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SieveQ: A Layered BFT Protection System
for Critical Services

Miguel Garcia, Nuno Neves, Member IEEE, Alysson Bessani

Abstract—Firewalls play a crucial role in assuring the security of today’s critical infrastructures, forming a first line of defense by being
placed strategically at the front-end of the networks. Sometimes, however, they have exploitable weaknesses, allowing an adversary to
bypass them in different ways. Therefore, their design should include improved resilience capabilities to allow them to operate correctly
in highly adverse environments. This paper proposes SieveQ, a message queue service that protects and regulates the access to
critical systems, in a way similar to an application-level firewall. SieveQ achieves fault and intrusion tolerance by employing an
architecture based on two filtering layers, enabling efficient removal of invalid messages at early stages and decreasing the costs
associated with Byzantine Fault-Tolerant (BFT) replication of previous solutions. Our experimental evaluation shows that SieveQ
improves existing replicated-firewalls resilience in the presence of corrupted messages by faulty nodes. Furthermore, it accommodates
high loads, as it is able to handle sixteen times more security events per second than what was processed by the Security Information
and Event Management (SIEM) infrastructure employed in the 2012 Summer Olympic Games.

Index Terms—Intrusion Tolerance; BFT; Application-level firewall; Denial-of-service
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1 INTRODUCTION

Firewalls are used as the main protection against external
threats, controlling the traffic that flows in and out of a network.
Typically, they decide if a packet should go through (or be
dropped) based on the analysis of its contents. Over the years,
this analysis has been performed at different levels of the OSI
stack (see [2] for a comprehensive survey), but the most soph-
isticated rules are based on the inspection of application data
included in the packets. State-of-the-art solutions for application-
level firewalls include network appliances from several vendors,
such as Juniper [3], Palo Alto [4], and Dell [5]. Such appliances
are strategically placed on the network borders, and therefore, the
security of the whole infrastructure relies on them. A skilled at-
tacker, however, may find weaknesses to compromise the firewall’s
detection/prevention capabilities. When this happens, critical ser-
vices under the protection of such devices may be affected, as in
the Supervisory Control And Data Acquisition (SCADA) systems
targeted in the Stuxnet [6] or Dragonfly [7] attacks.

Most generic firewall solutions suffer from two inherent prob-
lems: First, they have vulnerabilities as any other system, and as
a consequence, they can also be the target of advanced attacks.
For example, the National Vulnerability Database (NVD) [8]
shows that there have been many security issues in commonly
used firewalls. NVD’s reports present the following numbers of
security issues between 2010 and 2015: 157 for the Cisco Adaptive
Security Appliance; 109 in Juniper Networks solutions; 29 for the
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Sonicwall firewall; and 24 related to iptables/netfilter. Common
protection solutions often have been the target of malicious actions
as part of a wider scale attack, e.g., anti-virus software [9],
intrusion detection systems [10] or firewalls [11], [12], [13], [14].
Second, firewalls are typically a single point of failure, which
means that when they crash, the ability of the protected system
to communicate may be compromised, at least momentarily.
Therefore, ensuring the correct operation of the firewall under a
wide range of failure scenarios becomes imperative. To tolerate
faults, one typically resorts to the replication of the components.

Primary-backup replication (also called 1 + 1 replication)
would suffice to tolerate a single crash fault on a firewall. If the
primary replica crashes, the backup replica is able to replace it
and deliver the requests. If the system wants to tolerate arbitrary
failures, e.g., replicas that suffer intentional or non-intentional
Byzantine faults, then it needs a more complex type of replication.
For example, if one of the two replicas is misbehaving then
the node implementing the critical service will be unable to
distinguish which replica is delivering the correct message. To
address this difficulty, it is necessary to collect a majority of
correct messages, which requires the addition of more replicas.
A system that needs to tolerate a single Byzantine fault must have
at least 4 replicas [15].

In this work, we propose a new protection system called
SieveQ that mixes the firewall paradigm with a message queue
service, with the goal of improving the state-of-the-art approaches
under accidental failures and/or attacks. The solution has a fault-
and intrusion-tolerant architecture that applies filtering operations
in two stages acting like a sieve. The first stage, called pre-filtering,
performs lightweight checks, making it efficient to detect and dis-
card malicious messages from external adversaries. In particular,
messages are only allowed to go through if they come from a
pre-defined set of authenticated senders. Denial-of-service (DoS)
traffic from external sources is immediately dropped, preventing
those messages from overloading the next stage. The second stage,
named filtering, enforces more refined application level policies,
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which can require the inspection of some message fields or need
the enforcement of certain ordering rules.

Different fault tolerance mechanisms are employed at the two
stages. Pre-filtering is implemented by a dynamic group of nodes
named pre-SQs. Pre-SQs can be the target of various kinds of
attacks and eventually may be intruded because they face the
external network. Therefore, we take the conservative approach
of assuming that pre-SQs can fail in an arbitrary (or Byzantine)
way, meaning that they may crash or start to act maliciously.
When a failed pre-SQ is detected, it is simply replaced by a
new one that is clean from errors. Since SieveQ needs to support
different message loads, e.g., due to additional senders, pre-SQs
can be created dynamically to amplify the aggregated processing
capabilities (within the constraints of the hardware). The filtering
stage is performed by a group of replica-SQ components, which
execute as a replicated state machine [16]. Replica-SQs may also
fail in an arbitrary way, and therefore, we employ an intrusion-
tolerant replication protocol that ensures correct operation in the
presence of Byzantine faults.

SieveQ was experimentally evaluated in different scenarios.
The results show that it is much more resilient to DoS attacks
and various kinds of intrusions than existing replicated-firewall
approaches. We also evaluated SieveQ considering the protection
of a SIEM system. The test environment emulated the setup of the
2012 Summer Olympic Games, where the same sort of security
events was generated and transmitted across the network. The
experiments demonstrate that SieveQ can handle a workload up to
sixteen times higher than the observed load in the 2012 Summer
Olympic Games, without a noticeable degradation in performance.

The remainder of the paper is organized as follows: in Sec-
tion 2 we explain what is an intrusion-tolerant firewall; the SieveQ
architecture and protocol are presented in Sections 3 and 4,
respectively; Sections 5 and 6 describe the implementation and
present the system evaluation; in Section 7 we discuss the work
limitations; in Section 8 we give an overview of the work related
with our contributions; and finally we conclude in Section 9.

2 INTRUSION-TOLERANT FIREWALLS

In the last decade, several important advances occurred in the
development of intrusion-tolerant systems. However, to the best
of our knowledge, very few works proposed intrusion-tolerant
protection devices, such as firewalls. Performance reasons might
explain this, as Byzantine fault-tolerant (BFT) replication proto-
cols are usually associated with significant overheads and limited
scalability. Additionally, achieving complete transparency to the
rest of the system can be challenging to reconcile with the
objective of having fast message filtering under attack.

Figure 1 shows an implementation of an intrusion-tolerant
firewall, illustrating existing works in this area [17], [18]. In this
design, a sender transmits the messages through the network (e.g.,
the internet) towards the receiver. As packets reach the firewall,
they are disseminated to the replicas. Each replica applies the
same filtering rules to decide whether the messages are acceptable.
Invalid messages are discarded (and eventually logged). Messages
deemed valid are conveyed to the receiver together with a proof
of validity, which demonstrates that a sufficiently large quorum of
replicas agrees on their validity. The proof of validity is checked
by a voter module at the receiver, before delivering the messages to
the receiving application. Thus, if a compromised replica produces
a message with malicious content, it will be eliminated as it lacks

Figure 1: Architecture of a state-of-the-art replicated firewall.

the necessary proof of validity or it is in conflict with the messages
transmitted by the other correct replicas.

Although this architecture has interesting characteristics, such
as an increased failure resilience, it suffers from some fundamental
limitations:

1) The dissemination of a message to all replicas can be detri-
mental to the proper operation of the firewall. For example,
a traffic replicator device (e.g., hub) can be placed at the
entry of the firewall to transparently reproduce all mes-
sages [17], [18]. An obvious consequence of this approach
is that malicious messages from an external attacker are
also replicated, and therefore, all replicas have to spend the
effort to process them. The effect is an attack amplification
caused by the replicator device. Alternatively, a leader replica
could receive the traffic and then disseminate the messages
to the others [18]. The drawback is that the leader becomes
a natural bottleneck, especially when under attack (instead of
dispersing the attack load over all replicas [19]).

2) The support for stateful firewall filtering requires that all
correct replicas process messages in the same order [16].
As a consequence, to ensure an agreement in a common
sequence of messages, replicas need to continuously run a
BFT consensus protocol [20] to establish message ordering.
A significant amount of work can be wasted with malicious
messages since all messages have to be agreed. This is
particularly relevant because a consensus protocol consumes
both computational and network resources.

3) The creation and check of the proof of validity can be a
complex task. For example, one approach requires a trusted
component to be deployed in the replicas to generate a Mes-
sage Authentication Code (MAC) as a proof that a message
is valid [17]. The component only returns the MAC when a
quorum of replicas accepted the message. Another solution
uses threshold cryptography to ensure that every replica can
individually produce a partial signature (that corresponds to
a part of the proof) [18]. To recreate the full proof, the voter
needs to wait for the arrival of a quorum of partial proofs.
When building a firewall, it would be useful if a simpler
approach could be employed, with no need for specialized
trusted components or expensive threshold cryptography.

These drawbacks can have a significant impact on the firewall
performance depending on the considered setting. For example, a
typical DoS attack can create a substantial decrease in the through-
put and several orders of magnitude growth in the latency of
message delivery. To illustrate this behavior we implemented the
architecture of Figure 1 and launched a DoS attack on this system
(see Section 6 for a description of the setup and environment). The
results show that the system performance is significantly affected
by the attack (see Figure 2).

In this paper, we explore a different design for replicated
protection devices, where we trade some transparency on senders
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Figure 2: Effect of a DoS attack (initiated at second 50) on the latency
and throughput of the intrusion-tolerant firewall architecture displayed
in Figure 1.

and receivers for a more efficient and resilient firewall solution. In
particular, we propose an architecture in which critical services
and devices can only be accessed through a message queue,
and implement the application-level filtering in this queue. It is
assumed that these services have a limited number of senders,
which can be properly configured to ensure that only they are
authorized to communicate through SieveQ.

3 OVERVIEW OF SieveQ
Typical resilient firewall designs are based on primary-backup
replication, and consequently, they are able to tolerate only crash
failures. Therefore, more elaborated failure modes may allow an
adversary to penetrate into the protected network.

Some organizations deal with crashes (or DoS attacks) by
resorting to several firewalls to support multiple entry points. This
solution is helpful to address some (accidental) failures, but is
incapable of dealing with an intrusion in a firewall. In this case,
the adversary gains access to the internal network, enabling an
escalation of the attack, which at that stage can only be stopped if
other protection mechanisms are in place.

SieveQ provides a message queue abstraction for critical ser-
vices, applying various filtering rules to determine if messages
are allowed to go through. SieveQ is not a conventional firewall
and we do not claim that it should replace existing firewalls
in all deployment scenarios. We are focusing on service- or
information-critical systems that require a high-level of protection,
and therefore, justify the implementation of advanced replication
mechanisms. The system we propose is able to deliver messages
while guaranteeing authenticity, integrity, and availability. As a
consequence, and in contrast to conventional firewalls, we lose
transparency on senders and receivers, since they are aware of
the SieveQ’s end-points. The rest of the section explains how we
address some of the mentioned issues and introduces the main
design choices and the architecture of SieveQ.

3.1 Design Principles
Our solution was guided by the following principles:

• Application-level filtering: support sophisticated firewall
filtering rules that take advantage of application know-
ledge. SieveQ implements this sort of rules by maintaining
state about the existing flows, and this state has to be
consistently replicated using a BFT protocol.

• Performance: address the most probable attack scenarios
with highly efficient approaches, and as early as possible
in the filtering stages; Reduce communication costs with
external senders, as these messages may have to travel over
high latency links (e.g., do not require message multicasts).

Figure 3: SieveQ layered architecture.

• Resilience: tolerate a broad range of failure scenarios,
including malicious external/internal attackers, compro-
mised authenticated senders, and intrusions in a subset of
the SieveQ components; Prevent malicious external traffic
from reaching the internal network by requiring explicit
message authentication.

3.2 SieveQ Architecture
A fundamental difference of the SieveQ architecture, when com-
pared with other replicated firewall designs (see Figure 1), is
the separation of filtering in several stages. The rationale for
this change is to gain flexibility in the filtering operations while
ensuring better performance under attack, retaining the ability to
tolerate intrusions. As observed previously, despite the significant
improvements in state-of-the-art BFT implementations, there is
an inherent trade-off between the benefits of BFT replication and
performance, namely due to the need to disseminate (and eventu-
ally authenticate) all messages at the replicas, which includes both
valid and invalid messages.

Figure 3 presents the architecture of SieveQ. In this archi-
tecture, message processing starts with a first filtering layer that
implements a message authentication mechanism and is respons-
ible for discarding most of the malicious traffic in an efficient
way. This layer is based on a set of pre-SQ modules, each of
them in charge of the communications with a subgroup of senders.
During a normal operation, a sender only interacts with its own
pre-SQ. The assignment of a sender-SQ to a pre-SQ is done during
the channel setup. Initially, a sender connects with one of a few
statically-configured pre-SQs. If a pre-SQ becomes overloaded, it
will request the creation of more pre-SQs (see details in Section
4.4.2) and/or hand of the new sender-SQ channel to another node.

The messages are sent to the second filtering layer by the
pre-SQ to perform a more detailed inspection, which can take
advantage of state information kept from previous messages and
application-related rules. This layer is implemented by a group
of replica-SQs acting together as a BFT replicated state machine.
They receive all accepted messages by the pre-SQs and process
them in the same order, which guarantees that every replica-
SQ reaches the same decision (discard or accept a message).
However, if f replicas are faulty their output could be different.
Consequently, as long as more than two-thirds of the replica-
SQs are correct, the right decision is taken by the post-SQ by
performing a voting.

In the following, we describe each module of Figure 3:

• sender-SQ: The sender nodes cooperate with SieveQ to
secure the messages by deploying locally a sender-SQ
module. Its main role is to secure the messages and assist
in the detection of some intruded SieveQ components. The
module can be implemented inside the sender’s operating
system (OS) (e.g., as a kernel module or a specialized
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device driver) or as a library to be linked with the applic-
ations. The decision to have this module corresponds to a
trade-off in our design, where we are willing to lose some
transparency to improve the system’s resilience.

• pre-SQ: This is the SieveQ front-end, and although it only
performs stateless filtering to improve efficiency, it can
deter the most common attacks. Pre-SQ modules discard
invalid messages, while the approved ones are forwarded
to the replica-SQ using a Byzantine total ordered multicast
(TOM) protocol [21]. The pre-SQs can be deployed, for
instance, as virtual machines. The effect of this layer is a
significant reduction in the communication and computa-
tional overhead caused by malicious packets at the replica-
SQ.

• replica-SQ: These components implement a replicated
filtering service that tolerates Byzantine faults. The actual
filtering rules can be more or less complex depending
on the needs of the critical service. The TOM ensures
that replica-SQs receive the messages in the same or-
der. Consequently, identical rules are applied across the
replica-SQs, and therefore, the same decision should be
reached on the validity of messages. Approved messages
are individually transmitted by each replica-SQ to the final
receiver (the others are dropped). Overall, this layer allows
for sophisticated filtering as the replicas are stateful.

• post-SQ: This module runs on the receiver side and it is
responsible for the delivery of messages to the application.
A post-SQ carries out a voting operation on the arriving
data because a replica-SQ might be intruded and corrupt
messages. It delivers a message to the application only
after receiving the same approved message from a quorum
of replica-SQs. From a deployment perspective, this mod-
ule can be implemented in the OS or as a library, as in the
sender.

• controller: This module is a trusted component of SieveQ
that runs with a high privilege. It takes input from the
replica-SQs to decide on the creation or destruction of
pre-SQs, if some misbehavior is observed. Depending on
the actual SieveQ implementation, it can be developed
in different ways. This sort of component was used in
previous works and it can be implemented both in a
centralized [18], [22] or distributed [17] way.

3.3 Resilience Mechanisms

The SieveQ architecture is built to tolerate both faults with an
accidental nature (e.g., crashes) and caused by malicious actions
(e.g., a vulnerability is exploited and a specific module is compro-
mised). To be conservative, we assume that all failed components
are controlled by a single entity, which will make them act
together in the worst possible manner to defeat the correctness
of the system. Therefore, failed components can for instance:
stop sending messages, produce erroneous information, or try to
delay the system. SieveQ performs several mitigation actions to
guarantee a valid operation (as long as the number of faults is
within the assumed bounds, see Section 4.1).

The most common attack scenario occurs when an external
adversary attempts to attack a system that is being protected by
SieveQ. He can deploy many nodes, whose aim is either to delay
the communications or bypass SieveQ protection and reach the
internal network. SieveQ addresses these attacks by discarding

unauthenticated or corrupted messages with minimal effort at
the pre-SQ filtering stage. As with any other firewall, if a DoS
attack completely overloads the incoming channels, SieveQ cannot
handle or react to the attack. The network needs to include other
defense mechanisms to deal with this sort of problem [23].

As (authenticated) senders might be spread over many (out-
side) networks, it is advisable to consider a second scenario where
an adversary is capable of taking control of some of these nodes.
In this case, we assume that the adversary gains access to all
data stored locally, including the sender-SQ keys. Thus, he will
be able to generate traffic that is correctly authenticated, allowing
these messages to go through the first filtering step. The messages
are however still checked against the application related rules
(namely, the ones defined in the replica-SQ), which can cause
most malicious traffic to be dropped (e.g., a pre-defined sender-SQ
can only send messages to a particular post-SQ accordingly to a
specific application protocol). If the messages follow all the rules,
the firewall has to forward them because they are indistinguishable
from any other valid messages.

A third scenario occurs when the adversary is able to cause
an intrusion in SieveQ and compromises a few of the pre-
SQs and/or replica-SQs. When this happens, these components
can act in an erroneous (Byzantine) way. However, unlike with
an intruded sender-SQ, malicious pre-SQs cannot generate fully
authenticated messages, since they lack all the required keys.
They can still perform DoS attacks on the replica-SQs, e.g., by
transmitting many messages, but this strategy creates an obvious
misbehavior allowing immediate discovery. Malicious pre-SQs are
detected with the assistance of correct sender-SQ and replica-SQs,
eventually leading to their substitution.

Replica-SQs modules are much harder to exploit because
they do not face the external network. However, if they end up
being intruded, replica-SQs can produce arbitrary traffic to the
internal network. Post-SQ addresses this issue by carrying out a
voting step, which excludes these messages. Moreover, an alarm
is generated and sent to the controller.

The SieveQ architecture makes no attempt to recover from
intrusions in the controller and post-SQ. The first is assumed to be
trusted, as it is deployed in a separated administrative domain and
is to be used only in a few very specific operations. Moreover, its
simplicity allows the audit of its code and ensures correctness with
a high level of confidence. The post-SQ already runs in the internal
network, and therefore, SieveQ can not preclude its misbehavior.

4 SieveQ PROTOCOL

This section details the SieveQ protocol, the system model and
the service properties. We conclude the section with an analysis
of the behavior of the system under different kinds of attacks
and component failures, and highlight how the countermeasures
integrated in our design mitigate such threats.

4.1 System and Threat Model
The system is composed of a (potentially) large number of external
nodes, called senders, some internal nodes, called receivers, and
SieveQ nodes. Senders run sender-SQ modules to be able to trans-
mit packets through the SieveQ, while receivers receive validated
messages by using post-SQ modules.

Communications can experience accidental faults or attacks.
Thus, packets might be lost, delayed, reordered or corrupted, but
we assume that if messages are retransmitted, eventually they will
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be correctly received by SieveQ. The fault model also assumes
that sender-SQ, pre-SQ and replica-SQ nodes can suffer from
arbitrary (Byzantine) faults. When this happens, failed nodes may
perform actions that deviate from their specification, including
colluding against the system. However, at most fps pre-SQs from
a total of Nps = fps + k (with k > 1), and frs replica-SQ from a
total of Nrs = 3frs +1 may fail. Redundant components should
fail independently by employing diversity techniques such as
software obfuscation [18] or even different off-the-shelf software
stacks [24], [25]. A component that is unable to communicate is
also considered faulty because from a practical perspective it is
indistinguishable from a crashed module.

The cryptographic operations used in the SieveQ protocol are
assumed to be secure, and therefore, they cannot be subverted
by an adversary. Consequently, traditional properties of digital
signatures, Message Authentication Codes (MACs), and hash
functions will hold as long as the associated keys are kept safe.
The deployment of SieveQ requires a key distribution scheme to
create shared keys between the sender-SQ and the pre-SQ and to
periodically re-issue private-public key pairs for the sender-SQ.
We assume that the key distribution scheme is similar to solutions
that already address this sort of problem (e.g., [26]). If required,
the key distribution infrastructure could also be made intrusion-
tolerant [27], [28].

4.2 Properties

SieveQ guarantees the following three properties for messages
transmitted from a sender to a receiver:

Compliance. If a message, transmitted by a correct sender, is
delivered to a correct receiver then the message is in accordance
with the security policy of SieveQ.

Validity. If a correct receiver delivers a message msg.DATA, then
the message was transmitted by msg.sender.

Liveness. If a correct sender sends a message, then the message
eventually will be delivered to the correct receiver.

These properties require SieveQ to behave in a way similar
to most firewalls while offering a few extra guarantees. Only
external messages that are approved by the policies defined in
SieveQ can reach the receivers and the rest should be dropped
(Compliance). Post-SQ can use the message field msg.sender
to find who transmitted the message contents (msg.DATA), and
accordingly decide if the message should be delivered to the
receiver application (Validity). Progress is also ensured, as correct
senders eventually are able to transmit their messages (Liveness).

Besides these functional properties (related to message filter-
ing), SieveQ also ensures a resilience property related with the
detection and recovery of components of the system that exhibit
faulty behavior:

Resilience. Every component exhibiting observable faulty beha-
vior will be eventually removed or recovered.

In the following we present the mechanisms for implementing
the SieveQ functionalities, i.e., the mechanisms for satisfying
the three functional properties stated above. The mechanisms for
ensuring resilience will be detailed in Section 4.4.

Figure 4: Filtering stages at the SieveQ.

4.3 Message Transmission

4.3.1 Sender-SQ processing
This module gets a buffer with the DATA to be transmitted to a
certain application placed behind SieveQ. The buffer needs to be
encapsulated in a message with some extra information required
for protection (see (1), below): we add a sender-SQ identifier Si
and a sequence number sn that is incremented on each message.
This information is needed to prevent replay attacks, either from
the network or from a compromised pre-SQ. Some information is
also added to protect the integrity and authenticate the message.
A signature sgnSi is performed over the message contents, and
a MAC macski is computed using a shared key established with
the pre-SQ. This MAC serves as an optimization to speed up
checks [29].

msg = 〈Si,sn,DATA,sgnSi〉macski (1)

After constructing the message, it is sent to the pre-SQ as-
signed to the sender-SQ, and a timer is started. If this timer expires
before the sender-SQ receives an acknowledgement message, it re-
sends the msg to another pre-SQ.

4.3.2 Pre-SQ filtering
The pre-SQ determines if an arriving message msg should be
forwarded or discarded (stages (a)–(d) in Figure 4). It applies the
following checks to make this decision:
(a) White list: each pre-SQ maintains a list of the nodes that are

allowed to transmit messages (i.e., which were authorized by
the system administrator). Messages coming from other nodes
are dropped. This check is based on the address of the message
sender, and therefore it serves as an efficient first test, but it is
vulnerable to spoofing.

(b) Sequence number: finds out if a message with sequence num-
ber sn from sender-SQ Si was seen before. In the affirmative
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case, the message is discarded to prevent replay attacks.
Messages are also dropped if their sn is much higher than the
largest sequence number ever observed from that sender-SQ
(a sliding window of acceptable sequence numbers is used).

(c) MAC test: MAC macski is verified to authenticate the message
contents, including finding out that the expected Si was the
sender. If the check is invalid, the message is dropped and
the sequence number information is updated to forget that
this message was ever received (the update carried out in the
previous step needs to be undone).

(d) Grant check: each pre-SQ controls the amount of traffic that
a sender-SQ is transmitting. Messages that fall outside the
allocated amount are dropped to ensure that all senders get
a fair share of the available bandwidth (and to avoid DoS
attacks by compromised senders). The amount of traffic that
is allowed to each sender-SQ is adjusted dynamically based
on the available and consumed resources.
Finally, the pre-SQ invokes the total order multicast primitive

to forward the message to every correct replica-SQ.

4.3.3 Replica-SQ filtering
When a correct replica-SQ delivers a message to be filtered, the
following checks are applied:
(e) Grant check, sequence number and signature: since a pre-

SQ may have been intruded and may collude with malicious
sender-SQ, extra checks are required on the amount of
forwarded traffic and on the integrity of the message. The
grant check and the test on the sequence number are similar to
the ones performed by the pre-SQ, and the signature ensures
that all replica-SQs reach the same decision regarding the
validity of the message content.

(f) Application-level rules: apply the application-defined filter-
ing rules to determine if the message is compliant with the
security policy of the firewall.

Although uncommon, it can happen that replica-SQs receive
messages in a different order from what is defined in their se-
quence numbers. As a consequence, the replica-SQ’s application-
level rules may drop some of the out-of-order messages, which
later on will have to be re-transmitted by the sender-SQ. For
example, if messages A and B should appear in this sequence
but are re-ordered, then the rules may consider B invalid and then
accept A. At some point, the sender-SQ would consider B as lost,
and re-transmit it.1

To address this issue, each replica-SQ enqueues for a while
messages with a sequence number greater than the expected
(but that do not exceed a threshold above the last processed
sequence number). These messages are processed when either: 1)
the missing messages with smaller sequence numbers arrive, and
then they are all tested in order, or 2) the replica-SQ gives up on
waiting, and checks the enqueued messages. This last decision is
made after processing a pre-determined number of other messages.

Valid messages are encapsulated in a new format (see (2),
below) and are sent to their receivers. Basically, replica-SQ RS j
substitutes the signature with a new MAC, macsk j. This MAC is
created with a shared key between the replica-SQ and the post-SQ.

msg′ = 〈Si,sn,DATA,RS j〉macsk j (2)

1. It is important to remark that, independently of any violation on the order
of delivery of sender messages, all correct replica-SQs receive the messages in
the same order.

Algorithm 1: post-SQ protocol
input : msg = <Si, sn, DATA, RS j>macsk j

Initialization : executed only once1
snExpectSi← 0;2
WaitingQuoromSi,sn← /0;3

begin4
if ( verify_MAC(msg) == FALSE ) then5

return errorMAC;6

if (snExpectSi ≤ msg.sn < (snExpectSi + snThreshold)) then7
WaitingQuoromSi,sn←WaitingQuoromSi,sn ∪{msg};8

k← snExpectSi;9
while ( equalMsg(WaitingQuoromSi,k) ≥ frs +1 ) do10

deliver(mostVotedMsg(WaitingQuoromSi,k)) ;11
snExpectSi← snExpectSi +1 ;12
k← snExpectSi;13

end14

4.3.4 Post-SQ processing

Post-SQ accumulates the messages that arrive from replica-SQs
until enough evidence is collected to allow their delivery.
(g) vote: A message can be delivered to the application when it

is received from frs +1 replica-SQs.
Algorithm 1 presents the post-SQ voting protocol. The post-SQ

starts by checking that the message contains a valid MAC (Lines
5 and 6). Then, it finds out if the message carries an acceptable
sequence number before storing it in a WaitingQuorom set (Lines
7 and 8). Notice that a different set is used for each sender Si
and sn pair. Messages with sequence numbers already delivered or
higher than a threshold (snThreshold) are discarded.

The expected sequence number is stored in the auxiliary
variable k (Line 9). Next, the post-SQ tries to find a message
with this sequence number and with at least frs + 1 votes (by
searching the corresponding set and using function equalMsg —
Line 10). For each different DATA value that may exist in the set,
the equalMsg function counts the number of times its appears,
and returns the largest count.2 Next, while there are msg’s with a
frs +1 quorum, post-SQ delivers msg’s in order (Line 10-13). The
function mostVotedMsg returns the message with the DATA
value with most votes (Line 11). Then, the deliver function
delivers DATA to the application on the receiver and deletes the
WaitingQuorom set. Finally, the snExpect is incremented (Line
12) and the k index is updated (Line 13). This allows post-SQ
to deliver messages in order while there are messages with the
expected sequence number in its buffer.

4.3.5 Correctness Argument

In the following, we show that our design satisfies the three func-
tional properties described in Section 4.2. The proofs work under
the assumptions of our system and threat model (Section 4.1).

Validity. If a correct receiver delivers a message msg.DATA, then
the message was transmitted by msg.sender.

Proof. Assume that a receiver R j gets a message content
msg.DATA with the msg.sender = msg.Si. For this to happen,
the post-SQ of R j waited for the arrival of at least frs + 1

2. Notice that all correct replica-SQs transmit messages with the same DATA
value and that malicious replicas can send at most frs arbitrary DATA values.
Therefore, eventually there will be a DATA value with at least frs + 1 votes
because there are at least 2 frs +1 correct replica-SQs.
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correctly authenticated messages3 with equal msg.Si, msg.sn, and
msg.DATA. Therefore, at least frs + 1 replica-SQs received msg
signed by Si, and verified the signature sgnSi as valid. This
indicates that msg.DATA was not modified by the network or
by any pre-SQ. Only a sender msg.Si (correct or not) is able to
create and authenticate a msg with its signature. Therefore, Si is
the msg.sender, i.e., the creator of msg.DATA.

Compliance. If a message, transmitted by a correct sender, is
delivered to a correct receiver then the message is in accordance
with the security policy of SieveQ.

Proof. The proof of the Compliance property is very similar to
the Validity proof. The difference is that, we also know that if
frs + 1 replica-SQs sent msg to a post-SQ, then msg was verified
against the security policy in at least one correct replica-SQ, which
approved it.

Liveness. If a correct sender sends a message, then the message
eventually will be delivered to the correct receiver.

Proof. For the sake of simplicity, our proof only considers nodes
that drop or delay messages. Attacks to the integrity will make the
message be discarded (i.e., dropped).

Assume that a sender Si transmits a message msg with the
sequence number sn to a pre-SQ PSu. Then Si sets a timer timersn
for msg.sn. If PSu is correct, after it receives a message, it re-sends
msg via TOM to the replica-SQs. At least frs +1 correct replica-
SQs will send msg to the post-SQ, which will deliver msg.DATA to
the receiver R j. If the PSu is faulty, i.e., drops or delays messages,
timersn in Si will eventually expire. When this happens, Si re-
transmits msg to another pre-SQ. Eventually, this process will
make some correct pre-SQ forward msg to the replica-SQs using
the TOM primitive, which will cause msg.DATA to be delivered to
R j.

4.4 Addressing Component Failures
In this section, we discuss the implications of failures in the
different components of the SieveQ, and how they are handled
for ensuring the Resilience property stated in Section 4.2.

In the Byzantine model, every failed component can behave in
an arbitrary way, intentionally or accidentally. Therefore, SieveQ
design incorporates mechanisms that are resilient to different
failure scenarios. Given the architecture of Figure 3, one has to
address faults in authenticated sender-SQs, pre-SQs and replica-
SQs, as they are the main components subject to Byzantine failures
in our model. Other components of our architecture, such as the
controller and post-SQ are not considered in this section as they
are either assumed to be trusted or co-located with the receiver.

In the following, we try to focus on complex scenarios
in which faulty components send syntactically-valid messages,
avoiding cases that could be easily detected and recovered by
existing network monitoring and protection tools (e.g., it is easy
to discover that a pre-SQ is sending messages to another pre-SQ,
something our protocol does not allow).

Since pre-SQs are directly exposed to the external network,
there is a higher risk of them being compromised. Then, to
keep the SieveQ operational, it is required that failed pre-SQs are

3. Note that replica-SQs send msg′ (defined in (2)) instead of msg (defined in
(1)). Both are similar, but msg′ has a MAC instead of a signature to authenticate
its contents with post-SQ (see Section 4.3.3). For the sake of simplicity we will
only use the msg notation in the rest of the proof.

identified and recovered. We leverage from the replica-SQ setup
to perform failure detection, and then use the controller to restart
erroneous pre-SQs. Replacing these components is almost trivial
because they are stateless.

Replica-SQs execute as a BFT replicated state machine, pro-
cessing messages in the same order and producing identical
results. Consequently, replica-SQs faults can be tolerated by
employing a voting technique on the post-SQ that selects results
supported by a sufficiently large quorum (as explained above, an
output with at least frs+1 votes). Below, we discuss in more detail
a few failure scenarios.

4.4.1 Faulty Sender-SQ
A faulty sender-SQ is authorized to communicate while suffering
from some arbitrary problem (e.g., intrusion). Therefore, it can
produce correctly authenticated messages to attack the firewall.
In some scenarios, it is possible to discard these messages. For
example, if the SieveQ receives a correctly signed message with
a sequence number much larger than the expected, then it can be
easily detected and eliminated (checks (b) and (e) in Figure 4).

A more demanding scenario occurs when a sender-SQ trans-
mits faster than the allowed rate (verification (d) of Figure 4).
In this case, some defense action has to be carried out, as these
attacks can lead SieveQ to waste resources. To be conservative,
we decided to follow a simple procedure to protect the fire-
wall: SieveQ maintains a counter per sender that is incremented
whenever new evidence of failure can be attributed to it, e.g., the
faulty sender-SQ is overloading the system with invalid messages
or if it is sending messages to pre-SQs which it was not assigned.
When the counter reaches a pre-defined value, the sender-SQ
is disallowed from communicating with SieveQ by temporarily
removing it from the white list and adding it to a quarantine list
(failing verification (a) of Figure 4) and by giving a warning to
the system administrator. This ensures that faulty sender-SQs are
eventually removed from the system.

Excluded sender-SQs may regain access to the service later on
because the counter is periodically decreased (when the counter
falls below a certain threshold, the sender-SQ is moved back into
the white list). Additionally, the administrator is free to update the
white/quarantine lists. For instance, he may choose to manually
add a faulty sender to the quarantine list or even deploy policies
to do that under certain conditions (e.g., if the same sender is in
the quarantine list for a certain number of times).

4.4.2 Faulty Pre-SQ
Addressing failures in pre-SQs is difficult because these com-
ponents may look as compromised even when they are correct.
Notably, when a pre-SQ is under a DoS attack, messages can start
to be dropped due to buffer exhaustion, and this is indistinguish-
able from a malicious behavior in which messages are selectively
discarded. In the same way, a failed signature check at a replica-
SQ indicates that either the pre-SQ is faulty (it is tampering/gener-
ating invalid messages) or that a sender-SQ is misbehaving (recall
that a pre-SQ verifies the message MAC, but not its signature).
Finally, a replica-SQ may also detect problems if it observes a
sudden increase in the arrival of messages (above the grant check),
which could indicate a DoS attack by a malicious pre-SQ (maybe
colluding with a compromised sender-SQ). This kind of ambiguity
precludes exact failure detection, and consequently, our aim is to
provide a mechanism that allows SieveQ to recover from end-to-
end problems and continue to deliver a correct service.
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An initial step to deal with these complex failure scenarios
is to make pre-SQs evaluate their own state. This is done by
analyzing the amount of arriving traffic and by observing if it
could overload the pre-SQ. The analysis can be done by measuring
the inter-arrival times of messages over a certain period. If those
intervals are very small (on average), there is a chance that the
pre-SQ is working at its full capacity or is even overloaded. When
this happens, the pre-SQ broadcasts (using the TOM primitive) a
WARNREQ message to the replica-SQs, so that they may take
some action to solve the problem (see below).

When the pre-SQ is faulty, the sender-SQ and replica-SQs need
to detect it together. SieveQ provides a procedure to find how many
messages are being discarded on pre-SQ:

1) Periodically, the sender-SQ sends a special ACKREQ request
to replica-SQs, in which it indicates the sequence number of
the last message that was sent (plus a signature and a MAC).
This request is first sent to the preferred pre-SQ, but if no
answer is received within some time window, it is forwarded
to another pre-SQ. The waiting period is adjusted in each
retransmission by doubling its value.

2) When the replica-SQs receive the request, the included se-
quence number together with local information are used to
find how many messages are missing. The local information
is basically the set of sequence numbers of the messages that
were correctly delivered since the last ACKREQ.

3) Based on the number of missing messages, the replica-SQs
transmit through the same pre-SQ a response ACKRES to the
sender, where they state the observed failure rate and other
control information (plus a signature). Replica-SQs may also
perform some recovery action if the failure rate is too high.

Additionally, if a replica-SQ detects that a signature is invalid
or that it is receiving more messages than the expected (check (e)
in Figure 4), it suspects the pre-SQ that sent the messages and
takes some action.

Once a problem is detected, the replica-SQs should attempt to
fix the erroneous behavior by employing one of three possible
remediation actions, depending on the extent of the perceived
failures:

• Redistribute load: if a pre-SQ has sent a warning about its
load, or a high failure rate related with this component is
observed, the first course of action is to move some of the
message flows from the problematic component to other
pre-SQ. This is achieved by specifying, in the ACKRES
response to a sender-SQ, the identifier of a new pre-SQ
that should be contacted. At that point, the sender-SQ is
expected to connect to the indicated pre-SQ and begin
sending its traffic through it.

• Increase the pre-SQs capacity: if the existing pre-SQs are
unable to process the current load, then the SieveQ needs to
create more pre-SQs (depending on the available hardware
resources). To do that, replica-SQs contact the controller
informing that an extra pre-SQ should be started. When
the controller receives frs + 1 messages, it performs the
necessary steps to launch the new pre-SQ (which are
dependent on the deployment environment). The new pre-
SQ begins with a few startup operations, which include the
creation of a communication endpoint, and then it uses the
TOM channel to inform the replica-SQ that it is ready to
accept messages from sender-SQs.

• Kill the pre-SQ: when there is a significant level of
suspicion on a pre-SQ, the safest course of action is for
replica-SQs to ask the controller to destroy it. Moreover,
if the load on the firewall is perceived as having decreased
substantially, the replica-SQs select the oldest pre-SQ for
elimination, allowing eventual aging problems to be ad-
dressed. The controller carries out the needed actions when
it gets frs +1 of such requests (once again, which depend
on how SieveQ is deployed). The affected sender-SQs
will be informed about the pre-SQ replacement through
the ACKREQ mechanism, i.e., they will eventually use
another pre-SQ to send a request, and get the informa-
tion about their newly assigned pre-SQ in the response.
Moreover, the new pre-SQ is informed about the expected
sequence number for each sender-SQ. This information
is stored by replica-SQs, which contrary to pre-SQs are
stateful.

Together, these mechanisms ensure that a faulty pre-SQ affect-
ing the SieveQ performance will be eventually removed from the
system.

4.4.3 Faulty Replica-SQ
A post-SQ only delivers a message if it receives frs +1 matching
approvals for this message. Given the number of replica-SQs, this
quorum is achievable for a correct message even if up to frs
replica-SQs are faulty. However, a faulty replica-SQ can create
a large number of messages addressed to other components of
the system, effectively causing a DoS attack. Therefore, we need
countermeasures to disallow a faulty replica-SQ to degrade the
performance of the system in a similar way as illustrated in
Figure 2. For example, a faulty replica-SQ can send an unexpected
amount of messages to a pre-SQ, making it slower and triggering
suspicions that may led it to be killed. Similarly, it can attack other
replica-SQs to make the system slower. Finally, a faulty replica-
SQ can also overload the post-SQ with invalid messages.

Each of these attacks require a different detection and recovery
strategy:

• When a pre-SQ is being attacked it complains to the
controller, which first requests the pre-SQ replacement (as-
suming it might be compromised) and increases a suspect
counter against the replica-SQ. If fps + 1 pre-SQs also
complain about the same replica-SQ, the controller starts
an individual recovery in this replica-SQ (see below).

• If more than frs other replica-SQs are being attacked, they
will probably become slower. In this case, it is possible to
detect such attacks if frs + 1 replica-SQs complain about
a single replica-SQ. This would be possible because target
replica-SQs would observe a high unjustifiable traffic com-
ing from a single replica and because such spontaneously
generated messages would be deemed invalid. When this
attack is detected, the controller starts an individual recov-
ery in this replica-SQ.

• If only up to frs other replica-SQs are being attacked
it is still possible to make the system slower without
being detected by the previous mechanism. This happens
because Nrs − frs replicas must participate in the TOM
protocol [21], and the target frs plus the attacker intersect
this quorum in a least one component. This intersecting
component will define the pace of the messages com-
ing, which typically will be slow. We can mitigate this
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attack as each replica-SQ periodically informs the post-
SQ about its throughput (number of processed messages
per second), piggybacking this value in some approved
messages submitted for voting. The post-SQ verifies that
there are replica-SQs presenting throughputs lower than
expected and initiates a recovery round on all the replica-
SQs (as described below).

• When the post-SQ is being attacked it detects the abnormal
behavior. Then, it requests the individual recovery of the
compromised replica.

The previous mitigation mechanisms suggest two kinds of
recovery actions. First, an individual recovery, where the machine
is rebooted with clean code (possibly using a different OS image
to avoid common vulnerabilities [25]) and then is reintegrated in
the system. Second, a recovery round is used when a performance
degradation attack is detected but there is no certainty about which
replica-SQ was compromised. Therefore, in this case, we recover
all replicas, one after another to avoid unavailability periods in the
system, just like in proactive recovery systems [17], [18], [20].
There are several works that present these techniques, and most
of them are compatible with our architecture, therefore we refrain
from describing them in more detail. Notice that the use of a
recovery round is enough to ensure that a faulty replica-SQ will
eventually be recovered in SieveQ.

5 IMPLEMENTATION

We implemented a prototype of SieveQ following the specification
of the previous section to validate our design. The sender-SQ and
post-SQ were developed as libraries that are linked with the sender
and receiver applications. The libraries offer an interface similar to
the TCP sockets, to simplify the integration and minimize changes
in the applications. A sender can provide a buffer to be transmitted
and the receiver can indicate a buffer where the received data is
to be stored. Internally, the sender-SQ library adds a MAC and a
signature to each message. The MAC is created using HMAC with
the SHA-256 hash function and a 256-bit key, and the signature
employs RSA with 512-bit keys. Messages are authenticated at the
post-SQ also using HMAC. The RSA keys were kept relatively
small for performance reasons. However, since they should be
updated periodically (e.g., every few hours), this precludes all
practical brute force attacks [30].

The pre-SQs operate as separate processes receiving the mes-
sages and forwarding them to the replica-SQs. We resorted to BFT-
SMaRt, a state machine replication library [21], to implement the
TOM and manage the replica-SQs. BFT-SMaRt, like most SMR
systems (e.g., PBFT [20], Zyzzyva [31], Prime [19]) follows a
client-server model, where a client transmits request messages to
a group of server replicas and then receives the output messages
with the results of some computation. We had to modify BFT-
SMaRt because this model does not fit well with the message
flow of SieveQ. Therefore, we have decoupled the client-server
model into a client-server-client model. The client sends messages
(but does not wait for responses as in the traditional SMR),
and the server forwards them (after the validation) to another
client, which is the final receiver. A reverse procedure is carried
out for the traffic originating from the receiver. Furthermore, in
BFT-SMaRt, the replicated servers are typically designed with a
single-thread to process requests. To improve performance, we
also modified the system to allow CPU-costly operations (like a

signature verification) to occur concurrently with the rest of the
checks performed by replica-SQs.

In the prototype, a pre-SQ can be replaced on two occasions:
first, voluntarily by asking for a substitution to the replica-SQs,
when it is flooded with unauthorized messages (DoS attack); and
second, when a replica-SQ detects message corruptions by a pre-
SQ. In both situations, the replica-SQs make a request to the
controller, which will replace a pre-SQ instance. Notice that the
controller has to wait for frs +1 messages, requesting a pre-SQ
replacement, to ensure that a faulty replica-SQ cannot force the
recovery of a correct pre-SQ. The replica-SQs are recovered when
the collected information indicates that some component might be
attacking other components. The information is collected and sent
to the trusted controller to evaluate and decide if the replicas are
making progress as expected. The information allows the system
to suspect on frs +1 replica-SQs and recover them (there is no
need to recover all the replica-SQs).

Since BFT-SMaRt is programmed in Java, we decided to use
the same language to develop the various SieveQ components. If
the sender and receiver applications are coded in other languages,
they can still be supported by implementing specific sender-SQ
and post-SQ libraries.

6 EVALUATION

This section focuses on the evaluation of SieveQ under different
network and attack conditions. We present the results of four types
of experiments. In the first one, we evaluate the latency for differ-
ent sender-SQ workloads, assessing the performance of SieveQ in
the absence of failures. The second experiment assesses the effect
of filtering rules complexity on the performance of the system. In
the third experiment, we assess the throughput in three scenarios:
i) the normal case, ii) a DoS attack without countermeasures; and
iii) a DoS with all the mechanisms defined in Section 4.4 enabled
(in fact we considered two DoS attacks: external, from a malicious
sender-SQ, and internal, from a compromised replica-SQ). The
last experiment considers the capability of SieveQ to safeguard a
SIEM system under a similar workload as the one observed in the
2012 Summer Olympic Games.

6.1 Testbed Setup
Figure 5 illustrates the testbed, showing how the various SieveQ
components were deployed in the machines. We consider one
sender-SQ and one post-SQ deployed in different physical nodes,
and an additional host acted as a malicious external adversary. The
controller and pre-SQs were located in the same physical machine
for convenience but in different VMs. Four replica-SQs were
placed in distinct physical nodes. Every machine had two Quad-
core Intel Xeon 2.27 GHz CPUs, with 32 GB of memory, and a
Broadcom NetXtreme II Gigabit network card. All the machines
were connected by a 1Gbps switched network and run Ubuntu
10.04 64-bit LTS (kernel 2.6.32-server) and Java 7 (1.7.0_67).

6.2 Methodology
SieveQ acts as a highly resilient protection device, receiving mes-
sages on one side and forwarding them to the other side. Therefore,
the performance of SieveQ is assessed with latency/throughput
measurements that can be attained under different network loads.
In the experiments, the sender transmits data at a constant rate, i.e.,
100 to 10000 messages per second, with three different message
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Figure 5: The SieveQ testbed architecture used in the experiments.

payload sizes, i.e., 100 bytes, 500 bytes and 1k bytes. We used the
Guava library [32] to control the message sending rate.

Latency measures the time it takes to transmit a message
from sender-SQ until it is delivered to the application on the
post-SQ. The following procedure was employed to compute the
latency: sender-SQ obtains the local time before transmitting a
message. When the message arrives and is ready to be delivered
to the receiver application (after voting), the post-SQ returns an
acknowledgment over a dedicated UDP channel. The Sender-SQ
gets the current time again when the acknowledgment arrives. The
latency of a message is the elapsed time calculated at sender-SQ
(receive time minus send time) subtracted by the average time it
takes to transmit a UDP message from post-SQ to sender-SQ.

Throughput gives a measure of the number of messages per
second that can be processed by SieveQ. It was calculated at the
post-SQ using a counter. This counter is incremented every time
a message is delivered to the receiver application, and the counter
is reset to zero after one second. Consequently, the server can
calculate the number of messages delivered in every second. The
throughput is computed as the average value of the individual
measurements collected over a period of time (in our case, 5
minutes after the steady state was reached).

In some experiments, we wanted to assess the behavior
of SieveQ under a DoS attack. The attack was made using
PyLoris [33], a tool built to exploit vulnerabilities on TCP connec-
tion handling. The tool implements the Slowloris attack method,
which opens many TCP connections and keeps them open. The
tool allows the user to define parameters like group size of
attack threads, the maximum number of connections, and the time
interval between connections among others. In our setup, PyLoris
was configured to perform an unlimited number of connections,
with 0.1 milliseconds between each connection.

In all experiments, measurements were taken only after the
Java Virtual Machine was warmed-up, and the disks were not used
(all data is kept in memory).

6.3 Performance in failure-free executions

This experiment measures the latency of SieveQ with several mes-
sage sizes and distinct message transmission rates. It demonstrates
the overall performance of SieveQ in different scenarios, gradually
stressing the post-SQ side as the workload is slowly increased.
Measurements were collected after the system reached a steady
state. The experiments were repeated 10 times for every workload
and the average result is reported.

Figure 6 shows how the latency is affected by the transmission
rate and message size. As expected, when the system becomes
increasingly loaded, the latency grows proportionally because
resources have to be shared among the various messages. The
latency increase is approximately linear for the messages with
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Figure 6: SieveQ latency for each workload (message size and
transmission rate).

Payload size Non-optimized Optimized
(bytes) (msg/sec) (msg/sec)

100 1360 10682
500 1320 10618
1000 1311 10332

Table 1: Maximum load induced by the sender-SQ library with
various message sizes

100 and 500 bytes until the throughput reaches 10k messages per
second. The messages with 1k bytes have a linear increase on
latency until the throughput reaches approximately 7k messages
per second, and then it has a higher increase as more load is put
on the system. This means that very high workloads can only be
supported if applications have some tolerance to network delays.
Overall, the performance degrades gracefully when varying the
message payload sizes, for rates under 7k messages per second.

We performed a more detailed analysis of the overheads
introduced by the various components of SieveQ. We observed
that sender-SQ performs the most expensive operations, which
is interesting because it shows that our design offloads part of
the effort to the edges, reducing bottlenecks. The most important
overheads were caused by the tasks associated with securing the
message payload (which in fact are the most costly operations
in the system). Several optimizations were made to mitigate
the performance penalties during the message serialization (e.g.,
creation of the signature), including the use of parallelization to
take advantage of the multicore architecture (as done, for example,
in [34]). Table 1 shows the gain of using the optimized version of
the sender-SQ library. Similar optimizations were employed in
other components.

6.4 Effect of Filtering Rules Complexity

The results presented in the previous section do not consider any
kind of complex filtering rule set. This section presents experi-
ments with a fully loaded system and application-level filtering
rules with different complexity at the replica-SQs.

Given the diverse requirements imposed by application-level
firewalls, we decided to approximate the complexity of the filter-
ing rules by considering a variable number of string matchings on
processed messages. It is well recognized that the most costly
aspect of message filtering is exactly finding (or not) specific
strings in the packet contents (besides crypto verifications, which
were included in all our experiments). The high cost of running
such algorithms leads for instance to several implementations in
FPGAs and GPUs to improve performance in firewalls and IDS
(e.g., [35], [36]).



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, XXXXX 11

 0

 50

 100

 150

 200

 250

 300

 350

 400

100 500 1000

L
a

te
n

c
y
 (

m
s
e

c
)

Input Length (bytes)

Baseline
KMP−5

KMP−10
KMP−20

Figure 7: Comparison of the SieveQ’s latency between the baseline
and adding the filtering rules.

We used a classical algorithm for string matching (KMP [37])
at the replica-SQs to implement the filtering rules. This algorithm
is employed in IDSs [38] and firewalls like iptables [39]. The al-
gorithm employs a pre-computed table to execute string matching
in O(n+ k) complexity, where n is the string length and k is the
pattern length.

We measured the latency of the system by varying the message
size from 100 to 1000 bytes and the string pattern size from
5 to 20 bytes. Both the message content and the strings were
randomly generated. The experiments were performed with the
maximum throughput of 10000 messages per second, as identified
in the previous section. Figure 7 shows the latency of SieveQ
without message filtering (Baseline) and string matching (KMP)
with different sizes. In the last group of experiments, where the
message size is 1000 bytes and the pattern is 20 bytes, the latency
increases by 50%. In other cases, sometimes higher overheads
were observed, e.g., with 500 bytes messages and 20 bytes pattern
the overhead is approximately 200%. This result is expected as the
string matching is a slow operation and it needs to be performed
in the critical path of message processing. Implementations with
hardware support (as mentioned before) could be integrated with
SieveQ to reduce these delays significantly.

6.5 SieveQ Under Attack
Our next set of experiments aims to evaluate the system under
different attack scenarios. Here, the sender-SQ creates a steady
load of 1000 500-byte messages per second. We measured the
latency and throughput of the system in three conditions: failure-
free operation, a malicious external and internal DoS attack, and
a malicious attack with remediation mechanisms. The results are
reported in Figure 8. Before presenting the results, we need to
stress that these experiments must be compared with the results
displayed in Figure 2, which were obtained in the same way but
with a different architecture (see Figure 1).

Figure 8(a) and Figure 8(b) show the latency and throughput,
in the failure-free scenario. One can observe that latency stays on
average around 3.4 milliseconds. The throughput is approximately
constant during the whole period. It is possible to observe some
momentary spikes in the latency and throughput, which happens
due to Java garbage collector and a queuing effect from the SMR.

The behavior of the SieveQ during a DoS attack is displayed
in Figure 8(c) and Figure 8(d). In this scenario, we have disabled
the SieveQ capability of replacing pre-SQs at runtime. The attack
consists in stressing the TCP socket interface of the pre-SQs
by creating many TCP connections, which consumes network
bandwidth and wastes resources at system and application levels.
When the attack is started it executes for 50 seconds. The latency
graph displays a reasonable impact in terms of an increase in the
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(c) DoS w/ no recovery.
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(d) DoS w/ no recovery.
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(e) DoS w/ recovery.
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(f) DoS w/ recovery.
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(g) Internal DoS execution without recovery actions.
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(h) Internal DoS execution with recovery actions.

Figure 8: Performance of SieveQ under different attack conditions.

delays for message delivery. In some cases, the latency is not too
affected but in others, there is a drastic delay, with some messages
taking more than 3 seconds. The attack also has consequences on
the throughput as it is possible to observe an oscillation between
0 to 4000 messages per second (which correspond to the situation
when the post-SQ processes a batch of messages that have been
accumulated).

Figure 8(e) and Figure 8(f) show the latency and throughput
when a similar DoS was carried out, but in this case the SieveQ
replaced the pre-SQ under attack with a new pre-SQ. When the
pre-SQ finds out that it is being overloaded with messages coming
from non-authorized senders, it asks for a replacement. After that,
the controller replaces the faulty pre-SQ, and the existing sender-
SQs are contacted to migrate their connections. As the figures
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show, the impact of the attack is minimized, since only a few
messages are delayed and throughput is only affected momentarily
while the pre-SQ is switched. Once the new pre-SQ takes over,
the messages lost during the switching period are retransmitted
and delivered. In practice, the attack becomes ineffective because,
although it continues to consume network bandwidth, there is no
longer a pre-SQ to process the malicious messages. An adversary
could increase the attack sophistication and try to find a new pre-
SQ target. However, even in this case the attack has limited effect
because during an interval of time (while there is a search for a
fresh target) the system can make progress.

Figure 8(g) and Figure 8(h) shows the SieveQ throughput when
an internal attack is carried out by a compromised replica-SQ. The
experiment was made with a replica-SQ (r1) launching a DoS
to another replica-SQ (r2). The attack consists in overloading
a replica-SQ with state transfer requests, which are the most
demanding request a replica can receive in BFT-SMaRt [40].
Figure 8(g) shows the impact on the SieveQ throughput during
an attack lasting 50 seconds, without any recovery capability on
the system. As can be seen, the performance of the system is
severely disrupted during the attack. Figure 8(h) shows the same
attack but with the detection and recovery mechanism described
in Section 4.4.3. The post-SQ detects the problem by noticing
that frs +1 replica-SQs are sending less messages than the others,
and then requests a recovery. When the replica-SQ is recovered it
requests the state from the other replicas, and then after applying
the new state, the replica resumes the normal execution (end line
in the figure). In the experiment of Figure 8(h) we show a case in
which the faulty replica-SQ is the first to be recovered. It could
happen that SieveQ recovered frs replica-SQs before the faulty
one. This would take (frs +1)× 3 seconds (in our setup) before
the system resumes the normal execution.

6.6 Use Case: SieveQ to Protect a SIEM System

SIEM systems offer various capabilities for the collection and
analysis of security events and information in networked infra-
structures [41]. These systems are being employed by organ-
izations as a way to help with the monitoring and analysis of
their infrastructures. They integrate a large range of security and
network capabilities, which allow the correlation of thousands of
events and the reporting of attacks and intrusions in near real-time.

A SIEM operates by collecting data from the monitored
network and applications through a group of sensors, which then
forward the events towards a correlation engine at the core facility.
The engine performs an analysis of the stream of events and
generates alarms and other information for post-processing by
other SIEM components. Examples of such components are an
archival subsystem for the storage of data needed to support
forensic investigations, or a communication subsystem to send
alarms to the system administrators.

As part of the MASSIF European project [42], we have
implemented a resilient SIEM system, where SieveQ was used to
protect the access to the core facility (in Figure 9). In the SieveQ
architecture, the sensors had the sender-SQ while the post-SQ was
placed in the correlation engine. Additionally, we had access to
an anonymized trace with the security events collected during
the 2012 Olympic Games. Each event corresponds basically to a
string describing some observed problem by a sensor. The strings
had lengths varying between a minimum of 551 bytes and a
maximum of 2132 bytes, with an average length of 1990 bytes

Figure 9: Overview of a SIEM architecture, showing some of the core
facility subsystems protected by the SieveQ.
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Figure 10: SieveQ latency for the 2012 Summer Olympic Games
scenario throughput requirement (127 events per second) and how the
SieveQ scale, we doubled on each experiment the number of events.

(and a standard deviation of 420 bytes). Based on this log, we
built a sensor emulator that generates traffic at a pre-defined rate.
Basically, when it is time to produce a new event, the emulator
selects an event from the trace and feeds it to the sender-SQ.

During the 2012 Olympic Games, the workload was approx-
imately 11 million events per day, i.e., around 127 events per
second. Figure 10 shows the latency imposed by SieveQ for this
workload, and when it is scaled up from 2 to 16 times more. As
can be observed, the latency is in the order of 4 milliseconds for
the emulated scenario. Even with the highest load (16 times) the
observed values had a latency below 70 milliseconds. This means
that SieveQ could potentially deliver on average 176 million events
per day, which is more than enough to accommodate the expected
growth in the number of events for the next Olympic Games.

7 DISCUSSION

SieveQ differs from standard firewalls like iptables [39] that do
not need client- or server-side code modifications. However, our
system requires these modifications to ensure end-to-end message
integrity and tolerance of compromised components. Complete
transparency would be hard to achieve mainly due to the use of
voting. Nonetheless, it is worth stressing that SieveQ is to be used
as an additional protection device in critical systems, not as a
substitute to normal L3 firewalls. SieveQ provides a protection
similar to an application-level/L7 firewall, as one can implement
arbitrary rules on the replica-SQ module.

State machine replication is a well-known approach for replic-
ation [16]. In this technique, every replica is required to process
requests in a deterministic way. This requirement traditionally
implies in two limitations: (1) replicas cannot use their local
clock during request processing; and (2) all requests are executed
sequentially. The first limitation can affect the capacity of SieveQ
to process rules that use time. We remove this limitation by
making use of the timestamps generated by the leader replica
and agreed upon on each consensus, as proposed in PBFT [20]
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and implemented in BFT-SMaRt [21]. The second limitation can
constraint the performance of the system, especially when CPU-
costly operations such as signature verifications are executed. One
of the optimizations we implemented in SieveQ was to add multi-
threading support in the BFT-SMaRt replicas. More precisely, the
signature verification is done by a pool of threads that either
accept or discard messages. Once accepted, a message is added
to a processing queue following the order established by the total
order multicast protocol. A single thread consumes messages from
this queue, verifies them against the security policy, updates the
firewall state (if needed) and forwards them to their destinations,
without violating the determinism requirement.

8 RELATED WORK

Since Castro & Liskov’s PBFT [20], several Byzantine fault-
tolerant (BFT) message ordering protocols have been described
with practical performance in mind (e.g., [31]). This paper does
not propose a new BFT replication protocol, but instead uses BFT-
SMaRt [21] total order multicast primitive.

Over the past years, there has been an important amount of
research in the development of systems that are intrusion tolerant.
However, only very little work was devoted to design intrusion-
tolerant firewall-like devices. Performance reasons might explain
this, as BFT replication protocols are usually associated with
reasonable overheads and limited scalability. To our knowledge,
only two works can be compared with ours.

Sousa et al. [17] proposed the first replicated intrusion-tolerant
system that implements proactive-reactive recovery. The paper
presented a firewall for critical services, named CRUTIAL Inform-
ation Switch (CIS), which was integrated with a trusted component
and works under the assumption of an hybrid synchrony model.
SieveQ shares a few similarities with CIS, but there are two
fundamental differences. The CIS needs traffic replicators, one
for in-bound and other for out-bound messages, and therefore, an
external DoS will be replicated to all replicas; another difference
is that the CIS is a stateless firewall.

Roeder and Schneider [18] proposed a replicated intrusion-
tolerant device that introduces diversity through software obfusca-
tion techniques on each rejuvenation. The authors main focus was
in supporting diversity, a technique that could be integrated into
our work. As in [17], the device needs a traffic replicator to send
the messages to every replica, and therefore, suffers from the same
limitations as the CIS.

Platania et al. [22] did not describe a firewall-like solution, but
presented a practical intrusion-tolerant survivable system. Three
main contributions came out of this work: a theoretical model that
estimates the resiliency of the system based on the rejuvenation
rate, the number of replicas and the replica’s vulnerability; a
protocol for large state transfer between replicas; and a prac-
tical replicated system that guarantees a good performance even
under attack. Prime [19] was used to support BFT replication,
and diversity was implemented by generating different compiled
versions of Prime upon recoveries. A trusted component was
responsible to trigger the recoveries. This work is complementary
to ours, in the sense that it adds diversity and improves the support
for proactive recovery, and thus could be used in SieveQ by
replacing BFT-SMaRt.

There are several approaches to defend systems from DoS/D-
DoS (see a survey in [43]). For example, Walfish et al., [44]
proposed a solution based on active response to DDoS. Basically,

upon the detection of the attack, the server requests the client to
send more data. The idea is that by increasing the load, the network
congestion management mechanisms will make the channels be
used in a more fair way among the correct and incorrect clients.
Unfortunately, this solution is not resource efficient because it
overloads the channels for the benefit of the client. Jia et al.,
proposed a solution based on traffic redirection. It works on cloud-
based services to solve DDoS. Upon the detection of a DDoS the
system redirects the correct client to non-attacked servers [45]. If
the network support is available, this kind of technique could be
used together with SieveQ to ensure sender-SQs will always be
able to reach a correct pre-SQ.

9 CONCLUSIONS

We presented SieveQ, a new intrusion-tolerant protection system
for critical services, such as ICSes and SIEMs. Our system exports
a message queue interface which is used by senders and receivers
to interact in a regulated way. The main improvement of the
SieveQ architecture, when compared with previous systems, is
the separation of message filtering in several components that
carry on verifications progressively more costly and complex. This
allows the proposed system to be more efficient than the state-
of-the-art replicated firewalls under attack. SieveQ also includes
several resilience mechanisms that allow the creation, removal
and recovery of components in a dynamic way, to effectively
respond to evolving threats against the system. Experimental
results show that such resilience mechanisms can significantly
reduce the effects of DoS attacks against the system.
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