byzantine consensus in asynchronous systems
have been proposed, using several methods to circumvent FLP: randomization [3, 25], failure detectors [20, 2],
partial-synchrony [11] and distributed wormholes [7].

Theresilienceof a distributed protocol is the maximum number of failed processes it can tolerate. The maxi-
mum resilience for Byzantine consensus in asynchronous systems isf = bn−1

3 c out of a total ofn processes [4, 11],
which is also the resilience of the protocols we propose in the paper.

Let us consider the same definition of consensus given in Section 2.2 (with ‘processes’ instead of ‘wormholes’)
but with a different Validity property (this is the typical definition used in the literature [11, 20, 7]):

• Validity-2. If all correct processes propose the same valuev, then any correct process that decides, decidesv.

Our Byzantine consensus protocol solves bothbinary and multi-valued consensusif we instance FSC respec-
tively with a binary or a multi-valued fail-stop consensus. A direct consequence of the system architecture depicted
in Figure 1(b) is that the protocol is executed both in the processes and the wormholes (respectivelyp andw in the
figure). The code executed by the processes and wormholes is presented respectively in Algorithms 1 and 2.

The presentation of the protocol assumes a property of well-formedness, both for the users that call the protocol
(Ui) and for the processes (pi) [18]:

• Well-formedness.For anyi, the interactions betweenUi andpi, and the interactions betweenpi andwi, are
well-formedfor i.
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Algorithm 1 Consensus protocol (processpi)
Signature:
Input: propose(v)i, w resp(V )i, byz failurei

Output:w call(v)i, decide(v)i, decide(⊥)i

v ∈ V,⊥ /∈ V

State:
prop = ⊥, value proposed by the user
V ect = ⊥, vector with several proposed values
failed = false, true if the process is corrupt

Transitions:
1: inputpropose(v)i

2: Eff: prop ← v

3: inputw resp(V )i

4: Eff: V ect ← V

5: input byz failurei

6: Eff: failed ← true

7: outputw call(v)i

8: Pre:prop = v
9: Eff: prop ← ⊥

10: outputdecide(v)i

11: Pre:#v(V ect) ≥ f + 1
12: Eff: V ect ← ⊥
13: outputdecide(⊥)i

14: Pre:#v(V ect) < f + 1
15: Eff: V ect ← ⊥

Algorithm 2 Consensus protocol (wormholewi)
Signature:
Input: w call(v)i, fs receive(j, v)i, fs decide(v)i, stopi

Output:fs propose(v)i, fs bcast(v)i, w resp(v)i

v ∈ V,⊥ /∈ V

State:
prop = ⊥, value proposed by the process
dec = ⊥, vector decided by FSC
∀j ∈ Π : V ect[j] = ⊥, vector with values delivered by FSB
stopped = false, true if the wormhole stopped

Transitions:
1: inputw call(v)i

2: Eff: prop ← v

3: inputfs receive(j, v)i

4: Eff: V ect[j] ← v

5: inputfs decide(V ect)i

6: Eff: dec ← V ect

7: inputstopi

8: Eff: stopped ← true

9: outputfs bcast(v)i

10: Pre:¬stopped ∧ prop = v
11: Eff: prop ← ⊥
12: outputfs propose(V ect)i

13: Pre:¬stopped ∧#⊥(V ect) ≤ f
14: Eff: ∀j ∈ Π : V ect ← ⊥
15: outputw resp(V ect)i

16: Pre:¬stopped ∧ dec = V ect
17: Eff: dec ← ⊥

Let us consider the interaction between the userUi and the automatonpi. A sequence of actionspropose(v)i

anddecide(v)i is said to bewell-formedfor i if it is some prefix of the cyclically ordered sequencepropose(v′)i,
decide(v′′)i, propose(v′′′)i, decide(v′′′′)i, ... This property essentially excludes the possibility of a user making
two proposals before the decision of the protocol is returned. The objective of making this assumption is to make
Algorithm 1 more simple, by not having to consider explicitly the case of ill-formed interactions. Nevertheless,
this assumption might be discarded with simple modifications to the algorithm, like identifying each consensus
execution with a consensus id (cid), and substituting the variablesprop anddecby sets containing tuples(cid, v)
for the active consensuses. Similar considerations might be done about the well-formedness of the interactions
betweenpi andwi.

The protocol is very simple6 and follows the typical format for I/O automata protocols [19]. They start with
the declaration of the automata signature, i.e., its input and output actions. Then, they declare the state variables
and the transitions corresponding to each action, specified in terms of preconditions (Pre:) and effects (Eff:).

In the protocol, vectors have one entry per process inΠ (or wormhole inΥ) and are designated by an uppercase
letter. The function #x(V ect) counts the number of occurrences ofx in vectorV ect. In Algorithm 1, line 11, this
function is used to select a valuev that occurs at leastf + 1 times inV ect. If there are two valuesv1 andv2 in that
condition, the function returns the one that appears first inV ect.

The proof that the protocol solves the consensus problem is independent of the consensus being binary or

6Except for the fail-stop consensus executed by the wormholes, which is not displayed (several protocols can be used).
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multi-valued:

Theorem 1 If at mostf = bn−1
3 c processes are failed, then the protocol specified by Algorithms 1 and 2 solves

consensus as specified by properties Validity-2, Agreement and Termination.

Proof (sketch):The protocol is based on a consensus protocol executed by the wormholes. This protocol is defined
in terms of the properties in Section 2.2. The properties are satisfied if no more thanbn−1

2 c out of n wormholes
fail, an immediate consequence of the assumption than no more thanbn−1

3 c processes fail (Section 2.1).
Validity-2. When a value is proposed, processpi gives it to the wormholewi (Alg.1:1-2,7-9)7 that sends it

to every other wormhole, including itself (Alg.2:1-2,9-11). Then, the wormhole waits for(n − f) messages with
values proposed by different wormholes (Alg.2:3-4,12-14). Wormholes are fail-stop so they either send the message
once, or do not send it at all. At mostf processes can fail, therefore at leastf + 1 messages come from correct
processes:(f = bn−1

3 c) ⇒ (n − 2f ≥ f + 1). The property Validity-2 assumes all correct processes proposev,
therefore all vectors given to FSC contain at leastf + 1 copies ofv (Alg.2:12-14). The vector decided by FSC,
which is one of the vectors proposed, is returned to the process (Alg.2:5-6,15-17), that returns the value that appears
at leastf + 1 times in the vector, i.e.,v (Alg.1:3-4,13-15). When the correct processes do not propose the same
value, the protocol decides a default value⊥ (Alg.1:13-15).

Agreement.The proof derives trivially from the fact that all non-crashed wormholes return the same vector
(Alg.2:5-6,15-17), which is used to decide deterministically the value returned (Alg.1:3-4,10-15). Note that the
function# is deterministic even if there are two valuesv1 andv2 such that#v1(V ect) = #v2(V ect) ≥ f + 1. In
that case, the value amongv1 andv2 that appears first inV ect is returned.

Termination. An inspection of the two algorithms shows that the protocol terminates if two conditions are
satisfied. The first is that at leastn − f wormholes have to broadcast the values proposed by the corresponding
processes (Alg.2:13). This must happen since at least that number of processes are correct. The second condition
is that the FSC consensus has to terminate, something that is guaranteed by the property of Termination of that
protocol (Section 2.2). 2

3.1 Vector Consensus

Vector consensusis a variant of the problem of consensus, which is specially interesting when Byzantine faults
are considered [10, 2, 23]. A vector consensus protocol instead of deciding a value, returns a vector. This vector
has values proposed by a majority of correct processes, something that can be useful to solve practical distributed
system problems, like atomic multicast [9]. The definition is the same as for the consensus protocols above, except
for the Validity property:

• Validity-VC.Every correct process decides on a vectorV ect of sizen, such that:

1. For every1 ≤ i ≤ n, if processpi is correct, thenV ect[i] is either the initial value ofpi or the value⊥,
and

2. at leastf + 1 elements of the vectorV ect are the initial values of correct processes.

A protocol that solves vector consensus is presented in Algorithms 3 (process automaton) and 2 (wormhole
automaton, same as for binary/multi-valued consensus). The protocol is a trivial modification of the previous multi-
valued consensus. It simply returns the vector decided by the wormholes, instead of choosing the most frequent
value in the vector. The automaton FSC has also to be instantiated with a multi-valued fail-stop consensus.

Algorithm 3 Vector consensus protocol (processpi)

Everything identical to Algorithm 1 except lines 10-15 that are substituted by:

10: outputdecide(V ect)i

11: Pre:V ect 6= ⊥
12: Eff: V ect ← ⊥

7We use this short notation to reference Algorithm 1, lines 1 to 2 and 7 to 9.
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Theorem 2 If at mostf = bn−1
3 c processes are failed, then the protocol specified by Algorithms 3 and 2 solves

vector consensus as specified by properties Validity-VC, Agreement and Termination.

Proof (sketch):The protocol is very similar to the consensus protocol, so the proofs of Agreement and Termination
are also the same as in Theorem 1.

Validity-VC. Property 1.If pi is correct thenwi gets the initial valuev (Alg.3:1-2,7-8; Alg.2:1-2), which it
broadcasts to all wormholes inΥ (Alg.2:9-11). Every wormhole proposes to FSC a vector with the default value
(⊥) or the broadcasted valuev (Alg.2:3-4) in the entry corresponding topi. FSC simply decides on one of the
vectors proposed by the wormholes, and this is the vector decided by the protocol (Alg.2:5-6,15-16; Alg.3:3-4,10-
12) therefore the property is satisfied.

Validity-VC. Property 2.We proved that the vector decided is one of the vectors proposed to FSC by one of the
wormholes. These vectors include at leastn− f entries filled (Alg.2:12-14) and at mostf of these entries contain
values from failed processes. The property is satisfied sincef = bn−1

3 c ⇒ n− f − f ≥ f + 1. 2

4 Evaluation of the Protocols

Randomized Byzantine agreement protocols are usually evaluated in terms of resilience, and time and communica-
tion complexities [6].Time complexityin asynchronous systems is normally measured by counting the number of
asynchronous rounds. In this kind of protocols, an asynchronous round is defined in the following way: a process
usually broadcasts a message to all other processes, and then waits for(n− f) messages broadcasted by the others
in the same round; when it gets that number of replies, it either goes to the next round or terminates. For random-
ized protocols, the metric is usually theexpectednumber of asynchronous rounds, since the number of rounds can
only be defined probabilistically. We evaluate the protocols in the situation where the failed processes do the best
they can to delay the protocol, the network behaves the worst as possible and the initial values are also the worst
possible combination.Communication complexitycan be measured in number of bits sent (per round or protocol
execution) or in number of messages sent. Here we use the expected number of message broadcasts.

Consensus Fault Oracle Resilience Expected Time Expected Communication Reference
type model complexity complexity

1 binary crash random bn−1
2 c 2n−1 + 1 (2n−1 + 1)n [3]

2 binary crash random bn−1
3 c 1.5× 2n−f−1 + 2.5 (1.5× 2n−f−1 + 2.5)n §A

3 multi-val. crash random bn−1
2 c 2n−1 + 2 (2n−1 + 1)n + n2 [3]+[22]

4 multi-val. crash random bn−1
3 c 1.5× 2n−f−1 + 3.5 (1.5× 2n−f−1 + 2.5)n + n2 §A+[22]

5 multi-val. crash random bn−1
2 c nn−1 + 2 (nn−1 + 1)n + 2n2 [12]

6 binary Byz. random bn−1
5 c 2n−f−1 + 1 (2n−f−1 + 1)n [3]

7 binary Byz. random bn−1
3 c 4.5(2n−f−1 + 1) (2n−f−1 + 1)3n2 [4]

8 binary Byz. wormh. bn−1
3 c 1.5× 2n−f−1 + 3.5 (1.5× 2n−f−1 + 3.5)n §3+§A

9 multi-val. Byz. wormh. bn−1
3 c 1.5× 2n−f−1 + 4.5 (1.5× 2n−f−1 + 4.5)n + n2 §3+§A+[22]

10 vector Byz. wormh. bn−1
3 c 1.5× 2n−f−1 + 4.5 (1.5× 2n−f−1 + 4.5)n + n2 §3.1+§A+[22]

Table 1: Comparison of several asynchronous randomized consensus protocols.

Table 1 compares our protocols with several other asynchronous randomized consensus protocols that have
been published previously. Randomized consensus protocols are essentially of two kinds: (1) those based on local
random oracle modules, following Ben-Or’s seminal paper [3]; (2) those based on a secret-sharing scheme that
distributes identical random numbers to all processes, starting with Rabin’s work [25]. The second class includes
protocols that run in less rounds at the cost of expensive public-key cryptography and having to distribute shares of
random numbers before the execution of the protocol. We do not consider a secret-sharing scheme in the paper so
our protocols fit in the first class and we compare them only with protocols in that class.

Each row in the table is about one protocol. The top rows (1-5) evaluate fail-stop consensus protocols, the
middle rows (6-7) evaluate Byzantine consensuses in the literature, and the bottom rows (8-10) our own protocols.
Our protocols need a binary or a multi-valued fail-stop consensus (Section 2.2). For reasons we explain below,
instead of the binary protocol in [3] (row 1) we use a modified – fail-stop – version of the Byzantine protocol
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in [4] (see Appendix A). The multi-valued protocol is this same binary consensus combined with the ‘binary to
multi-valued’ transformation in [22] (see the column Reference in the table;§ indicates the section or appendix
where our protocol is described).

The first conclusion we take from the table is that the time and message complexities of our protocols are
similar to the best complexities of fail-stop protocols. Compare the binary consensuses in rows 2 and 8 and the
multi-valued consensuses in rows 4 and 9.

The second conclusion is that these complexities are better than those of Byzantine resilient protocols in the
literature. Comparing our binary protocol (row 8) to Bracha’s protocol [4] (row 7) we see that the time complexities
are bothO(2n−f ) (although ours is slightly lower) but our communication complexity is clearly lower:O(2n−fn+
n) againstO(2n−fn2 + n2). The time and communication complexities of [3] are apparently identical to ours,
respectivelyO(2n−f ) andO(2n−fn + n). However, the resilience of that protocol is suboptimal (onlybn−1

5 c
out of n) so if we wanted to tolerate the same number of faults the complexities would be considerably worse
(exponential with a base greater than 2). We did not find multi-valued or vector consensuses of the class we are
considering in the literature, so we cannot make a comparison for those protocols.

The reason why we used a modified version of Bracha’s protocol instead of Ben-Or’s protocol [3] to evaluate
our protocols can now be understood. Ben-Or’s protocol toleratesf = bn−1

2 c crashes (row 1), the optimal resilience
for fail-stop protocols. The time and communication complexities are respectivelyO(2n) andO(2nn + n). The
resilience of the protocol is more than we need for our binary consensus protocol, but its complexities would
lead to similar complexities for our protocols. The problem is that a time complexity ofO(2n) is worse than
the complexities of current Byzantine-resilient protocols (rows 6-7). The same is true for the communication
complexity. Using the modified version of Bracha’s protocol (Appendix A) we manage to have better complexities:
O(2n−f ) andO(2n−fn + n). The resilience of this modified protocol is suboptimal for fail-stop protocols but
exactly what we need since it is used to support a Byzantine protocol.

One final comment is that the exponential time complexities we obtained are not particularly good for con-
sensus protocols. However, our point here is to compare protocols with local wormholes with protocols based on
the usual architecture. Better complexities might probably be obtained using Rabin’s aproach, but this was left as
future work.

5 Conclusion

The need for more secure distributed systems is raising a renewed interest in efficient Byzantine protocols. This
paper investigates the contribution for that objective of including a secure component – local wormhole – inside the
system nodes. The paper compares a set of Byzantine protocols based on the typical model (nodes interconnected
by a network) with our model. For this comparison to make sense we consider only randomized protocols, only with
local random oracles (i.e., following Ben-Or [3]). This approach does not lead to particularly efficient protocols,
but the purpose is to compare protocols that are as similar as possible. The conclusion from that comparison is that
our approach manages to reduce the complexities of Byzantine protocols to complexities equivalent to fail-stop
protocols, which are considerably better than those of previous similar Byzantine protocols.

The paper follows the line of research in systems extended with wormholes, but considers, for the first time,
local (non-distributed), strictly asynchronous, randomized wormholes. This possibility of having local wormholes
was envisaged when the concept was first introduced [24, 28] but has never been explored. The paper presents the
first formalization of this type of model with I/O automata.

References

[1] G. Avoine, F. Gartner, R. Guerraoui, and M. Vukolic. Gracefully degrading fair exchange with security modules. In
Proceedings of the Fifth European Dependable Computing Conference, volume 3463 ofLecture Notes in Computer
Science, pages 55–71. Springer-Verlag, April 2005.

[2] R. Baldoni, J. Helary, M. Raynal, and L. Tanguy. Consensus in Byzantine asynchronous systems. InProceedings of the
International Colloquium on Structural Information and Communication Complexity, pages 1–16, June 2000.

[3] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols. InProceedings of the
2nd ACM Symposium on Principles of Distributed Computing, pages 27–30, August 1983.

9



[4] G. Bracha. An asynchronousb(n − 1)/3c-resilient consensus protocol. InProceedings of the 3rd ACM Symposium on
Principles of Distributed Computing, pages 154–162, August 1984.

[5] M. Castro and B. Liskov. A correctness proof for a practical Byzantine-fault-tolerant replication algorithm. Technical
Report MIT/LCS/TM-590, MIT Laboratory for Computer Science, June 1999.

[6] B. Chor and C. Dwork. Randomization in Byzantine agreement. InAdvances in Computing Research 5: Randomness
and Computation, pages 443–497. JAI Press, 1989.

[7] M. Correia, N. F. Neves, L. C. Lung, and P. Verı́ssimo. Low complexity Byzantine-resilient consensus.Distributed
Computing, 17(3):237–249, 2005.
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A Fail-stop b(n− 1)/3c-Resilient Binary Consensus Protocol

This section presents a straightforward modification of Bracha’s Byzantine-resilient binary consensus protocol [4]
to tolerateb(n − 1)/3c crash faults. This protocol is used in the evaluation of our Byzantine-resilient consensus
protocols (see Section 4). The modification is essentially the removal of the ‘reliable broadcast’ primitive and the
‘correctness enforcement’ scheme used in [4] to constrain the behavior of malicious processes. We also generalize
Bracha’s assumption ofn = 3f + 1 to f = b(n− 1)/3c.

The protocol is presented in Algorithm 4 following the original format. Also following the original presen-
tation, the algorithm does not terminate when a decision is made. This can be done by making the processes that
decided broadcast a halting message.

Algorithm 4 Fail-stopb(n− 1)/3c-Resilient Binary Consensus Protocol

ip is set to the value proposed by the process before the first round.
(d, v) is a special value that is used to try to decidev.

Round(k): (by processp)

1. Broadcast(ip) and wait forn− f messages.
ip := majority value of the messages.

2. Broadcast(ip) and wait forn− f messages.
If more thann/2 of the messages have the same value, thenip := (d, v).

3. Broadcast(ip) and wait forn− f messages.
If there are at least(n− f) (d, v) messages thenDecidev.
If there are at least(n− 2f) (d, v) messages thenip := v.
Otherwise,ip := 1 or 0 with probability1/2.
Go to step1 of roundk + 1.

Theorem 3 If at mostf = bn−1
3 c processes are stopped, then the protocol presented in Algorithm 4 solves con-

sensus as specified by properties Validity-1, Agreement and Termination.

Proof (sketch):
Validity-1. The protocol is binary, therefore only two values can be proposed. The property would be false only

if all processes proposed 0 (resp. 1) and a correct process decided 1 (resp. 0). A simple inspection of the protocol
shows this is impossible: if all processes propose the same value then all decide it.

Agreement.Two processes cannot decide different values (0 and 1) in the same round since they would need
respectivelyn − f (d, 0) messages andn − f (d, 1) messages. This is clearly impossible since each process can
only send one message per round and step, andn− f + n− f > n.

Now, without loss of generality assume processp0 decides 0 in roundk and processp1 decides 1 in round
k′ > k. Processp0 must have receivedn − f (d, 0) messages in step 3 of roundk so all other processes received
at mostf (d, 1) messages in the same round/step. Therefore, all other processes set their variablei to v since all
received at leastn − 2f (d, 0) messages (step 3). An inspection of the protocol shows that if all processes seti to
v in roundk then in roundk + 1 processp1 decides 0. A contradiction.

Termination.An inspection shows that the protocol cannot deadlock. We just proved that if a process decidesv
then all correct processes decidev not after the next round. If no process decides, there is an increasing probability
that eventuallyn−f processes seti to the same valuev in step 3 (say, in roundk). When this happens, all processes
receive at leastn− 2f messages withv in step 1 of roundk + 1 (since onlyf processes may broadcast a different
value) and seti to v. In step 2, all processes broadcastv and seti to (d, v). Finally, in step 3 all decide. 2
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