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Abstract

Nowadays, one of the major concerns about the services provided over
the Internet is related to their availability. Replication is a well known way to
increase the availability of a service. However, replication has some associ-
ated costs, namely it is necessary to guarantee a correct coordination between
the replicas. Moreover, being the Internet such an unpredictable and insecure
environment, coordination correctness should be tolerant to Byzantine faults
and immune to timing failures. Several past works address agreement and
replication techniques that tolerate Byzantine faults under the asynchronous
model, but they all make the assumption that the number of faulty replicas is
bounded and known. Assuming a maximum number off faulty replicas un-
der the asynchronous model is dangerous – there is no way of guaranteeing
that no more thanf faults will occur during the execution of the system. In
this paper, we propose a new design methodology, in order to build a resilient
f fault/intrusion-tolerant state machine replication system, which guarantees
that no more thanf faults ever occur. The system is asynchronous in its most
part and it resorts to a synchronous oracle to periodically remove the effects
of faults/attacks from the replicas.

1 Introduction

Nowadays, one of the major concerns about the services provided by computer
systems is related to their availability. This applies specially to services provided
over the Internet. Building highly available services involves, on one hand, the
design and implementation of correct services tolerant to Byzantine faults [21, 14],
and on other hand, the assurance that the access to them is always guaranteed with
an high probability. Interestingly, these two tasks can be both accomplished by
recurring to replication techniques.

Replication is a well known way to improve the availability of a service: if a
service can be accessed through different independent paths, then the probability
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of a client being able to use it increases. But replication has costs, namely it is
necessary to guarantee a correct coordination between the replicas. Moreover, the
Internet being an unpredictable and insecure environment, coordination correctness
should be assured under the worst possible operation conditions: absence of (local
or distributed) timing guarantees and possibility of Byzantine faults triggered by
malicious adversaries.

Several past works address agreement and replication techniques that tolerate
Byzantine faults under the asynchronous model. The majority of these techniques
make the assumption that the number of faulty replicas is bounded by a known
value [2, 5, 17, 16, 9, 18, 4, 7].

This assumption is of course non-controversial in the context of an abstract
algorithm design, but care should be taken when the same algorithm is used to
implement a system. Systems are supposed to work in the real world, under ac-
tual physical constraints and concrete assumptions. So, the system assumption of
’known maximum bound on the number of failures’ deserves a closer look. In fact,
under the asynchronous model, this type of assumption may be dangerous. There
is no way of guaranteeing that no more thanf faults will occur during the execu-
tion of the system offering the service: unbounded processing and message delays
may result in a very long execution time.

Recent works [6, 27, 3, 19] use the proactive recovery approach [20] with the
goal of weakening the assumption on the number of faults. The above mentioned
assumption ’known maximum bound on the number of failures’ is confined to a
window of vulnerability, which in turn would allow the algorithms proposed in
these papers to tolerate any number of faults over the lifetime of the system. How-
ever, this window is again defined under the asynchronous model, and can therefore
have an unbounded length. This is specially true in a malicious environment, such
as the Internet.

In a recent work, we looked at this problem with the help of a novel theoretical
Physical System Model (PSM ) [24]. PSM takes in account the environmental
resources and their evolution along the timeline of system execution. The model
builds on the concept ofresource exhaustion– the situation when a system no
longer has the necessary resources to execute correctly (e.g., bandwidth, replicas).
PSM allowed us to introduce the predicateexhaustion-safe, meaning freedom
from exhaustion-failures– failures that result from accidental or provoked resource
exhaustion. We showed that, under the asynchronous model, it is theoretically
impossible to have an exhaustion-safe replication technique that can only tolerate
a bounded number of faults, even if we enhance it with proactive recovery [25].

This theoretical result applies to most of the practical systems deployed over
the Internet, specially to those using replication to achieve fault-tolerance and avail-
ability. Practical systems are typically not completely asynchronous under normal
operation – some eventual guarantees can be given on the bounds of processing
and message delays. However, in an environment prone to malicious faults an
adversary may make the system as asynchronous as she or he wants.

Therefore, a replicated system is adequate to be deployed in an asynchronous

2



and insecure environment, such as the Internet, if it does not make timing assump-
tions and if it does not assume a maximum number of faulty replicas. This could be
done by enhancing the system with a detection mechanism responsible for detect-
ing faulty replicas and recovering them. This is relatively easy if replicas can only
suffer crash or omission faults, but things get more complicated with Byzantine
faults – a malicious adversary may remain dormant until the compromise off + 1
replicas and only deploy the “real” attack afterwards. Thus, it is complex to build
a reliable fault detection mechanism able to detect arbitrary faults.

Given that it is difficult to detect faults, and assuming that compromising a
replica takes some time, in alternative one can calculate the minimum time neces-
sary forf + 1 replicas to be compromised and periodically trigger the execution
of a recovering procedure. If an appropriate triggering period is chosen and if the
recovering procedure is timely executed in every replica, one can guarantee that no
more thanf faults will occur, for somef . In a recent work we present a system
design methodology –Mexhaustion−safe – based on this reasoning and formally
prove that it allows the construction of exhaustion-safe systems [25]. This design
methodology uses proactive resilience, which is a new approach to proactive re-
covery based on architectural hybridization.

In this paper, we propose to use the design methodologyMexhaustion−safe in
order to build an exhaustion-safe, and thus resilient, state machine replication sys-
tem. A rejuvenation protocol is presented and the conditions for exhaustion-safety
are derived. The protocol is executed by a synchronous and secure component,
which guarantees that these conditions are either satisfied or the system switches
to a fail-safe state.

The paper is organized as follows. Section 2 extends the concept of exhaustion-
safety presented in [24] and revisits the design methodologyMexhaustion−safe

presented in [25]. In Section 3, we explain how to build an exhaustion-safe state
machine replication system. Related work is discussed in Section 4 and, finally,
our conclusions and future work are presented in Section 5.

2 Exhaustion-Safety Revisited

In this section we first revise and extend the concept of exhaustion-safety intro-
duced in [24], and then explain the generic design methodology presented in [25]
that should be applied in order to build exhaustion-safe systems. These notions are
fundamental for the understanding of the results of this paper.

2.1 Exhaustion-Safety Definition

Typically, the correctness of a protocol depends on a set of assumptions regarding
aspects like the processing power, the type and number of faults that can happen,
the synchrony of the execution, etc. These assumptions are in fact an abstraction
of the actual resources the protocol needs to work correctly (e.g., when a protocol
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assumes that messages are delivered within a known bound, it is in fact assuming
that the network will have certain characteristics such as bandwidth and latency).
The violation of these resource assumptions may affect the safety and/or liveness
of the protocol. If the protocol is vital for the operation of some system, then the
system liveness and/or safety may also be affected.

We classify resource assumptions assafety resource assumptionsand/orlive-
ness resource assumptions, depending on whether they affect, respectively, the
safety and/or liveness of the system (by affecting the safety/liveness of some vi-
tal protocol). Additionally, we distinguish betweenquantitativeresource assump-
tions andnon-quantitativeresource assumptions. The former specify a resource
threshold (e.g., a channel loses at mostf consecutive messages, a replicated sys-
tem tolerates at mostf replica failures), and the latter a non-quantitative resource
behaviour (e.g., a channel is reliable, a channel guarantees total order, a replicated
system tolerates Byzantine failures).

We are specially interested on safety resource assumptions, given that the cor-
rectness of a system depends on them. More precisely, our focus is on quantitative
safety resource assumptions. Resource exhaustion is defined in the following man-
ner:

Definition 2.1. A resourcer is said to be exhausted if there exists a quantitative
safety assumption onr and this assumption is violated.

It is impossible to guarantee the correctness of a system with one or more ex-
hausted resources. Therefore, exhaustion-safety is defined in the following manner.

Definition 2.2. Exhaustion-safety with regard to a resourcer is the ability of a
system to ensure thatr is not exhausted.

Consequently, an exhaustion-safe system is defined in the following way.

Definition 2.3. A system isr-exhaustion-safe if it satisfies the exhaustion-safety
property with regard to resourcer.

We argue that a system, namely a distributed system, in order to be dependable,
has to satisfy the exhaustion-safety property with regard to all the resources.

2.2 Asynchrony and Replica-Exhaustion-Safety

Consider a distributedf fault-tolerant replicated system. According to Defini-
tion 2.3, this system isreplica-exhaustion-safe if it guarantees that no quantitative
safety assumption onreplicasis violated – this means that a maximum off replica
failures may occur during system execution. In order to guarantee that no more
thanf replicas fail, one has to guarantee that the system terminates its execution
before the time needed forf + 1 failures to be produced. In practical terms, one
would like to foresee the maximum number of failures bound to occur during the
system execution, call itNf , so that it is designed to toleratef ≥ Nf failures.
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It is easy to see that estimatingNf is rather difficult in systems built under
the asynchronous model: the absence of timing assumptions dictates unbounded
drift rates for the local clocks, arbitrary delays for local processing, and message
delivery [10, 15, 8]. The execution time of a system built under the asynchro-
nous model is unbounded, and thus the estimation ofNf becomes theoretically
impossible. Therefore, one can say (and we formally proved this in [24]) that a
distributedf fault-tolerant replicated system built under the asynchronous model
is not replica-exhaustion-safe.

However, the asynchronous model is quite attractive because it leads to the
design of programs and components that are immune to timing failures. This char-
acteristic is very important if we think of systems deployed over environments sub-
ject to unpredictable delays, such as the Internet. Consequently, the ideal replicated
system would be a replica-exhaustion-safe one which could somehow maintain the
nice characteristics of the asynchronous model.

2.3 Towards Replica-Exhaustion-Safety

In a recent work, we propose to circumvent the impossibility result presented in
the previous section, through the Proactive Resilience Model (PRM ) [25] – a new
approach to proactive recovery [20] based on architectural hybridization [26]. The
idea is that given a distributedf fault-tolerant replicated systemA built under the
asynchronous model, one can make it replica-exhaustion-safe, by redesigningA as
being part of an architecturally hybrid distributed systemA∗, composed byA and
by a synchronous and secure proactive recovery subsystemR. R periodically and
timely rejuvenatesA, so that it is impossible for an adversary to provoke more than
f replica failures. The resulting systemA∗ is partially synchronous, given that it is
composed by the asynchronous systemA and by the synchronous systemR.

In [25] the proactive recovery subsystemR is modelled as an abstract compo-
nent, the Proactive Recovery Wormhole (PRW), and we present a design method-
ology –Mexhaustion−safe – which uses the PRW to build replica-exhaustion-safe
distributedf fault-tolerant replicated systems. We now describe these in detail.

2.3.1 The Proactive Recovery Wormhole

The Proactive Recovery Wormhole (PRW) is an abstract secure real-time distrib-
uted component that aims to execute proactive recovery procedures. By abstract
we mean that the PRW allows many instantiations. Typically, an instantiation is
chosen according to the concrete application/protocol that needs to be proactively
recovered.

The architecture of a system with a PRW is suggested in Figure 1. An ar-
chitecture with a PRW has a local module in some hosts, called thelocal PRW.
Depending on the instantiation, these modules may or may not be interconnected
by acontrol network. This set up of local PRW modules optionally interconnected
by the control network is collectively calledthePRW. The PRW is used to execute
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Figure 1: The architecture of a system with a PRW.

proactive recovery procedures of protocols/applications running between partici-
pants in the hosts concerned, on any usual distributed system architecture (e.g., the
Internet). We call the latter thepayload system and network, to differentiate from
the PRW part.

Conceptually, a local PRW should be considered to be a module inside a host,
and separated from the OS. In practice, this conceptual separation between the lo-
cal PRW and the OS can be achieved in several ways: (1) the local PRW can be
implemented in a separate, tamper-proof hardware module (e.g., PC board) and
so the separation is physical; (2) the local PRW can be implemented on the na-
tive hardware, with a virtual separation and shielding implemented in software,
between the former and the OS processes.

The local PRWs are assumed to be fail-silent (they fail by crashing). Every
local PRW preserves, by construction, the following properties:

P1 There exists a known upper boundTprocmax
on the processing delays;

P2 There exists a known upper boundTdriftmax
on the drift rate of local clocks.

As mentioned, a PRW instantiation may or may not have a control network. For
instance, if a proactive recovery procedure only requires local information, then
the control network is expendable. Even when the control network is required, its
characteristics will depend on the specific requirements of the proactive recovery
procedure.

The PRW offers a single service:periodic timely execution. This service can
be defined as follows:

Definition 2.4. Given any functionF , with a calculated worst case execution time
of TXmax, an execution intervalTd, and a periodTp, satisfyingTXmax < Td < Tp

(see Figure 2), thenF is triggered by the PRWperiodic timely execution serviceat
real time instantsti (thei-th triggering occurs at instantti), withTd < ti− ti−1 ≤
Tp, andF terminates withinTd from ti, ∀i.

In short, the PRW has the ability to periodically execute well-defined func-
tions in known bounded time. Moreover, the PRW allows the definition of a set of
fail-safe measures to be triggered in certain situations. For instance, these fail-safe
measures may shutdown the system or alert an administrator if theperiodic timely
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Figure 2: Relationship between the periodTp, the maximum execution timeTd and
the worst case execution timeTXmax.

executionservice fails to satisfy its specification. These self-checking mechanisms
can then be used to prevent the occurrence of resource exhaustion even if the proac-
tive recovery procedure fails to achieve its goal.

A PRW instantiation is defined by a triple〈D, 〈F, Tp, Td〉, S〉, such that:

• D represents the set ofdatawhich is proactively recovered, in all nodes (e.g.,
private key shares as in CODEX [19], system state as in BFT-PR [6]);

• 〈F, Tp, Td〉 represents thefunctionF which is periodically triggered with
periodTp and timely executed withinTd of each triggering, through thepe-
riodic timely executionservice, in all nodes.F makes operations over the
data defined inD;

• S represents the set ofself-checkingmechanisms, which have the goal of
guaranteeing a fail-safe behaviour of all the nodes.

The feasibility of a specific PRW instantiation is assessed at design time. The
system architect defines, at design time, the functionF corresponding to the proac-
tive recovery procedure to be executed, as well as, its required periodicityTp and
execution intervalTd. A PRW instantiation is feasible ifTp is greater thanTd and
Td is greater than the worst-case execution time ofF .

2.3.2 Building Replica-Exhaustion-Safe
Distributed f Fault/Intrusion-Tolerant Systems

In order to build a replica-exhaustion-safe distributedf fault/intrusion-tolerant sys-
tem, one has to guarantee that no more thanf (accidental or malicious) replica
failures occur during system execution. If the system maximum execution time
is known, then one may choose a sufficiently largef – by endowing the system
with sufficient replicas – so that resource exhaustion never occurs. However, if the
system has an unbounded execution time, we have a problem – it is not possible
to estimate how many replicas will be needed to avoid resource exhaustion. One
possible approach to solve this problem is to use the Proactive Resilience Model –
enhance the system with a PRW in order that replicas are periodically and timely
rejuvenated. Notice that this approach may even be applied in systems with a
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known bound on execution time when there is the need of minimizing the number
of used replicas.

We propose a design methodology to build replica-exhaustion-safe distributed
f fault/intrusion-tolerant systems, under the Proactive Resilience Model. The
methodology has 3 steps.

Definition 2.5. The design methodologyMexhaustion−safe is defined by the fol-
lowing steps:

1. Define the dataD to rejuvenate, the rejuvenation procedureF , the required
periodicityTp, the execution intervalTd, and the actionsS to be performed
if F is not executed with the required periodicity and execution time.

2. Build a PRW instantiation〈D, 〈F, Tp, Td〉, S〉.

• If not feasible, increase the values ofTp and/orTd.

3. Define the degreefsafe of fault-tolerance, such that, the minimum time nec-
essary –Texhaustmin – for fsafe + 1 replica failures to be produced satisfies
the conditionTexhaustmin

> Tp + Td.

In [25] we formally show that a system built using this methodology is replica-
exhaustion-safe.

3 A Replica-Exhaustion-Safe
State Machine Replication System

3.1 State Machine Replication

A state machine is defined by a set of state variables and a group of commands.
The collection of state variables defines the state of the system. Commands are
used to perform modifications on the state variables and/or to produce some output
(e.g., read the value of a state variable) [22]. Almost every computer program can
be modelled as a state machine. In particular, we will focus on client/server appli-
cations, which also fit under this model: the server is responsible for maintaining
the state and the clients issue commands that modify or read the state. This way of
looking at client-server applications facilitates the reasoning on how to make these
type of applications fault-tolerant. The simplest form of implementing a client-
server application is by deploying a single centralized server which processes all
the commands issued by clients. As long as the server does not fail, commands are
performed according to the order they are received from clients. But if one con-
siders that failures may happen, then this centralized approach does not work. The
server may crash and render the system unavailable or, worst, the server may be
compromised by some malicious adversary, which can arbitrarily modify the state.
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In order to tolerate these types of failures, one has to replicate the server. The repli-
cation degree depends both on the type (e.g., crash, Byzantine) and quantity of the
failures to be tolerated. Several protocols have been proposed to implement state
machine replication tolerant to crash faults, and some also targeting the Byzantine
scenario. Given that our focus in this paper is on Internet services, we will not
make any restrictions on the type of faults than can happen – a server may fail ar-
bitrarily, either by crash or by compromise of the state and/or the execution logic.
The current state-of-the-art allows one to build client/server applications resilient
to a specified numberf of arbitrary faults – we call thisf -resilientsystems.

f -resilient systems (withf ≥ 1) are not necessarily better than systems without
fault-tolerance. In fact, given thatf -resilient systems have an increased complex-
ity, the performance of the replicated system is typically worse than of the central-
ized version. The advantage is, off course, the resilience to a certain number of
faults. However, the actual resilience of the replicated system depends both on the
correlation between replica failures and on the strength of the malicious adversary.
On the one hand, if all the replicas use the same operating system and the service
implementation is equal in all of them, then, an adversary only needs to discover
how to compromise a single replica in order to easily compromise more thanf
replicas. On the other hand, even if all the replicas operate over different operating
systems and use different implementations, a malicious adversary with the ability
of triggering attacks in parallel may substantially reduce the time needed to corrupt
more thanf replicas. For instance, if the adversary is a group of equally powered
f +1 hackers working in parallel and trying to compromisef +1 different replicas,
the time necessary to corrupt more thanf replicas would correspond to the time
necessary to compromise the less vulnerable replica. Moreover, in long-lived sys-
tems, even if replicas are attacked in sequence, the probability of more thanf being
compromised is significant. From this reasoning, we identify three key factors that
influence the actual resilience of af fault-tolerant system:

• Failure correlation:

– Completely different replicas: different operating system, different ser-
vice design and implementation;

– Similar replicas: same operating system and/or same design and/or
same implementation;

– Completely equal replicas: same operating system, same service de-
sign and implementation.

• Adversary strength:

– Replicas are attacked in sequence;

– Replicas are attacked in parallel.

• Total execution time of the replicated system.

9



The first two factors determine the time needed to corrupt more thanf faults.
By assessing if this value is greater or lower than the total execution time of the
system, one can determine the resilience of anf fault-tolerant replicated system.

It is extremely important that no more thanf faults can occur during system
execution. In order to build truly dependable systems, one has to guarantee this
bound on the number of faults by construction. With this goal in mind, proactive
recovery seems to be a very interesting approach: replicas can be periodically reju-
venated and thus the effects of accidental and/or malicious faults can be removed.
However, proactive recovery execution needs some synchrony guarantees in order
that rejuvenations are regularly triggered and have a bounded execution time.

In the case of state machine replication, we argue that despite being difficult
to guarantee a bounded execution time on the proactive recovery procedure, be-
cause it involves time-consuming tasks such as state transfer, one can devise an
architecture under which anomalous recovery times can be dependably detected
before more thanf replicas being compromised. We propose to apply the Proac-
tive Resilience Model (PRM ), introduced in Section 2.3, to the state machine
replication scenario. UnderPRM , the proactive recovery procedure is executed in
the context of a synchronous and secure distributed architectural component – the
Proactive Recovery Wormhole (PRW). The PRW timely execution service is used
to proactively recover replicas, guaranteeing that:

• no more thanf replicas are ever corrupted;

• the execution of the distributed state machine is never interrupted.

Our approach is minutely explained in the next section.

3.2 The State Machine Proactive Recovery Wormhole

Previously, we have described the PRW as an abstract component, and in this sec-
tion, we give an instantiation of the PRW for state machine replication – the State
Machine Proactive Recovery Wormhole (SMW). The goal of the SMW is to period-
ically rejuvenate replicas such that no more thanf replicas are ever compromised
and thus replica-exhaustion-safety is guaranteed.

The SMW is defined by the triple〈DSMW , FSMW , SSMW 〉, such that:

• DSMW = { OS code, SM code, SM state }, whereOS/SM code is
the code of the operating system/state machine andSM state is the state
of the state machine. These are the three types of data to be periodically
refreshed.

• FSMW = 〈 refreshCodeAndState , Tp, Td〉, where the concrete values
of Tp andTd depend on several factors that will be discussed later in the
section, and therefreshCodeAndState function is presented as Algo-
rithm 1. Each non crashed local SMWPi, i ∈ {1..n}, executes Algorithm 1
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Algorithm 1 refreshCodeAndState() for each local SMWPi, i ∈ {1...n}
1: shutdownOS()

2: if OS code is corruptedthen {restore operating system code}
3: restoreOScode()

4: if SM code is corruptedthen {restore state machine code}
5: restoreSMcode()

6: bootOS() {at this point, the OS and the SM can be safely booted because their
code is correct}

7: wait until state recovery is finished

at some point of each time period defined byTp. The precise execution start
instant depends on the recovery strategy that will be discussed in Section 3.3.

• SSMW = {switch to a fail-safe state and/or alert an administrator, if the state
is not periodically and timely rejuvenated, as specified byTp andTd}.

Regarding Algorithm 1, we assume that the state of both operating system and
local state machine is stored in volatile Random-Access Memory (RAM). More-
over, the state of the local state machine is periodically saved to stable storage.
Also, we assume that the local state machine is automatically started after every
boot of the operating system, and that the previous state is loaded from the stable
storage.

In Algorithm 1, Line 1 shutdowns the operating system, and consequently stops
the execution of the local state machine. Notice that the algorithm continues to ex-
ecute even after the operating system being shutdown. This happens because the
SMW does not depend on the operating system, which can be achieved in practice
by implementing each local SMW in a PC board. Line 2 checks if the operating
system code is corrupted. To accomplish this task, a digest of the operating sys-
tem code can be initially stored on some read-only memory, and then assessing
if it is correct is only a matter of comparing the digest of the current code with
the stored one. In Line 3, the operating system code can be restored from a read-
only medium, such as a Read-Only Memory (ROM) or a write-protected hard disk
(WPHD), where the write protection can be turned on and off by setting a jumper
switch (e.g., Fujitsu MAS3184NP). In Lines 4–5, the state machine code can be
checked and restored using similar methods to the ones we used to check and re-
store the operating system code. Alternatively, both the operating system and the
state machine code can be installed on a read-only medium, thus avoiding the exe-
cution of Lines 2–5. Line 6 boots the operating system from a clean code and thus
brings it to a correct state. The local state machine is also automatically started.
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Given that the state of the local state machine may have been compromised
before the rejuvenation, it may be necessary to transfer a clean state from remote
replicas. In Line 7, we wait until a potential state recovery is finished. A generic
state recovery mechanism for fail-stop replicas is described in [22]. This mecha-
nism can be easily generalized to the case when we can have Byzantine failures.
State recovery introduces an unbounded delay on the proactive recovery procedure,
given that it requires the exchange of information through the payload network.
Since the payload network is asynchronous, messages sent through it can take an
unbounded time to be delivered. However, one can estimate an upper-bound on the
delivery time which will be satisfied with high probability in normal conditions.

In the worst-case scenario, i.e., when the code of both the operating and the
local state machine is corrupted, Algorithm 1 executes a total of 7 operations. The
execution time of these operations can be upper-bounded in the following manner.

• shutdownOS(): Typically, an operating system can be shutdown though an
hardware interrupt. This operation has predictable execution time and thus
one can define an upper-boundTshutdown.

• check OS/SM code correctness: This can be implemented through a bitwise
comparison between the digest of the current OS/SM code with a digest
initially stored in a read-only medium. An upper-boundTcheckcode on the
execution time of this operation can be defined based on the maximum time
necessary to copy the digest from the medium and to make a simple bitwise
comparison.

• restoreOScode() andrestoreSMcode(): Restoring the OS/SM code cor-
responds to a copy from a read-only medium. So, an upper-boundTrestorecode

can be defined based on the maximum time necessary to copy the code from
the medium.

• bootOS(): Booting an operating system can take some time, but given that
we are always booting the same OS (because no application gets installed
between boots), it is possible to estimate an upper-boundTboot on the boot
time.

• wait until recovery is finished: One can estimate an upper-boundTtransfer

on the transfer time which will be satisfied with high probability in normal
conditions.

So, one can define an upper-boundTlocalexec on the execution time of Algo-
rithm 1, such thatTlocalexec = Tshutdown + 2Tcheckcode + 2Trestorecode + Tboot +
Ttransfer. This upper-bound will be used in the next section as an input to calcu-
late the values ofTp andTd. The fail-safe mechanisms ensure that if the recovery
procedure does not terminate within its deadline (e.g., due to the violation of an
estimated upper-bound), all the replicas switch to a fail-safe state (e.g., shutdown)
and/or an alert is sent to an administrator. Notice that the fail-safe mechanisms
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will only be triggered under abnormal conditions, when the system is in danger of
becoming compromised.

3.3 Strategies to Achieve Replica-Exhaustion-Safety

We now discuss the recovery strategy to be applied in order that no more thanf
replicas are ever corrupted, and the execution of the distributed state machine is
never interrupted. Consider that there exists a functionTexhaust(x) which returns
the minimum time needed to compromisex replicas.

If all replicas are periodically rejuvenated within a periodTp and the rejuve-
nation execution time is bounded byTd, then one can guarantee a maximum off
faulty replicas ifTp +Td < Texhaust(f +1). A straightforward solution to achieve
this objective would be to rejuvenate all the replicas at once: the replicas would
be simultaneously stopped in a consistent state, rejuvenated, and restarted again.
Given that no progress would occur during rejuvenation, only the previously com-
promised replicas would have to restore their state. The problem with this solution
is that the distributed state machine would be unavailable during the rejuvenation,
which is contrary to one of our goals. However, in scenarios where the interruption
of the service is not a problem, this solution has the advantage of minimizing the
number of state transfers, given that only compromised states have to be restored.

In order to avoid service interruption, the numberk of replicas simultaneously
recovered should be such thatk ≤ f . If k is greater thanf , than the state machine
may not continue its operation during a recovery. Moreover, we have to guarantee
that the maximum numberk′ of faults that can occur between rejuvenations is such
thatk + k′ ≤ f . In the worst case scenario,k′ replicas are compromised when a
different set ofk replicas are recovering. The reader, however, should notice thatk
andk′ may be chosen at will, according to the requirements of the service offered
by the distributed state machine. On the one hand, ifk has a low value then few
replicas recover simultaneously and more faults are allowed to happen between
rejuvenations. On the other hand, ifk has an high value, then more replicas will be
recovered at the same time, but less faults will be tolerated between rejuvenations.

Each recovering replica executes the code presented in Algorithm 1. Repli-
cas are recovered in groups of at mostk elements, by some specified order: for
instance, replicasP1, ..., Pk are recovered first, then replicasPk+1, ..., P2k follow,
and so on. A total ofdn/ke replica groups are rejuvenated in sequence. Figure 3 il-
lustrates the rejuvenation process. The SMW coordinates the rejuvenation process,
triggering the rejuvenation of replica groups one after the other. The maximum ex-
ecution time of the rejuvenation process, i.e., the maximum time interval between
the first group rejuvenation start instant and the last group rejuvenation termination
instant, is upper-bounded byTexec = dn/keTlocalexec.

Therefore, by applying the methodologyMexhaustion safe, if Td ≥ Texec and
Tp > Td, then the system is replica-exhaustion-safe if we choosek′ (with k + k′ ≤
f ), such that,Tp + Td < Texhaust(k′ + 1).

Given that we need to tolerate at least one faulty replica between rejuvena-
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Figure 3: Relationship between the rejuvenation periodTp, the rejuvenation maxi-
mum execution timeTd, k andk′.

tions1, k′ should be greater than zero. So, at least one replica will be recovered per
rejuvenation (i.e.,k ≥ 1) and thusf ≥ 2. Therefore, a Byzantine fault-tolerant
state machine (wheren ≥ 3f + 1) should apparently have a minimum of 7 repli-
cas in order to satisfy availability and replica-exhaustion-safety. However, albeit
k′ faults may be of Byzantine nature, thek faults provoked by the rejuvenation
process are fail-silent. So, we need in factn ≥ 3k′ + 2k + 1 replicas, and thus a
minimum of 6 replicas.

4 Related Work

Proactive recovery [20] has been used in different scenarios with the goal of re-
stricting the assumption on a bounded number of faults to a small interval.

4.1 Secret Sharing

Secret sharing schemes [1, 23] protect the secrecy and integrity of secrets by dis-
tributing them over different locations. A secret sharing scheme transforms a secret
s into n sharess1, s2, ..., sn which are distributed ton share-holders. In this way,
the adversary has to attack multiple share-holders in order to learn or to destroy
the secret. For instance, in a(k + 1, n)-threshold scheme, an adversary needs to
compromise more thank share-holders in order to learn the secret, and corrupt at
leastn− k shares in order to destroy the same secret.

In many applications, a secrets may be required to be held in a secret-sharing
manner byn share-holders for a long time. If at mostk share-holders are corrupted
throughout the entire lifetime of the secret, any(k + 1, n)-threshold scheme can
be used. In certain environments, however, gradual break-ins into a subset of lo-
cations over a long period of time may be feasible for the adversary. If more than

1We could assume no faults between rejuvenations, but then we would be assuming that the
adversary would be unable to compromise any replica.
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k share-holders are corrupted,s may be stolen. An obvious defense is to periodi-
cally refreshs, but this is not possible whens corresponds to inherently long-lived
information (e.g., cryptographic root keys, legal documents).

Thus, what is actually required to protect the secrecy of the information is to be
able to periodically renew the shares without changing the secret. Proactive secret
sharing (PSS) was introduced in [13] in this context. In PSS, the lifetime of a secret
is divided into multiple periods and shares are renewed periodically. In this way,
corrupted shares will not accumulate over the entire lifetime of the secret since
they are checked and corrected at the end of the period during which they have
occurred. A(k + 1, n) proactive threshold scheme guarantees that the secret is not
disclosed and can be recovered as long as at mostk share-holders are corrupted
during each period, while every share-holder may be corrupted multiple times in
some periods.

Different approaches to proactive secret sharing have been suggested, both un-
der the synchronous and the asynchronous model. Synchronous approaches [13,
12, 11] work correctly in a synchronous environment, which is not the environ-
ment tackled in this paper. Asynchronous proactive secret sharing [28, 3, 27, 19],
on the other hand, fail to guarantee a bound on the rejuvenation period: a malicious
adversary may slow the system down (e.g., by compromising the clock behaviour).

4.2 State Machine Replication

Castro and Liskov were the first ones to propose the combination of asynchronous
state machine replication with proactive recovery [6]. They propose BFT-PR – a
Byzantine fault-tolerant, state machine replication algorithm, which uses proactive
recovery. BFT-PR can tolerate any number of faults provided fewer than one third
of the replicas become faulty within a window of vulnerability.

BFT-PR works mainly under the asynchronous model, but the proactive re-
covery mechanism makes some extra assumptions: secure cryptography, read-only
memory, watchdog timers and eventual timely delivery of messages. Secure cryp-
tography means that a replica can sign and decrypt messages without exposing
its private key. Read-only memory is used both to store the public keys for other
replicas and to store the recovery monitor that executes the (proactive) recovery
procedure. Watchdog timers are used to periodically interrupt processing and hand
control to the recovery monitor. Therefore, each replica needs to be equipped with
a secure cryptographic coprocessor, a watchdog timer and a recovery monitor. It is
also assumed that there is some unknown point in the execution after which either
all messages are delivered within some constant time∆ or all non-faulty clients
have received replies to their requests.

If these assumptions are satisfied, then BFT-PR works correctly. Namely, au-
thors point out that∆ is a constant that depends on thetimeoutvalues used by
the algorithm and that an appropriate choice of∆ allows recoveries at a fixed rate.
This suggests that the lengthTv of the window of vulnerability can have a known
bounded value in normal conditions.
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However, given that BFT-PR targets malicious environments (e.g., Internet),
the bound onTv should either be guaranteed under an attack, or it should be possi-
ble to timely detect any increase on the window of vulnerability and then take the
necessary actions in order to avoid the compromise of the system. The problem is
that BFT-PR does not provide adequate mechanisms to achieve any of these goals.
Our approach, on the other hand, guarantees precisely this behaviour: in normal
conditions, the rejuvenation is periodically and timely executed, and if some ab-
normal situation occurs, the system switches to a fail-safe state and/or alerts an
administrator, before being compromised.

5 Conclusions and Future Work

One of the current main challenges is how to build and deploy highly available
services on the Internet. The traditional approach, and the one which seems more
appropriate, is based on replication. But replication has costs, namely on how to
guarantee a correct coordination between the replicas. These costs are even higher
on the Internet, given that its unpredictability and insecurity forces the coordination
protocols to be Byzantine fault-tolerant and immune to timing failures. Several
agreement and replication techniques of this type were already described in the
past, but all of them make the dangerous assumption that the number of faulty
replicas is bounded by a known value during an unbounded execution time interval.

In this paper, we described a resilientf fault/intrusion-tolerant state machine
replication system, which guarantees that no more thanf faults ever occur. The
system is asynchronous in its most part, using a synchronous oracle – the State
Machine Proactive Recovery Wormhole – to periodically remove the effects of
faults/attacks from the replicas. We performed a quantitative assessment of the
level of redundancy required to achieve resilient state machine replication, i.e., si-
multaneously securing availability and replica-exhaustion-safety. We see that 6
replicas are required for tolerating one Byzantine failure, versus the 4 replicas re-
quired in sheer algorithmic terms, believed until now sufficient.

As future work, we plan to implement an experimental prototype of the pro-
posed state machine replication system.
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