
2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 1

CHARON: A Secure Cloud-of-Clouds System
for Storing and Sharing Big Data

Ricardo Mendes, Tiago Oliveira, Vinicius Cogo, Nuno Neves, and Alysson Bessani

Abstract—We present CHARON, a cloud-backed storage system capable of storing and sharing big data in a secure, reliable, and
efficient way using multiple cloud providers and storage repositories to comply with the legal requirements of sensitive personal data.
CHARON implements three distinguishing features: (1) it does not require trust on any single entity, (2) it does not require any
client-managed server, and (3) it efficiently deals with large files over a set of geo-dispersed storage services. Besides that, we
developed a novel Byzantine-resilient data-centric leasing protocol to avoid write-write conflicts between clients accessing shared
repositories. We evaluate CHARON using micro and application-based benchmarks simulating representative workflows from
bioinformatics, a prominent big data domain. The results show that our unique design is not only feasible but also presents an
end-to-end performance of up to 2.5× better than other cloud-backed solutions.

Index Terms—Big-data storage, Cloud storage, Byzantine fault tolerance.

F

1 INTRODUCTION

T HE high volume, velocity, and variety of data being produced
by diverse scientific and business domains challenge standard

solutions of data management, requiring them to scale while ensur-
ing security and dependability. A fundamental problem is where
and how to store the vast amount of data that is being continuously
generated. Private infrastructures are the first option for many
organizations. However, creating and maintaining data centers is
expensive, requires specialized workforce, and can create hurdles
to sharing. Conversely, attributes like cost-effectiveness, ease of
use, and (almost) infinite scalability make public cloud services
natural candidates to address data storage problems.

Unfortunately, many organizations are still reticent to adopt
public cloud services. First, few tools are already integrated with
clouds, introducing difficulties to non-technical users. Second, as
with most organizations dealing with critical information, there are
concerns about trusting data to externally-controlled services that
occasionally suffer from unavailability and security incidents [1],
[2], [3], [4]. Finally, depending on the nature of the data being
analyzed, there are legal restrictions impeding such institutions to
outsource the storage and manipulation of some of the datasets,
especially when involving personal information [5], [6].

We present CHARON, a near-POSIX cloud-backed storage
system capable of storing and sharing big data with minimal
management and no dedicated infrastructure. The main motivation
for building this system was to support the management of
genomic data, as required by bioinformatics and life sciences
organizations [7].

As an example, consider the case of biobanks [8]. These
institutions were originally designed to keep physical samples that

• All authors are with LASIGE, Faculdade de Ciências, Universidade de
Lisboa, Lisboa, Portugal. Authors e-mails: rmendes@lasige.di.fc.ul.pt,
toliveira@lasige.di.fc.ul.pt, vielmo@lasige.di.fc.ul.pt, nfneves@ciencias.
ulisboa.pt, and anbessani@ciencias.ulisboa.pt.

• This work was supported by European Commission through projects
BiobankCloud (FP7-ICT-317871), SUPERCLOUD (H2020-ICT-643964),
and DiSIEM (H2020-DS-700692) and by FCT through projects
IRCoC (PTDC/EEISCR/6970/2014), and LASIGE Research Unit
(UID/CEC/00408/2019).

could be later retrieved for research purposes. More recently, they
are becoming responsible also for storing and analyzing the data
related to such samples [9]. A sequenced human genome can reach
up to 300GB, and each individual may have his genome sequenced
many times during his life. The problem is that biobanks lack the
scalable infrastructure for storing and managing this potentially
vast data volume. Public clouds have plenty of resources for that.

Furthermore, the use of widely-accessible cloud services
would facilitate the sharing of data among biobanks, hospitals,
and laboratories, serving as a managed repository for public and
access-controlled datasets. This would enable research initiatives
that are not possible today due to the lack of a sufficient number
of samples in a single institution [10], [11]. For example, 20–
50k samples are required to study the interactions between genes,
environment, and lifestyle that enable (or inhibit) a complex
disease [12]. The rarer a disease is, the longer it takes to gather
all necessary samples [10]. Given the rarity of some diseases, it is
unlikely that a single hospital or research institute will ever be able
to collect the required number of samples. The problem is how to
exploit the benefits of public clouds for data storage and sharing
without endangering the security and dependability of biobanks’
data.

CHARON uses cloud-of-clouds replication [13], [14], [15],
[16] of encrypted and encoded data to avoid having any cloud
service provider as a single point of failure, operating correctly
even if a fraction of the providers are unavailable (which happens
more often than one would expect [1], [4]) or misbehave (due to
bugs, intrusions, or even malicious insiders [2]). This ensures, for
instance, the security-by-design requirement of Europe’s General
Data Protection Regulation (GDPR) [5]. Moreover, to further
comply with data protection legislation, CHARON allows storing
datasets in distinct locations (cloud-of-clouds, single cloud, or
private repository) under the same namespace, exploring different
tradeoffs on compliance, guarantees, performance, and costs.

Another distinguishing feature of CHARON is its data-centric
design, in the sense that it does not depend on any custom server
or code running on the cloud, relying instead only on cloud-
managed services (e.g., Amazon S3 [17] or Azure Queue [18]).

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 2

This brings two important benefits. First, cost savings are expected
since executing servers in cloud VMs is more expensive than
resorting to cloud-data services. Second, a significant reduction
in management tasks because our data-centric design removes the
managing effort of keeping servers operating properly in cloud
VMs [19].

Dropbox and similar file synchronization services do not solve
the problems CHARON addresses since they require trust on a
single provider/company. This limitation has been addressed by
recent works on multi-cloud file synchronization services [20],
[21], [22], but none of them targets big data or supports diverse
data locations (see other differences in §6). Besides that, cloud-
of-clouds storage systems either have little or no support for con-
trolled sharing [13], [23], rely on custom servers running on the
cloud [24], [25], or provide only a programming library exporting
read/write registers (roughly equivalent to a disk block) [14], [15],
[16], which are simpler and insufficient for implementing a fully-
fledged big-data enabled distributed file system.

CHARON employs a set of Byzantine-resilient data-centric
algorithms [15], [26], including a novel leasing protocol to avoid
write-write conflicts on shared files. This protocol allows the
implementation of strong synchronization guarantees without re-
lying on custom servers (e.g., as in SCFS [24]) or assuming lin-
earizable object storage services. For instance, DepSky’s mutual
exclusion [15] and MetaSync’s pPaxos [21] rely on the strong
consistency of such services. However, this property does not
hold when listing the objects in a container in popular services
like Amazon S3 [27] and Rackspace Cloud Files [28], leading to
potential safety violations in these algorithms if such services are
used.

Furthermore, CHARON is capable of handling big data in a
secure way by dividing files into chunks, employing encryption,
erasure codes, and compression, and using prefetching and back-
ground uploads. The way we integrate these techniques into a
usable system makes CHARON unique, both in terms of design
and offered features. Furthermore, the end-to-end performance
of CHARON is 2–4× better than competing multi-cloud systems
(e.g., [15], [20]), offering a usage experience as good as standard
NFS.

In summary, the paper contributions are:

• The design and implementation of CHARON, a practical
cloud-backed storage system for storing and sharing big
data (§2 and §4);

• A Byzantine-resilient data-centric lease algorithm that ex-
ploits different cloud services without requiring trust on
any of them individually (§3);

• An evaluation comparing CHARON with local, networked,
and cloud-backed storage systems, using microbench-
marks and a novel benchmark that captures the I/O of
bioinformatics applications (§5).

The Supplemental Material provides formal descriptions and
correctness proofs for all lease algorithms described in the paper
and an extensive description of the bioinformatics benchmark.

2 CHARON’S DESIGN

2.1 System and Threat Model
Like in previous works (e.g., [15], [21], [26]), we consider an
unconstrained set of clients and a group of cloud providers. Each
client has a unique id, an account for each cloud, and limited

local storage. Every cloud provider offers one or more services,
which implement access control mechanisms to ensure that only
authorized accounts can access them.

To minimize the trust assumptions in the system, we consider
that an unbounded number of clients and up to f cloud services
can experience arbitrary (or Byzantine) faults. As in most storage
systems, malicious clients can jeopardize the security properties
of the files they have access to: they can leak information about the
data they can read and modify or destroy the data they can write.
Furthermore, the security properties of all information stored in
faulty parties (clients or clouds) can be also compromised. As part
of our assumptions, we include the extreme scenario where an
active adversary takes control of all faulty parties, making them
act together maliciously.

CHARON implements a security model where the owner of
the file pays for its storage and defines its permissions. This is
enforced by mapping the file system permissions (POSIX ACLs)
to cloud services access control mechanisms (see details in §4.3).
Therefore, a malicious client can only see, modify, and delete its
own files and the files shared with him.

2.2 Design Overview

CHARON is a distributed file system that provides a near-POSIX
interface to access an ecosystem of multiple cloud services and
allows data transfer between clients. The preference for a POSIX
interface rather than using data objects resorts to the fact the envi-
sioned users are likely to be non-experts, and existent life sciences
tools use files as their input most of the times. In particular, the
system needs to (1) efficiently deal with multiple storage locations,
(2) support reasonably big files, and (3) offer controlled file
sharing. These challenges are amplified by our goals of excluding
user-deployed servers and of requiring no modifications to existing
cloud services (for immediate deployability).

Addressing these challenges requires a novel data-centric
protocol to coordinate metadata writes, and the adaptation of
several multi-cloud storage techniques for working in a practical
setting. The demand for these novel designs comes from the lack
of efficient solutions to fulfill our needs (i.e., data-centric design,
dependability, and performance).

All techniques used in CHARON were combined considering
two important design decisions. First, the system absorbs file
writes in the client’s local disk and, in the background, uploads
them to their storage location. Similarly, prefetching and parallel
downloads are widely employed for accelerating reads. This
improves the usability of CHARON since transferring large files
to/from the clouds take significant time (see §5). Second, the sys-
tem avoids write-write conflicts, ruling out any optimistic mecha-
nism that relies on users/applications for conflict resolution [20],
[29], [30]. The expected size of the files and the envisioned
users justify this decision. More specifically, (1) solving conflicts
manually in big files can be hard and time-consuming; (2) users
are likely to be non-experts, normally unaware of how to repair
such conflicts; and (3) the cost of maintaining duplicate copies of
big files can be significant. For instance, collaborative repositories,
such as the Google Genomics [31], require such control since they
allow users to read data about available samples, process them,
and aggregate novel knowledge on them by sharing the resulting
derived data into the bucket containing the sample of interest.

CHARON separates file data and metadata in different objects
stored in diverse locations and manages them using different

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 3

Site 1 Site 2

C
Cache

AC
Cache

Resilient Cloud-of-Clouds Storage

Data

B

Metadata
d1

d2A

B C D

CHARON CHARON

Public
Cloud Y

D

Public
Cloud X

Figure 1. CHARON architecture.

strategies, as illustrated in Figure 1. File data locations are of
three kinds in CHARON: cloud-of-clouds, single (public) storage
cloud, and private repository (e.g., a private cloud). These alterna-
tives explore various cost-dependability tradeoffs and address all
placement requirements we have encountered with life sciences
and big data applications. For example, the cloud-of-clouds can
store critical data (CHARON’S namespace and file B) that needs
the availability and confidentiality assured by the multi-cloud
scenario (provider-fault tolerance). A single cloud can store non-
critical public studies and anonymized datasets (file D) (provider-
dependent and potentially less expensive). Finally, private reposi-
tories must be used to keep clinical data from human samples that
cannot leave the boundaries of a particular institution (file A) or
country (file C) (subject to local infrastructure restrictions).

CHARON maintains the namespace tree, together with the files’
metadata, replicated in the cloud-of-clouds storage. The rationale
for this decision is to keep the file system structure secure by
exploiting the expected high availability of cloud-of-clouds [15]
and by expanding on the efficient data-centric replication protocols
developed in the last years [14], [15], [16], [26]. The objective is
to have only soft state in clients, which can be reconstructed after
a crash by fetching data from the clouds.

In a very high level, CHARON interacts with the clouds for
three main reasons: (1) storing/retrieving files’ data, (2) stor-
ing/retrieving file system’s metadata, and (3) obtaining/releasing
leases to avoid write-write conflicts. The order of these interac-
tions depends on the operation a client is performing. In a write,
the client obtains the lease, uploads the files’ data, and uploads
the corresponding metadata. In a read, the client obtains the file
system’s metadata and then downloads the data associated with
the requested files. The next section describes the computing
abstractions these interactions rely on, while Section 4 details how
the described operations works.

2.3 Building Blocks

CHARON is designed around three distributed computing ab-
stractions built on top of basic cloud services. One of its key
innovations is how it combines these abstractions to manage and
share big data in a principled and practical way (see §4).

Every file chunk is written as a non-updatable object called
one-shot register.1 When a file is modified, a new chunk is created
and pointed in the file metadata, independently of the file chunk
location. The integrity of a file is attained by cross-verifying the
validity of the stored chunks using SHA-256 cryptographic hashes
saved in all clouds. Confidentiality is enforced by encrypting
the data with a randomly generated AES 256-bit length key
and storing it in a secure cloud-based single-writer multi-reader
register (see the next building block). If the file is to be stored in a
single cloud or private repository, the chunks are just written there.
Otherwise, in cloud-of-clouds storage scenario, every encrypted
chunk is encoded in 3 f + 1 blocks through a storage-optimal
erasure code [33]. The encoded blocks are then distributed among
a quorum of 2 f +1 different cloud storage services (e.g., Amazon
S3 [17]), in the best case scenario, to improve availability. In this
case, to reconstruct the encrypted file chunk, a client must combine
f + 1 of such blocks. This reduced read quorum is sufficient
because one-shot registers are non updatable, so there is no need
to differentiate versions of the data. Overall, the storage overhead
of this mechanism is only 50% more than when keeping blocks
on a single cloud (for f = 1), but different values can be obtained
by playing with erasure code parameters and using more clouds.
Both in read and write operations, this register requires only one
call to each cloud.

Metadata objects representing shared folders can be read by
multiple clients while being updated. This means that a one-shot
register cannot implement them, requiring thus a single-writer
multi-reader (SWMR) register. To address this, we have resorted
to DepSky [15], which implements a data replication solution
that offers a regular SWMR register abstraction on top of 3 f + 1
cloud storage services. We redesigned and optimized the DepSky
solution to support parallel cloud connections and to build a
metadata service on top of it (see §4.1). The regular semantics
means that readers operating concurrently with a writer can get
both the metadata version being written or the previous one. This
is achieved by using f -dissemination Byzantine quorums [34] for
establishing the most recent version of a small metadata file with
the version number and the cryptographic hash of the data signed
by the writer. The approach to enforce the security properties of
the stored data has some similarities with one-shot registers. The
fundamental differences are: (1) the encryption key is split into
shares (using Shamir’s secret sharing [35]) that are stored with
each encoded block [36], and (2) read/write operations require two
cloud accesses (one for the metadata file, and another for the data
itself). The first mentioned difference ensures that a client who has
been granted access to a shared folder (see §4.3) will be able to
regenerate the key to decrypt the metadata object. Consequently,
he can obtain the pointers and encryption keys from the metadata
object to access data stored in one-shot registers.

To preclude write-write conflicts on shared directories,
CHARON relies on an efficient leasing object that tolerates Byzan-
tine faults. This novel object, which is fundamental for ensuring a
sub-second lock acquisition latency, is detailed in the next section.

In summary, CHARON uses one-shot registers to store the
system’s data, SWMR registers to store the system’s metadata, and
leasing objects to assign leases to shared directories for avoiding
write-write conflicts.

1. In the distributed computing literature, a register [32] is a shared memory
object that offers two operations (read and write) satisfying the following
sequential specification: every read returns the last written value.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 4

3 LEASES IN THE CLOUD-OF-CLOUDS

Leases are time-based contracts used to control concurrent ac-
cesses to resources while preventing version conflicts [37]. In this
section, we describe the novel Byzantine-resilient leasing algo-
rithms we use to avoid write-write conflicts in CHARON. Besides
its resilience to Byzantine failures, a defining innovation of our
construction when compared to well-known lease algorithms used
in practice (e.g., the ones on top of Apache Zookeeper [38])
is our data-centric design: we require no custom code deployed
on the clouds. The formalization and correctness proofs of these
algorithms are present in the Supplemental Material.

3.1 Model and Guarantees
The lease algorithm follows the system and threat model stated in
§2.1), with a few additional assumptions.

In this section, we refer to cloud services as base objects.
A client may invoke, on the same base object, several parallel
operations that are executed in FIFO order. Since a lease implies
timing guarantees, an upper bound interval is assumed for the
message transmission between clients and base objects. However,
this assumption is required only for liveness since safety is always
guaranteed.

Our algorithm ensures that at most one correct client at a time
can access the shared resource and only for a limited duration
(the lease term [37]). Each resource provides three lease-related
operations: lease(T) and renew(T) acquires and extends the
lease for T time units, respectively, while release() ends the
lease. These operations satisfy the following properties:

• Mutual Exclusion (safety): There are never two correct
clients with a valid lease for the same resource.

• Obstruction-freedom (liveness): A correct client that tries
to lease a resource without contention will succeed.

• Time-boundedness (liveness): A correct client that acquires
a lease will hold it for at most T time units unless the lease
was renewed.

Our algorithm satisfies obstruction-freedom instead of stronger
properties to pursue better performance in contention-free execu-
tions since write-contention is expected to be infrequent. Addi-
tionally, the time-boundedness property ensures that, if a client
does not release a valid lease (e.g., due to a crash), the lease will
be available again after at most T time units.

3.2 Byzantine-Resilient Composite Lease
Previous data-centric fault-tolerant mutual exclusion algorithms
(e.g., [15], [39]) were designed to work directly on top of storage
services. In this paper, we propose a more modular approach in
which we build non-fault-tolerant base lease objects, each on top
of a specific cloud-provided service, and 3 f +1 of these services
are combined in an f -fault-tolerant composite lease object. This
approach allows the design of more efficient base lease objects on
top of any cloud-provided service (e.g., queues) instead of relying
on fault-tolerant register constructions as in previous works [26],
[39]. We still provide the design of base lease objects on top of
storage services because they are the only abstraction available in
certain cloud providers (e.g., [40]).

The lease operation of the composite lease object appears in
Algorithm 1. To acquire a composite lease, a client simultaneously
calls lease in each of the 3 f +1 base lease objects (Lines 5–6)
and waits for either 2 f + 1 successes or f + 1 failures (Line 7).

ALGORITHM 1: Composite resource leasing by client c.
1 function lease(leaseDuration) begin
2 result← nok;
3 repeat
4 L[0 .. 3f]←−⊥;
5 parallel for 0 ≤ i ≤ 3f do
6 L[i]←− baseLeasei.lease(leaseDuration);

7 wait until |{i : L[i] = ok}|> 2 f ∨|{i : L[i] = nok}|> f ;
8 if |{i : L[i] = ok}|> 2 f then
9 result← ok;

10 else
11 for all i : (L[i] =⊥) ∨ (L[i] = ok) do
12 baseLeasei.release();

13 sleep for some time;

14 until result 6= nok∨ operation times out;
15 return result;

In the first case, the client acquired the lease. Otherwise, the lease
is unavailable or under contention, and the client needs to release
all potentially obtained leases (the successful and the unanswered
ones) and backoffs (Lines 11–13). This algorithm is repeated until
it succeeds or a timeout is triggered.

Releasing a lease requires invoking the release operation
in all base objects (as in Lines 11–12). The renew algorithm
is similar to the one for lease, but with one additional cloud
access to remove the old version of the lease being renewed. These
two operations (release and renew) are never executed in the
critical path of CHARON (see §4.1), and thus have little effect on
the latency of the system.

3.3 Base Lease Implementations
Most public cloud services, from object storage to atomic
database-as-a-service, provide basic features to create base lease
objects. However, every implementation of a base lease object
must comply with some specifications to work together in a com-
posite lease. First, the lease operation requires the successful
creation of (various flavors of) lease entries in the cloud service.
Second, lease entries must be signed before they are sent to the
cloud to ensure that cloud providers cannot create or corrupt
leases. Third, base lease implementations rely on the access
control from cloud services to guarantee that only authorized
clients can access a lease. In doing so, malicious clients can
only hinder correct users that inadvertently gave them access to
a shared resource, but never affect resources shared among correct
clients. Fourth, clients do not assign local timestamps to the lease
to enforce the lease validity time. Instead, they use either the
mechanisms provided by some services (e.g., augmented queues)
that allow specifying the duration of lease entries or they mark
the lease entries with the lease duration using the timestamps in
the replies from cloud services. These timestamps are also used to
check lease validity (instead of local clocks). This moves the need
for bounded clock drifts from clients to cloud providers, which
are expected to have much better time sources. In the following,
we describe the implementation of four base lease objects using
different cloud services.

Object storage services keep variable-length data objects in
containers accessible through a hierarchical key-value store inter-
face. Our lease object for these services works in three steps. A
client starts by listing the objects in the container associated with
the aimed resource. If no valid lease entries were found, it inserts
a new signed entry in the container and lists the objects again to

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 5

check if other entries were inserted concurrently. If another valid
lease entry was observed in any of the two list operations, the
client removes its entry and returns nok. Otherwise, the leasing
succeeds.

This algorithm has been implemented in services like Google
Storage [41], Azure Blob Storage [42], Rackspace Files [43], and
Amazon S3 [17] since most of them guarantee strong consistency
when creating objects and provide a timestamp on every service
reply. However, the fact that listing objects from a container does
not satisfy strong consistency in some services [27], [28] makes
constructions based on them susceptible to safety violations.

Augmented queues such as Windows Azure Queue [18] and
Rackspace Queue [44] have strongly-consistent enqueue, dequeue,
and list functions, providing thus a universal shared memory
abstraction capable of solving synchronization problems [45].
These queue services permit clients to specify the duration in
which the lease entry is valid. After that time, the entry vanishes
from the queues, releasing the lease.

In this algorithm, a client lists the queue to check if there are
entries from other contenders. If the queue was empty, it enqueues
a signed lease entry and lists the queue again to check if its entry
is the valid one with the lowest index (queue head), which means
the leasing succeeds. If the first list operation returns at least one
valid entry from another client, the client returns nok. However,
if the existing valid entry belongs to it (e.g., when renewing), the
client pushes a new signed entry and removes all older ones to let
the new lease be at the head of the queue.

NoSQL databases store data as pairs containing a unique key
associated with a set of values. Amazon DynamoDB [46] provides
a strongly-consistent service with a conditional update operation
that enables the implementation of efficient base lease objects.

In this algorithm, a client verifies if an entry for the aimed
resource already exists in the database. If there is an entry
and it belongs to another client, then the operation returns nok.
Otherwise, the client writes the new signed lease entry with the
conditional update operation, which ensures the entry is only set
if no other client added an equivalent entry in the meanwhile, and
returns the result of this operation.

Transactional databases store data in tables and support
ACID transactions. Google Datastore [47] is a cloud-based trans-
actional database-as-a-service, which allows the implementation
of base lease objects.

In this algorithm, the client queries the database for a lease
entry about the target resource. If there is a valid entry belonging
to another client, the transaction is aborted, and the operation
returns nok. Otherwise, the client writes a new signed lease entry
and commits the transaction. If the commit succeeds, the lease
is obtained. Otherwise, conflicts were detected, and the operation
returns nok.

3.3.1 Comparing base lease objects
All of these algorithms satisfy the obstruction-freedom property.
However, most algorithms that are not based on object storage
satisfy also deadlock-freedom [48], which guarantees that if sev-
eral clients concurrently try to acquire a lease, one of them will
succeed. Regarding the number of cloud accesses, they require
only two to four accesses for acquiring a lease. The costs of
running the base lease objects, for moderate-contention scenarios,
will be significantly cheaper than running a fault-tolerant lock
service in multiple clouds’ VMs. More specifically, each lease
acquisition can cost µ$18.6, while having four medium-sized

Table 1
Base Lease Objects Built on Top of Cloud Services.

Service #A Costs (µ$) Progress
AWS S3 3 15 Obstruction-Freedom
Google Storage 3 15 Obstruction-Freedom
Azure Blob Storage 3 15.6 Obstruction-Freedom
RackSpace Files 3 0 Obstruction-Freedom
Azure Queue 3 1.2 Deadlock-Freedom
RackSpace Queue 3 3 Deadlock-Freedom
AWS DynamoDB 2 subs.∗ Deadlock-Freedom
Google Datastore 4 2.4 Obstruction-Freedom

The table shows the number of cloud accesses (#A) necessary to acquire a
lease in the absence of contention; the monetary costs (in microdollars) of such
operation; the progress property satisfied by each base lease object algorithm,
either obstruction-freedom or deadlock-freedom (which is stronger). ∗This
service is charged per month.

VMs in different providers may cost $113/month, plus the
management effort. Table 1 compares the base objects discussed
in this section.

4 CHARON IMPLEMENTATION

CHARON is a user-space file system implemented using FUSE-J,
a Java wrapper for the FUSE library [49]. The system is fully
implemented at the client side, using cloud services for storage and
coordination, and is publicly available as open-source software at
https://github.com/cloud-of-clouds/charon-fs.

4.1 Metadata Organization
Metadata is the set of attributes assigned to a file/directory (e.g.,
name, permissions). Independently of the location of the data
chunks, CHARON stores all metadata in the cloud-of-clouds using
single-writer multi-reader registers to improve their accessibility
and availability guarantees (see §2.3). More specifically, we re-
designed and optimized the SWMR register implementation of
DepSky [15] to improve the performance and concurrency as
described in the remaining of this section.

4.1.1 Managing namespaces
All metadata is stored within namespace objects, which encap-
sulate the hierarchical structure of files and directories in a sub-
directory tree. CHARON uses two types of namespaces: personal
namespace (PNS) and shared namespace (SNS). A PNS stores
the metadata for all non-shared objects of a client, i.e., files and
directories that can only be accessed by their owner. Each client
has only one associated PNS. On the other hand, a client has access
to as many SNSs as the shared folders it can access. Each shared
folder is associated with exactly one SNS, which is referenced in
the PNSs of the clients sharing it.

Although similar, personal and shared namespaces differ in the
way the hashes of the most recent versions of the files’ data chunks
are stored. These hashes are primarily used to validate the cached
file chunks. In PNSs, these hashes are serialized together with the
rest of files’ metadata before they are stored in the clouds. In the
case of SNSs, the hashes are stored in a separate Chunk Hashes
(CH) object, explained in the next section. Another difference
between a PNS and a SNS is that the latter is associated with
a lease to coordinate concurrent write accesses between different
users which must be acquired before any update is executed on a
file or directory in the namespace. Since each SNS is associated

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 6

metadata

PNS1	[Y]	

SNS1	[shared	Y,X]		

Client	Y	

metadata

PNS2	[X]	
Client	X	 metadata

file
data
C2

file
data

A

file
data

B

file
data
C1 Chunk

Hashes
(CH)

One-Shot	
Register	
SWMR	
Register	
Leasing	
Object	

Figure 2. Objects maintained in the cloud by CHARON.

with one shared folder, a lease object is obtained to coordinate
concurrent write accesses on an entire shared folder. Contrarily,
concurrent readers do not require locking because the SWMR
register used to store the metadata supports multiple readers even
with concurrent writes.

Figure 2 depicts how a set of files relates to these namespaces.
Files A and B are private to their owners (Clients Y and X,
respectively). File C is divided into two chunks and is shared
among these clients. Since files A and B are private, their metadata
is kept in their owners’ PNSs. In the case of file C, the reference
to the file chunks is stored in SNS1.

4.1.2 Dealing with shared files
The PNS’s metadata is downloaded from the cloud-of-clouds only
once when the file system is mounted. SNSs, on the other hand,
need to be periodically fetched to obtain metadata updates on
shared directories. We opted to have a separate CH object in SNSs.
Since a SNS contains all its files’ metadata, having the hashes
of every chunk of all files together with this information could
significantly increase the monetary and performance costs of the
periodic downloads. Therefore, the CH object is only refreshed
when a file is opened (either for reading or write), to check if that
file was updated. However, storing the hashes of all data chunks in
a single CH object would be costly because the size of such object
could grow linearly with the number of chunks referred by the
SNS. To circumvent this problem, CHARON defines a maximum
number of entries allowed in each CH object (e.g., 100 hashes).
When this number is reached, newer chunks’ hashes are saved in
additional objects. There is an exception: hashes of chunks from
the same file are always kept in a single CH to avoid fetching
several CH objects when opening a large file.

Figure 3 illustrates what happens when Client X writes a file
in a SNS while another client (Client Y) performs a concurrent
non-cached read. When writing, Client X first must obtain a lease
over the entire SNS (step 1b). The system then enforces the read
of the metadata and CH objects (steps 2b–3b) to ensure that the
most up-to-date metadata is used. In step 4b, the client writes the
file in the local cache (see §4.2). After this point, all the steps
are executed asynchronously. The changes it did are propagated
to the adequate location (step 5b), the CH object and the SNS are
updated in the cloud-of-clouds, and the lease is released (steps 6b–
8b). This background propagation is crucial for the usability of the
system since it can take a considerable time to complete. Notice
that the steps 1b–3b are done only once during the first update on

1b
on first write on each write

One-Shot	
Register	

SWMR	
Register	

Leasing	
Object	

Synchronous	
Call	

Asynchronous	
Call	

file
data
C1

local
write

4b 5b

local
read

4a 3a

on each read

file
data
C2

7b

metadata

later
8b

Client Y

Client X

CH

3b

on 1st read

2a

metadata

2b

1a

earlier

6b

CH

Figure 3. CHARON operation.

the SNS. After that, a client can update or create any file in that
SNS while the lease is valid. CHARON uses a garbage collection
protocol to delete the obsolete versions of data and metadata.

Client Y can concurrently perform read-only operations on the
leased SNS while the client X is writing. As explained before,
the SNS metadata is obtained from the clouds periodically. When
performing the read operation, the client uses the current SNS
metadata version (step 1a) and then reads the CH object containing
the hashes of the most up-to-date version of each data chunk (step
2a). Next, if the file is not cached, the system downloads it to
the cache (step 3a) and returns it to the client (step 4a). Since the
metadata is uploaded only after the data is written by Client X,
Client Y will never see data that belongs to unfinished writes.

4.2 Data Management
This section describes the most important techniques CHARON

uses to manage big files efficiently.

4.2.1 Multi-level cache
CHARON uses the local disk to cache the most recent files used by
clients. Moreover, it also keeps a fixed small main-memory cache
to improve data accesses over open files. Both of these caches
implement least recently used (LRU) policies. The use of caches
not only improves performance but also decreases the operational
cost of the system. This happens because cloud providers charge
data downloads, but usually uploads are free as an incentive to
send data to their facilities [50], [51], [52], [53]. It means that the
CHARON operational cost is roughly the cost of the data storage
plus the traffic necessary to download new versions of files.

4.2.2 Working with data chunks
Managing large files in cloud-backed file systems brings two main
challenges. First, reading (resp. writing) whole (big) files from the
cloud is impractical due to the high downloading (resp. uploading)
latency [24]. Second, big files might not fit in the (memory) cache
employed in cloud-backed file systems for ensuring usable perfor-
mance [23], [24], [54], [55]. CHARON addresses these challenges
by splitting (large) files into fixed-size chunks of 16MB, which
results in blocks with a few megabytes after compression and
erasure codes. This small size has been reported as having a good
tradeoff between latency and throughput [15], [24], [55]. A chunk
with few megabytes is relatively fast to load from disk to memory,
can be transferred from/to clouds in a reasonable time, and is still

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 7

Cache		
Level	

File	A	

Chunk	A1	 Chunk	A2	 Chunk	A3	

File	B	

Chunk	B1	 Chunk	B2	 Chunk	B3	

A1	
b1	

A1	
b2	

A1	
b3	

A1	
b4	

Chunk	A1	
Thread	1	

A2	
b1	

A2	
b2	

A2	
b3	

A2	
b4	

Chunk	A2	
Thread	2	

B3	
b1	

B3	
b2	

B3	
b3	

B3	
b4	

Chunk	B3	
Thread	K	

…

1	 2	 3	 4	 5	 6	 7	 8	 9	 …	 N	
Thread	Pool	

A2	
b1	

B3	
b1	

A1	
b1	

Cloud	1	

A1	
b2	

B3	
b2	

A2	
b2	

Cloud	2	

B3	
b4	

A2	
b4	

A1	
b4	
Cloud	4	

…Cloud		
Level	

Queue	

Erasure	
	Codes	

Parallel	TCP	ConnecEons	

Compression	

EncrypEon	

Figure 4. Data chunks management.

small enough to be maintained in main memory. Additionally, this
approach is also cost-effective because, if a cached file is updated,
only the modified data chunks need to be uploaded.

Figure 4 illustrates how CHARON manages and stores chunks
in the clouds. After closing a file, all the new and updated chunks
are inserted in a queue, from which they are consumed by a
set of k threads. These threads are responsible for performing a
sequence of compute-intensive operations on the chunks before
uploading them to the clouds. First, we compress and encrypt the
chunk. Next, we use a storage-optimal erasure code to generate
3 f + 1 distinct coded blocks of the chunk, each with 1

f+1 of its
original size, in such a way that any set of f + 1 blocks can be
used to reconstruct it. After that, the threads use N workers on a
thread pool to send the blocks to all the clouds. Blocks already
have their cloud destination assigned when they arrive in these
workers (as illustrated by the patterns in this figure). The threads
consider a write operation complete only when they are notified
that 2 f +1 blocks were successfully uploaded. We define a timeout
for workers to finish these uploads to tolerate cases in which the
clouds take too long to complete operations. If some worker does
not perform some operation within the stipulated timeout, the
thread using this worker cancels it and launches a new one to
perform the same job.

In the case of a single cloud or a private repository is used, we
do not employ erasure codes. Instead, after the chunk is encrypted
and added to the thread pool, it is sent to the respective location by
a single worker. In this case, if the storage location is unreachable,
the data stays inaccessible.

Since we parallelize the transmission of all data blocks and
wait for the first 2 f + 1 clouds to complete, we always take
advantage of the per-operation fastest clouds. This strategy aims
to optimize the performance of uploading data to the clouds.
It outperforms other systems’ strategies in which they depend
on the slowest clouds at some point [20], [22] or do not use
techniques like compression or erasure coding [21]. Additionally,
the configuration capability of all these architectural elements
allows clients to adapt the behavior and bandwidth consumption
of system’s cloud-related operations with their own computing
and network specificities. Moreover, employing preferred quorum
techniques [56] in CHARON could adapt the system by first
sending requests to clouds that best match user preferences beyond
latency (e.g., cost, provider, geographical constraints).

4.2.3 Prefetching
The prominence of sequential reads in most big data workloads
motivates the use of chunk prefetching. CHARON uses a thread
pool for prefetching data chunks from any location as soon as a
sequential read is identified. The system starts prefetching data
when half of a chunk is sequentially read. If in the meanwhile
the file being prefetched is closed, all its prefetching tasks are
canceled. Besides reading data in advance, an additional advantage
of this technique is to have several TCP connections receiving data
in parallel, accelerating the download of the whole file.

4.3 Cloud-backed Access Control
CHARON implements a security model where the owner of the
file pays for its storage and is able to define its permissions. This
means that each client pays for all private data and all the shared
data associated with the shared folders he created (independently
on who wrote it). CHARON clients are not required to be trusted
since access control is performed by the cloud providers, which
enforce the permissions for each object. Moreover, the cloud-of-
clouds access control is satisfied even if up to f cloud providers
misbehave. This happens because if an object is read from up to
f faulty providers, no useful information will be obtained (recall
that data is encrypted and keys are stored using secret sharing in a
SWMR register).

The implementation of this model requires a mapping between
the file system and cloud storage abstractions. When configuring
the system, users define the API credentials of the 3 f + 1 clouds
CHARON will use. In this way, when a CHARON client starts, it
authenticates in each one of the providers, and after that each file
or directory a user creates results in the creation of one or more
objects associated with user cloud accounts. Sharing is allowed
only at the granularity of directory subtrees. To give others the
permission to access a directory, a user only needs to change
the POSIX ACL associated with the desired directory. When this
happens, CHARON transparently maps these permission changes
in the clouds access control mechanisms using their APIs [57].
Namely, to share a directory, the system creates a SNS and gives
permission to the grantee users, updating also the owner’s PNS.

Each CHARON user identifier is mapped to the corresponding
cloud accounts identifiers. This mapping is kept together with the
client PNS in the cloud-of-clouds. Since there is no centralized
server informing clients about the arrival of other clients to the
system, the discovery of new clients and shared directories has to
be done by external means such as mail invitation, as in Dropbox.
For example, in a biobank federation, the biobanks must know the
cloud account identifiers from each other.

5 EVALUATION

We evaluate CHARON and compare it with other systems. The
experiments present results of (1) the latency of the leasing
algorithms, (2) several microbenchmarks of metadata and data-
intensive operations, and (3) a bioinformatics benchmark.

5.1 Experimental Environment
We used four machines (Intel Xeon E5520, 32 GB RAM, 15k-
RPM HDD, SSD) connected through a gigabit network located in
Portugal.

The three storage locations for CHARON were configured
as follows. The cloud-of-clouds storage uses Amazon S3 (US),

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 8

Windows Azure Storage (UK), Rackspace Cloud Files (UK), and
Google Cloud Storage (US). For the single cloud storage, we
use only Amazon S3 (US). The private repository was either
located in the client’s machine disk or in a different machine in
the same LAN. For the composite lease, we use additional cloud
services: Azure Queue [18], RackSpace Queue [44], Amazon
DynamoDB [46], and Google Datastore [47]. Therefore, all cloud-
of-clouds configurations consider f = 1.

We compare CHARON with the ext4 local file system, a
Linux’s NFSv4 deployed in our cluster, and other cloud-backed
file systems with the code available on the web (e.g., SCFS [24]
and S3QL [54]). CHARON and the other cloud-backed systems
were configured to upload data to the clouds in the background.
In the case of SCFS [24], the coordination service replicas were
deployed in four medium VMs on Amazon EC2 (UK).

5.2 Composite Leasing
In this section, we evaluate the composite lease algorithm de-
scribed in §3.2 and the base objects used in its implementation.
We focus our analysis on the lease operation since it is the only
one in the critical path of any application updating shared folders.

5.2.1 Contention-free executions
The composite leasing algorithm was configured in two ways:
using only storage cloud services from different providers (ST),
and using only non-storage cloud services, such as queues, from
different providers (NST). Additionally, we compare these compo-
sitions with DepSky’s mutual exclusion algorithm (DL) [15], using
the same services as the ST configuration. Figure 5(a) presents the
lease latency of these algorithms and their base lease objects.

The base lease objects require between 0.2 to 1.8s to acquire
a lease. Overall, the results for non-storage base lease objects are
better than the ones using storage services. This happens probably
because storage services are throughput-oriented, and thus less
effective when dealing with small objects such as lease entries.

The results of the composite lease configurations reflect the
performance of their base objects. More specifically, the com-
posite lease protocol waits for a quorum of 2 f + 1 = 3 leasing
acknowledgments from different services, which means that the
resulting latency is similar to the third fastest cloud service. For
instance, the latencies of NST and GDS are similar (≈600 ms),
which is worse than DDB and AQ, but better than RQ. For a
pure storage-based lease (ST), we observed a lease latency 2×
higher than NST. Consequently, we use the NST configuration in
all CHARON experiments.

The observed latency for DepSky locking (DL) is twice the
latency of ST and four times higher than NST (used in CHARON).
This difference happens because the DepSky algorithm accesses
the storage clouds in phases, and not by executing base lease
algorithms in parallel. DepSky’s and our object storage lease
algorithms have an additional disadvantage when compared with
other algorithms: their required strong consistency for storage is
not always guaranteed [27], [28].

5.2.2 Executions under contention
An important aspect of a lease algorithm is how its performance
degrades with contention. We perform experiments with a varying
number of clients (1, 2, 5, and 10) trying to acquire a lease on the
same SNS (and releasing it right after), and measure the time for
a client to acquire the lease. For obstruction-free lease algorithms,
we use a random backoff time of up to one second.

 0

 1

 2

 3

A
Q

D
D

B

G
D

S

R
Q

A
S

S
3

G
S

R
F

N
S

T

S
T

D
L

AQ=AzureQueue AS=AzureStorage
DDB=DynamoDB S3=AmazonS3 NST=AQ,DDB,GDS,RQ
GDS=GoogleDatastore GS=GoogleStorage ST=AS,S3,RF,GS
RQ=RackspaceQueue RF=RackspaceFiles DL=DepSkyLocking

T
im

e
 (

in
 s

e
c
o
n
d
s
)

50th
90th

(a) Services with no contention.

 0

 5

 10

 15

 20

1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10
 0
 2.5
 5
 7.5
 10
 12.5
 15
 17.5
 20

T
im

e
 (

in
 s

e
c
o

n
d

s
)

46|
50th
90th

NSTRQGDSAQDDB

(b) Non-storage services.

 0

 5

 10

 15

 20

1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10
 0
 2.5
 5
 7.5
 10
 12.5
 15
 17.5
 20

T
im

e
 (

in
 s

e
c
o

n
d

s
)

30| 62| 50|
55|
30|

104|
34|

742|
268|

50th
90th

STGSRFASS3

(c) Storage services.

Figure 5. Latency of lease acquisition algorithms without contention and
under contention of up to 10 clients.

The results for several base lease objects and composite lease
configurations appear in Figures 5(b) and 5(b). Again, non-storage
services (Figure 5(b)) provide better/faster results than storage
services (Figure 5(c)). This happens because most non-storage
services satisfy the deadlock-freedom property, i.e., if several
processes try to acquire the lease concurrently, some process
will succeed [48]. This makes them more efficient when dealing
with contention than the storage-based algorithms, which only
implement obstruction-freedom.

The composite lease (NST and ST in the figures) also provides
only obstruction-freedom and thus has a superlinear increase in
the waiting time when a lease is obtained under contention. This
is expected as CHARON is not optimized for scenarios with a
large number of clients trying to update the same folder or file.
The composite lease algorithm is fast with one or two contending
clients but noticeably slower with 5 or 10. The same behavior is
observed for DepSky locking (not shown), but with higher latency.
For instance, the 90th latency for two contending clients in DepSky
is 2× and 10× higher than ST and NST, respectively.

5.3 File System Microbenchmarks

This section compares CHARON with other file systems using the
Filebench microbenchmark suite [58]. The first two experiments
are focused on evaluating the performance of isolated system
calls, while the third one measures the latency associated with
interacting with the clouds for downloading and uploading data.
The presented results do not consider the lease acquisition time.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 9

Table 2
Metadata-intensive microbenchmark results (ops/s).

Operation ext4 NFS S3QL SCFS CHARON

Create 2618 192 105 2 485
Delete 1895 2518 486 4 1258
Stat 15299 20881 5995 9 12925
MakeDir 14998 16664 4242 14 13665
DeleteDir 11998 6785 950 5 8665
ListDir 18759 17426 604 6 9894

Table 3
Data-intensive microbenchmark results (MB/s).

Operation ext4 NFS S3QL SCFS CHARON

seqRead 215 211 214 200 194
randRead 210 205 207 191 186
seqWrite 125 125 10 17 36

5.3.1 Metadata-intensive operations
Our first experiment focuses on how well the system deals with
metadata intensive operations when compared with other systems.
Table 2 presents the number of operations per second for ext4
(on SSD), NFS, S3QL [54], SCFS [24] (discussed in §6), and
CHARON for different operations on 0-byte files.

The results show that CHARON has a performance mostly
within the same order of magnitude of ext4 and NFS, being
slower mainly due to the overhead of FUSE and its Java wrapper.
When compared with other cloud-backed file systems, CHARON is
significantly faster because metadata updates are executed only in
the disk, and later sent to the cloud. S3QL uses an SQLite local
database for that, and SCFS accesses the cloud on every metadata
operation.

5.3.2 Data-intensive operations
Table 3 presents the results for similar microbenchmarks, but now
focusing on data-intensive operations with files of 256MB.

Unsurprisingly, ext4 offers the best read throughput both for
sequential and random workloads. S3QL and NFS provide a
slightly lower read throughput than ext4. Despite presenting a
lower performance, SCFS and CHARON are still competitive for
read workloads.

When considering write throughput, ext4 and NFS present the
best performance for sequential workloads. However, CHARON

presents at least 2× better sequential write throughput than the
other cloud-backed file systems. In particular, S3QL provides a
write-throughput almost 4× lower than our system. This hap-
pens because S3QL does not perform well when writing small
chunks [59] (and the benchmark was configured with 8kB-writes).

5.3.3 Read and write of big files
Efficiency in reading and writing large files to/from the clouds is
one of the main objectives of CHARON. Figure 6 shows the time
required for sequentially read and write non-cached files (from
16MB to 1GB). We perform these experiments considering differ-
ent data locations for CHARON, namely: private repository in the
same network (C-LAN), single cloud in Amazon S3 (C-S3), and
the cloud-of-clouds (C-CoC). Additionally, we also present values
for two other multi-cloud data replication algorithms, DepSky [15]
and CYRUS [20] (discussed in §6), using the same cloud services
as C-CoC. We did not compare with other systems [21], [22]

 0

 60

 120

 180

 240

 300

 360

16MB 64MB 256MB 1GB

T
im

e
 (

in
 s

e
c
o
n
d
s
)

C-LAN
C-S3

C-CoC
DepSky
CYRUS

(a) Non-cached read.

 0

 60

 120

 180

 240

 300

 360

16MB 64MB 256MB 1GB

C-LAN
C-S3

C-CoC
DepSky
CYRUS

(b) Write and upload.

Figure 6. Non-cached read (download) and write (upload) latencies for
different file sizes with CHARON (data in different locations), DepSky [15]
and CYRUS [20].

because they do not work in our environment. However, the results
achieved for C-CoC are 80–325% better than the ones published
for these systems. Differently from previous experiments, here the
write latency includes the time necessary to upload the data to its
final location.

When considering a cloud-of-clouds deployment, the results
show that CHARON (C-CoC) reads (resp. writes) 1GB files 2× and
4× (resp. 2.2× and 3.5×) faster than DepSky and CYRUS, respec-
tively. This happens because previous multi-cloud data replication
algorithms are not optimized to deal with big files: they do not
break the file in chunks (or use chunks too small [20]), neither
use our upload strategy (see Figure 4), nor use techniques such as
prefetching. Furthermore, CYRUS round-robin distribution of data
chunks among all clouds (trying to balance storage usage) makes
it quite slow, as some clouds are noticeably slower than others. On
the other hand, our approach on data chunks management allows
CHARON to perform as fast as the f +1th (resp. 2 f +1th) fastest
clouds when reading (resp. writing) chunks.

When comparing different data locations in CHARON, read-
ing/writing from/to a private repository present the best latency,
since the target location is inside our local network. The difference
between the latency of CHARON using Amazon S3 or the cloud-
of-clouds is quite small for both reading and writing results. For
writing, the additional latency presented by the cloud-of-clouds
comes from the fact that we need to write the data in three clouds
to finish it. Thus, the end-to-end latency will be dictated by the
third fastest cloud.

The main takeaway here is that the use of Byzantine-resilient
cloud-of-clouds storage does imply increased latency when com-
pared with the use of a single cloud and that CHARON is
significantly faster in dealing with big files than competing so-
lutions [15], [20].

5.4 Bioinformatics Workflows

Our last set of experiments aims to compare the performance
of different configurations of CHARON and alternative systems
using FS-Biobench, a novel storage benchmark in the domain
of bioinformatics (described in the Supplemental Material). Other
existing bioinformatics macro-benchmarks focus on CPU-bound
tasks, use discontinued versions of broadly accepted tools, and
overlook the I/O operations executed by these tools [60], [61],
[62]. The FS-Biobench emulates specifically the I/O operations
of eight representative bioinformatics workloads, summarized in
Table 4, and is independent of any external tool. Most workflows
use sequential reads and writes, and they differ in the number of
accessed files, their size and structure, and the execution pattern

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 10

Table 4
Characteristics of the eight FS-Biobench workflows.

Workflow Input Files Output Files Description
W1.Genotyping – 0+1 (24MB) Write a single genotyping file
W2.Sequencing – 0+1 (1GB) Write a single sequencing file in FASTQ format
W3.Prospection 2 (1MB) 0+1 (4kB) Prospect appropriate samples for a study from two MIABIS XML files
W4.Alignment 1 (1GB) 0+1 (960MB) Search DNA reads from W2 in a reference, and write the alignment results
W5.Assembly 1 (1GB) 0+1 (18MB) Write a contiguous DNA sequence from a FASTQ sequencing file
W6.GWAS 2 (48MB) 2+1 (432MB+200kB) Read two genotyping files, perform a GWA study, and plot a graph
W7.Annotation 1 (1GB) 2+1 (1.07GB+268MB) Align DNA reads, obtain genomic variations, and write an annotated VCF file
W8.Methylation 1 (1GB) 2+1 (999MB+4kB) Align DNA reads, and write a list of methylated positions

 0

 1

 2

 3

W1.Genotyping

T
im

e
 (

in
 s

e
c
o
n
d

s
)

ext4
NFS

S3QL

C-Local
C-LAN

C-S3
C-CoC

 0

 30

 60

 90

W2.Sequencing

 0

 1

 2

 3

W3.Prospection
 0

 60

 120

 180

W4.Alignment

3
9

2

 0

 60

 120

 180

W5.Assembly

3
0
9

 0

 30

 60

 90

W6.GWAS

 0

 60

 120

 180

W7.Annotation

4
0
0

2
3
5

 0

 60

 120

 180

W8.Methylation

3
3
0

Figure 7. FS-Biobench execution for different configurations.

(e.g., reading an entire file before writing anything, interposing
reads and writes, reading more than one file in parallel). These
workflows include complex pipelines to achieve concrete results
in bioinformatics and were selected from the workflows analyzed
and implemented in the BiobankCloud project [7].

Figure 7 presents the duration of FS-Biobench workflows for
ext4 on SSD, NFS with the client and server in the same LAN,
S3QL, and CHARON using a repository in different locations: SSD
in the same machine (C-Local), disk in a server in the same
LAN (C-LAN), AWS S3 (C-S3), and cloud-of-clouds (C-CoC).
SCFS is not evaluated because it does not support big files. We
execute every workflow ten times on each scenario and report
average values. CHARON’s and S3QL’s caches are cleaned after
each workflow execution, as all results would be similar to C-
Local if the files were cached.

Ext4 and NFS serve as a basis for comparison in this experi-
ment and, as expected, are usually faster in running the workflows.
The time needed for CHARON to finish workflows W1 and W2
are similar for all data locations. This happens because write
operations immediately return after the file is updated in the local
disk. Workflow W3 lasts almost 2× longer to finish in C-S3 and
C-CoC than in C-Local and C-LAN due to the latency of fetching
the two small files from the remote cloud services. Workflows W4,
W5, W7, and W8 are the ones requiring more time to run since they

need to read a 1GB FASTQ file from the repository. Workflow W6
reads two genotyping files with only 24MB each, and thus requires
less time to run. Nonetheless, workflows W4-W8 rank the different
data locations in the same order, where the C-Local is the fastest,
followed by C-LAN, C-CoC, and C-S3. Interestingly, running
the benchmark in a cloud-of-clouds-hosted repository has better
results (compared to C-S3) due to the capability of fetching chunks
from the two fastest clouds at the moment. More importantly, even
considering that the latency of fetching input files dominate most
of these benchmarks, in a real setup, the file processing can start
as soon as the first chunk is available.

In conclusion, CHARON (C-CoC) runs the workflows up to
2.5× (W4) faster than the other (single) cloud-backed file system
(S3QL). Furthermore, our system using the cloud-of-clouds is 30%
to 200% slower than NFS in all workflows but W5 (which is read-
intensive). This is an excellent result as the latency of accessing
the cloud is 100× higher than accessing a LAN-based server.

6 RELATED WORK

6.1 Distributed File Systems
CHARON is an intrusion-tolerant file system [63] that maintains
data confidentiality, integrity, and availability despite the existence
of compromised components. Our design adopts some ideas from
existing file systems, such as the separation of data and metadata
from NASD [64], volume leases from AFS [65], and background
updates from several peer-to-peer file systems [66], [67], [68]. In
particular, Farsite has some similarities with our system, but is
crucially different in its use of Byzantine Fault-Tolerant (BFT)
replica groups for assigning leases and maintaining metadata
consistently [66]. Another related system is xFS [69], a data-
centric network file system in which all data and metadata are
stored at the client side.

A fundamental difference between these systems and CHARON

is that in our solution clients interact using widely-available
untrusted cloud services instead of communicating directly for
coordination.

6.2 Data-centric coordination
A key feature of CHARON is the use of Byzantine-resilient data-
centric algorithms for implementing storage and coordination.
There are some works that propose the use of this kind of
algorithms for implementing dependable systems [15], [26], [39].

Byzantine disk Paxos [26] is a consensus protocol built on
top of untrusted shared disks. More recently, an enhanced version
of this protocol specifically designed to use file synchronization
services (e.g., DropBox, Google Drive) instead of disks was
published [21]. These algorithms could be used to implement

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 11

mutual exclusion satisfying deadlock-freedom (a stronger liveness
guarantee than obstruction-freedom). However, these solutions
would require a much larger number of cloud accesses. Our lease
protocol, on the other hand, requires only two to four cloud
accesses for acquiring a lease.

To the best of our knowledge, there are only two fault-tolerant
data-centric lease algorithms in the literature [15], [39]. The lease
algorithm of Chockler and Malkhi [39] has two important differ-
ences when compared with CHARON’s BFT composite lease. First,
it does not provide an always-safe lease as it admits the existence
of more than one process with valid leases. Second, it toler-
ates only crashes, requiring thus some trust on individual cloud
providers. The BFT mutual exclusion algorithm from DepSky [15]
is a natural candidate to regulate access contention in CHARON.
However, our composite lease algorithm is 4− 10× faster than
DepSky’s (see §5.2), does not require clients to have synchronized
clocks, and neither rely on weakly-consistent operations such as
object storage’ list.

6.3 Multi-cloud storage
In the last years, many works have been proposing the use of
multiple cloud providers to improve the integrity and availability
of stored data [13], [14], [15], [16], [20], [22], [23], [24], [70]. A
problem in some of them is the fact they only provide object
storage (i.e., read/write registers), which hardens their integra-
tion with existing applications. Examples of these systems are
RACS [13] for write-once/archival storage, and DepSky [15], its
evolution [16], and ICStore [14] for updatable registers.

Systems like Hybris [23], SCFS [24] and RockFS [70] employ
a hybrid approach in which unmodified cloud storage services
are used together with few computing nodes to store metadata and
coordinate data access. The main limitation of these systems is that
they require servers deployed in the cloud providers, which implies
additional costs and management complexity. The same limitation
applies to modern (single-provider) geo-replicated storage systems
such as Spanner [71], SPANStore [25] and Pileus [72], if deployed
in multiple clouds.

A slightly different kind of work proposes the aggregation
of multiple file synchronization services (e.g., DropBox, Box,
Google Drive) in a single dependable service [20], [21], [22].
CYRUS [20] does not implement any kind of concurrency control,
allowing different clients to create different versions of files ac-
cessed concurrently. UniDrive [22] employs a lock protocol based
on quorums, in which a client has access to a shared folder as long
as it is able to write a lock file alone in a majority of the services.
However, it only tolerates crash failures and is not improved to
handle big data. Finally, MetaSync’s [21] main constraints are
its assumption of a linearizable object storage service, which is
not always the case [27], [28], and the use of full replication,
which makes the download and upload of data slow and increases
the monetary costs of the system. Regarding the latter, the way
MetaSync order file updates does not make it easy to integrate
erasure codes in the system. On the other hand, CHARON is the
first data-centric cloud-backed file system to support the main
requirements of life sciences and other big data domains.

7 CONCLUSIONS

CHARON is a cloud-backed file system for storing and sharing big
data. Its design relies on two important principles: files metadata
and data are stored in multiple clouds, without requiring trust

on any of them individually, and the system is completely data-
centric. This design has led us to develop a novel Byzantine-
resilient leasing protocol to avoid write-write conflicts without any
custom server. Our results show that this design is feasible and can
be employed in real-world institutions that need to store and share
large critical datasets in a controlled way.

REFERENCES

[1] Cloud Harmony, “Service Status,” https://cloudharmony.com/
status-of-storage-group-by-regions, 2019.

[2] Cloud Security Alliance, “Top Threats,” https://cloudsecurityalliance.org/
group/top-threats/, 2016.

[3] M. A. C. Dekker, “Critical Cloud Computing: A CIIP perspective on
cloud computing services (v1.0),” European Network and Information
Security Agency (ENISA), Tech. Rep., 2012.

[4] H. S. Gunawi et al., “Why does the cloud stop computing?: Lessons from
hundreds of service outages,” in Proc. of the SoCC, 2016.

[5] European Commission, “Data protection,” https://ec.europa.eu/info/law/
law-topic/data-protection en, 2018.

[6] G. Gaskell and M. W. Bauer, Genomics and Society: Legal, Ethical and
Social Dimensions. Routledge, 2013.

[7] A. Bessani et al., “BiobankCloud: a platform for the secure storage,
sharing, and processing of large biomedical data sets,” in DMAH, 2015.

[8] H. Gottweis et al., “Biobanks for Europe: A challenge for governance,”
European Commission, Directorate-General for Research and Innovation,
Tech. Rep., 2012.

[9] P. E. Verissimo and A. Bessani, “E-biobanking: What have you done
to my cell samples?” IEEE Security Privacy, vol. 11, no. 6, pp. 62–65,
2013.

[10] P. R. Burton et al., “Size matters: just how big is big? Quantifying
realistic sample size requirements for human genome epidemiology,” Int
J Epidemiol, vol. 38, no. 1, pp. 263–273, 2009.

[11] D. Haussler et al., “A million cancer genome warehouse,” University of
Berkley, Dept. of Electrical Engineering and Computer Science, Tech.
Rep., 2012.

[12] R. W. G. Watson, E. W. Kay, and D. Smith, “Integrating biobanks:
addressing the practical and ethical issues to deliver a valuable tool for
cancer research,” Nature Reviews Cancer, vol. 10, no. 9, pp. 646–651,
2010.

[13] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: A case
for cloud storage diversity.” SoCC, pp. 229–240, 2010.

[14] C. Basescu et al., “Robust data sharing with key-value stores,” in Proc.
of the DSN, 2012.

[15] A. Bessani, M. Correia, B. Quaresma, F. Andre, and P. Sousa, “DepSky:
Dependable and secure storage in cloud-of-clouds,” ACM Trans. Storage,
vol. 9, no. 4, pp. 12:1–12:33, 2013.

[16] T. Oliveira, R. Mendes, and A. Bessani, “Exploring key-value stores
in multi-writer Byzantine-resilient register emulations,” in Proc. of the
OPODIS, 2016.

[17] Amazon, “Amazon S3,” http://aws.amazon.com/s3/, 2019.
[18] Microsoft, “Microsoft Azure Queue,” http://azure.microsoft.com/en-us/

documentation/articles/storage-dotnet-how-to-use-queues/, 2019.
[19] B. Martens, M. Walterbusch, and F. Teuteberg, “Costing of cloud com-

puting services: A total cost of ownership approach,” in Proc. of the
HICSS, 2012.

[20] J. Y. Chung, C. Joe-Wong, S. Ha, J. W.-K. Hong, and M. Chiang,
“CYRUS: Towards client-defined cloud storage,” in Proc. of the EuroSys,
2015.

[21] S. Han et al., “MetaSync: File synchronization across multiple untrusted
storage services,” in Proc. of the USENIX ATC, 2015.

[22] H. Tang, F. Liu, G. Shen, Y. Jin, and C. Guo, “UniDrive: Synergize
multiple consumer cloud storage services,” in Proc. of the Middleware,
2015.

[23] D. Dobre, P. Viotti, and M. Vukolic, “Hybris: Robust hybrid cloud
storage.” in Proc. of the SoCC, 2014.

[24] A. Bessani et al., “SCFS: a shared cloud-backed file system,” in Proc. of
the USENIX ATC, 2014.

[25] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha, “SPANStore: Cost-effective geo-replicated storage spanning
multiple cloud services,” in Proc. of the SOSP, 2013.

[26] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi, “Byzantine disk
Paxos: optimal resilience with Byzantine shared memory,” Distributed
Computing, vol. 18, no. 5, pp. 387–408, 2006.

[27] Amazon, “Amazon S3 data consistency model,” https://docs.aws.amazon.
com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel, 2019.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2916856, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. Y, MARCH 2019 12

[28] Rackspace, “Cloud files - faqs,” https://support.rackspace.com/how-to/
cloud-files-faq/, 2019.

[29] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the Coda
file system,” ACM Trans. Comput. Syst., vol. 10, no. 1, pp. 3–25, 1992.

[30] A. J. Mashtizadeh, A. Bittau, Y. F. Huang, and D. Mazières, “Replication,
history, and grafting in the Ori file system,” in Proc. of the SOSP, 2013.

[31] Google, “Google Genomics,” https://cloud.google.com/genomics/, 2019.
[32] L. Lamport, “On interprocess communication (part II),” Distributed

Computing, vol. 1, no. 1, pp. 203–213, 1986.
[33] J. S. Plank, “Erasure codes for storage systems: A brief primer,” ;login:

The USENIX magazine, vol. 38, no. 6, pp. 44–50, 2013.
[34] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Distributed

Computing, vol. 11, no. 4, pp. 203–213, 1998.
[35] A. Shamir, “How to share a secret,” Communications of ACM, vol. 22,

no. 11, pp. 612–613, 1979.
[36] H. Krawczyk, “Secret sharing made short,” in Proc. of the CRYPTO,

1993.
[37] C. Gray and D. Cheriton, “Leases: An efficient fault-tolerant mechanism

for distributed file cache consistency,” in Proc. of the SOSP, 1989.
[38] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “Zookeeper: Wait-free

coordination for internet-scale services,” in Proc. of the USENIX ATC,
2010.

[39] G. Chockler and D. Malkhi, “Light-weight leases for storage-centric
coordination,” Int. J. Parallel Program., vol. 34, no. 2, pp. 143–170,
2006.

[40] Wasabi, “Wasabi Hot Cloud Storage,” https://wasabi.com, 2019.
[41] Google, “Google storage,” https://developers.google.com/storage/, 2019.
[42] B. Calder et al., “Windows Azure storage: a highly available cloud

storage service with strong consistency,” in Proc. of the SOSP, 2011.
[43] Rackspace, “Rackspace cloud files,” https://www.rackspace.com/cloud/

files, 2019.
[44] ——, “Message queuing service with simple API - Rackspace cloud

queues,” http://www.rackspace.com/cloud/queues/, 2019.
[45] M. Herlihy, “Wait-free synchronization,” ACM Trans.Prog.Lang.Syst.,

vol. 13, no. 1, pp. 124–149, 1991.
[46] Amazon, “Amazon DynamoDB—NoSQL cloud database service,” http:

//aws.amazon.com/dynamodb/, 2019.
[47] Google, “Google cloud datastore—NoSQL database for cloud data stor-

age,” https://cloud.google.com/datastore/, 2019.
[48] H. Attiya and J. Welch, Distributed computing: fundamentals, simula-

tions, and advanced topics. John Wiley & Sons, 2004.
[49] FUSE, “File system in user space,” https://github.com/libfuse/libfuse,

2019.
[50] Amazon, “Amazon S3 pricing,” http://aws.amazon.com/s3/pricing/,

2019.
[51] Google, “Google storage pricing,” https://developers.google.com/storage/

docs/pricingandterms, 2019.
[52] Microsoft, “Windows Azure pricing,” https://azure.microsoft.com/en-us/

pricing/details/storage/blobs/, 2019.
[53] Rackspace, “Rackspace cloud files pricing,” https://www.rackspace.com/

cloud/files/pricing/, 2019.
[54] S3QL, “S3QL - a full-featured file system for online data storage,” https:

//bitbucket.org/nikratio/s3ql/overview, 2019.
[55] M. Vrable, S. Savage, and G. M. Voelker, “BlueSky: A cloud-backed file

system for the enterprise,” in Proc. of the FAST, 2012.
[56] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.

Wylie, “Fault-Scalable Byzantine Fault-Tolerant Services,” in Proc. of
the SOSP, 2005.

[57] T. Oliveira, R. Mendes, and A. Bessani, “Sharing files using cloud storage
services,” in Proc. of the DIHC, co-located with Euro-Par, 2014.

[58] Filebench, “Filebench webpage,” https://github.com/filebench/filebench/
wiki, 2019.

[59] S3QL, “S3QL 1.13.2 documentation: Known issues,” http://www.rath.
org/s3ql-docs/issues.html, 2016.

[60] K. Albayraktaroglu et al., “Biobench: A benchmark suite of bioinformat-
ics applications,” in Proc. of the ISPASS, 2005.

[61] D. A. Bader, Y. Li, T. Li, and V. Sachdeva, “Bioperf: A benchmark suite
to evaluate high-performance computer architecture on bioinformatics
applications,” in Proc. of the IISWC, 2005.

[62] Y. Li, T. Li, T. Kahveci, and J. Fortes, “Workload characterization of
bioinformatics applications,” in Proc. of the MASCOTS, 2005.

[63] J. S. Fraga and D. Powell, “A fault- and intrusion-tolerant file system,”
in Proc. of the 3rd IFIP Conference on Computer Security, 1985.

[64] G. Gibson et al., “A cost-effective, high-bandwidth storage architecture,”
in Proc. of the ASPLOS, 1998.

[65] J. Howard et al., “Scale and performance in a distributed file system,”
ACM Trans. Comput. Syst., vol. 6, no. 1, pp. 51–81, 1988.

[66] A. Adya et al., “Farsite: Federated, available, and reliable storage for an
incompletely trusted environment,” in Proc. of the OSDI, 2002.

[67] J. Kubiatowicz et al., “OceanStore: An architecture for global-scale
persistent storage,” in Proc. of the ASPLOS, 2000.

[68] J. Stribling et al., “Flexible, wide-area storage for distributed system with
WheelFS,” in Proc. of the NSDI, 2009.

[69] T. E. Anderson et al., “Serverless network file systems,” ACM Trans.
Comput. Syst., vol. 14, no. 1, pp. 41–79, 1996.

[70] D. R. Matos, M. L. Pardal, G. Carle, and M. Correia, “Rockfs: Cloud-
backed file system resilience to client-side attacks,” in Proc. of the
Middleware, 2018.

[71] J. Corbet et. al, “Spanner: Google’s globally distributed database,” ACM
Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1–8:22, 2013.

[72] D. B. Terry et al., “Consistency-based service level agreements for cloud
storage,” in Proc. of the SOSP, 2013.

Ricardo Mendes received the MSc degree from the University of Lis-
bon, in 2012. He is currently a researcher at LaSIGE research unit
and the Navigators research team. His main research interests include
dependable and secure cloud storage systems. Over the years, he
participated in several European and national research projects with a
focus on dependability and security, such as TClouds, BiobankCloud
and SUPERCLOUD.

Tiago Oliveira has a Master in Systems Architecture and Computers
Network, from Faculdade de Ciências (ULisboa), specializing in data
storage, cloud computing and systems’ dependability. During the past
years he has been involved in studying, designing, and developing
cloud-based storage systems aiming to improve the reliability of the
stored data.

Vinicius Cogo has a MSc in Informatics and is a PhD student from
the Faculty of Sciences, University of Lisbon. He is member of the
LASIGE research unit since 2009. His main research interests include
the dependability of distributed systems and the efficient, secure storage
of large-scale critical data.

Nuno Neves received the Ph.D. degree from University of Illinois at
Urbana-Champaign, Urbana, IL, USA, in 1998. He is currently a Full
Professor with the Department of Computer Science, Faculty of Sci-
ences, University of Lisbon, Portugal. He leads the Navigators Research
Group and he is on the Executive Board of the LASIGE Research Unit.
His main research interests include security and dependability of dis-
tributed systems. His work has been recognized on several occasions,
for example, with the IBM Scientific Prize, and the William C. Carter
award. He is on the Editorial Board of the International Journal of Critical
Computer-Based Systems.

Alysson Bessani received the PhD degree in electrical engineering
from Santa Catarina Federal University, Brazil, in 2006. He was a
visiting professor at Carnegie Mellow University, in 2010 and was a
visiting researcher with Microsoft Research Cambridge, in 2014. He is
an associate professor in the Department of Computer Science, Faculty
of Sciences, University of Lisbon, Portugal, and a member of LaSIGE
research unit and the Navigators research team. His main interests
are distributed algorithms, Byzantine fault tolerance, coordination, and
security monitoring. More information at http://www.di.fc.ul.pt/∼bessani.

