
D4.4
Implementation of Self-Management of

Network Security and Resilience

Project number: 643964

Project acronym: SUPERCLOUD

Project title:
User-centric management of security and dependability in clouds of
clouds

Project Start Date: 1st of February, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Report

Reference Number: ICT-643964-D4.4/ 1.0

Work Package: WP 4

Due Date: Jan 2018 - M36

Actual Submission Date: 31st of January, 2018

Responsible Organisation: FCiencias.ID

Editor: Fernando M. V. Ramos, Nuno Neves

Dissemination Level: PU

Revision: 1.0

Abstract:

This deliverable presents the overall architecture of the network virtu-
alization platform, including the final version of the description, im-
plementation and evaluation of the services and protocols that were
developed.

Keywords:
Network virtualization, multi-cloud, software-defined network, secu-
rity

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 643964.

This work was supported (in part) by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 15.0091.

D4.4 - Implementation of Self-Management of Network Security and Resilience

Editor

Fernando M. V. Ramos, Nuno Neves (FCiencias.ID)

Contributors (ordered according to beneficiary numbers)

Ruan He, Pascal Legouge, Marc Lacoste (ORANGE)
Khalifa Toumi (IMT)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.
This document has gone through the consortiums internal review process and is still subject to the
review of the European Commission. Updates to the content may be made at a later stage.

SUPERCLOUD D4.4 Page I

D4.4 - Implementation of Self-Management of Network Security and Resilience

Executive Summary

In this deliverable we describe the final version of the SUPERCLOUD network virtualization platform.
We make an overview of its architecture, following a Software-Defined Networking (SDN) design,
present its main components, and the techniques used to improve the dependability and security of
the solution. The document is focused on the three main challenges involved in the conception and
development of the platform: how to offer virtual networks to SUPERCLOUD users with enhanced
security services; how to ensure the security and dependability of the infrastructure; and how to
leverage it to offer autonomic security services to users’ virtual networks. Towards this goal, we first
present the solutions developed in SUPERCLOUD for secure and scalable virtual network embedding,
the core component of the network hypervisor, consisting of algorithms that map virtual network
requests to physical multi-cloud resources, taking into account the security and dependability demands
by users. Second, we present the design, implementation, and evaluation of our proposal of a logically-
centralised security architecture for the platform, and its use to enable efficient and secure control plane
communications. For dependability, we present our design of a novel fault-tolerant SDN controller.
Finally, we describe the autonomic security management framework of the network virtualization
platform, a component that offers data plane monitoring and proactive attack detection across the
different providers of the SUPERCLOUD. The integration of the network hypervisor with other core
components of the SUPERCLOUD was successfully demonstrated, namely with the authentication
service (Work Package 2), the storage service Janus (Work Package 3), and the Maxdata and Phillips
use cases (Work Package 5). As for future work, the network hypervisor could be enhanced with
the capability to scale virtual networks up and down, offering elasticity to tenants’ infrastructures;
to allow for migration of network and compute resources, for improved efficiency of the substrate
infrastructure; and to integrate programmability to virtual data plane elements, for enhanced virtual
network services, including advanced network functions for security.

SUPERCLOUD D4.4 Page II

D4.4 - Implementation of Self-Management of Network Security and Resilience

Contents

Chapter 1 Introduction 1
1.1 Objective of the document . 1
1.2 Outline . 1

Chapter 2 Multi-Cloud Network Virtualization
Architecture 2

2.1 General design and operation . 2
2.1.1 Architecture . 3
2.1.2 Overview of Sirius operation . 4

2.2 Network virtualisation core components . 4
2.2.1 Multi-cloud orchestrator . 4
2.2.2 Hypervisor . 6
2.2.3 Virtualisation runtime: achieving isolation . 7
2.2.4 Additional implementation details . 9

2.3 Self-management network security . 9
Chapter 3 Network Virtualization 10

3.1 Secure Virtual Network Embedding . 10
3.1.1 Network model . 11
3.1.2 Secure Virtual Network Embedding Problem 13
3.1.3 A Policy Language to Specify SecVNE . 14
3.1.4 MILP formulation . 15

3.1.4.1 Decision variables . 15
3.1.4.2 Objective Function . 16
3.1.4.3 Security Constraints . 17
3.1.4.4 Mapping Constraints . 18
3.1.4.5 Capacity Constraints . 20

3.1.5 Evaluation . 21
3.1.5.1 Experimental Setup . 21
3.1.5.2 Metrics . 22
3.1.5.3 Evaluation Results . 23

3.1.6 Related work . 24
3.1.7 Conclusions . 25

3.2 Scalable Virtual Network Embedding . 25
3.2.1 Design requirements . 26
3.2.2 Virtual and Substrate Networks . 27
3.2.3 Virtual Network Embedding . 28

3.2.3.1 Network model . 28
3.2.4 Scalable VNE . 29

3.2.4.1 Utility Functions . 30
3.2.4.2 Scalable and Secure VNE Algorithm 30

3.2.5 Evaluation . 34
3.2.5.1 Testing environment . 34
3.2.5.2 Simulations . 36

SUPERCLOUD D4.4 Page III

D4.4 - Implementation of Self-Management of Network Security and Resilience

3.2.5.3 Prototype performance . 38
3.2.6 Related work . 39
3.2.7 Conclusions . 40

Chapter 4 Infrastructure 42
4.1 Logically-centralized security . 42

4.1.1 Architecture . 44
4.1.2 Challenges . 46

4.1.2.1 Security vs performance . 46
4.1.2.2 Complexity vs robustness . 46
4.1.2.3 Global security policies . 47
4.1.2.4 Resilient roots-of-trust . 47

4.1.3 Security architecture . 48
4.1.3.1 Hardening anchor . 49
4.1.3.2 A source of strong entropy . 50
4.1.3.3 Pseudorandom generator (PRG) . 51
4.1.3.4 Integrated device verification value . 52
4.1.3.5 System roles and setup . 53
4.1.3.6 Device registration . 54
4.1.3.7 Device association . 55
4.1.3.8 Controller recommendation . 56
4.1.3.9 Device-to-device communication . 57
4.1.3.10 Post-compromise recovery . 57

4.1.4 Implementation . 58
4.1.4.1 A source of strong entropy . 58
4.1.4.2 Pseudorandom generator (PRG) . 59
4.1.4.3 iDVV generators . 59

4.1.5 Evaluation . 59
4.1.5.1 Source of entropy and PRGs . 59
4.1.5.2 Device-to-device communication performance 60
4.1.5.3 Traditional solutions versus anchor 60

4.1.6 Related work . 61
4.1.7 Discussion . 63

4.1.7.1 Meeting the challenges . 63
4.1.7.2 Devil’s advocate analysis . 63

4.1.8 Conclusions . 64
4.2 Secure and efficient control plane communications . 65

4.2.1 KISS SDN . 66
4.2.1.1 System and threat model . 66
4.2.1.2 Security goals . 67

4.2.2 iDVV: Keep It Simple and Secure . 68
4.2.2.1 iDVV bootstrap . 68
4.2.2.2 iDVV generation . 69
4.2.2.3 iDVV synchronization . 69
4.2.2.4 iDVV implementation and application 70

4.2.3 On the cost of security . 70
4.2.3.1 The cost of secure channels . 70
4.2.3.2 A closer look at the cost of cryptography 72

4.2.4 Discussion . 73
4.2.4.1 On the security of iDVV . 73
4.2.4.2 On the solution robustness . 74
4.2.4.3 On the cost of iDVV . 75

SUPERCLOUD D4.4 Page IV

D4.4 - Implementation of Self-Management of Network Security and Resilience

4.2.5 Related work . 75
4.2.6 Conclusions . 76

4.3 Fault-tolerant control plane . 76
4.3.1 Fault-tolerant SDN . 77

4.3.1.1 Inconsistent event ordering . 77
4.3.1.2 Unreliable event delivery . 78
4.3.1.3 Repetition of commands . 78
4.3.1.4 Existing approaches . 78

4.3.2 Design . 79
4.3.2.1 Architecture . 79
4.3.2.2 Rama protocol . 79

4.3.3 Correctness . 83
4.3.4 Implementation . 84
4.3.5 Evaluation . 86

4.3.5.1 Setup . 86
4.3.5.2 Rama performance . 86
4.3.5.3 Event batching . 88
4.3.5.4 Failover Time . 88
4.3.5.5 Summary . 88

4.3.6 Related work . 88
4.3.7 Conclusions . 89

Chapter 5 Self-Management of Network Security 90
5.1 OpenDaylight Security Agent . 90

5.1.1 Motivation . 90
5.1.2 SFC and NSH with OpenDaylight . 91
5.1.3 Network Service Header . 91
5.1.4 GBP: a new declarative way of expressing network configuration 93

5.1.4.1 GBP Access Model . 93
5.1.4.2 GBP Forwarding Model . 94

5.1.5 Combining GBP and SFC . 94
5.2 Policy Driven Management and Enforcement Framework 95

5.2.1 Design Components . 95
5.2.2 Operational Workflow . 97

5.3 Use Case . 97
5.3.1 Settings for On-demand Attack Mitigation . 97

5.4 Experimental Results . 100
5.4.1 Evaluation metrics . 100
5.4.2 Implementation time of mitigation policy . 101
5.4.3 Malicious traffic filtering . 102
5.4.4 Implementation time of QoS policies . 102
5.4.5 Packet loss . 103
5.4.6 Throughput of legitimate traffic . 104
5.4.7 QoS provisioning of legitimate traffic . 105
5.4.8 Network jitter of legitimate traffic . 105

Chapter 6 Conclusions 107
Glossary 107
Bibliography 108

SUPERCLOUD D4.4 Page V

D4.4 - Implementation of Self-Management of Network Security and Resilience

List of Figures

2.1 Sirius architecture. 3
2.2 Orchestrator’s main modules. 5
2.3 Intra- and inter-clouds connections. 5
2.4 Modular architecture of the network hypervisor. 6
2.5 Tenant host identification: host ID = <Switch port, DatapathId> 8

3.1 Example substrate network encompassing resources from multiple clouds. 11
3.2 Example of the embedding of a virtual network request (top) onto a multi-cloud sub-

strate network (bottom). The figure also illustrates the various constraints and the
resulting mapping after the execution of our MILP formulation. 14

3.4 (a) System architecture; (b) Virtual networks and substrate. 26
3.5 Data structures used in node mapping. 32
3.6 Acceptance ratio: percentage VNRs for which it was possible to find an embedding. . 35
3.7 Acceptance ratio: percentage VNRs for which it was possible to find an embedding. . 36
3.8 Embedding time taken by node mapping (100 nodes) 37
3.9 Embedding time taken by link mapping. 38
3.10 Simulations: average VNR revenue & total number of embedded links 39
3.11 Substrate creation time. 40
3.12 Substrate and virtual network creation times. 40
3.13 Intra- and inter-cloud throughput and latencies. 41

4.1 anchor general architecture . 45
4.2 Logically-centralized Security . 48
4.3 Control plane communication costs . 61
4.4 General architecture . 67
4.5 FLOW MOD latency (in log scale) . 71
4.6 Hashing primitives . 72
4.7 Implementations of hashing primitives . 73
4.8 MAC primitives . 74
4.9 Latency to generate keys . 75
4.10 SDN flow execution . 76
4.11 Control loop . 80
4.12 Fault-free case of the protocol . 81
4.13 Failure case 1 of the protocol . 82
4.14 Failure case 2 of the protocol . 83
4.15 Rama thread architecture . 85
4.16 Evaluation results . 87

5.1 SFC domain with its components . 91
5.2 Network Service Header protocol . 92
5.3 Security use case by Network Service Header . 92
5.4 Intent System description . 93

SUPERCLOUD D4.4 Page VI

D4.4 - Implementation of Self-Management of Network Security and Resilience

5.5 GBP Access Model . 93
5.6 GBP Access Model contract . 94
5.7 GBP Forwarding Model . 94
5.8 Interaction between GBP and SFC . 95
5.9 Policy Management and Enforcement Framework . 96
5.10 Experimental scenario: One ISP with three customers 98
5.11 Implementation time of mitigation policies . 102
5.12 With varying traffic rate, time required to deploy the rules to process the flows 103
5.13 Number of Packets that bypass during the implementation of block action at the ingress

switch . 103
5.14 Implementation time of QoS policies with different scenarios 104
5.15 Packet loss during the deployment of the policy . 104
5.16 Throughput of legitimate traffic going towards customer network after redirection. . . 105
5.17 Throughput of legitimate traffic in the case the traffic going towards C1 is redirected

through the low suspicious path. 106
5.18 Network jitter of legitimate traffic. 106

SUPERCLOUD D4.4 Page VII

D4.4 - Implementation of Self-Management of Network Security and Resilience

List of Tables

3.1 Policy grammar to define SecVNE parameters. 15
3.2 MILP formulation variables . 16
3.3 Auxiliary sets to facilitate the description of the constraints. 16
3.4 VNR configurations that were evaluated in the experiments. 21
3.5 VNR configurations that were evaluated. 35

4.1 STS: results of the single tests . 60
4.2 Traditional solutions versus anchor . 62
4.3 How Rama and Ravana achieve the same consistency properties using different mecha-

nisms . 83

5.1 Traffic generation: source and destination . 99
5.2 Path descriptions . 99
5.3 QoS Policies in different scenarios with varying number of switches in the path 101
5.4 Defined metrics to evaluate the prototype . 101

SUPERCLOUD D4.4 Page VIII

D4.4 - Implementation of Self-Management of Network Security and Resilience

Chapter 1 Introduction

The objective of SUPERCLOUD Work Package 4 (WP4) was to develop a platform that creates
a virtual network abstraction to the SUPERCLOUD user, spanning multiple heterogeneous Cloud
Service Providers (CSPs). For this purpose we followed a Software-Defined Networking [88] approach,
and proposed innovative solutions, including the enhancement of network virtualization with security
services, the design and implementation of resilient SDN infrastructures, and the introduction of
autonomic security management in virtual networks. Previously, we have focused on the design of
the SUPERCLOUD network virtualisation architecture and on prototyping its various components.
The preliminary architecture was presented in Deliverable D4.1. In Deliverable D4.2, we presented its
evolution alongside a detailed description of its main components and the techniques used to improve
the dependability, scalability, and security of the platform. In Deliverable D4.3, we presented the
proof-of-concept prototype of the multi-cloud network virtualisation infrastructure, and the APIs of
its main components.

1.1 Objective of the document

In this deliverable we present the overall architecture of the network virtualization platform, including
the final version of the description, implementation and evaluation of the core services and protocols
that were developed.

1.2 Outline

The rest of this document is organized as follows. In Chapter 2 we start with an overview of the
network virtualisation architecture. Then, in Chapter 3 we present the core component of the network
hypervisor: the embedding module. In particular, we address the problem of enhancing virtual net-
works with security, and achivieng it in a way that scales to large networks. Afterwards, we focus on the
security and dependability of the infrastructure, in Chapter 4. We describe our proposal of a logically
centralized security architecture, its use in enabling secure and efficient control plane communications,
and the design of a novel fault-tolerant SDN controller. In Chapter 5 we describe the autonomic
security management framework of the SUPERCLOUD network hypervisor. The deliverable closes
with a discussion on integration aspects and conclusions, in Chapter 6.

SUPERCLOUD D4.4 Page 1 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Chapter 2 Multi-Cloud Network Virtualization

Architecture

Current multi-tenant network hypervisors target single-provider deployments and traditional services,
such as flat L2 or L3 routing, as their goal is to enable tenants to use their existing cloud infrastructures.
Such single-cloud paradigm has inherent limitations in terms of scalability, security, and dependability,
which may potentially dissuade critical systems to be migrated to the cloud. For instance, a tenant
may want to outsource part of its compute and network infrastructure to a public cloud, but may not
be willing to trust the same provider to store its confidential business data or to run sensitive services,
which should stay in a more trusted environment (e.g., a private datacenter). To avoid cloud outages
disrupting its services – a type of incident increasingly common [61, 151] – the tenant may also wish
to spread its services across clouds, to avoid Internet-scale single points of failures.
To address this challenge, in SUPERCLOUD, we have developed Sirius, a multi-cloud network virtu-
alisation platform. Contrary to previous approaches, Sirius leverages a substrate infrastructure that
entails both public clouds and private datacenters. This brings several important benefits. First, it
increases resilience. Replicating services across providers avoids single points of failure and therefore
makes a tenant immune to any datacenter outage. Secondly, it can improve security, for instance
by exploring the interaction between public and private clouds. A tenant that needs to comply with
privacy legislation may demand certain data or specific services to be placed in trusted locations. In
addition, it can improve performance and efficiency. For example, the placement of virtual machines
may consider service affinity to reduce latencies. Dynamic pricing plans from multiple cloud providers
can also be explored to improve cost-efficiency [173]. The multi-cloud model has been successfully
applied in the context of computation [160] and storage [28] recently. To the best of our knowledge,
this is the first time the model is applied for network virtualisation.
In our platform, users can define virtual networks with arbitrary topologies, while making use of the
full address space. Sirius further improves over existing network virtualisation solutions by allowing
users to specify security and dependability requirements for all virtual resources. In this chapter, we
present the Sirius architecture.

2.1 General design and operation

Sirius allows an organization to manage resources belonging to multiple clouds, which can then be
transparently shared by various users (or tenants). Resources are organized as a single substrate
infrastructure, effectively creating the abstraction of a cloud that spreads over several clouds, i.e.,
a cloud-of-clouds [91]. In this chapter, the considered resources are interconnected virtual machines
(VM) that are either acquired from public cloud providers or are placed in local facilities (i.e., private
clouds). Envisioned extensions include other cloud resources, such as storage services.
Users can define virtual networks composed of a number of containers interconnected according to
an arbitrary topology. Sirius deploys these virtual networks on the substrate infrastructure, ensuring
isolation of the traffic by setting up separated datapaths (or flows). While specifying the virtual
network, it is possible to indicate several requirements for the nodes and links, for example with respect
to the needed bandwidth, security properties, and fault tolerance guarantees. These requirements
are enforced during embedding by laying out the containers at the appropriate locations, where the

SUPERCLOUD D4.4 Page 2 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

VM1

Network	Hypervisor	
SDN	controller	

VM1
Container	
Hypervisor	

VM1 VM1 VM1 Co
nt
ai
ne

r	

Container	
Hypervisor	

OvS	

Public	cloud	VM	manager	

Container	
Hypervisor	

GA
TE

W
AY

	

VM1
Container	
Hypervisor	

SECURE TUNNEL
Cloud provider 1 Cloud provider 2

Public	cloud	VM	manager	

VM1 VM1
Container	
Hypervisor	

VM1
Container	
Hypervisor	

Private cloud
SECURE TUNNEL

Mul7-Cloud	
Orchestrator	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

OvS	 OvS	 OvS	 OvS	 OvS	GRE TUNNEL GRE TUNNEL GRE TUNNEL

.	.	.
Vitual Network

of Tenant 1
Vitual Network

of Tenant N

VM VM

GA
TE

W
AY

	

GA
TE

W
AY

	VM VM VM
VM

Security	
monitoring	

Network	
security	

Service	
chaining	

Figure 2.1: Sirius architecture.

substrate infrastructure still has enough resources to satisfy the particular demands. In addition, the
datapaths are configured to follow adequate routes through the network.
In the rest of this section, we present the design of Sirius. First, we describe the architecture of the
platform and give a step-by-step overview of its operation while creating a virtual network. Next, we
elaborate on the two main components of Sirius, the network hypervisor and the cloud orchestrator.1

2.1.1 Architecture

The architecture of Sirius is displayed in Figure 2.1. The cloud orchestrator (Section 2.2.1) is respon-
sible for the dynamic creation of the substrate infrastructure by deploying the VMs and containers. It
also configures secure tunnels between gateway modules, normally building a fully connected topology
among the participating clouds. A gateway acts like an edge router, receiving local packets whose des-
tination is in another cloud and then forwarding them to its peer gateways, allowing data to be sent
securely to any container in the infrastructure. Intra-cloud communications between tenant containers
use GRE (Generic Routing Encapsulation) tunnels setup between the local VMs, to ensure isolation.
The network hypervisor (Section 2.2.2) runs as an application on top of a Software-Defined Networking
(SDN [88]) controller. It takes all decisions related to the placement of the virtual networks, and setups
the network paths by configuring software switches (Open vSwitch [120]) that are installed in all VMs
(along with OpenFlow [102] hardware switches that may exist in private clouds, not shown in the
figure). The hypervisor intercepts the control messages between the substrate infrastructure and the
users’ virtual networks, and vice-versa, thus enabling full network virtualisation.
The hypervisor was developed using a shared controller approach (the solution also adopted in [81]).
Alternative solutions, including OVX [8], assume one controller per tenant. Ours is a more lightweight
solution, as only one logically-centralized component is needed for all tenants. It is also simpler to
implement as it can take advantage of the high-level APIs offered by the SDN controller, instead
of having to deal with “raw” Openflow messages when interacting with the switches. Finally, this
architecture follows a fate-sharing design as the controller and the network hypervisor reside in the
same host. This facilitates replication for fault-tolerance.

1Like in the Sirius star system, our platform also has two companion components.

SUPERCLOUD D4.4 Page 3 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

The self-management security services run on top of the network hypervisor. They include a security
monitor to detect security incidents, a network security service that responds to these incidents, and
a service chaining component that allows users to compose their own security service chains. In
Section 2.3, we give an overview of each of these services.

2.1.2 Overview of Sirius operation

The deployment of a virtual network in the platform involves the execution of a few tasks.
Building the substrate infrastructure. The first task is to assemble the substrate infrastructure.
The administrator of Sirius within the organization needs to indicate the resources that are available to
build the infrastructure. She interacts with a graphical interface2 offered by the cloud orchestrator that
allows the selection of the cloud providers, the type and number of VMs that should be created, and the
provision of the necessary access credentials. The network topology is also specified, pinpointing for
instance the connections between clouds. For each provider, it is possible to specify a few attributes,
such as the associated trust level.
Based on such data, the orchestrator constructs the substrate infrastructure by interacting with the
cloud providers and by setting up the VMs. In each VM, a few skeleton containers are started with
minimal functionality. The gateways are also interconnected with the secure tunnels. The next step
is for the hypervisor to be initialized by obtaining, from the orchestrator, information about the
infrastructure. Then, it contacts each network switch to obtain data about the existing interfaces,
port numbers and connected containers. After populating the hypervisor’s internal data structures,
Sirius is ready to start serving the users’ virtual network (VN) requests.
Running virtual networks on-demand. The second task starts when a user of the organization needs to
run an application in the cloud. The user employs a graphical interface of the orchestrator to represent
a virtual network with the various containers that implement the application. Containers are then
interconnected with the desired (virtual) switches and links. Complete flexibility is given on the choice
of the network topology and addressing schemes. Attributes may be associated with the containers
and links, specifying particular requirements with respect to security and dependability. For example,
certain links may need to have backup paths to allow for fast fail-over, while certain containers may
only be deployed in clouds with the highest trust levels.
The orchestrator receives the VN request and forwards it to the hypervisor to perform the virtual
network embedding. The embedding algorithm decides on the location of the containers and network
paths considering all constraints, namely the available resources in the substrate infrastructure and
the security requirements. The computed mapping is transmitted to the orchestrator so that it can
be displayed upon request of the Sirius administrator. Hereafter, the orchestrator and the hypervisor
work in parallel to start the VN. The orchestrator downloads and initializes the containers images
in the chosen VMs, and configures the IP and MAC addresses based on the tenant’s request. The
hypervisor enables connectivity by configuring the necessary routes by setting up the flows in the
switches, while enforcing isolation between tenants.

2.2 Network virtualisation core components

2.2.1 Multi-cloud orchestrator

The main modules of the multi-cloud orchestrator are detailed in Figure 2.2. The multi-cloud or-
chestrator combines three main features. First, it manages interactions with users through a web-
based graphical interface. Users with administrator privileges can design the substrate infrastructure
topology (Admin GUI), indicating the kind of VMs that should be deployed in each cloud provider.
Similarly, normal users can represent virtual networks of virtual hosts (e.g., containers), and later

2The same sort of information can also be provided through configuration files, to simplify the use of scripts.

SUPERCLOUD D4.4 Page 4 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Multi-Cloud Orchestrator

Multi-cloud
Provision Topology

Storage

User & Cloud
Manager

Topology

Substrate
infrast.

Network
Updates

Hypervisor
Support

VM config
& bootstrap

Admin GUI

Public &
Private

Cloud VMs

User GUI
Virtual
Network

Topology
inform

Network
Hypervisor

VM & Container
Storage

Figure 2.2: Orchestrator’s main modules.

request their deployment (User GUI). The graphical interface also displays the mappings between the
containers and links in the substrate infrastructure and the status of the various components.
Second, it keeps information about the topologies of the substrate and virtual networks and their
mappings. This information is kept updated, as virtual networks are created and destroyed, thus
offering a complete view of how the infrastructure is currently organized. In addition, it maintains
in external storage a representation of the different networks that were specified, allowing their re-
utilization when users want to run similar deployments.
Third, it configures and bootstraps VMs in the clouds in cooperation with the network hypervisor and
setups the tunnels for the inter-cloud connections. Apart from that, when a virtual network is started,
it also initiates the containers in the VMs selected by the hypervisor. A storage of VM and containers
is kept locally, in case the users prefer to work and save the images within the organization.

C
lo

u
d

 B

C
lo

u
d

 A

Gateway VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
e

r

OvS

IPT IPT IPT

Gateway VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
e

r

OvS

IPT IPT IPT

Local VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
er

OvS

IPT IPT IPT

Internet

GRE Tunnel IPpriv
IPpriv

Secure tunnel

GRE Tunnel

IPpub
IPpub

Figure 2.3: Intra- and inter-clouds connections.

Figure 2.3 shows the main connections that are managed within the infrastructure. Gateways have
public IPs that work as endpoints of secure tunnels between the clouds. In our current implementation,
OpenVPN with asymmetric key authentication is employed as the default solution as it presents the

SUPERCLOUD D4.4 Page 5 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

advantage of being generic and independent from the provider’s gateway service (e.g. VPC service for
Amazon EC2). Links between VMs rely on GRE tunnels. We chose this simple approach as intra-
cloud communications are expected to run within a controlled environment and inter-cloud traffic is
protected by the secure tunnel. The containers use the IP addresses defined by the tenants (without
restrictions), and isolation is achieved by the network hypervisor properly configuring the switches’
flow tables (an aspect to be detailed in Section 2.2.2).

2.2.2 Hypervisor

The design of the hypervisor software follows a modular approach. We present its building blocks in
Figure 2.4.
The Embedder addresses the problem of mapping the virtual networks specified by the tenants into
the substrate infrastructure [60]. As soon as a virtual network request arrives, the secure Virtual
Network Embedding (VNE) module finds an effective and efficient mapping of the virtual nodes and
links onto the substrate network, with the objectives of minimizing the cost of the provider and
maximizing its revenue.
This objective takes into account, firstly, constraints about the available processing capacity of the
substrate nodes and of the available bandwidth resources on the links. Moreover, we consider security
and dependability constraints based on the requirements specified by the tenants to each virtual
resource. These constraints address, for instance, concerns about attacks on virtual machines or on
substrate links (e.g., replay/eavesdropping). As such, each particular node may have different security
levels, to guarantee for instance that sensitive resources are not co-hosted on the same substrate
resource as potentially malicious virtual resources. In addition, we consider the coexistence of resources
(nodes/links) in multiple clouds, both public and private, and assume that each individual cloud may
have distinct levels of trust from a user standpoint.

Multi-Cloud Network Hypervisor

sNet topology
specifier & config

sNet config

sNet topology
data collector

vNet topology
specifier & config

vNet config

vNet routingsecure VNE

Embedder

virtual-substrate
mapper

flows handler
network

monitoring

virtual-substrate
handler

packet-In
handler

components
isolation handler

Hypervisor core

Interfaces handler

External Interfaces

Figure 2.4: Modular architecture of the network hypervisor.

The Substrate Network (sNet) Configuration module is responsible for maintaining information
about the substrate topology. It performs two main functions. First, it retrieves information from the
orchestrator about the substrate nodes and links, alongside their security and dependability charac-
teristics. Second, it interacts with each switch to set itself as its master controller, and to collect more

SUPERCLOUD D4.4 Page 6 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

detailed information, including switch identifiers, port information (e.g., which ports are connected to
which containers), etc. This information is maintained in efficient data structures to speed up data
access.
The Virtual Network (vNet) Configuration module is responsible for maintaining information
about the virtual network topologies. This includes both storing tenant requests and the mapping
that results from the embedding phase. As the embedding module outputs only the substrate topology
that maps to the virtual network request, this module runs a routing algorithm to define the necessary
flow rules to install in the switches (without populating them, which is left for the next module).
The Hypervisor core module is configured as a controller module (in our case, Floodlight). Its
first component is the virtual-substrate mapper that, after interacting with the substrate topology
and virtual topology modules, requests a specific mapping to the embedder. When the VNE returns
successfully, the mapping is stored in specific data structures of the core module and this information
is shared with other interested modules (namely, the vNet configuration module).
The network monitoring component is responsible to detect changes in the substrate topology when a
reconfiguration occurs (e.g., due to failures in the substrate network). This module then sends requests
to the virtual-substrate handler to update its data structures accordingly. As ongoing work, we are
implementing mechanisms to respond to network changes.
Isolation is handled by several sub-modules, including the isolation handler, the packet-in handler and
the flows handler. These components’ goal is to guarantee that each tenant perceives itself as the only
user of the infrastructure. We currently use four main techniques for this purpose.

• First, as we have control over the entire infrastructure, from the network core to the edge, we
uniquely identify each tenants’ host by its precise location.

• Second, based on this unique identification and on the tenant ID we perform address translation
at the network edge from the tenant’s MAC to an ephemeral MAC address (eMAC) and install
the required flows based on the eMAC. For communication between all virtual nodes, a set of
flows is initially installed pro-actively by the flow handler module in such a way as to guarantee
isolation between tenants’ traffic. For efficiency reasons, flows are installed with predefined
timeouts. When a timeout expires 3 the flow is removed from the switches to save flow table
resources. If communication ensues between those nodes afterwards, the first packet of the flow
generates a packet-in that is sent to the hypervisor, triggering the packet-in handler to install
the required flows in switches.

• Third, we perform traffic isolation during the initial steps of communication, namely, by treating
ARP requests and replies.

• Finally, flow table isolation is guaranteed by each virtual switch having its own virtual flow
tables, with predefined size limits.

We detail these techniques further in the next section.

2.2.3 Virtualisation runtime: achieving isolation

The main requirement of our multi-tenant platform is to provide full network virtualisation. To achieve
this goal it is necessary to virtualize the topology and addressing, and to guarantee isolation between
tenants’ networks. Topology virtualisation is achieved in our system by means of the embedding
procedure already described. In this section, we focus on the other aspects.
Sirius allows tenants to configure their VMs with any L2 (Ethernet) and L3 (IP) addresses. Tenants
thus have complete autonomy to manage their address space. To achieve this goal and guarantee
isolation, we create a unique identifier for each tenant’s hosts based on their location. We then
perform edge-based translation of the host MAC address to an ephemeral MAC address that includes

3Which means a particular pair of nodes has not communicated during that period.

SUPERCLOUD D4.4 Page 7 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

this ID. Finally, we setup tunnels between every Open vSwitch (i.e., between every VM of the substrate
infrastructure).
An alternative solution that would also fulfill our requirements would be to setup tunnels between all
tenant’s hosts (in our solution this would mean setting up tunnels between containers). This would
avoid the need to maintain host location information and of edge-based translation. The problem with
this option is scalability. The number of tunnels would grow with the number of containers (i.e., with
the number of tenant’s hosts), whereas our solution scales much better, as it grows with the number
of provider VMs (in a production setting, each VM is expected to run hundreds or even thousands of
containers).
Uniquely identifying hosts. As explained, the tenant’s hosts of our solution are containers. We
opted for this operating system virtualisation technology as it provides functionality similar to a VM
but with a lighter footprint. Each container (i.e., each tenant’s host) has its own namespace (IP and
MAC addresses, name, etc.) and its own resources (processing capacity, memory), and as such can be
seen as a lightweight VM.

OvS 1
DatapathId 1:

00:00:d1:9e:1a:d7:b8:4d

2
1

3
…

p1

host ID (host location) Tenant

< 1, 00:00:d2:9e:1a:d7:b8:4d >

< 2, 00:00:d2:9e:1a:d7:b8:4d >

< 3, 00:00:d2:9e:1a:d7:b8:4d >

... ...

< p2, 00:00:e3:6a:18:33:b5:11 >

OvS 2
DatapathId 2:

00:00:e3:6a:18:33:b5:11

…

p2
…

...

TENANT N

TENANT 1

TENANT 2

1
2C

o
n

ta
in

er
 1

C
o

n
ta

in
er

 j

C
o

n
ta

in
er

 2
C

o
n

ta
in

er
 3

C
o

n
ta

in
er

 t

2

1

Figure 2.5: Tenant host identification: host ID = <Switch port, DatapathId>

To uniquely identify a tenant’s host, we use its network location. Each container is connected to a
specific software switch (identified by a DatapathID), being attached to a unique port. As such, we
use as hostID the tuple 〈switch port,DatapathId〉. Figure 2.5 shows an example.
Edge address translation. Packets generated in a virtual network cannot be transmitted unmodified
in the substrate network. As different tenants can use the same addresses, collisions could occur. For
this reason, we perform edge-based address translation to ensure isolation. We assign an ephemeral
MAC address – eMAC – at the network edge, to replace the host’s MAC address. The translation
occurs at the edge switch. Every time traffic originates from a container, its host MAC is converted
to the eMAC. Before the traffic arrives at the receiving container, the reverse operation occurs at the
edge switch. The eMAC is composed of a tenant ID and a shortened version of the hostID, unique per
tenant.
This mechanism guarantees isolation in the data plane. The control plane guarantees are provided by
the hypervisor, as it has network-wide control and visibility. For this purpose the hypervisor populates
the flow tables with two types of rules: translation rules in the edge switches, as just explained; and
forwarding rules that enable communication between all hosts from a single tenant.
ARP handling. Hosts use the ARP protocol to map an IP address to an Ethernet address. As we
want unmodified hosts to run in our platform, Sirius emulates the behavior of this protocol. When
an ARP message arrives at a switch, it is forwarded directly to the destination host. Flooding is
never needed as the switches are configured by the hypervisor. Even in those cases where the packet
arriving at the switch does not match any flow rule – because it has expired – a packet-in is sent to
the hypervisor, which populates the required tables with the necessary flow rules for the packet to be

SUPERCLOUD D4.4 Page 8 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

forwarded to the destination.
Flow table virtualisation. As forwarding tables have limited capacity, in terms of TCAM (Ternary
Content Addressable Memory) entries (hardware switches) or memory (software switches), in Sirius,
each tenant has a finite quota of forwarding rules in each switch. This is important because the
failure to isolate forwarding entries between users might allow one tenant to overflow the number of
forwarding rules in a switch and prevent others from inserting their flows. Our hypervisor maintains
a counter of the number of flow entries used per tenant switch, and ensures that a preset limit is not
exceeded.
The hypervisor controls the maximum number of flows allowed per tenant, in both physical and virtual
switches. This control is performed using the OpenFlow field cookie (an opaque data value that allows
flows to be identified). When the hypervisor inserts a new flow in a switch (which only occurs if the
limit was not exceeded), the cookie field is properly set to identify its tenant owner, and the counter
for the number of flows in this switch that belong to this particular tenant is incremented. When a
flow is removed, the hypervisor is informed, extracts from the cookie the tenant owner of the flow just
removed, and decrements the corresponding counter.

2.2.4 Additional implementation details

The Sirius network hypervisor is implemented in Java as a Floodlight controller module. The orches-
trator runs in an Apache Tomcat server. The client GUI is written in Javascript/ JQuery and uses
vis.js [3], an open-source library for network visualization. Communication between the HTTP client
and server is performed using Servlet technology.
We have deployed the Linux VMs and the Docker containers in three cloud infrastructures: Amazon
EC2 and Google Cloud Platform as public clouds, and a private platform based on a set of VMs
running in VirtualBox. In order to interconnect clouds, we use openvpn tunnels installed in each
gateway VM (as illustrated in Figure 2.1). To interconnect the OVS of each VM, we use GRE tunnels.
We manage the public cloud using Apache jclouds, a library that offers a simple interface to manage
VMs running in public clouds. More importantly, it supports a large number of cloud providers and
its generic API assures higher portability, which will facilitate future integration of other public clouds
into the substrate infrastructure.

2.3 Self-management network security

To enhance the security of tenants’ virtual networks, the hypervisor includes a self-management se-
curity module, composed of three components: security monitoring, network security, and service
chaining. The security monitoring component allows the detection of security incidents in a tenant
network hosted over a multi-cloud. For this purpose, it collects and processes information from these
infrastructures to have a complete view of the state of the network, enabling automatic response to
security incidents. These responses can be materialised by means of the network security component,
that manages and deploys network security policies automatically by interacting with the security
monitoring module. Finally, the service chaining component can be used as a response, and also to
allow users to customize the composition of security services.

Given this overview, we detail in the next chapters the main components of the SUPERCLOUD
network virtualization platform.

SUPERCLOUD D4.4 Page 9 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Chapter 3 Network Virtualization

In this chapter we present the core component of the network hypervisor: the embedding module.
In Section 3.1, we present our solution for the secure virtual network embedding problem: mapping
virtual network requests into the substrate infrastructure considering the security constraints required
by SUPERCLOUD tenants. The solution is formulated as a Mixed Integer Linear Program, which
due to its computational intractability does not scale to large networks. To address this challenge, in
Section 3.2 we propose a heuristic solution that scales well and yet achieves performance close to the
optimal, making it practical for large-scale deployments.

3.1 Secure Virtual Network Embedding

Network virtualization has emerged as a powerful technique to allow multiple heterogeneous virtual
networks to run over a shared infrastructure. Nowadays, a number of production-level platforms
have been proposed [81, 8], already achieving the necessary scale, performance, and required level of
service. This has allowed cloud operators to start extending their service offerings of virtual storage
and compute with network virtualization [81].
So far, these modern platforms have been confined to a datacenter, controlled by a single cloud
operator. This constraint can be an important barrier as more critical applications start shifting to
the cloud. To overcome this problem, the SUPERCLOUD network virtualization platform aims to
extend network virtualization across multiple cloud providers [9, 91], bringing a number of benefits
in terms of cost, performance, and versatility. In particular, a multi-cloud solution may contribute to
security from several perspectives. For example, a tenant1 that needs to comply with privacy legislation
can demand a certain container (or virtual machine) to remain at a specific place while the rest can
go to other facilities (e.g., some services of a healthcare application, such as the analysis of patient
medical images, can only be performed in pre-approved clouds). An application can also be made
immune to any single datacenter (or cloud availability zone) outage by spreading its services across
providers. Several incidents in cloud facilities are evidence of this increasingly acute risk [61, 151],
motivating the exploration of availability-enhancing alternatives (e.g., through replication over two
providers).
This section tackles a fundamental component in our network virtualization solution – the Virtual
Network Embedding (VNE) – from this new perspective. VNE addresses the problem of provisioning
the virtual networks specified by the tenants [60]. When a virtual network request arrives, the goal is to
find an effective mapping of the virtual nodes and links onto the substrate network, while maximizing
the revenue of the virtualization operator. This objective is subject to various constraints, such as the
processing capacity on the substrate nodes and bandwidth of the links.
A mostly unexplored perspective on this problem is providing security assurances. We propose a VNE
solution that considers security constraints based on indications from the tenants. These constraints
address, for instance, concerns about attacks on containers (e.g., covert channels) or on physical links
(e.g., replay/eavesdropping). To further extend the resiliency properties of our solution, we support
the coexistence of resources (nodes/links) in multiple clouds, both public and private, and assume that
each individual cloud may have distinct levels of trust from a user standpoint.

1We employ the terms user and tenant interchangeably.

SUPERCLOUD D4.4 Page 10 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

VM1 VM1 VM1

Co
nt

ai
ne

r

SECURE TUNNEL

Cloud provider 1 Cloud provider 2 Private cloud

Co
nt

ai
ne

r

VM

Co
nt

ai
ne

r

VM1 VM1

VM

Physical Machines

VM1

Physical Machine

VM1 VM1 VM1

Physical Machines

Modeling of the
above substrate
network

Trusted
Computing

e

d c Private Cloud
Trusted Public
 Cloud

Public Cloud

a b

CTR SWITCH

Co
nt

ai
ne

r

VM1

VM

Co
nt

ai
ne

r

CTR SWITCH CTR SWITCH

VM

Co
nt

ai
ne

r

CTR SWITCH

VM

Co
nt

ai
ne

r

CTR SWITCH

Co
nt

ai
ne

r

Container switch

Figure 3.1: Example substrate network encompassing resources from multiple clouds.

We evaluate our proposal against the most commonly used VNE alternative [96]. The results show
a better behavior of our approach in terms of acceptance rate of requests. Even when a reasonable
number of requests imposes security constraints, the performance decrease is limited. This is a direct
consequence of being harder to fulfill the requirements of the requests. With regard to resource
utilization, the approach makes an efficient use of the links and nodes made available in the substrate,
keeping a high average utilization.
The contributions of our work can be summarized as: (i) We formulate the SecVNE model and
solve it as a Mixed Integer Linear Program (MILP). The novelty of our approach is in considering
comprehensive security aspects over a multi-cloud deployment; (ii) We propose a new policy language
to specify the characteristics of the substrate network, and to allow the expression of user requirements;
(iii) We compare our formulation with the most commonly used VNE alternative [96], and analyze
various trade-offs related to embedding efficiency, costs and revenues.

3.1.1 Network model

Our multi-cloud network virtualization platform, Sirius, leverages Software Defined Networking (SDN)
to build a substrate infrastructure that spreads through both public clouds and private datacenters [9].
These resources can then be transparently shared by various users (or tenants) by allowing the defi-
nition and deployment of virtual networks (VN) composed of a number of containers arranged in an
arbitrary network topology. While specifying the virtual network, it is possible to indicate several
requirements for the switches and links, for example with respect to the needed bandwidth, CPU ca-
pacity, and security guarantees. These requirements are enforced during embedding by laying out the
containers at the appropriate locations, where the substrate infrastructure still has enough resources
to satisfy the particular demands. In addition, the datapaths are configured by the SDN controller by
configuring the forwarding rules in the switches.
For example, as illustrated in Figure 3.1, virtual machines (VM) might be acquired at specific cloud
providers to run tenants’ containers implementing distributed services. In this scenario, the most
relevant security aspects that may need to be assessed are the following:

• First, the trust level associated to a cloud provider is influenced by various factors, which may
have to be taken into consideration with more critical applications. Providers are normally
better regarded if they show a good past track record on breaches and failures, have been on the
market for a while, and advertise Service Level Agreements (SLAs) with stronger assurances for
the users. Moreover, as the virtualization operator has full control over its own data centers, he

SUPERCLOUD D4.4 Page 11 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

might employ protection features and procedures to make them compliant with regulations that
have to be fulfilled by tenants (e.g., the EU GDPR that enters in force in 2018).

• Second, VMs can be configured with a mix of defense mechanisms, e.g., firewalls and antivirus,
to build execution environments with stronger degrees of security at a premium price. These
mechanisms can be selected by the operator when setting up the VMs, eventually based on
the particular requirements of a group of tenants, or they could be sold ready to use by the
cloud providers (e.g., like in Amazon2 or Azure3 offerings). Highly protected VMs arguably give
more trustworthy conditions for the execution of the switch employed by the container manager,
ensuring correct packet forwarding among the containers and the external network (e.g., without
being eavesdropped or tampered with by malicious co-located containers).

• Third, the switches can also be configured with various defenses to protect the message traffic.
In particular, it is possible to setup tunnels between switches implementing alternative security
measures. For instance, if confidentiality is not a concern, then it is possible to add message au-
thentication codes (MAC) to packets to afford integrity but without paying the full performance
cost of encryption. Further countermeasures could also be added, such as denial of service detec-
tion and deep packet inspection to selected flows. In some cases, if trusted hardware is accessible
(such as Intel CPUs with SGX extensions in the private cloud), one could leverage from it to
enforce greater isolation while performing the cryptographic operations, guaranteeing that keys
would never be exposed.

The reader should notice that the above discussion would also apply to other deployment scenarios.
For example, the virtualization operator could offer VNs of virtual machines in distinct cloud providers,
which would mean that the relevant network appliances would be the switch utilized by the virtual
machine manager and the corresponding links interconnecting them.

Substrate Network Modeling. Given the envisioned scenarios, the substrate network is modeled
as a weighted undirected graph, composed of a set of nodes NS (e.g., switches/routers) and edges
ES connecting them, GS = (NS , ES , AS

N , A
S
E). Both the nodes and edges have attributes that reflect

their particular characteristics. The current collection of attributes resulted from conversations with
several companies from the healthcare and energy sectors that are moving their critical services to
the cloud, and they represent a balance among three goals: they should be (i) expressive enough to
represent the main security requirements when deploying virtual networks; (ii) easy to specify when
configuring a network, requiring a limited number of options; (iii) implementable with readily available
technologies.
The following attributes are considered for substrate nodes:

AS
N = {{cpuS(n), secS(n), cloudS(n)} | n ∈ NS}

The total amount of CPU that can be allocated for the switching operations of node n is given by
cpuS(n) > 0. Depending on the underlying machine capacity and the division of CPU cycles among
the various tasks (e.g., tenant jobs, storage, network), cpuS(n) can take a greater or smaller value.
The security level associated to the node is secS(n) ≥ 0. Nodes that run in an environment that
implements stronger protections will have a greater value for secS(n). The trustworthiness degree
associated with a cloud provider is indicated with cloudS(n) ≥ 0.
The substrate edges have the following attributes:

AS
E = {{bwS(l), secS(l)} | l ∈ ES}

2For example: Trend Micro Deep Security at aws.amazon.com/marketplace.
3For example: Check Point vSEC at azuremarketplace.microsoft.com.

SUPERCLOUD D4.4 Page 12 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

The first attribute, bwS(l) ≥ 0, corresponds to the total amount of bandwidth capacity of the substrate
link l. The security measures enforced by the link are reflected in secS(l) ≥ 0. If the link implements
tunnels that ensure integrity and confidentiality (by resorting to MACs and encryption) then it will
have a higher secS(l) than a default edge that simply forwards packets.

Virtual Network Modeling. VNs have an arbitrary topology and are composed of a number of
nodes and the edges that connect them. When a tenant wants to instantiate a VN, besides indicating
the nodes’ required processing capacity and bandwidth for the links, she/he may also include as
requirements security demands. These demands are defined by specifying security attributes values
associated with the resources.
In terms of modeling, a VN is also modeled as a weighted undirected graph, GV = (NV , EV , AV

N , A
V
E),

composed by a set of nodes NV and edges (or links) EV . Both the nodes and edges have attributes
that portray characteristics that need to be fulfilled when embedding is performed. Both AV

N and AV
E

mimic the attributes presented for the substrate network. The only exception is an extra attribute
that allows for the specification of security requirements related to availability.
The attribute availV (n) indicates that a particular node should have a backup replica to be used as
a cold spare. This causes the embedding to allocate an additional node and the necessary links to
connect it to the other nodes. These resources will only be used in case the virtualization platform
detects a failures in the primary (or working) node / links. availV (n) defines where the backup of
virtual node n should be mapped. Typically, it would take value 0 if no backup is necessary. If virtual
node n should have the backup placed in the same cloud then availV (n) = 1. If n should have a
backup in another cloud (e.g., to survive cloud outages), then availV (n) = 2.

Virtual Network Request. VNRs are defined by the tenants of the system. They are modeled as
a VN with two additional parameters, V NRV = (NV , EV , AV

N , A
V
E , T ime

V , DurV), where TimeV

is the arrival time of the VNR and DurV is the interval of time during which the VN is valid.

3.1.2 Secure Virtual Network Embedding Problem

Our approach to VNE enables the specification of VNs to be mapped over a multi-cloud substrate,
enhancing the security and flexibility of network virtualization. More precisely, we can define the
Secure Virtual Network Embedding (SecVNE) problem as follows:

SecVNE problem: Given a virtual network request with resources and security demands, GV , and a
substrate network GS with the resources to serve incoming VNRs, can GV be mapped to GS ensuring
an efficient use of resources while satisfying the following constraints? (i) Each virtual edge is mapped
to the substrate network meeting the bandwidth and security constraints; (ii) Each virtual node is
mapped to the substrate network meeting the CPU capacity and security constraints (including node
availability and cloud trust domain requirements).

Our approach handles the SecVNE problem, mapping a VN onto a substrate network respecting all
constraints. When a VNR arrives, the optimal embedding is searched for to decrease the costs, i.e.,
reduce the total quantity of substrate resources allocated to it. It can happen that there are not
enough substrate resources available at a certain instant, and in that case the incoming request has
to be rejected. In order to increase the acceptance rate, we will allocate resources that are at least
as secure as the ones specified in the VNR. This means that a VN might end up being mapped onto
substrate resources deemed “more secure” than what is required. We find this option an acceptable
trade-off as the alternative would cause resources to be under utilized if for instance during a period
tenants only had VNRs with weak security demands. If it is possible to solve SecVNE for a request,
then the asked resources will be consumed from the substrate for the period DurV defined in the
VNR.
Figure 3.2 illustrates the result of embedding a VNR (displayed on top) onto the substrate of Figure 3.1
(represented at the bottom). The VNR has node 1 that requires a medium level of security (secV (1) =

SUPERCLOUD D4.4 Page 13 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Substrate
Network

1 2 Virtual
Network Request

Virtual
Network

d
c

Trusted
Private Cloud

Trusted Public
 Cloud

Public Cloud

a
b

1

2

e
2

(200, 5, 5)

(70, 3, 3)

(100, 3, 3)
(80,1, 1)

(80, 3, 1)

(20, 2)
(100, 2)

(30, 3)

(30, 3)

(100, 2)

(4, 2)

(2, 3, 1, 0) (3, 3, 2, 1)

- Virtual node with attributes (cpu, sec, cloud, avail) - Substrate node with attributes (cpu, sec, cloud)

- Virtual edge with attributes (bw, sec) - Substrate edge with attributes (bw, sec)

- Mapping of virtual edge to primary substrate edge

- Mapping of virtual edge to backup substrate edge

Legend:

- Meta link connecting virtual to substrate nodes

Figure 3.2: Example of the embedding of a virtual network request (top) onto a multi-cloud substrate
network (bottom). The figure also illustrates the various constraints and the resulting mapping after
the execution of our MILP formulation.

3) on a default trust cloud (cloudV (1) = 1). The other node needs to be replicated (availV (2) = 1),
in such a way that the primary and backup are in different clouds. It has a similar security demand
(secV (2) = 3) but asks for more trusted clouds (cloudV (2) = 2).
The chosen embedding guarantees that all requirements are satisfied. Node 1 is mapped on the left
public cloud to a substrate node with a security level equal to the one requested (secS(b) = 3 and
cloudS(b) = 1). The other virtual node is embedded on more trustworthy clouds (with respectively
cloudS(c) = 3 and cloudS(e) = 5). It is also possible to observe that one of the substrate paths (the
primary/working) corresponds to more than one substrate edge (e.g., edge (b, d) plus (d, c)), but all
with the necessary security level (2 in this case). The figure also displays meta-links that connect the
virtual nodes to the substrate nodes where they are mapped (e.g., line between 1 and b). This is an
artifact in our modeling that is going to be explored in the MILP formulation.

3.1.3 A Policy Language to Specify SecVNE

Currently, we support two alternative ways for a user to indicate the information necessary to solve
the SecVNE problem, namely give a description of the substrate network and the VNRs. The first is
based on a graphical interface where the user can draw arbitrary substrates, with nodes and links and
the associated attributes. The tenants can then depict the VNRs, which are then embedded into the
substrate by our solution.
The other approach is based on a policy language that lets the user describe both the substrate and
VNRs in a computer friendly manner, allowing scripts and tools to process them. The production
rules of the grammar were kept relatively simple, but the achieved level of expressiveness is greater
than what is attained with the graphical interface. As the characteristics of the substrate and VNRs
are distinct, we explain them separately.
The substrate part of SecVNE policy grammar (top rows of Table 3.1) enables the listing of resources
that compose the substrate. There are only functions and values to represent the current status of the
network. For example, the leftmost cloud of the Figure 3.2 is specified as:

substrate→ cpuS(a) = 80 & secS(a) = 1 & cloudS(a) = 1 &
cpuS(b) = 80 & secS(b) = 3 & cloudS(b) = 1 &
bwS(a, b) = 100 & secS(a, b) = 2 & ...

SUPERCLOUD D4.4 Page 14 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Substrate Specification

S → funcS(parameter) = valuenum

S → S & S

Virtual Network Specification

V → funcV (parameter) = valuenum

V → funcV (parameter) ≥ valuenum
V → !V ; (V); V & V ; V | V

Table 3.1: Policy grammar to define SecVNE parameters.

In the virtual part of SecVNE policy grammar (bottom rows of Table 3.1), the relations dictate the
requirements for each node and link of the VNR. As the grammar supports boolean operations, such
as or (”|”), and (”&”), and not (”!”), it is possible to express alternative constraints for the resources.
When processing a VNR containing a VN with several optional demands, we generate all possible
requests that would satisfy the tenant. Then, we evaluate each one and select the solution with lowest
cost. There are two main benefits of this approach: (i) the acceptance rate grows because a request
may be mapped in more ways; (ii) the tenants can explore different trade offs with respect to security
(e.g., replication is only necessary if clouds are not highly trusted).
As an example, consider the following VN with two nodes and one edge:

V N → (CPUV (1) = 2 & secV (1) = 3 & cloudV (1) > 1 &
availV (1) = 0) & (CPUV (2) = 3 & availV (2) = 1 &
((secV (2) > 1 & cloudV (2) > 4) | (secV (2) > 4 & cloudV (2) > 1))) &
bwV (1, 2) = 4 & secV (1, 2) = 2

Node 1 needs to have security degree o 3 but the cloud trustworthiness can be 1 or more. For
node 2 there is a compromise between node security and the degree of cloud trust, establishing two
acceptable options where either of the attributes needs to have a higher value (secV (2) or cloudV (2)
should be larger or equal to 4). In this case, the VNR would be converted into two requests, the
first with the constraint (secV (2) > 1 & cloudV (2) > 4) (plus others attributes) and the other with
(secV (2) > 4 & cloudV (2) > 1) (plus other attributes).

3.1.4 MILP formulation

We have developed a MILP formulation to solve the SecVNE problem. The section starts by explaining
the decision variables used in the formulation, the objective function, and finally the constraints
required to model the problem.

3.1.4.1 Decision variables

Table 3.2 presents the variables that are used in our MILP formulation. Briefly, wf i,jp,q, bf
i,j
p,q, wl

i,j
p,q

and bli,jp,q are related to working and backup links; wni,p and bni,p are associated with the working and
backup nodes; wci,c and bci,c are related to the location of virtual node embedding in clouds.
The formulation also employs a few auxiliary sets whose value depends on the VNR, as shown in

Table 3.3. For example, N
V

= ∅ means that no virtual node requires a backup. When this happens,
we only model a working network in the substrate, making every backup related decision variable

(bf i,jp,q, bl
i,j
p,q, bni,p, bci,c) become 0. On the other hand, if N

V 6= ∅, then we model both a working and
a backup network in the substrate. In this case, the decision variables take different values depending
on the tenant request. If the virtual node i has availV (i) = 0, indicating that there is no need to

SUPERCLOUD D4.4 Page 15 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Symbol Meaning

wf i,j
p,q > 0

The amount of working flow, i.e., bandwidth, on the physical link
(p,q) for the virtual link (i,j)

bf i,j
p,q > 0

The amount of backup flow, i.e., backup bandwidth, on the phys-
ical link (p,q) for the virtual link (i,j)

wli,jp,q ∈ {0, 1}
Denotes whether the virtual link (i,j) is mapped onto the physical
link (p,q). (1 if (i,j) is mapped on (p,q), 0 otherwise)

bli,jp,q ∈ {0, 1}
Denotes whether the backup of virtual link (i,j) is mapped onto
the physical link (p,q). (1 if backup of (i,j) is mapped on (p,q),
0 otherwise)

wni,p ∈ {0, 1}
Denotes whether virtual node i is mapped onto the physical node
p. (1 if i is mapped on p, 0 otherwise)

bni,p ∈ {0, 1}
Denotes whether virtual node i ’s backup is mapped onto the phys-
ical node p. (1 if i ’s backup is mapped on p, 0 otherwise)

wci,c ∈ {0, 1}
Denotes whether virtual node i is mapped on cloud c. (1 if i is
mapped on c, 0 otherwise)

bci,c ∈ {0, 1}
Denotes whether virtual node i ’s backup is mapped on cloud c.
(1 if i ’s backup is mapped on c, 0 otherwise)

Table 3.2: Domain constraints (decision variables) used in the MILP formulation.

N̊V = { i ∈ NV : availV (i) = 0 }
N

V
= NV \ N̊V

E̊V = { (i, j) ∈ EV : availV (i) = 0 and availV (j) = 0 }
E

V
= EV \ E̊V

Table 3.3: Auxiliary sets to facilitate the description of the constraints.

replicate, then both the working and the backup nodes of i are placed in the same substrate node
p (i.e., wni,p = bni,p = 1), but the backup does not consume resources (e.g., CPU). When a virtual
node j has availV (j) > 0, it is necessary to locate the working and backup in different substrate
nodes, belonging eventually to distinct clouds. Here, the backup will reserve the resources to be able
to substitute the primary in case of failure.

3.1.4.2 Objective Function

The objective function wants to minimize three aspects (see Eq. 3.1): 1) the sum of all computing
costs, 2) the sum of all communication costs, and 3) the overall number of hops of the substrate paths
for the virtual links. Since these objectives are measured in different units, we resort to a composite
function, which can be parametrized and used to compute different solutions (others approaches could
be used, see Steuer [149]). Thus, the formulation is based on a weighted-sum function with three
different coefficients, β1, β2, and β3, which should be reasonably parameterized for each objective.

SUPERCLOUD D4.4 Page 16 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

min β1

[∑
i∈NV

∑
p∈NS

cpuV (i) secS(p) cloudS(p) wni,p

+
∑
i∈NV

∑
p∈NS

cpuV (i) secS(p) cloudS(p) bni,p

]
+ β2

[∑
(i,j)∈EV

∑
(p,q)∈ES

αp,q secS(p, q) wf i,jp,q

+
∑

(i,j)∈EV

∑
(p,q)∈ES

αp,q secS(p, q) bf i,jp,q

]
+ β3

[∑
(i,j)∈EV

∑
(p,q)∈ES

wli,jp,q +
∑

(i,j)∈EV

∑
(p,q)∈ES

bli,jp,q

]
(3.1)

The first part of Eq. 3.1 covers the computing costs, including both the working and backup nodes
(top 2 lines). The second part is the sum of all working and backup link bandwidth costs (lines 3-4).
The last part of the objective function achieves the third goal presented above. The equation considers
the level of security of the substrate resources, where the selection of higher security incurs in increased
costs. Likewise, the costs are proportional to the trust associated with the cloud where the resource
is located. To address the possibility that substrate edges connecting two distinct clouds might have
a different cost (monetary, delay, or other) than links inside a cloud, we have added a multiplicative
parameter αp,q. This parameter is a weight for each physical link that may assume a different value
depending on whether (p,q) is a inter-cloud edge (connection between two clouds) or an intra-domain
link (connection inside a cloud).
Intuitively, this objective function attempts to economize the most “powerful” resources (e.g., those
with higher security levels) for VNRs that explicitly require them. Therefore, for instance, virtual
nodes with secV = 1 will be mapped onto substrate nodes with secS = 2 if and only if there are no
other substrate nodes with secS = 1 available.

3.1.4.3 Security Constraints

Below are enumerated the constraints related to the security of nodes, edges, and clouds:

wni,p secV (i) 6 secS(p), ∀i ∈ NV , p ∈ NS (3.2)

bni,p secV (i) 6 secS(p), ∀i ∈ NV , p ∈ NS (3.3)

wli,jp,q secV (i, j) 6 secS(p, q), ∀(i, j) ∈ EV , (p, q) ∈ ES (3.4)

bli,jp,q secV (i, j) 6 secS(p, q), ∀(i, j) ∈ EV , (p, q) ∈ ES (3.5)

wni,p cloudV (i) 6 cloudS(p), ∀i ∈ NV , p ∈ NS (3.6)

bni,p cloudV (i) 6 cloudS(p), ∀i ∈ NV , p ∈ NS (3.7)

These constraints guarantee that a virtual node is only mapped to a substrate node that has a security
level equal or greater than its demand (Eq. 3.2). They also ensure the same for backup nodes (Eq.
3.3). The following two equations force each virtual edge to be mapped to (one or more) physical
links that provide a larger or equivalent security level as the request. This is true for links connecting
the primary nodes and the backups. The last constraints ensure that a virtual node i is mapped to a
substrate node p only if the cloud where p is located has a trust level equal or greater than the cloud
demanded by i (both for working and backups — Eq. 3.6 and 3.7).

SUPERCLOUD D4.4 Page 17 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

3.1.4.4 Mapping Constraints

Node Embedding: We force each virtual node to be mapped to exactly one working substrate node,
and if requested, to a single backup substrate node (Eq. 3.8 - 3.9). We also have to guarantee that (i)
a substrate node only receives at most a virtual node (Eq. 3.10 - 3.12); (ii) however, as explained in
Section 3.1.4.1, if the virtual node requires no replicas then its working and backup must be mapped
onto the same substrate node (Eq. 3.13 - 3.14).∑

p∈NS

wni,p = 1, ∀i ∈ NV (3.8)

∑
p∈NS

bni,p = 1, ∀i ∈ NV
(3.9)

∑
i∈NV

wni,p 6 1, ∀p ∈ NS (3.10)

∑
i∈NV

wni,p + bnj,p 6 1, ∀j ∈ NV
, p ∈ NS (3.11)

∑
i∈NV \{j}

bni,p + bnj,p 6 1, ∀j ∈ NV , p ∈ NS (3.12)

bni,p 6 wni,p, ∀i ∈ N̊V , p ∈ NS (3.13)∑
i∈NV

wni,p + bnj,p 6 2, ∀j ∈ N̊V , p ∈ NS (3.14)

The next constraints create relationships among the nodes and flows.

wli,jp,q bwV (i, j) > wf i,jp,q, ∀(i, j) ∈ EV , (p, q) ∈ ES (3.15)

bli,jp,q bwV (i, j) > bf i,jp,q, ∀(i, j) ∈ EV , (p, q) ∈ ES (3.16)

wli,jp,q = wli,jq,p, ∀(i, j) ∈ EV , p, q ∈ NS ∪NV (3.17)

bli,jp,q = bli,jq,p, ∀(i, j) ∈ EV , p, q ∈ NS ∪NV (3.18)∑
p∈NS

(wni,p doesItBelongp,c) > wci,c, ∀i ∈ NV , c ∈ C (3.19)

∑
p∈NS

(bni,p doesItBelongp,c) > bci,c, ∀i ∈ NV , c ∈ C (3.20)

Eq. 3.15 ensures that if there is a flow between nodes p and q for a virtual edge (i, j), then this means
that (i, j) is mapped to the substrate link whose end-points are p and q. For example, if wf i,jp,q 6= 0
then wli,jp,q = 1. The next equation achieves the same goal but for the backup. We also include two
binary constraints to force the symmetric property for the binary variables related with links (Eq.
3.17 - 3.18). In a similar fashion, we also need to establish a relation between the virtual nodes and
the clouds where they are embedded (both for working and backups) (Eq. 3.19 - 3.20). Namely, if
virtual node i is mapped onto a substrate node p and p belongs to cloud c, then i is mapped on cloud
c. Parameter doesItBelongp,c is 1 if substrate node p belongs to cloud c, and 0 otherwise.
Since we allow the tenant to choose between having no replication, or replication in one cloud or across
different clouds, it is necessary to specify these constraints. First, we require each virtual node to be
mapped to exactly one cloud (working or backup, Eq. 3.21 - 3.22). Parameter wantBackup assumes
value 1 if a backup is needed for at least one of the nodes of a VNR or value 0 otherwise. Second, we
must restrict the location of the working and backup nodes to the same or distinct clouds, depending

SUPERCLOUD D4.4 Page 18 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

on the value of the availability attribute (availV (i)) (Eq. 3.234).∑
c∈C

wci,c = 1, ∀i ∈ NV (3.21)∑
c∈C

bci,c = wantBackup, ∀i ∈ NV (3.22)

|wci,c wantBackup − bci,c| = (availV (i)− 1) ×
(wci,c wantBackup+ bci,c), ∀i ∈ NV , c ∈ C (3.23)

Link Embedding: These constraints are related to the mapping of virtual links into the substrate.
They take advantage of the meta link artifact (recall Figure 3.2), which connects a virtual node i to
the substrate node p where it is mapped, to enforce a few restrictions.

wni,p bwV (i, j) = wf i,ji,p , ∀ (i, j) ∈ EV , p ∈ NS (3.24)

wnj,q bwV (i, j) = wf i,jq,j , ∀(i, j) ∈ E
V , p ∈ NS (3.25)

bni,p bwV (i, j) = bf i,ji,p wantBackup, ∀(i, j) ∈ EV , p ∈ NS (3.26)

bnj,q bwV (i, j) = bf i,jq,j wantBackup, ∀(i, j) ∈ EV , q ∈ NS (3.27)∑
j,k!=i j,k∈NV

wf j,ki,p + wf j,kp,i + bf j,ki,p + bf j,kp,i = 0, ∀i ∈ NV , p ∈ NS (3.28)

These constraints guarantee that the working flow of a virtual link (i, j) always departs from i and
arrives to j, passing through the corresponding substrate nodes (p and q) (Eq. 3.24 and 3.25). The
next two equations compel the same requirement for the backup nodes. Notice that even though the
backup path is only used if the working substrate path fails, we reserve the necessary resources during
embedding to make sure they are available when needed. Eq. 3.28 forces meta-links to carry only
working or backup traffic to their correspondent virtual nodes. This means that, if a virtual node 1
needs to send information to virtual node 2, the data does not need to pass through the meta-links of
a virtual node 3.
The next equations specify flow conservation restrictions at the nodes.∑

p∈NS

wf i,ji,p −
∑
p∈NS

wf i,jp,i = bwV (i, j), ∀(i, j) ∈ EV (3.29)

∑
p∈NS

wf i,jj,p −
∑
p∈NS

wf i,jp,j = −bwV (i, j), ∀(i, j) ∈ EV (3.30)

∑
p∈NS∪NV

wf i,jq,p −
∑

p∈NS∪NV

wf i,jp,q = 0, ∀(i, j) ∈ EV , q ∈ NS (3.31)

∑
p∈NS

bf i,ji,p −
∑
p∈NS

bf i,jp,i = bwV (i, j) wantBackup, ∀(i, j) ∈ EV (3.32)

∑
q∈NS

bf i,jj,q −
∑
q∈NS

bf i,jq,j = −bwV (i, j) wantBackup, ∀(i, j) ∈ EV (3.33)

∑
p∈NS∪NV

bf i,jq,p −
∑

p∈NS∪NV

bf i,jp,q = 0, ∀(i, j) ∈ EV , q ∈ NS (3.34)

Eq. 3.29, 3.30 and 3.31 refer to the working flow conservation conditions, which denote that the
network flow to a node is zero, except for the source and the sink nodes, respectively. In an analogous
way, the following three equations refer to the backup flow conservation conditions (Eq. 3.32, 3.33 and
3.34). The next constraints guarantee the same bandwidth in both directions. The first two equations

4Notice that in the implementation, the modulus function had to be linearized because it is not allowed with variables
as parameters.

SUPERCLOUD D4.4 Page 19 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

for working and backups separately (Eq. 3.35 - 3.36) and the others in case there are relations between
them (Eq. 3.37 - 3.38).

wf i,jp,q = wf j,iq,p, ∀(i, j) ∈ EV , p, q ∈ NS ∪NV (3.35)

bf i,jp,q = bf j,iq,p, ∀(i, j) ∈ EV , p, q ∈ NS ∪NV (3.36)

wf i,jp,q = bf i,jp,q, ∀(i, j) ∈ E̊V , p, q ∈ NS (3.37)

wf j,ip,q = bf j,ip,q, ∀(i, j) ∈ E̊V , p, q ∈ NS (3.38)

Nodes and Links Disjointness: Since any substrate node or link of a working path can fail, we have to
ensure that paths connecting the backups of the virtual nodes are disjoint from the substrate resources
that are being used for the working part (otherwise a single failure could compromise both paths).
The auxiliary binary variables workingp,q and backupp,q define if a physical link (p, q) belongs to the
working or backup networks in the substrate.

workingp,q 6 1− backupp,q, ∀(p, q) ∈ ES (3.39)

wli,jp,q 6 workingp,q, ∀(i, j) ∈ EV , (p, q) ∈ ES (3.40)

bli,jp,q 6 backupp,q, ∀(i, j) ∈ E
V
, (p, q) ∈ ES (3.41)

First, we require disjointness between the working and backup parts (Eq. 3.39). Second, we guarantee
that if the working path of a virtual edge (i, j) is mapped onto a substrate link (p, q), then (p, q) needs
to be in the working part. Similarly, we constraint the backups (Eq. 3.40 - 3.41).

3.1.4.5 Capacity Constraints

Node Capacity Constraints: Virtual nodes from different VNRs can be mapped to the same substrate
node. For instance, a substrate node can receive both a working node of a virtual node i from a VNR
x and a backup node of a virtual node j from a VNR y. Lets call NV the set of all virtual nodes
belonging to every VNR that is at this moment mapped onto the substrate and i ↑ p to indicate that
virtual node i is hosted on the substrate node p. Then, the residual capacity of a substrate node,
RN (p), is defined as the currently available CPU capacity of the substrate node p ∈ NS .

RN (p) = cpuS(p)−
∑
∀i↑p

cpuV (i), i ∈ NV

For a substrate node, it is necessary to ensure that we never allocate more than the residual capac-
ity when carrying out a new embedding. This needs to take into consideration both the resources
consumed by the working and backups (Eq. 3.42).∑

i∈NV

wni,p cpuV (i) +
∑
j∈NV

bnj,p cpuV (j) 6 RN (p), ∀p ∈ NS (3.42)

Link Capacity Constraints: Similarly, substrate links can also map virtual edges from different VNRs.
Lets define EV as the set of all virtual edges of every VNR currently mapped onto the substrate and
(i, j) ↑ (p, q) denote that the flow of the virtual link (i, j) traverses the substrate link (p, q). The
residual capacity of a substrate link, RE(p, q), is defined as the total amount of bandwidth available
on the substrate link (p, q) ∈ ES .

RE(p, q) = bwS(p, q)−
∑

∀(i,j)↑(p,q)

bwV (i, j), (i, j) ∈ EV

The following constraint ensures that the allocated capacity of a substrate link should be less than the
residual capacity of that physical link, taking into consideration both the working and backup parts.∑

(i,j)∈EV

wf i,jp,q +
∑

(i,j)∈EV

bf i,jp,q 6 RE(p, q), ∀(p, q) ∈ ES (3.43)

SUPERCLOUD D4.4 Page 20 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Notation Algorithm description

NS+NA SecVNE with no security or availability requirements for VNs

10S+NA
SecVNE with VNRs having 10% of their resources (nodes and links) with
security requirements (excluding availability)

20S+NA
Similar to 10S+NA, but with security requirements (excluding availability)
for 20% of the resources

NS+10A
SecVNE with no security requirements, but with 10% of the nodes request-
ing replication for increased availability

NS+20A Similar to NS+10A, but with 20% of the nodes asking for replication

20S+20A
SecVNE with 20% of the resources (nodes and links) with security require-
ments and 20% of the nodes with replication

D-ViNE VNE MILP model presented in [96]

Table 3.4: VNR configurations that were evaluated in the experiments.

3.1.5 Evaluation

This section presents performance results of our solution in random and Waxman network topologies 5

and in diverse VNR settings. The simulations show promising results as our solution was able to show
high acceptance rates and substrate resource utilizations across the various experiments.

3.1.5.1 Experimental Setup

We have extended a simulator [1] to evaluate the embedding when processing the dynamic arrival of
VNRs to a system. To create the substrate networks we resorted to the GT-ITM tool [170]. Two kinds
of networks were utilized: one based on random topologies, where every pair of nodes is randomly
connected with a probability between 25% and 30%; and the other employing the Waxman model to
link the nodes with a probability 50% [105].
Substrate networks have a total of 25 nodes. CPU and bandwidth (cpuS and bwS) of nodes and links
is uniformly distributed between 50 and 100. These resources are also uniformly associated with one
of three levels of security (secS ∈ {1.0, 1.2, 5.0}). The rationale for these values is to achieve a good
balance between the diversity of security levels and their monetary cost. We performed an analysis of
the pricing schemes of Amazon EC2 and Microsoft Azure for plain and secure VMs. It was possible
to observe a wide range of values depending on the included defenses. For example, while an EC2
instance that has container protection is around 20% more expensive than a normal instance (hence
our choice of 1.2 for the intermediate level of security), the cost of instances that offer threat prevention
or encryption is at least 5 times greater (our choice for the highest level of security).
The substrate nodes are also uniformly divided among three clouds, each one with a different security
level (cloudS ∈ {1.0, 1.2, 5.0}), which are justified along the same line of reasoning. The goal is to
represent a setup that includes a public cloud (lowest level), a trusted public cloud, and a private
datacenter (assumed to offer the highest security).
VNRs have a number of virtual nodes uniformly distributed between 2 and 46. Pairs of virtual
nodes are connected with a Waxman topology with probability 50%. The CPU and bandwidth of
the virtual nodes and links are uniformly distributed between 10 and 20. Several alternative security
and availability requirements are evaluated, as shown in Table 3.4. We assume that VNRs arrivals
(TimeV) are modeled as a Poisson process with an average rate of 4 VNRs per 100 time units. Each
VNR has an exponentially distributed lifetime (DurV) with an average of 1000 time units.

5A Waxman topology is a variant of the classical Erdos-Renyi random graph that includes network-specific char-
acteristics, such as placing the nodes on a plane and using a probability function to interconnect two nodes which is
parametrized by their distance.

6Notice that a node corresponds to a switch, which can connect many hundreds of containers in a large VM (recall
Figure 3.1). Therefore, a VNR with 4 nodes can easily link together in the order of a thousand of containers.

SUPERCLOUD D4.4 Page 21 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

The MILPs are solved using the open source library GLPK [63]. In the objective function, we set
β1 = β2 = β3 = 1 to balance evenly the cost components (Eq. 3.1). Parameter α was also set to 1
because our pricing analysis showed negligible differences in cost between intra- and inter-cloud links
in most of the relevant scenarios. We setup 20 experiments, each with a different substrate topology
(10 random and 10 Waxman). Every experiment ran for 50 000 time units, during which embedding is
attempted for a group VNRs (10 sets of 2 000 VNRs were tested). The order of arrival and the capacity
requirements of each VNR are kept the same in each of the configurations of Table 3.4, ensuring that
they solve equivalent problems.
In the evaluation, we compared our approach with the algorithm D-ViNE [96]. D-ViNE was chosen
because it has been considered as the baseline for many VNE works and due to the availability of its
implementation as open-source software. D-ViNE requirements are only based on CPU and bandwidth
capacities, while our algorithm adds to these requirements also security demands, including availability
needs, and cloud preferences.

3.1.5.2 Metrics

We used several performance metrics for the evaluation:
– VNR acceptance ratio: the percentage of accepted requests (i.e., the number of accepted VNRs
divided by the total number of VNRs);
– Node stress ratio: average load on the substrate nodes (i.e., average over all nodes of the percentage
of CPU that is in use);
– Link stress ratio: average load on the substrate links (i.e., average over all edges of the percentage
of bandwidth that is in use);
– Average revenue by accepting VNRs: One of the main goals of VNE is to maximize the profit of the
virtualization provider. For this purpose, and similar to [96, 169], the revenue generated by accepting
a VNR is proportional to the value of the acquired resources. As such, in our case, we take into
consideration that stronger security defenses will be charged at a higher (monetary) value. Therefore,
the revenue associated with a VNR is:

R(VNR) = λ1

∑
i∈NV

[1 + ϕ1(i)] cpuV (i) secV (i) cloudV (i) +

λ2

∑
(i,j)∈EV

[1 + ϕ2(i, j)] bwV (i, j) secV (i, j),

where λ1 and λ2 are scaling coefficients that denote the relative proportion of each revenue component
to the total revenue. These parameters offer providers the flexibility required to price differently the
different resources. Variables ϕ account for the need to have backups, either in the nodes ϕ1(i) or in
the edges ϕ2(i, j) (ϕ1(i) = 1 if a backup is required or 0 otherwise; ϕ1(i, j) = 1, in case of at least one
node needs a backup or 0 otherwise).
This metric accounts for the average revenue obtained by embedding a VNR (i.e., the total revenue
generated by accepting the VNRs divided by the number of accepted VNRs). In the experiments, we
set λ1 = λ2 = 1.
– Average cost of accepting a VNR: The cost of embedding a VNR is proportional to the total sum of
substrate resources allocated to that VN. In particular, this cost has to take into consideration that
certain virtual edges may end up being embedded in more than one physical link (as in the substrate
edge between nodes b, d and c, in Figure 3.2). The cost may also increase if the VNR requires higher
security for its virtual nodes and links. Thus, we define the cost of embedding a VNR as:

C(VNR) = λ1

∑
i∈NV

∑
p∈NS

cpuip secS(p) cloudS(p) +

λ2

∑
(i,j)∈EV

∑
(p,q)∈ES

f i,jp,q secS(p, q),

SUPERCLOUD D4.4 Page 22 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Average results and standard deviation (except first graph): (a) VNR acceptance ratio
over time; (b) VNR acceptance ratio; (c) Node utilization; (d) Link utilization; (e) Cost for accepting
VNRs; (f) Revenue for accepting VNRs.

where cpuip corresponds to the total amount of CPU allocated on the substrate node p for virtual node

i (either working or backup). Similarly, f i,jp,q denotes the total amount of bandwidth allocated on the
substrate link (p, q) for virtual link (i, j). λ1 and λ2 are the same weights introduced in the revenue
formula to denote the relative proportion of each cost component to the total cost.

3.1.5.3 Evaluation Results

Figure 3.3a displays the acceptance ratio over time for one particular experiment with a random
topology substrate. We can observe that after the first few thousand time units, the acceptance ratio
tends to stabilize. A similar trend also occurs with the other experiments, and for this reason the rest
of the results are taken at the end of each simulation. Due to space constraints, the results in the
following graphs are from the Waxman topologies only (Figure 3.3b - 3.3f). We note however that the
conclusions to be drawn are exactly the same as for the random topologies. The main conclusions are:

SecVNE exhibits a higher average acceptance ratio when compared to D-ViNE, not only
for the baseline case, but also when including security requirements: Figure 3.3b indicates
that SecVNE can make better use of the available substrate resources to embed the arriving VNRs
when compared to the most commonly employed VNE algorithm. It is interesting to note that SecVNE
is better than D-Vine even when 20% of the VNRs include security requirements, which are harder to
fulfill. This does not mean D-Vine is a poor solution – it merely shows that its model is not the best
fit for our particular problem. In particular, D-Vine uses geographical distance of substrate nodes as
one of the variables to consider in node assignment. This parameter is less relevant in our virtualized
environment but constrains D-Vine options. In any case, notice that the results for D-Vine represent
its best configuration with respect to geographical location – we have tested D-Vine with the entire
range of options for this parameter.

A richer set of demands decreases the acceptance ratio, but only slightly: VNRs with
stronger requirements have a greater number of constraints that need to be satisfied, and therefore it

SUPERCLOUD D4.4 Page 23 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

becomes more difficult to find the necessary substrate resources to embed them. However, a surprising
result is the small penalty in terms of acceptance rate in the presence of security demands (see Fig-
ure 3.3b again). For instance, an increase of 20 percentage points (pp) in the resources with security
needs results in a penalty of only around 1 pp in the acceptance ratio. Also interesting is the fact
that the reduction in acceptance ratio is more pronounced when VNRs have availability requirements,
when compared to security. In this case, an increase of 20 pp in the number of nodes with replication
results in a penalty of around 10 pp. This is because of the higher use of substrate resources due to
the reservation of backup nodes/links.

Security demands only cause a small decrease on substrate resources utilization. Figures
3.3c and 3.3d show the substrate node and link stress ratio, respectively. We observe that the utilization
of node resources is very high in all cases (over 80%), meaning the mapping to be effective. It is also
possible to see that slightly more resources are allocated in the substrate network with SecVNE than
with D-ViNE, which justifies the higher acceptance ratio achieved. If the existing resources are used
more extensively to be able to serve more virtual network requests, then the assignment of virtual
requests is being more effective. As the link stress ratio is lower (again, for all cases), this means the
bottleneck is the node CPU. Finally, the link stress ratio of D-ViNE is lower than in our solution.
This is due to D-ViNE incorporating load balancing into the formulation.

Security and availability requirements increases costs and revenues. Figures 3.3e and 3.3f
display the average cost and revenue for each VNR embedding, respectively. The results show that
reasonable increases in the security requirements (10% and 20%) only cause a slight impact on the
costs. However, higher costs are incurred to fulfill availability needs due to the extra reservation of
resources (nodes and links). Since D-vine does not consider security and availability aspects, it ends up
choosing embeddings that are more expensive (e.g., with respect to “NS+NA”). In terms of revenue,
it can be observed that by charging higher prices for security services, virtualization providers can
significantly enhance their income — average revenue almost doubles for a 20% increase in security
needs.

3.1.6 Related work

There is already a wide literature on this problem [60]. Yu et al. [169] were the first to solve it efficiently,
by assuming the capability of path splitting (multi-path) in the substrate network, which enable the
computationally harder part of the problem to be solved as a multicommodity flow (MCF), for which
efficient algorithms exist. The authors solve the problem considering two independent phases – an
approach commonly used by most algorithms. In the first phase, a greedy algorithm is used for virtual
node embedding. Then, to map the virtual links, either efficient MCF solutions or k-shortest path
algorithms can be used. In [96], Chowdhury et al. proposed two algorithms for VNE that introduce
coordination between the node and link mapping phases. The main technique proposed in this work
is to augment the substrate graph with meta-nodes and meta-links that allow the two phases to be
well correlated, achieving more efficient solutions. Neither of these works considers security.
As failures in networks are inevitable, the issue of failure recovery and survavibility in VNE has gained
attention recently. H. Yu et al. [164] have focused on the failure recovery of nodes. They proposed to
extend the basic VNE mapping with the inclusion of redundant nodes. Rahman et al. [124] formulated
the survivable virtual network embedding (SVNE) problem to incorporate single substrate link failures.
Another problem in the same area is to ensure virtual network connectivity in the presence of multiple
substrate link failures. This is explored by Shahriar et al. [136], with the authors proposing two
heuristic solutions. Contrary to our work, these proposals target only availability.
A mostly unexplored perspective on the VNE problem is providing security guarantees. Fischer et
al. [59] have introduced this problem with a position paper where the authors proposed the assignment
of security levels in the physical resources and virtual network requests. No algorithms were presented.
Liu et al. [94] have afterwards proposed a VNE algorithm based on this idea. Their simple model does
not support the detailed specification of security we propose, and does not consider availability nor a

SUPERCLOUD D4.4 Page 24 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

user-centric cloud setting with different trust domains.
The majority of the works in VNE field only consider a single infrastructure provider (InP). The only
exception is the work by M. Chowdhury et al. [44], that addresses the conflicts of interest between
Services Providers, SPs (interested in satisfying their demands while minimizing their expenditure)
and InPs (that strives to optimize the allocation of their resources by preferring requests with higher
revenue while offloading unprofitable work onto their competitors). They present PolyVINE – a
policy-based end-to-end VNE framework – that, in short, partitions a VN request into k subgraphs to
be embedded onto k SNs, establishes inter-connections between the k subgraphs using inter-domain
paths, and embeds each subgraph in each InP SN using an intra-domain algorithm.

3.1.7 Conclusions

In this section we presented our solution to the secure VNE problem. Our solution addresses a
diverse set of security requirements, applied both to communication links and virtual nodes. These
requirements enable several trade-offs to be explored with regard to the selected defenses. In addition,
multiple clouds are considered with distinct levels of trust. By not relying on a single cloud provider we
avoid internet-scale single points of failures (with the support of backups), and privacy issues can be
accommodated by constraining the mapping of certain virtual nodes to specific classes of clouds (e.g.,
private). The experimental results show that our solution leads to a high request acceptance rate and
an efficient use of substrate resources. The inclusion of requests with stronger security demands can
cause an increase on the average revenue for the provider if appropriate pricing schemes are employed.

3.2 Scalable Virtual Network Embedding

The main idea of our multi-cloud network virtualization solution, Sirius, is to enrich the substrate
network with resources from public and private clouds in order to enhance the networking services
of users, namely with respect to security. As explained, three important benefits are: first, it allows
the provider to scale out by outsourcing resources, enabling elasticity of the infrastructure. This
can be used not only to extend the substrate but also to save costs (e.g., by optimizing pricing
schemes [173, 138]). Second, it improves performance and dependability. If resources are spread (and
replicated) across clouds it becomes possible to explore locality to decrease delays and to tolerate
operator-wide failure [150, 121]. Third, it enhances the security options for the virtual networks. For
instance, the user may consider a subset of her virtual network to be more sensitive, restricting it to a
specific location considered more trustful (e.g., a cloud with stricter SLA). These advantages result in
the importance of this type of deployments to be trending upwards, with 85% of enterprises reporting
to already have a multi-cloud strategy for their business [127].
However, exploring these benefits is challenging. As the multi-cloud provider has no control over
the public cloud resources (e.g., the VM hypervisor), it is necessary to employ some form of nested
virtualization [18], and this may impact performance. In addition, the problem of embedding virtual
resources in this setting is highly complicated. In particular, it is necessary to deal with an hybrid
substrate, as private data center topologies (typically a Clos variant) differ greatly from the network
offered by a public cloud (a full mesh or “big switch”). Since most network embedding algorithms [60]
target wide-area networks and mesh topologies, they perform poorly when directly applied to this
context. They are also unsuitable for any realistic deployment, as they often recur to solving the
Multi-Commodity Flow (MCF) problem for link mapping [169]. This approach is slow to be applied
to large infrastructures. It is also impractical, as it would be necessary to adjust the resulting path
splits to the granularity supported by the underlying cloud, a problem not addressed in the embedding
literature. Aside from this, as our goal is to leverage from an enriched substrate to enhance the security
and availability of virtual networks, it is necessary to further extend the embedding algorithms with
these new requirements. So far, little attention has been paid to security. A recent exception is the
solution we presented in the previous section. However, that MILP solution scales very poorly.
To address these challenges we propose a novel embedding algorithm that achieves five goals:

SUPERCLOUD D4.4 Page 25 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

• First, it makes efficient use of the substrate resources, achieving a very high acceptance rate of
virtual network requests, consequently increasing provider profit.

• Second, it is topology-agnostic, allowing it to achieve good results for radically different topolo-
gies.

• Third, it allows users to specify the level of security (including availability) of each element of
their virtual networks, and guarantees their requests are fulfilled.

• Fourth, it improves application performance by significantly reducing the average path length.

• Finally, it scales well, making it practical for large-scale deployments.

This algorithm has been implemented in Sirius, supporting the management of multi-cloud substrate
infrastructures, and the provisioning of user-defined virtual network requests. We analyze the behavior
and performance of the algorithm with large-scale simulations that consider a private data center
(following the Google Jupiter topology design [145]), extended with hundreds of cloud resources spread
across two public clouds. In addition, we evaluate our prototype in a substrate composed of one private
datacenter and two public clouds (Amazon EC2 and Google Cloud Platform). The main conclusion is
that our system fulfills all goals set. Namely, it allows virtual networks to extend across multiple clouds,
without significant loss of performance compared to a non-virtualized substrate. When compared with
alternative approaches, our novel embedding algorithm enables multi-cloud providers to increase the
virtual network acceptance rate, reduce path lengths and grow provider revenue. Our evaluation
also shows that virtual networks with several thousands of virtual hosts can be provisioned in short
intervals, even if spread over several clouds.

3.2.1 Design requirements

Virtual edge switch

Virtual link
Virtual host

Virtual transit switch

Virtual
Network A

Substrate soft switch

Intra-cloud tunnel

Substrate compute
Substrate fabric switch Inter-cloud tunnel
Substrate link

Virtual Network B Virtual Network C

Virtual
Networks

Cloud Hypervisor

FOO compute
hypervisor

VM instance

Public
cloud

Cloud Hypervisor

FOO compute
hypervisor

VM instance

FOO compute
hypervisor

Server/VM

Private
cloud

FOO compute
hypervisor

Server/VM

Substrate
Network

User interface

Topology
Database

Multi-cloud Provisionning
& Configuration

Hypervisor
Support

Network Embedder

Mapping
Database

Isolation

Topology and flow
manager

Network
hypervisor

Substrate
orchestrator

Cloud Hypervisor

 FOO compute
hypervisor

VM
instance

Containers

(a) (b)

Figure 3.4: (a) System architecture; (b) Virtual networks and substrate.

Recall that our solution allows users to define their virtual networks (VN) with arbitrary topologies and
addressing schemes, and guarantee isolation of all tenants that share the substrate (see Figure 3.4). On
top of this foundation, we set a couple of ambitious goals to our platform, including the improvement
of its scalability properties, alongside the enhancement of the networking services available to users.
Towards these objectives we introduce an additional set of requirements – the technical innovations
that materialize these requirements are the core of this work. These are:

• Substrate scalability: Allow the network substrate to scale out, by extending it with public cloud
resources.

• System scalability: Handles on the order of the hundreds of requests per second.

SUPERCLOUD D4.4 Page 26 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

• Enhanced virtual network services: Allow users to define the security and availability require-
ments of every compute element of their virtual networks, increasing their dependability.

• Provider profit: The mapping of virtual to substrate resources should maximize provider profit,
by means of high acceptance rates and efficient utilization of resources.

• Fit for a hybrid multi-cloud: The solution should perform well in a diverse substrate network
with different topologies, including public (e.g., Amazon EC2), private (e.g., a modern data
center), and hybrid clouds (e.g., a private DC extended with public cloud resources).

• Practicality: The constraints of the network substrate should be taken into account.

• Performance: The virtualization layer should not introduce significant overhead and application
performance should not degrade.

These requirements are not met by any existing solution, which at most address a subset of these
criteria.

3.2.2 Virtual and Substrate Networks

Virtual networks. In our platform, the user can define her virtual network (Figure 3.4(b), left)
by means of a graphical user interface or through a configuration file. She can define any arbitrary
topology composed of a set of virtual hosts and a group of virtual switches, interconnected by virtual
links. The virtual switches can be of one of two types: virtual edge switches, in case they have virtual
hosts attached, or virtual transit switches, in case they do not. The virtual hosts can be configured
with any addresses from the entire L2 and L3 address space7. The virtual links are configured with
the bandwidths and latencies required.
A core contribution of our solution arises from allowing users to further enhance their networks by
setting the specific security requirements of each virtual host, switch, and link. For instance, specific
virtual hosts may be considered sensitive, leading to restrictions about their location (e.g., to be hosted
in a trusted facility) or of its type (e.g., to be hosted in a secure substrate, such as one offering threat
prevention or encryption). For this purpose, our solution enables the network provider to define the
security level of each cloud and of each data plane element of the substrate, allowing users to specify
the security requirements of all hosts, switches, and links of the virtual network. It is also possible
to define the level of availability of virtual hosts. In this case, our system enforces these elements to
be replicated, accordingly with their level. For instance, if the level of availability required is high, it
may be replicated in a different cloud, to tolerate large-scale cloud outages.
Figure 3.4 illustrates a virtual network in our system, with a simplified set of requirements. In this
example, the nodes within a red circle represent sensitive elements, and therefore need to be located
in a trusted cloud.
Substrate network. Our system allows a network provider to extend its infrastructure by enriching
its substrate with resources from public cloud providers, allowing it to be shared (transparently) by
various users (Figure 3.4(b), right). The resources are organized in such a way to create a single
multi-cloud abstraction. Our substrate is composed of one or several private infrastructures, and
one or several public clouds. In this infrastructure, the substrate compute elements run on top of
the compute hypervisor, and are inter-connected by substrate links and substrate switches. Every
hypervisor runs one substrate software switch to allow communication between the substrate compute
elements and between these and the outside world.
We consider a second type of substrate switches: the substrate fabric switch. This corresponds to a
physical switch under our control – typically part of a private datacenter (DC) fabric. Note, however,
that this does not mean the solution to require full control of all DC switches. If the provider does not
have centralized control over the fabric (as it uses traditional L2/L3 networking), then the substrate

7With the obvious restriction that they are not allowed to use the same address in different hosts of their own network.

SUPERCLOUD D4.4 Page 27 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

topology will not include the fabric switches. In this case, the only switching elements are the software
switches that run at the edge. The substrate links include tunnels (both intra-cloud and inter-cloud)
and physical links. Again, physical links are only included in the substrate topology if we have control
over the physical switches they connect to. Finally, every cloud includes one gateway that acts as an
edge router. The inter-cloud tunnels are set up and maintained in this node (as such, this is the only
element that requires a public IP address).

3.2.3 Virtual Network Embedding

The next section abstracts the elements of the infrastructure in a model that captures the fundamental
characteristics of the substrate and user demands for the virtual networks. Our solution then uses the
models to optimize the embedding of user requests in the clouds.

3.2.3.1 Network model

Substrate Network:

The substrate network is modeled as a weighted undirected graph GS = (NS , ES , AS
N , A

S
E), where NS

is a set of nodes, ES is the group of links (or edges) and AS
N / AS

E are the attributes of the nodes
and edges. A node nS is a network element capable of forwarding packets. It can be either a software
switch or a fabric switch, which is modeled by an attribute type(nS) with values 0 or 1 respectively.
A software switch connects a number of local compute elements (e.g., containers) to the infrastructure.
All run in the same physical machine and share the local resources. Therefore, we employ attribute
cpu(nS) to aggregate the total CPU capacity available for network tasks and processing of user appli-
cations. Similarly, these components have an equivalent set of protections and are located in the same
cloud. We use attributes sec(nS) ≥ 0 and cloud(nS) ≥ 0 to represent the security level of the ensemble
and the trust associated with the cloud, with higher values associated to stronger safeguards.
Fabric switches are internal routing devices, utilized for example in the access or aggregation layers of
a datacenter. They are optional elements because our solution is able to enforce all necessary traffic
forwarding decisions by configuring only the software switches at the edge. However, they allow for
additional flexibility when computing the paths, often leading to more efficient embeddings. Since
public cloud providers disallow the configuration of internal network devices, it is expected that fabric
switches will only be modeled in private datacenters. These switches have the same attributes as above,
where the values for sec(nS) and cloud(nS) are dictated by the risk appetite of the owner organization.
Overall, the attributes of a node are AS

N = {{type(nS), cpu(nS), sec(nS), cloud(nS)} | nS ∈ NS}.
The edges are characterized by the total bandwidth capacity (attribute bw(eS) > 0) and the average
latency (lat(eS) > 0). They also have an associated security level (sec(eS) > 0), where for example
inter-cloud links may be perceived less secure than edges of a private datacenter, as the first have to be
routed over the Internet. Overall, the edge attributes are AS

E = {{bw(eS), lat(eS), sec(eS)} | eS ∈ ES}.
As explained, in our system users have two means to specify the substrate network. We have a
graphical tool to enable the drawing of the network topology and set the attributes. In alternative,
the policy grammar described in the previous section can be employed to describe the substrate in a
text file. In both cases, some aspects of our infrastructure can be explored to ease the specification.
For example, default security levels can be inherited by all internal links and nodes of a cloud. In
addition, instead of relying on the user to provide the links latencies, they can be calculated using
measurements performed on the network (which are periodically updated).

Virtual Networks:

VNs are also modeled as weighted undirected graphs GV = (NV , EV , AV
N , A

V
E), where NV is the

set of virtual nodes, EV is the set of virtual links (or edges), and AV
N / AV

E are the node and edge
attributes. These attributes are much alike the substrate network attributes. For example, type()
classifies whether a node is a virtual edge or a virtual transit switch. In this case, and to reduce the

SUPERCLOUD D4.4 Page 28 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

specification effort, type(nV) is actually inferred by the system using a straightforward rule – a switch
with no virtual host attached is considered a virtual transit switch; otherwise, it is a virtual edge switch.
A node nV that corresponds to a virtual edge switch models the requirements of the switch and the
locally connected hosts. In terms of demanded CPU, the attribute cpu(nV) is the sum of all requested
processing capacity (for network tasks and applications). With the other attributes, we take the most
strict requirement of all elements (e.g., if hosts need a security level of 4 but the switch only asks for
1, then sec(nV) is 4). For virtual transit switches, there is a direct relation between the requirements
and the attributes of the matching node.
VNs only have an extra attribute in AV

N to support enhanced availability. In many scenarios, hosts
should be replicated so that backups can take over the computations after a failure. This means that
during embedding additional substrate resources need to be allocated for the backups. The attribute
avail(nV) can take three pre-defined values: avail(nV) = 0 means no replication; avail(nV) = 1
requests backups in the same cloud; for replication in another cloud then avail(nV) = 2 (e.g., to
survive from a cloud outage).
Overall, the two sets of attributes are:

AV
N = {{type(nV), cpu(nV), sec(nV), cloud(nV), avail(nV)} | nV
∈ NV } and AV

E = {{bw(eV), lat(eV), sec(eV)} | eV ∈ EV }.

Virtual Network Requests:

VNRs are composed by the requested virtual network plus two extra parameters:

V NR = (NV , EV , AV
N , A

V
E , T ime

V , DurV).

The first corresponds to the instant when the VNR arrived to the system (TimeV), while the second
to the period during which the virtual network should remain active in the substrate (DurV). If
necessary, at a later moment, the user may extend the duration to avoid eviction from the substrate.

3.2.4 Scalable VNE

Sirius instantiates the users requests by mapping the associated VNs onto the substrate while respect-
ing all declared attributes. Our solution handles the on-line VNE problem, where every time a VNR
arrives there is an attempt to find an appropriate provisioning in the substrate. While deciding on
the location of the resources, an heuristic mapping is performed with the purpose of increasing the
overall acceptance ratio, reducing the usage of substrate resources, and fulfilling the security needs. If
a solution is found, the residual capacity of the substrate resources is decreased by the amount that
is going to be consumed. Otherwise, the request is rejected.
While experimenting with existing embedding algorithms, we observed some limitations when applied
to our multi-cloud environment, namely related with the inability to address the security requirements,
the incapacity to support large numbers of switches, and inefficiencies on the use of resources (e.g.,
because the assumed network model is not a good match for our setting). Therefore, we designed a
new algorithm built around the following ideas: (i) Optimal embedding solutions, for instance, based
on linear program optimization do not scale to our envisioned scenarios, and therefore we employ a
greedy approach based on two utility functions to guide the selection of the resources; (ii) The mapping
of the virtual resources to the substrate is carried out in two phases, where in the first the nodes are
chosen and then the links. While ensuring the security constraints, we give priority to the security level
over the cloud trust; (iii) The backup resources necessary to fulfil availability requirements are only
reserved after the normal resources have been completely mapped, giving precedence to the common
case where no failures occur. The next subsections detail the various parts of our solution.

SUPERCLOUD D4.4 Page 29 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

3.2.4.1 Utility Functions

The process for selecting the substrate nodes uses two utility functions to prioritize the nodes that
should be picked earlier. The first function, UResSec(), utilizes only information about the current
resource consumption and the node security characteristics. In particular, it values more the nodes
that: (i) have the greatest percentage of available resources, as this contributes for an increase in
the VNR acceptance ratio; and (ii) provide the lowest security assurances (but still larger than the
demanded ones), to reduce the embedding costs (recall that highly secure cloud instances are normally
substantially more expensive8). The utility of a substrate node nS is:

UResSec(nS) =

%RN (nS)×
∑

∀eS→nS

%RE(eS)

sec(nS)× cloud(nS)
(3.44)

where the %RN (nS) = RN (nS)/cpu(nS) is the percentage of residual CPU capacity (or available ca-
pacity) of a substrate node. The residual capacity is computed with Equation 3.45, with nV ∈ NV

and x ↑ y denoting that the virtual node x is hosted on the substrate node y :

RN (nS) = cpu(nS) −
∑
∀nV ↑nS

cpu(nV) (3.45)

and, where the sum element of Equation 3.44 corresponds to the overall available bandwidth of
the edges connected to nS (eS → nS means nS is an endpoint of eS). The value of %RE(eS) =
RE(eS)/bw(eS) is the percentage of the residual capacity of a substrate link. The residual capacity is
calculated with Equation 3.46, with eV ∈ EV and x ↑ y denoting that the flow of the virtual link x
traverses the substrate link y :

RE(eS) = bw(eS) −
∑
∀eV ↑eS

bw(eV) (3.46)

The second utility function, UPath(), contributes to decrease the distance (in number of hops) among
the substrate nodes of a VN embedding (we also call it Path Contraction), improving the QoS and
decreasing further the provider costs. When a virtual node nV is being mapped, the utility of selecting a
substrate node nS is computed with two factors: (i) the UResSec() of nS ; and (ii) the average distance
between nS and the substrate nodes that have already been used to place the neighbors of nV (given
by function avgDist2Neighbors()). The substrate node utility is:

UPath(nS , nV) =
UResSec(nS)

avgDist2Neighbors(nS , nV)
(3.47)

Notice that the division by the average distance will diminish the utility of substrate nodes located
further away from the already mapped nodes. The effect is a lower communication delay (average
path length is shorter) and, simultaneously, a decrease on bandwidth costs.

3.2.4.2 Scalable and Secure VNE Algorithm

Our Scalable and Secure Virtual Network Embedding (SSecVNE) algorithm is based on three proce-
dures: (i) SecVNE, that receives and processes the tenants VN request; (ii) node and edge primary
mapping, employing the utility functions to steer the substrate resource selection; and (iii) backup
mapping allocates disjoint resources to avoid common mode failures.

8For example, compare the cost of a normal instance and the Trend Micro Deep Security instance at
aws.amazon.com/marketplace.

SUPERCLOUD D4.4 Page 30 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Algorithm 1: SecVNE Procedure

Input: GV , GS , RN , RE

Output: PMap // mapping for primary network
Output: BMap // mapping for backup network

1 PMap.N ← NodeMapping(GV , GS , RN , RE);

2 PMap.L← LinkMapping(GV , GS , RN , RE , PMap.N);
3 if ((PMap.N 6= ∅) ∧ (PMap.L 6= ∅)) then
4 RtempN ← RN ;
5 RtempE ← RE ;
6 UpdateResources(RN , RE , PMap);
7 if (at least one virtual node needs backup) then
8 BMap.N ← BNodeMap(GV , GS , RN , PMap);

9 BMap.L← BLinkMap(GV , GS , RN , RE , PMap);
10 if ((BMap.N 6= ∅) ∧ (BMap.L 6= ∅)) then
11 UpdateResources(RS

N , R
S
E , BMap);

12 return (PMap, BMap);

13 else
14 RN ← RtempN ;
15 RE ← RtempE ;
16 return (∅, ∅);

17 else
18 return (PMap, ∅);

19 else
20 return (∅,∅);

SecVNE:

VN requests are embedded into the substrate with Algorithm 1. Two kinds of inputs are expected:
(1) the VN model (GV) including all attributes; and (2) the substrate description, with the model
(GS) and current nodes and edges residual capacities (RN , RE). At system initialization, the residual
capacities are assigned the values of the resource capacities in the substrate model, but as VNR are
serviced, they are updated using Equations 3.45 and 3.46. In addition, when a VNR execution ends,
the residual capacities are increased to reflect the release of the associated resources.
Two mappings are potentially produced by the algorithm. One is for the network that should be
used in normal operation, called the PMap (from primary mapping), and the other that contains the
backup nodes and edges to be employed in case of failure, called the BMap (from backup mapping).
A mapping is a set of tuples, each with a virtual resource identifier and the corresponding substrate
resource(s) where it will placed (and some additional information).
The algorithm logic is relatively simple. It starts by seeking for a PMap (Lines 1-2). Then, it changes
the residual capacities based on what is going to be consumed after deployment (Line 6). If at least
one of the virtual nodes requires availability support (aval(nVi) > 0), then a backup mapping is also
obtained (Lines 8-9) and the capacities are updated (Line 11).

Node Mapping:

Algorithm 2 implements the NodeMapping() procedure. It is responsible for finding a valid embedding
for the virtual nodes of the VN, ensuring that all attributes are taken into consideration.
The procedure starts by creating a table where the virtual nodes are ordered by a score value (Line
2, and top of Figure 3.5). The virtual node score is calculated using

NScore(nV) =

cpu(nV)×
∑

∀eV→nV

bw(eV)

sec(nV)× cloud(nV)
(3.48)

SUPERCLOUD D4.4 Page 31 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Algorithm 2: NodeMapping()

Input: GV , GS , RN , RE

Output: nodeMap // mapping for the nodes

1 nodeMap← ∅;
2 scoreT ← getScore(GV);

3 utilT ← getUtil(GS , RN , RE);

4 forall (nVi ∈ GV) do
5 virtualNodeMapped← false;

6 candidT = getCandidates(nVi , G
V , GS , utilT);

7 forall (nSj ∈ candidT) do
8 if (cpu(nVi) 6 RN (nSj)) then
9 nodeMap← nodeMap ∪ (nVi , n

S
j);

10 delUtil(nSj , utilT);

11 virtualNodeMapped← true;
12 break;

13 if (virtualNodeMapped = false) then
14 return ∅;

15 return nodeMap;

where eV → nV means nV is an endpoint of link eV . Next, the UResSec utility is calculated for all
substrate nodes (Line 3, and middle of the figure). Table utilT is an hashMap indexed by the security
level and cloud trust of the node, to optimize accesses by security demand.
Virtual nodes nVi are processed one at a time. For each, we select all acceptable candidate substrate
nodes, i.e., the switches nSj that provide stronger security assurances than what is requested (sec(nSj) ≥
sec(nVi) and cloud(nSj) ≥ cloud(nVi)). In addition, candidates are chosen based on the type of virtual

node: if nVi is a virtual edge switch (type(nVi) = 0) then only substrate software switches are acceptable
(type(nSj) = 0); otherwise, for virtual transit switches (type(nVi) = 1), we allow either software or fabric
substrate switches. These candidates are placed in a table called candidT using the UPath utility
value to order them (Line 6, and bottom of the figure). Next, the table is searched for a candidate that
has enough residual CPU capacity (Line 8). The first to be found will be used in the embedding (Line
9). We also remove this node from utilT to prevent further mappings from this VNR, thus avoiding
situations where a single failure would compromise a significant part of the primary virtual network
(Line 10).

2

255 5

Sec Cloud

3 8

𝑛𝑖
𝑉 41 32

Order of processing

𝑛𝑗
𝑆

22 18 10

scoreT

utilT

candidT

a
c80 72 70 55 505 4

5 2
2 5
2 4
2 2

50 45
60 44 37 35 30
40 30 20 15 10
40 35 33 20 18

...

50 35 33 28 28 25 22 20 20 18

Order of processing

h

z
t

i
s

Virtual Structure

Substrate Structures

𝑁𝑆𝑐𝑜𝑟𝑒(𝑛𝑉)

𝑈𝑃𝑎𝑡ℎ(𝑛𝑆, 𝑛𝑉)

URes𝑆𝑒𝑐(𝑛𝑆)

15

9

Figure 3.5: Data structures used in node mapping.

The ordering of table search has a strong impact on performance, namely in terms of request acceptance
and costs — scoreT should be processed from lower-to-higher score, and candidT from higher-to-lower
utilities. The intuition, which was confirmed by our simulations, is that this leads to embeddings where:

SUPERCLOUD D4.4 Page 32 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

(i) virtual nodes with modest security demands go to the substrate nodes that give less assurances;
(ii) nodes end up being physically located near to each other; (iii) there is an even distribution of the
residual capacities in most scenarios.

Algorithm 3: LinkMapping()

Input: GV ,GS ,RN , RE , nodeMap
Output: linkMap // link mappings

1 linkMap← ∅;
2 RtempN ← RN ;
3 RtempE ← RE ;

4 forall (eVi ∈ EV) do
5 totalBw ← 0;
6 RloopE ← RE ;

7 forall (eSj ∈ ES) do
8 if (sec(eVi) > sec(eSj)) then
9 RloopE(eSj)← 0;

10 Paths← getPaths(eVi , G
V , GS , RloopE , nodeMap);

11 foreach (p ∈ Paths) do
12 if (lat(eVi) ≥ getLatency(p,GS)) then
13 bwp← getMinBandwidth(p,RloopE);
14 totalBw ← totalBw + bwp;

15 candP ← candP ∪ (eVi , bwp, p);

16 if (|candP | = MaxPaths) then
17 break;

18 if (totalBw ≥ bw(eVi)) then
19 forall (mp ∈ candP) do
20 bw(mp)← d(bw(mp)/totalBw) ∗ bw(eVi)e;
21 UpdateLinkResources(RE , candP);
22 linkMap← linkMap ∪ candP ;

23 else
24 RN ← RtempN ;
25 RE ← RtempE ;
26 return ∅;

27 return linkMap;

Link Mapping:

Algorithm 3 finds a mapping between the virtual edges and the substrate network. Each edge is
processed individually, searching for a suitable network connection between the two substrate nodes
where its virtual endpoints will be embedded. The approach is flexible, allowing the use of a single or
multiple paths.
The algorithm works in a few steps. First, the substrate edges that do not provide the necessary
security guarantees are excluded (Lines 6-9). This is achieved by setting to null the residual bandwidth
capacity of those less secure edges on an auxiliary variable RloopE (Line 9), thus preventing their
selection at later steps.
Second, we obtain a set of paths that could be employed to connect the two substrate nodes where the
virtual edge endpoints will be embedded (Line 10). In our implementation, we resort to the k-edge
disjoint shortest path algorithm to find these paths, using as edge weights the inverse of the residual
bandwidths. This ensures that when “distance” is minimized, the algorithm picks the paths that have
the most available bandwidth.
Third, the connections are chosen (Lines 11-17). Prospect paths p are an ordered sequence of substrate

SUPERCLOUD D4.4 Page 33 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

edges (p = (eS1 , e
S
2 , ...)), which have a certain latency (equal to the sum of the link latencies, and

calculated by getLatency()) and a maximum bandwidth (given by the smallest residual bandwidth
of all the edges, and computed by getMinBandwidth()). Eligible paths need to have a latency less
than the requested (Line 12). These paths are stored in a candidate set candP together with the
corresponding virtual edge and available bandwidth (Line 15). The set will have at most MaxPaths,
a constant that defines the degree of multipathing (when set to 1, a single path is used) (Lines 16-17).
This constant can be used to prevent an excessive level of traffic fragmentation, which is important
when managing the number of entries in the packet forwarding tables of the switches. On the other
hand, it improves dependability because localized link failures can be automatically tolerated with
multi-path data forwarding (if enough residual capacity exists in the surviving paths).
The last step is to define how much traffic goes through each path, ensuring that together they provide
the requested edge bandwidth (Lines 18-22). An edge can only be mapped if enough bandwidth is
available in the paths (Line 18). In this case, we update the bandwidth in every path to an amount
proportional to their maximum capacity, therefore distributing the load (Lines 19-20). Then, the
residual capacities of the substrate edges are decreased to represent the future embedding (Line 21)
and the set of paths is saved (Line 22).

Backup Mapping:

We aim to provide more available virtual networks through the use of replication. For this purpose,
the algorithm creates a backup embedding that satisfies the same requested attributes as the primary
mapping. The backup functions, BNodeMap() and BLinkMap() called in Algorithm 1, operate in a
similar manner as their normal counterparts, with the exception that all resources used in the primary
mappings are excluded from the embedding. There are a few cases, however, where it is impossible to
enforce this objective. For instance, inside the same rack typically there is only one ToR switch, so in
this case there is some level of sharing.

3.2.5 Evaluation

The evaluation aims to answer several questions. First, we want to determine if our solution is efficient
in using the substrate resources. Namely, in terms of the acceptance ratio of virtual network requests,
which will translate into profit for the multi-cloud provider. Second, we want to understand how the
system scales, both with respect to the enrichment of the substrate with cloud resources and the rate
of arrival of VNRs. Additionally, we need to find out if Sirius handles well different kinds of topologies,
including private, public, and hybrid clouds. Finally, we would like to measure the overhead introduced
by the virtualization layer, and how it affects application performance.
We evaluate the solution using large-scale simulations, comparing it with the two most commonly used
heuristics: D-ViNE, a solution that uses a relaxation of a MIP solution for node mapping and MCF for
link mapping [45, 96], and the heuristics proposed by Yu et al. [169], that follow a greedy approach for
node mapping and use MCF for link mapping (we label this solution FG+MCF). As MCF has scalability
limitations, for this second approach we have also used the shortest path algorithm (FG+SP).
In addition, we evaluate the performance of our prototype over a multi-cloud substrate composed of a
private data center and two public clouds (Amazon and Google), measuring the elapsed time to create
various networks.

3.2.5.1 Testing environment

We extended an existing simulator [1] to collect various metrics about the embedding while a VNR
workload arrives to the system. Two types of substrate network models were employed: for public
clouds we utilized Waxman, where nodes are linked with a probability of 50% [105] (using the GT-
ITM tool [170]); for the private data center we created networks following the Google Jupiter topology
design [145]. Three substrate networks were considered: pub_substrate - 100 nodes spread evenly
in three clouds; pvt_substrate - 1900 nodes in one private datacenter; and multi_substrate -

SUPERCLOUD D4.4 Page 34 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Notation Description

NS+NA no security or availability demands on the VNRs

10S+NA
VNRs with 10% of resources (nodes and links) with
security demands (excluding availability)

20S+NA like 10S+NA, but with security demands for 20% of
the resources

NS+10A
VNRs with no security demands, except for 10% of
the nodes requesting replication

NS+20A like NS+10A, but for 20% of the nodes

20S+20A
20% of the resources (nodes and links) with security
demands and 20% of the nodes with replication

Table 3.5: VNR configurations that were evaluated.

(a) Public cloud (100 nodes) (b) Private DC (1900 nodes)

Figure 3.6: Acceptance ratio: percentage VNRs for which it was possible to find an embedding.

2500 nodes spread in three clouds and a private datacenter. The CPU and bandwidth (cpuS and
bwS) of nodes and links is uniformly distributed between 50 and 100 and 500 and 1000 respectively.
Latencies inside a data center were small (latS ∈ {1.0}), but among clouds were much larger (latS ∈
{50.0}). These resources are also uniformly associated with one of three levels of security and trust
(secS ∧ cloudS ∈ {1.0, 1.2, 5.0}) in the public clouds and one level (secS ∧ cloudS ∈ {6.0}) in the
private cloud. These values were chosen to achieve a good balance between the diversity of security
levels and their monetary cost. An analysis of the cost of Amazon instances with normal and secure
VM configurations shows a wide range of values, which are related to the implemented defenses. For
example, while an EC2 instance with container protection is around 20% more expensive than a normal
instance (hence our choice of 1.2 for the intermediate level of security), the cost of instances with more
sophisticated defenses are at least 5 times greater (our choice for the highest level of security).
VNRs have a number of virtual nodes uniformly distributed between 5 and 20 nodes for a first setup
and between 40 and 120 nodes for the others. Pairs of virtual nodes are connected with a Waxman
topology with probability 50%. The CPU and bandwidth of the virtual nodes and links are uniformly
distributed between 10 and 20, and 100 and 200 respectively. Several alternative security and avail-
ability requirements are evaluated, as shown in Table 3.5. We assume that VNRs arrivals (TimeV)
are modeled as a Poisson process with an average rate of 4 VNRs per 100 time units for the first
setup and 8 VNRs for the others. Each VNR has an exponentially distributed lifetime (DurV) with
an average of 1000 time units.

SUPERCLOUD D4.4 Page 35 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

(a) Multi-cloud (2500 nodes)

Figure 3.7: Acceptance ratio: percentage VNRs for which it was possible to find an embedding.

3.2.5.2 Simulations

Figures 3.6 and 3.7 present the results for the acceptance ratio of the three networks. We consider
two variants of our approach: Sirius(w/oPC) only employs the UResSec(), and therefore does not
take into consideration the lengths of the paths offered by UPath() (i.e., without Path Contraction);
and Sirius(wMCF) using MCF for link mapping.
In the case of VNRs with no security demands (NS+NA) in the smaller network (Figure 3.6a), our
approaches behave similarly to FG+MCF, but improve by 6pp (percentual points) over FG+SP and by
over 50pp over D-ViNE. The poor performance of D-ViNE is a result of its underlying model not fitting
our specific multi-cloud environment. For instance, this solution considers geographical distance, which
is not as relevant in a virtualized environment. As first conclusion, in the network topology offered by
a public cloud (a full mesh), both FG+MCF and Sirius achieve very good results.
As security demands are introduced, Sirius acceptance ratio decreases but only slightly. For instance,
when 20% of all virtual elements request a level of security above the baseline, the reduction of the
acceptance ratio is only 1pp. The same is true with requests that include availability, although the
decrease is a bit more pronounced (up to 10pp). This was expected, as replication needs not only to
double node resources, but also leads to an increase of the number of substrate paths (to maintain
replica connectivity). The alternative solutions perform poorly with security requirements, as they
do not consider these additional services. Therefore, most of the produced embeddings had to be
rejected because they would violate at least one of the demands. In the case of D-VINE no results
are shown because after more than one week of running this experiment, the algorithm had not yet
finished. Availability bars are not displayed because the algorithms do not consider the possibility of
replication.
When observing Figures 3.6b and 3.7a, the advantage of our approach is made clear. No results
are included for algorithms with MCF for link mapping, as they take an extremely long time to
complete. FOO has an acceptance ratio 15pp above FG+SP in the pvt_substrate, and of over 25pp
in the multi_substrate. These results demonstrate the effectiveness of our solution in improving
the acceptance ratio over the alternatives for both virtualized datacenters and, even more strikingly,
for a multi-cloud scenario. The main reason is our more detailed model, which incorporates different
types of nodes (software and fabric switches), increasing the options available to map virtual nodes.
The conclusions with respect to security are similar to above. One note, however, to explain why the

SUPERCLOUD D4.4 Page 36 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 3.8: Embedding time taken by node mapping (100 nodes)

results do not degrade with security in the pvt_substrate case, compared to the others. The reason
is that in this experiment all nodes are considered of the highest security level, as they are inside the
private data center. Another observation is that in some cases the average acceptance ratio is higher
(despite still inside the confidence interval) with security demands, which can be counter-intuitive.
The reason is that in some cases fulfilling security requirements tends to slightly better balance the
substrate load.
Next, we turn to system scalability. Here we focus on embedding latency, as this metric translates
into the attainable service rate for virtual network requests. The measurements are taken with code
that is equivalent to the one used in our network hypervisor (for our approach, it is actually the same
Java implementation). Figures 3.8 and 3.9a present the time to map nodes and links. As can be seen,
D-ViNE scales very poorly in both phases, while Sirius, Sirius(w/oPC), and FG+SP behave better.
With mappings taking in the order of tens of ms, these solutions enable hundreds to thousands of
virtual elements to be embedded per second. The time to embed backup elements is of the same order
of magnitude (we omit the graph for space reasons). Finally, as the substrate and the size of the virtual
networks grow, the embedding latency increases accordingly. Figure 3.9b displays the worst case of
our experiments: the time for link mapping in the multi_substrate. For such large-scale network,
embedding increases to around 60 seconds per virtual network. In summary, Sirius, Sirius(w/oPC),
and FG+SP are the only embedding solutions that scale to reasonable numbers in the context of a
realistic network virtualization system.
Next, we focus on the profit of the multi-cloud provider. As in previous work [169, 96], we assume
the revenue of accepting a VNR is proportional to the acquired resources. However, in our case, we
assume that security is charged at a higher premium value (inline with public cloud services). We
calculate the revenue per VN as:

R(VNR) = λ1

∑
i∈NV

[1 + ϕ1(i)] cpuV (i) secV (i) cloudV (i) +

λ2

∑
(i,j)∈EV

[1 + ϕ2(i, j)] bwV (i, j) secV (i, j),

where λ1 and λ2 are scaling coefficients that denote the relative proportion of each revenue component
to the total revenue. These parameters offer providers the flexibility required to price differently the

SUPERCLOUD D4.4 Page 37 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

(a) Link embedding time (100 nodes)

(b) Link embedding time (2500 nodes)

Figure 3.9: Embedding time taken by link mapping.

resources. Variables ϕ account for the need to have backups, either in the nodes ϕ1(i) or in the edges
ϕ2(i, j) 9. In the experiments, we set λ1 = λ2 = 1.
Figure 3.10a presents the average revenue generated by embedding VNRs in pub_substrate. The
main conclusion is that Sirius generally improves the profit of the multi-cloud provider. First, revenue
is enhanced when security is included, which gives incentives for providers to offer value-added services.
Second, availability can even have a stronger impact because more resources are used to satisfy VNRs.
Figure 3.10b shows the total number of allocated links during the whole experiment. The main
conclusion is that by considering the path length in the utility function, Sirius is able to allocate
significantly less edges. This is true even when comparing with FG+SP that uses shortest path. The
reason is that our heuristic is able to bring neighboring nodes closer to each other. Reducing path
lengths is important to decrease costs and to improve application performance, as long paths impose
a latency penalty.

3.2.5.3 Prototype performance

In this section we evaluate the performance of our prototype. Figure 3.11a shows the time to setup
a substrate with VMs distributed through the 3 clouds. Since almost all operations are performed in

9ϕ1(i) = 1 if a backup is required or 0 otherwise; ϕ1(i, j) = 1, in case of at least one node needs a backup or 0
otherwise.

SUPERCLOUD D4.4 Page 38 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

(a) Average revenue (100 nodes) (b) Total embedded links (1900 nodes)

Figure 3.10: Simulations: average VNR revenue & total number of embedded links

parallel, it is possible to observe only a small increase in time when the number of VMs doubled. The
slowest operation is VM configuration, which includes the time for software installation (e.g., Docker),
getting a basic container image and creation of some of the tunnels. After that, the relevant delay is
due to VM provision by the cloud provider. Therefore, overall the added cost of our solution is small.
Figure 3.12a shows the setup time for VNs of different sizes in number of compute nodes (i.e., con-
tainers). Over 99% of the cost is related to container creation and configuration, with the embedding
being insignificant. The jump in the elapsed time between 1k to 4k containers is due to the rise in
number of containers deployed per VM (it goes from 100 to 400).
Figure 3.13 further presents the cost of virtualization, in terms of increased latencies and decreased
throughputs, using as baseline a VM configuration that accesses directly the network. Inter-cloud
RTTs grow around 30%, between 5 and 10ms, and intra-cloud RTTs increase less than 400us. As
inter-cloud applications typically assume latencies of this magnitude in their design, and the added
intra-cloud cost is small, this overhead is deemed arguably acceptable. Throughput decreases further,
with a higher cost being experienced when the baseline is high, as expected [81]. We are currently
investigating networking-enhanced VM instances to reduce this overhead.

3.2.6 Related work

Cloud networking. As cloud application performance critically depends on the network, Balani et
al. [16] have recently proposed the extension of cloud services with an abstraction, the virtual cluster
(VC), which offers bandwidth guarantees over existing VM-based abstractions [16]. Follow-up work
extended this model with dynamic traffic patterns [162], improved embedding algorithms [129], and
scaling [62, 168]. This line of work extends the cloud model with network guarantees, but none offers
network virtualization.
Network virtualization. With the emergence of Software-Defined Networking (SDN) [88], it became
feasible to fully decouple virtual networks from the substrate on which they run. The first SDN-based
system was FlowVisor [141], which allowed different tenants to own a slice of the network. OVX [7]
improves over FlowVisor to offer topology and address virtualization. While these solutions assume an
SDN infrastructure, VMware’s NVP [81] is edge-based, with control at the hypervisor-level. Contrary
to our work, these modern platforms do not consider a multi-cloud substrate or the integration of
security and availability services.
Virtual network embedding. While efficient greedy heuristics already existed for the node mapping
phase of the Virtual Network Embedding (VNE) problem, Yu et al. [169] where the first to solve the link
mapping problem efficiently. The authors assumed a substrate that is path splitting-capable, enabling

SUPERCLOUD D4.4 Page 39 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

(a) Substrate creation

Figure 3.11: Substrate creation time.

(a) Virtual network provisioning time

Figure 3.12: Substrate and virtual network creation times.

the problem to be solved as a multicommodity flow (MCF). MCF improved the situation but, as we’ve
argued, is not a good fit for production-quality systems. D-VINE [96] achieves higher acceptance rates
by coordinating node and link mapping. The drawback is that it scales very poorly. Recent work [60]
has extended these proposals with redundancy for node [164] and link recovery [124, 136]. None of
these works considers security. PolyVINE [44] is a framework that considers several infrastructure
providers, with the goal of coordinating policies between inter-domains, a different problem from ours.
One common limitation of all these works is that they focus solely on the embedding problem, and no
system is built.
Multi-cloud systems. The multi-cloud model has been successfully applied in the context of com-
putation [160] and storage [28]. One common goal is to improve system dependability. Examples
include MapReduce [47], coordination [27], and file systems [28]. To the best of our knowledge, Sirius
is the first system to apply this model for network virtualization.

3.2.7 Conclusions

In this section we presented our proposal of a secure virtual network embedding algorithm that scales
to large networks. Our solution improves the state-of-the-art by extending the substrate network with

SUPERCLOUD D4.4 Page 40 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

(a) Throughput (b) Latency

Figure 3.13: Intra- and inter-cloud throughput and latencies.

cloud services and enhancing the virtual networks with security and dependability. Evaluations of our
prototype in large scale simulations reveal that, compared with the common alternatives, our solution
scales well, increases the acceptance ratio and the provider profit for diverse topologies, maintaining
short path lengths to guarantee application performance.

In the next chapter we discuss the techniques employed to improve the security and dependability
of Sirius, our network virtualization platform.

SUPERCLOUD D4.4 Page 41 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Chapter 4 Infrastructure

In this chapter we describe, in Section 4.1, ANCHOR, a logically-centralized security architecture for
Software-Defined Networks we propose for the SUPERCLOUD network virtualization infrastructure.
As use case of the ANCHOR architecture, in Section 4.2 we present a secure and efficient control plane
communications protocol for SDN. To improve the dependability of the infrastructure, in Section 4.3
we present the design and implementation of Rama, the SUPERCLOUD fault-tolerant SDN controller.

4.1 Logically-centralized security

Software-defined networking (SDN) has moved the control function out of the forwarding devices, lead-
ing to a logical centralization of functional properties. This decoupling between control and data plane
leads to higher flexibility and programmability of network control, enabling fast innovation. Network
applications are now deployed on a software-based logically centralized controller, providing the agility
of software evolution rather than hardware one. Moreover, as the forwarding devices are now directly
controlled by a centralized entity, it is straightforward to provide a global network view to network
applications. In spite of all these benefits, this decoupling, associated with a common southbound
API (e.g., OpenFlow), has removed an important natural protection of traditional networks. Namely,
the heterogeneity of different solutions, the diversity of configuration protocols and operations, among
others. For instance, an attack on traditional forwarding devices would need to compromise differ-
ent protocol interfaces. Hence, from a security perspective, SDN introduces new attack vectors and
radically changes the threat surface [90, 134, 49].
So far, the SDN literature has been mostly concerned with functional properties, such as improved
routing and traffic engineering [75, 12]. However, gaps in the enforcement of non-functional properties
are critical to the deployment of SDN, especially at infrastructure/enterprise scale. For instance: inse-
cure control plane associations or communications, network information disclosure, spoofing attacks,
and hijacking of devices, can easily compromise the network operation; performance crises can escalate
to globally affect QoS; unavailability and lack or reliability of controllers, forwarding devices, or clock
synchronization parameters, can considerably degrade network operation [80, 6, 134].
Addressing these problems in an ad-hoc, piecemeal way, may work, but will inevitably lead to efficiency
and effectiveness problems. Although several specific works concerning non-functional properties have
recently seen the light e.g., in dependability [36, 128, 76, 85, 21] or security [122, 144, 142, 134],
enforcement of non-functional properties as a pillar of SDN robustness calls, in our opinion, for a
systemic approach. As such, in this section we claim for a re-iteration of the successful formula behind
SDN – ‘logical centralization’ – for its materialization.
In fact, the problematic scenarios exemplified above can be best avoided by the logical centralization
of the system-wide enforcement of non-functional properties, increasing the chances that the whole
architecture inherits them in a more balanced and coherent way. The steps to achieve such goal are
to: (a) select the crucial properties to enforce (dependability, security, quality-of-service, etc.); (b)
identify the current gaps that stand in the way of achieving such properties in SDNs; (c) design a
logically-centralized subsystem architecture and middleware, with hooks to the main SDN architectural
components, in a way that they can inherit the desired properties; (d) populate the middleware with the
appropriate mechanisms and protocols to enforce the desired properties/predicates, across controllers
and devices, in a global and consistent manner.

SUPERCLOUD D4.4 Page 42 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Generically speaking, it is worth emphasizing that centralization has been proposed as a means to
address different problems of current networks. For instance, the use of centralized cryptography
schemes and centralized sources of trust to authenticate and authorize known entities has been pointed
out as a solution for improving the security of Ethernet networks [79]. Similarly, recent research has
suggested network security as a service as a means to provide the required security of enterprise
networks [134]. However, centralization has its drawbacks, so let us explain why centralization of non-
functional property enforcement brings important gains to software-defined networking. We claim,
and justify ahead, that it allows to define and enforce global policies for those properties, reduce
the complexity of networking devices, ensure higher levels of robustness for critical services, foster
interoperability of the non-functional enforcement mechanisms, and better promote the resilience of
the architecture itself.
The reader will note that this design philosophy concerns non-functional properties in abstract. To
prove our point, in this work, we have chosen security as our use case and identified at least four gaps
that stand in the way of achieving the former in current SDN systems: (i) security-performance gap;
(ii) complexity-robustness gap; (iii) global security policies gap; and (iv) resilient roots-of-trust gap.
The security-performance gap comes from the frequent conflict between mechanisms enforcing those
two properties. The complexity-robustness gap represents the conflict between the current complexity
of security and cryptographic implementations, and the negative impact this has on robustness and
hence correctness. The lack of global security policies leads to ad-hoc and discretionary solutions
creating weak spots in architectures. The lack of a resilient root-of-trust burdens controllers and
devices with trust enforcement mechanisms that are ad-hoc, have limited reach and are often sub-
optimal. We further elaborate in the following on the reasons behind these gaps, their negative effects
in SDN architectures, and how they can possibly be mitigated through a logically-centralized security
enforcement architecture.
To achieve our goals, we propose anchor, a subsystem architecture that does not modify the essence of
the current SDN architecture with its payload controllers and devices, but rather stands aside, ‘anchors’
(logically-centralizes) crucial functionality and properties, and ‘hooks’ to the latter components, in
order to secure the desired properties. In this particular case study, the architecture middleware
is populated with specific functionality whose main aim is to ensure the ‘security’ of control plane
associations and of communication amongst controllers and devices.
In addition, we give first steps in addressing a long-standing problem, the fact that a single root-of
trust — like anchor, but also like any other standard trusted-third-party, like e.g., CAs in X.509 PKI
or the KDC in Kerberos — is a single point failure (SPoF). There is nothing wrong with SPoFs, as long
as they do not fail often, and/or the consequences of failure can be mitigated, which is unfortunately
not the common case. As such, we start by carefully promoting reliability in the design of anchor,
endowing it with robust functions in the different modules, in order to reduce the probability of
failure/compromise. Moreover, the proposed architecture only requires symmetric key cryptography.
This not only ensures a very high performance, but also makes the system secure against attacks by
a quantum computer. Thus, the system is also post-quantum secure [22]. Second, we mitigate the
consequences of successful attacks, by protecting past, pre-compromise communication, and ensuring
the quasi-automatic recovery of anchor after detection, even in the face of total control by an
adversary, achieving respectively, perfect forward secrecy (PFS) and post-compromise security (PCS).
Third, our architecture promotes resilience, or the continued prevention of failure/compromise by
automatic means such as fault and intrusion tolerance. Though out of the scope of this document,
this avenue is part of our plans for future work, and the door is open by our design, since it definitely
plugs the SPoF problem, as is well known from the literature, which we debate in Section 4.1.6.
To summarize, the key contributions of our work include the following:

1. The concept of logical centralization of SDN non-functional properties provision.

2. The blueprint of an architectural framework based on middleware composed of a central ‘anchor’,
and local ‘hooks’ in controllers and devices, hosting whatever functionality needed to enforce
these properties.

SUPERCLOUD D4.4 Page 43 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

3. A gap analysis concerning barriers in the achievement of non-functional properties in the security
domain, as a proof-of-concept case study.

4. Definition, design and implementation of the mechanisms and algorithms to populate the mid-
dleware in order to fill those gaps, and achieve a logically-centralized security architecture that
is reliable and highly efficient, post-quantum secure, and provides perfect forward secrecy and
post-compromise security.

5. Evaluation of the architecture.

We show that, compared to the state-of-the-art in SDN security, our solution preserves at least the
same security functionality, but achieves higher levels of implementation robustness, by vulnerability
reduction, while providing high performance. Whilst we try to prove our point with security, our
contribution is generic enough to inspire further research concerning other non-functional properties
(such as dependability or quality-of-service). It is also worth emphasizing that the architectural
concept that we propose in this work would require a greater effort to be deployed in traditional
networks, due to the heterogeneity of the infrastructure and its vertical integration. This will be made
clear throughout.
We have structured this section as follows. Section 4.1.1 gives the rationale and presents the generic
logically-centralized architecture for the system-wide enforcement of non-functional properties, and
explains its benefits and limitations. In Section 4.1.2, we discuss the challenges and requirements
brought by the current gaps in security-related non-functional properties. Section 4.1.3 describes the
logically-centralized security architecture that we propose, along with its mechanisms and algorithms.
Then, in Sections 4.1.4 and 4.1.5, we discuss design and implementation aspects of the architecture,
and present evaluation results. In Sections 4.1.6 and 4.1.7, we give a brief overview of related work,
discuss some challenges and justify some design options of our architecture. Finally, in Section 4.1.8,
we conclude.

4.1.1 Architecture

In this section we introduce anchor, a general architecture for logically-centralized enforcement of
non-functional properties, such as ‘security’, ‘dependability’, or ‘quality-of-service’ (Figure 4.1). The
logical centralization of the provision of non-functional properties allows us to: (1) define and enforce
global policies for those properties; (2) reduce the complexity of controllers and forwarding devices; (3)
ensure higher levels of robustness for critical services; (4) foster interoperability of the non-functional
property enforcement mechanisms; and finally (5) better promote the resilience of the architecture
itself. Let us explain the rationale for these claims.
Define and enforce global policies for non-functional properties. One can enforce non-
functional properties through piece-wise, partial policies. But it is easier and less error-prone, as
attested by SDN architectures with respect to the functional properties, to enforce e.g., security or
dependability policies, from a central trust point, in a globally consistent way. Especially when one
considers changing policies during system lifetime.
Reduce the complexity of controllers and forwarding devices. One of the most powerful
ideas of SDN was exactly to simplify the construction of devices, by stripping them of functionality,
centralized on controllers. We are extending the scope of the concept, by relieving both controllers
and devices from ad-hoc and redundant implementations of sophisticated mechanisms that are bound
to have a critical impact on the whole network.
Ensure higher levels of robustness for critical services. Enforcing non-functional properties like
dependability or security has a critical scope, as it potentially affects the entire network. Unfortunately,
the robustness of devices and controllers is still a concern, as they are becoming rather complex, which
leads to several critical vulnerabilities, as amply exemplified in [134]. For these reasons, a single
device or controller may become a single point of failure for the network. A centralized concept as

SUPERCLOUD D4.4 Page 44 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

we advocate might considerably improve on the situation, exactly because the enforcement of non-
functional properties would be achieved through a specialized susbsystem, minimally interfering with
the SDN payload architecture. A dedicated implementation, carefully designed and verified, would be
re-usable, not re-implemented, by the payload components.
Foster interoperability of the non-functional property enforcement mechanisms. Different
controllers require different configurations today, and a potential lack of interoperability in terms of
non-functional properties arises. Global policies and mechanisms for non-functional property enforce-
ment would also mean an easy path to foster controller and device interoperability (e.g., East and
Westbound APIs) in what concerns the former. This way, mechanisms can be modified or added,
and have a global repercussion, without the challenge of having to implement such services in each
component.
Better promote the resilience of the architecture itself. Having a specialized subsystem ar-
chitecture already helps for a start, since for example, its operation is not affected by latency and
throughput fluctuations of the (payload) control platforms themselves. However, the considerable
advantage of both the decoupling and the centralization, is that it becomes straightforward to de-
sign in security and dependability measures for the architecture itself, such as advanced techniques
and mechanisms to tolerate faults and intrusions (and in essence overcome the main disadvantage of
centralization, the potential single-point-of-failure risk).

Net	App	Net	App	

SDN Controller

Network		
Opera,ng	System	

Net	App	Net	App	

FLOW	TABLES	

Net	App	Net	App	

SDN Forwarding Device

ANCHOR

Figure 4.1: anchor general architecture

The general outline of our reference architecture is depicted in Figure 4.1. The “logically-centralized”
perspective of non-functional property enforcement is materialized through a subsystem architecture
relying on a centralized anchor of trust, a specific middleware whose main aim is to ensure that
certain properties – for example, the security of control plane associations and of communication
amongst controllers and devices – are met throughout the architecture.
anchor stands aside the payload SDN architecture, with its payload controllers and devices, not
modifying but rather adding to it. It ‘anchors’ crucial functionality and properties, and ‘hooks’ to the
former components, in order to secure the desired properties. So, on the devices, we just need the
local counterparts to the anchor middleware mechanisms and protocols, or hooks, to interpret and
follow the anchor’s instructions.
After having made the case for logically-centralized non-functional property enforcement in software-
defined networking, and presenting the outline of our general architecture, in the next two sections
we introduce the use case we elected to show in this work, i.e., logically-centralized security. We start
with a gap analysis that establishes the requirements for the architecture functionality in Section 4.1.2,
and then, in Section 4.1.3, we show how to populate anchor with the necessary mechanisms and
protocols to meet those requirements.

SUPERCLOUD D4.4 Page 45 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

4.1.2 Challenges

To elaborate on our ‘security’ case study, in this section we discuss, with more detail, the challenges
brought in by the previously mentioned gaps — (i) security-performance; (ii) complexity-robustness;
(iii) global security policies; and (iv) resilient roots-of-trust — as well as the requirements they put
on a logically-centralized approach to enforcing security, as a non-functional system property.

4.1.2.1 Security vs performance

The security-performance gap comes from the conflict between ensuring high performance and using
secure primitives. This gap affects directly the control plane communication, which is the crucial
link between controllers and forwarding devices, allowing remote configuration of the data plane at
runtime. Control channels need to provide high performance (high throughput and low latency) while
keeping the communication secure.
The latency experienced by control plane communication is particularly critical for SDN operation.
The increased latency is a problem per se, in terms of reduced responsiveness, but may also limit
control plane scalability, which can be particularly problematic in large datacenters [19]. Most of
the existing commercial switches already have low control plane performance on TCP (e.g., a few
hundred flows/s [85], see Section V.A.). Adding cryptography worsens the problem: previous works
have demonstrated that the use of cryptographic primitives has a perceivable impact on the latency
of sensitive communication, such as VoIP [140] (e.g., TLS incurs in 166% of additional CPU cycles
compared to TCP), network operations protocols such as SNMP [133], NTP [53], OpenFlow-enabled
networks [84, 86], and HTTPS connections [107]. Perhaps not surprisingly, the number of SDN
controllers and switching hardware supporting TLS (the protocol recommended by ONF to address
security of control plane communication [111, 112]) is still reduced [4, 134]. Recent research has indeed
suggested that one of the reasons for the slow adoption to be related with the security-performance
trade-off [84].
Ideally, we would have both security robustness and performance on control plane channels. Con-
sidering the current scenario of SDN, it therefore seems clear the need to investigate lightweight
alternatives for securing control plane communication. In the context of the security-performance
gap, some directions that we point to in our architectural proposal ahead are, for instance, the careful
selection of cryptographic primitives [84], and the adoption of cryptographic libraries exhibiting a good
performance-security tradeoff, such as NaCl [24], or of mechanisms allowing per-message one-time-key
distribution, such as iDVV [84, 86]. We return to these mechanisms later.

4.1.2.2 Complexity vs robustness

The complexity-robustness gap represents the conflict between the current complexity of security and
cryptographic implementations, and the negative impact this has on robustness and hence correctness,
hindering the ultimate goal.
In the past few years, studies have recurrently shown several critical misuse issues of cryptographic
APIs of different TLS implementations [55, 40, 125]. One of the main root causes of these misuse
issues is the inherent complexity of traditional cryptographic APIs and the knowledge required to
use them without compromising security. For instance, more than 80% of the Android mobile ap-
plications make at least one mistake related to cryptographic APIs. Recent studies have also found
different vulnerabilities in TLS implementations and have shown that longstanding implementations,
such as OpenSSL1, including its extensive cryptography, is unlikely to be completely verified in a near
future [29, 56]. To address this issue, a few projects, such as miTLS [31] and Everest [30], propose
new and verified implementations of TLS. However, several challenges remain to be addressed before
having a solution ready for wide use [30].

1OpenSSL suffers from different fundamental issues such as too many legacy features accumulated over time, too
many alternative modes as result of tradeoffs made in the standardization, and too much focus on the web and DNS
names.

SUPERCLOUD D4.4 Page 46 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

While the problem persists, the number of alarming occurrences proliferates. Recent examples include
vulnerabilities that allow to recover the secret key of OpenSSL at a low cost [163], and timing attacks
that explore vulnerabilities in both PolarSSL and OpenSSL [14, 39]. On the other hand, failures in
classical PKI-based authentication and authorisation subsystems have been persistently happening [48,
123, 69], with the sheer complexity of those systems being considered one of the root causes behind
these problems.
Considering the widely acknowledged principle that simplicity is key to robustness, especially for
secure systems, we advocate and try to demonstrate in this work, that the complexity-robustness
gap can be significantly closed through a methodic approach toward less complex but equally secure
alternative solutions. NaCl [24], which we mentioned in the previous section, can be rightly called
again in this context: it is one of the first attempts to provide a less complex, efficient, yet secure
alternative to OpenSSL-like implementations. Mechanisms simplifying key distribution, authentication
and authorization, such as iDVVs [84], could help mitigate PKIs’ problems. By following this direction,
we are applying the same principle of vulnerability reduction used in other systems, such as unikernels,
where the idea is to reduce the attack surface by generating a smaller overall footprint of the operating
system and applications [161].

4.1.2.3 Global security policies

The impact of the lack of global security policies can be illustrated with different examples. Although
ONF describes data authenticity, confidentiality, integrity, and freshness as fundamental requirements
to ensure the security of control plane communication, it does so in an abstract way, and these mea-
sures are often ignored, or implemented in an ad-hoc manner [134]. Another example is the lack
of strong authentication and authorisation in the control plane. Recent reports show that widely
used controllers, such as Floodlight and OpenDaylight, employ weak network authentication mecha-
nisms [157, 134]. This leads to any forwarding device being able to connect to any controller. However,
fake or hostile controllers or forwarding devices should not be allowed to become part of the network,
in order to keep the network in healthy operation.
From a security perspective, it is non-controversial that device identification, authentication and au-
thorization should be among the forefront requirements of any network. All data plane devices should
be appropriately registered and authenticated within the network domain, with each association re-
quest between any two devices (e.g., between a switch and a controller) being strictly authorized by
a security policy enforcement point. In addition, control traffic should be secured, since it is the
fundamental vehicle for network control programmability. This begs the question: why aren’t these
mechanisms employed in most deployments?
A strong reason for the current state of affairs is the lack of global guiding and enforcement policies. It
is necessary to define and establish global policies, and design, or adopt, the necessary mechanisms to
enforce them and meet the essential requirements in order to fill the policy gap. With policies put in
place, it becomes easier to manage all network elements, with respect to registration, authentication,
authorization, and secure communication.

4.1.2.4 Resilient roots-of-trust

A globally recognized, resilient root-of-trust, could dramatically improve the global security of SDN,
since current approaches to achieve trust are ad-hoc and partial [4]. Solving that gap would assist
in fostering global mechanisms to ensure trustworthy registration and association between devices, as
discussed previously, but the benefits would be ampler. For instance, a root-of-trust can be used to
provide fundamental mechanisms (e.g., sources of strong entropy or pseudo-random generators), which
would serve as building blocks for specific security functions.
As a first example, modern cryptography relies heavily on strong keys and the ability to keep them
secret. The core feature that defines a strong key is its randomness. However, the randomness of keys
is still a widely neglected issue [154], and not surprisingly, weak entropy, and weak random number

SUPERCLOUD D4.4 Page 47 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

generation have been the cause of several significant vulnerabilities in software and devices [66, 10, 78,
67]. Recent research has shown that there are still non-negligible problems for hosts and networking
devices [67, 10, 66]. For instance, a common pattern found in low-resource devices, such as switches,
is that the random number generator of the operating system may lack the input of external sources
of entropy to generate reliable cryptographic keys. Even long-standing cryptographic libraries such as
OpenSSL have been recurrently affected by this problem [78, 115].
Similarly, as a second example, sources of accurate time, such as the local clock and the network
time protocol, have to be secured to avoid attacks that can compromise network operation, since
time manipulation attacks (e.g., NTP attack [98, 148]) can affect the operation of controllers and
applications. For instance, a controller can be led to deliberately disconnect forwarding devices if it
wrongly perceives the expiration of heartbeat message timeouts.
It is worth emphasizing that the resilient roots-of-trust gap lies exactly in the relative trust that can
be put in partial, local, ad-hoc implementations of critical functions by controller developers and
manufacturers of forwarding devices, in contrast to a careful, once-and-for-all architectural approach
that can be reinstantiated in different SDN deployments. The list not being exhaustive, we claim that
strong sources of entropy, resilient, indistinguishable-from-random number generators, and accurate,
non-forgeable global time services, are fitting examples of such critical functions to be provided by
logically-centralized roots-of-trust, helping close the former gap.

4.1.3 Security architecture

In this section we introduce the specialization of the anchor architecture for logically-centralized
security properties enforcement (Figure 4.2), guided by the conclusions from the previous section. Our
main goal is to provide security properties such as authenticity, integrity, and confidentiality for control
plane communication. To achieve this goal, the anchor provides mechanisms (e.g., registration,
authentication, a source of strong entropy, a resilient pseudo random number generator) required to
fulfill some of the major security requirements of SDNs.
As illustrated in Figure 4.2, we “anchor” the enforcement of security properties on anchor, which
provides all the necessary mechanisms and protocols to achieve the goal. It is also a central point
for enforcing security policies by means of services such as device registration, device association,
controller recommendation, or global time, thereby reducing the burden on controllers and forwarding
devices, which just need the local hooks, protocol elements that interpret and follow the anchor’s
instructions.

FLOW	TABLES	

SDN Device

Crypto	

iDVV	

FLOW	TABLES	

SDN Device

Crypto	

iDVV	

Net	App	Net	App	

SDN Controller

Network	
Opera/ng	
System	

Net	App	Net	App	

FLOW	TABLES	

Net	App	Net	App	

SDN Device

Device	Registra/on	

Device	Associa/on	

Controller	
Recommenda/on	

ANCHOR

Crypto	

Crypto	

iDVV	

iDVV	

Crypto	

iDVV	

NOVA	FIG	2!!!!	18MAI17	

Global	Time	

Figure 4.2: Logically-centralized Security

Next, we review the components and essential security services provided by anchor. We first illus-
trate, in Section 4.1.3.1, how we implement our strategy of improving the robustness of anchor as
a single root-of-trust, by hardening anchor in the face of failures. Next, we propose a source of

SUPERCLOUD D4.4 Page 48 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

strong entropy (Section 4.1.3.2) and a resilient pseudo random generator (PRG) (Section 4.1.3.3) for
generating security-sensitive materials. These are crucial components, as attested by the impact of
vulnerabilities discovered in the recent past, in sub-optimal implementations of the former in several
software packages [23, 104, 171, 131]. We implement and evaluate the robustness of these mechanisms.
We also leverage on a mechanism, the integrated device verification value (iDVV), to simplify au-
thentication, authorization and key generation amongst SDN components [84], which we review and
put in the context of anchor (Section 4.1.3.4). This particular mechanism will be detailed later in
Section 4.2, but we give a brief overview here. The iDVV protocol runs between the anchor, and
the hooks in controllers and switching devices. We implement and evaluate iDVV generators for
OpenFlow-enabled control plane communication. Next, we present three essential services for secure
network operation — device registration (Section 4.1.3.6), device association (Section 4.1.3.7), and
controller recommendation (Section 4.1.3.8) — and we describe how the above mechanisms interplay
with our secure device-to-device communication approach (Section 4.1.3.9).
Concerning the mitigation of possible (though expectedly infrequent) security failures, across the
explanation of the algorithms we observe how several robustness measures work, like for example the
achievement of PFS, protecting pre-compromise communications in the presence of successful attacks.
Finally, in Section 4.1.3.10, we see the capstone of these measures, explaining how to re-establish
secure communication channels in a semi-automatic way, after anchor has been reinstated in the
sequel of compromise.
The roster of services of anchor is not closed, and one can think of other functionalities, not described
here, including keeping track of forwarding devices association, generating alerts in case of strange
behaviors (e.g., recurrent reconnections, connections with multiple controllers), and so forth. These
ancillary management tasks are important to keep track of the network operation status. In what
follows, we describe the above components in detail.

4.1.3.1 Hardening anchor

The compromise of a root-of-trust is of great concern, since crucial services normally depend on it being
secure and dependable. As we stated in the introduction, we have a long-term strategy towards the
resilience of anchor, which starts by improving the inherent reliability of its simplex (non-replicated)
version, by hardening it in the face of failures, namely, by still providing some security guarantees even
when anchor has been compromised. In particular, we propose protocols to achieve two security
properties guaranteeing respectively, the security of past (pre-compromise) communications, and of
future (post-recovery) communications. This provides a significant improvement over other existing
root-of-trust infrastructures.
The first security property is perfect forward secrecy (PFS), namely, the assurance that the compromise
of all secrets in a current session does not compromise the confidentiality of the communications of
the past sessions. The enforcement of PFS is systematically approached in the algorithms we present
next.
The second property is post-compromise security (PCS). While PFS considers how to protect the past
communications, PCS considers how to automatically reinstate and re-establish the secure communi-
cation channels, for future communications. This security property has so far been considered only
in the specific scenario of secure messaging [167], and only limited works [165, 166] are available. In
particular, we consider that when anchor has been compromised by an attacker (e.g., through the
exploitation of software vulnerabilities), and has been reinstated by the operator (e.g., by applying
software patches and rebuilding servers), the system should have a way to automatically re-establish
secure communications between anchor and all other participants, without having to reinstate these
components (controllers and forwarding devices in this case, whose shared secrets became compro-
mised).
In summary, even though anchor is a single root-of-trust in our system, we mitigate the associated
risks by guaranteeing:

SUPERCLOUD D4.4 Page 49 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

• PFS: the compromise of anchor in the current session does not expose past communications;

• PCS: when anchor is compromised and reinstated, anchor can automatically re-establish
secure communication channels with all other participants in the system to protect the security
of future communications.

As a side note, since our system only uses symmetric key cryptography, it will stand up even against
an attacker with quantum computers. In other words, our infrastructure will be post-quantum secure
(PQS).

4.1.3.2 A source of strong entropy

Entropy still represents a challenge for modern computers because they have been designed to behave
deterministically [154]. Sources of true randomness can be difficult to use because they work differently
from a typical computer.
To avoid the pitfalls of weak sources of entropy, in particular in networking devices, anchor pro-
vides a source of strong entropy to ensure the randomness required to generate seeds, pseudorandom
values, secrets, among other cryptographic material. The strong source of entropy, implemented by
Algorithm 4, has the following property:
Strong Entropy - Every value entropy returned by the function entropy get is indistinguishable-
from-random.

Algorithm 4: Source of strong entropy

1: entropy setup(data)

2: e entropy ← rand bytes() ⊕ H(data)

3: i entropy ← rand bytes() ⊕ e entropy

4: entropy update()

5: e entropy ← H(Pi||Pj) ⊕ i entropy

6: E counter ← 0

7: entropy get()

8: if E counter >= MAX LONG call entropy update()

9: i entropy ← H(rand bytes() || E counter)

10: entropy ← e entropy ⊕ i entropy

Algorithm 4 shows how the external (from other devices) and internal (from the local operating
system) sources of entropy are kept updated and used to generate random bytes per function call
(entropy get()). The state of the internal and external entropy is initially set by calling the en-
tropy setup(data). This function requires an input data, which can be a combination of current system
time, process number, bytes from special devices, among other things, and random bytes (rand bytes())
from a local (deterministic) source of entropy (e.g., /dev/urandom) to initialize the state of the entropy
generator. As we cannot assume anything regarding the predictability of the input data, we use it in
conjunction with a rand bytes() function call (line 2). A call to rand bytes() is assumed to return (by
default) 64 bytes of random data.
Function entropy update() uses as input the statistics of external sources and the anchor’s own packet
arrival rate to update the external entropy. The noise (events) of the external sources of entropy is
stored in 32 pools (P0, P1, P2, P3, ..., P31), as suggested by previous work [58]. Each pool has an
event counter, which is reset to zero once the pool is used to update the external entropy. At every
update, two different pools of noise (Pi and Pj) are used as input of a hashing function H. The
two pools of noise can be randomly selected, for instance. The output of this function is XORed
with the internal entropy to generate the new state of the external entropy. It is worth emphasizing
that entropy update() is automatically called when E counter (the global event counter) reaches its
maximum value and whenever needed, i.e., the user can define when to do the function call.
The resulting 64 bytes of entropy, indistinguishable-from-random bytes (entropy get()), are the out-
come of an XOR operation between the external and internal entropy. While the external entropy

SUPERCLOUD D4.4 Page 50 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

provides the unpredictability required by strong entropy, the internal source provides a good, yet
predictable [154], continuous source of entropy. At each time the entropy get() function is called, the
internal entropy is updated by using a local source of random data, which is typically provided by a
library or by the operating system itself, and the global number of events currently in the 32 pools of
noise (E counter). These two values are used as input of a hashing function H.
Such sources of strong entropy can be achieved in practice by combining different sources of noise,
such as the unpredictability of network traffic [65], the unpredictability of idleness of links [20], packet
arrival rate of network controllers, and sources of entropy provided by operating systems. We provide
implementation details in Section 4.1.4.1. A discussion about the correctness of Algorithm 4 can be
found in appendix A of [87].

4.1.3.3 Pseudorandom generator (PRG)

A source of entropy is necessary but not sufficient. Most cryptographic algorithms are highly vulnerable
to the weaknesses of random generators [52]. For instance, nonces generated with weak pseudo-random
generators can lead to attacks capable of recovering secret keys. Different security properties need to
be ensured when building strong pseudo-random number generators (PRG), such as resilience, forward
security, backward security and recovering security. In particular, the latter was recently proposed as
a measure to recover the internal state of a PRG [52]. We propose a PRG that uses our source of
strong entropy and implements a refresh function to increase its resilience and recovering capability.
The pseudo-random number generator, implemented by Algorithm 5, has the following property:
Robust PRG - Every value nprd returned by the function PRG next is indistinguishable-from-
random.
A robust PRG needs three well-defined constructions, namely setup(), refresh() (or re-seed), and
next(), as described in Algorithm 5. The internal state of our PRG is represented by three variables,
the seed, the counter and the next pseudo-random data nprd. The setup process generates a new seed,
by using our strong source of entropy, which is used to update the internal state. In line 3, we initialize
the counter by calling the long uint() function, which returns a long unsigned int value that will be
used to re-seed and to generate the next pseudorandom value. In line 4, we call entropy update()
to make sure that the external entropy gets updated before calling one more time the entropy get()
function. The first nprd is the outcome of an XOR operation between the newly generated seed and
a second call to our source of entropy. It is worth emphasizing that the set up of the initial state
of the PRG does not require any intervention or interaction with the end user. We provide strong
and reliable entropy to set up the initial values of all three variables. This ensures that our PRG is
non-sensitive to the initial state. For instance, in a tradicional PRG the user could provide an initial
seed, or other setup values, that could compromise the quality of the generator’s output. The counter,
which is concatenated with the nprd (lines 9 and 13), gives the idea of an unbounded state space [147].
This is possible because we are using cryptographically strong primitives such as a hash function H
and the MAC function HMAC. Thus, in theory, we have unbounded state spaces, i.e., we can keep
concatenating values to the input of these primitives.
The PRG refresh() function updates the internal state, i.e., the seed, the counter and the nprd. It uses
H to update the state of the nprd. Finally, the PRG next() function outputs a new, indistinguishable-
from-random stream of bytes, applying HMAC on the internal state. In this function, the counter
is decremented by one. The idea is for it to start with a very large unsigned 8-bytes value, which
is used until it reaches zero. At this point, the PRG refresh() function will be called to update the
internal state of the generator. The newly generated nprd is the outcome of an HMAC function with
a dimension of 128 bits.
The main motivation for having a PRG along with a strong source of entropy is speed. Studies have
shown that entropy generation for local use can be rather slow, such as 1.5 seconds to 2 minutes for
generating 128 bits of entropy [97]. Our source of entropy uses external entropy and random bytes
from special devices, whereas the PRG uses an HMAC function, in order to have a fast and reliable
generation of pseudo-random values.

SUPERCLOUD D4.4 Page 51 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Algorithm 5: Pseudo-random number generator

1: PRG setup()

2: seed ← entropy get()

3: counter ← long uint(entropy get())

4: call entropy update()

5: nprd ← seed ⊕ entropy get()

6: PRG refresh()

7: seed ← entropy get()

8: counter ← long uint(entropy get())

9: nprd ← H(seed ‖ nprd ‖ counter)

10: PRG next()

11: counter ← counter - 1

12: if counter <= 0 call PRG refresh()

13: nprd ← HMAC(seed, nprd ‖ counter)

In spite of the fact that we could use any good PRG to generate cryptographic material (e.g. keys,
nonce), it is worth emphasizing that we introduce a PRG that works in a seamless way with our strong
source of entropy, improving its quality. In Section 4.1.4.2, we discuss the specifics of the implemen-
tation. We also evaluate the robustness and level of confidence of our algorithms in Section 4.1.5.1. A
discussion about the correctness of Algorithm 5 can be found in appendix B of [87].

4.1.3.4 Integrated device verification value

The design of our logically-centralized security architecture also includes the integrated device veri-
fication value (iDVV) component [84]. The iDVV idea was inspired by the iCVVs (integrated card
verification values) used in credit cards to authenticate and authorize transactions in a secure and
inexpensive way. In Section 4.2 we show how we applied this concept to SDN, proposing a flexible
method of generating iDVVs that can be safely used to secure communication between any two de-
vices, but we leave a short description here. iDVVs can be used to partially address two gaps of
non-functional properties, security-performance and complexity-robustness.
An iDVV is a unique value generated by device A (e.g., forwarding device) which can be verified by
device B (e.g., controller). An iDVV generator has essentially two interfaces. First, idvv setup (seed,
secret), which is used to set up the generator. It receives as input two secret, random and unique
values, the seed and the (higher-level protocol dependent) secret. The source of strong entropy and
the robust PRG are, amongst other things, used to bootstrap and keep the iDVV generators fresh.
Second, the idvv next() interface returns the next iDVV. This interface can be called as many times
as needed.
So, iDVVs are sequentially generated to authenticate and authorize requests between two networking
devices, and/or protect communication. Starting with the same seed and secret, the iDVV generator
will generate, for example, at both ends of a controller-device association, the exact same sequence
of values. In other words, it is a deterministic generator of authentication or authorization codes, or
one-time keys, which are, however, indistinguishable from random. The main advantages of iDVVs
are their low cost, which makes them even usable on a per-message basis, and the fact that they can
be generated off-line, i.e., without having to establish any previous agreement.
Correctness. The randomness and performance of the iDVV algorithm as deterministic generator
of authentication or authorization codes, or one-time keys which are however indistinguishable from
random, are analyzed, and its properties proved, in Section 4.2 and [84]. The performance study is
also complemented in that section. Overall, these analyses show that iDVVs are robust, achieve a
high level of confidence and outperform traditional key generation and derivation functions without
compromising the security.

SUPERCLOUD D4.4 Page 52 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

4.1.3.5 System roles and setup

Let us assume the roles of system administrator, controlling the operation of central services such as
anchor, and network administrator, controlling the operation of network devices. Each time a new
network device (a forwarding device or a controller) is added to the network, it must first be registered,
before being able to operate.
In the current practice, the device registration is a manual process triggered by a network administrator
through an out-of-band channel. This process would involve manual work from both the system and
the network administrators. Given the potentially large number of network devices in SDN, such a
manual process is unsatisfactory.
Thus, we propose a protocol, described below, to fulfill the desire of a semi-automated device registra-
tion process, which is efficient, secure, and requires the least involvement of anchor. The anchor is
first setup by the system admin. Next, each network device is set up by anchor. Devices just need
that a key shared with their overseeing network admin is set up initially, at first use. The set up of
this key and the registration of devices is described in Section 4.1.3.6. Then, devices can be registered
automatically.
For simplicity and without loss of generality, in what follows we denote EXY () an encryption using
encryption key KeXY , and we denote [],HMACXY , respectively a message field inside [], followed by
an HMAC over the whole material within [], using MAC key KhXY , where X,Y ∈ {A,Di,M,C, F}
(Notation: Anchor, Device i, Manager, Controller, Forwarding device). When X = A, we omit X
for simplicity. For example, we use EM (msg) to refer EAM (msg), and they both denote the ciphertext
of encrypting msg under key KeAM . In what follows, anchor can generate strong keys using a
suitable key derivation function (KDF) based on the high entropy random material described in the
previous sections.
Now we present the set up required for anchor, network admin, and device. After that, we describe
the device registration and association algorithms, respectively Algorithms 6 and 7.
AnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchor setup. The anchor needs two master recovery keys, namely the master recovery encryption
key Kerec and master recovery MAC key Khrec, fundamental for the post-compromise recovery steps
described ahead. However, these two master recovery keys, in possession of the authority overseeing
anchor (the system administrator), must never appear in the anchor server (if they are to recover
from a possible full server compromise), being securely stored and used only in an offline manner 2.
As we will present later, the master recovery keys are only used in two cases, namely (a) when
a new network admin is registered with anchor (i.e. the network admin setup process); and (b)
when anchor was compromised and is reinstated into a trustworthy state (i.e. the post-compromise
recovery process presented in §4.1.3.10). When either case occurs, the anchor authority only needs
to use the master recovery keys once, to recursively compute the recovery keys of all devices and
network admins. The output of the calculation will be imported into the anchor server through an
out-of-band channel (e.g. by using a USB).
Network admin setup. Each network administrator (or manager, denoted M) with identity M ID
is registered with anchor manually. This is the only manual process to initialize a new network
administrator. Afterwards all devices managed by this administrator can be registered with anchor
through our device registration protocol.
During the network admin registration phase, anchor locally generates encryption key KeAM and
MAC key KhAM to be shared with M , and they are manually imported into M through an out-of-band
channel (again, by using a USB, for example).
Further, M recovery keys KreAM = H(Kerec||M ID) and KrhAM = H(Khrec||M ID) are also com-
puted by anchor offline. M recovery keys live essentially offline, since M needs to perform only
infrequent operations with these keys (e.g. upon device registration). Note that anchor does not

2Just to give a real feel, one possible implementation of this principle is: a pristine anchor server image is created;
it boots offline in single user mode; it generates Kerec and Khrec through a strong KDF as discussed above; keys are
written into a USB device, and then deleted; first online boot proceeds.

SUPERCLOUD D4.4 Page 53 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

store KreAM or KrhAM as well, but can recompute them offline when the post-compromise recovery
process is triggered, as we detail in Section 4.1.3.10.
Device setup. A device with identity Di is either a forwarding device (F) or a controller (C), but
we do not differentiate them during the set up and registration processes. The first operation to be
made after a device is first brought to the system is the setup, which concerns the establishment of
credentials, for secure management access by the network administrator.
Upon request from M , anchor locally generates a pair of keys for each device Di being set up, KeMDi

and KhMDi , to be respectively the encryption and MAC key to be shared between M and Di, for
management. They are sent to M under the protection of KeAM and KhAM . Then, they are manually
imported by the network admin into each Di through an out-of-band channel.
4.1.3.6 Device registration

The device registration protocol is presented in Algorithm 6. We assume that KeMDi and KhMDi

described above are in place.

Algorithm 6: Device registration

1

{Bootstrap for devices D1 −Dn }

1. M → A [Reg,M ID, EM ({(Di, x
i
m)}ni=1)], HMACM

2. A for each Di, generate KeADi
,KhADi

, xia

3. A → M [Reg,M ID, EM ({(Di, x
i
m, x

i
a,KeADi

,

KhADi
)}ni=1)], HMACM

{For each device Di}

4. M KrADi ← H(KrAM ||Di)

5. M → Di [Reg, EMDi(x
i
a,KeADi ,KhADi ,KrADi)],

HMACMDi

6. Di → A [M ID, Di, EDi
(xia)], HMACDi

7. A → M [M ID, Di, EM (xia)], HMACM

8. A tag(Di) = registered;

9. for t ∈ {C,F}, if Type(Di)==t, then tList =

tList ∪ {Di}

10. ∀i ∈ [1, n], if tag(Di) == registered is True

11. KeAM = H(KeAM); KhAM = H(KhAM).

12. M → Di [Di, EMDi(x
i
a)], HMACMDi

13. M tag(Di) = registered;

14. destroys (KeADi ,KhADi ,KrADi);

15. KeMDi
= H(KeMDi

); KhMDi
= H(KhMDi

);

16. ∀i ∈ [1, n], if tag(Di) == registered is True

17. KeAM = H(KeAM); KhAM = H(KhAM).

18. Di KeMDi
= H(KeMDi

); KhMDi
= H(KhMDi

).

The first part concerns the bootstrap of the registration of a batch of devices with anchor (A), by a

SUPERCLOUD D4.4 Page 54 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

network admin M . Let {Di}ni=1 be the set of n device identities that the admin wants to register. M
requests (line 1) the registration to A, accompanying each Di with a nonce xim. A computes its own
nonce xia, and keys KeADi ,KhADi , for each Di, and returns them encrypted to M (lines 2,3). The
random nonces xim and xia are used to prevent replay attacks.
The process then follows for each device Di. First, the device recovery key is created (line 4), using
M ’s recovery key KrAM . Then M sends Di the relevant crypto keys (line 5). Device Di follows-up
confirmation to A, which closes the loop with M , using the original nonce from A (lines 6,7). A then
performs a set of operations (lines 8-11) to commit the registration of Di, namely by inserting it into
the controller or forwarding device list, respectively CList or FList, and updating several keys.
Note that in Algorithm 6, the update of several shared keys (i.e., lines 11, 15, 17, 18) at the end of
the registration steps at A, M , and Di, is used to provide PFS. When a key is updated, the old one is
destroyed. Continuing, in line 12 M closes the loop with Di, using the original nonce from A, finally
confirming Di’s registration. Upon this step, both M and Di perform the key update just mentioned.
Note that the generation process of the recovery key KrADi lies with M (line 4), though using its
recovery key shared with anchor, KrAM . This reduces the number of uses of the master recovery
key. However, as we will see, albeit not knowing KrADi and KrAM , anchor can easily compute them
offline, if needed. Second, KrAM possessed by the network admin is only used when new devices need
to be registered. So, KrAM can be usually stored offline. This provides an extra layer of security.

4.1.3.7 Device association

The association service is required for authorizing control plane channels between any two devices,
such as a forwarding device and a controller. A forwarding device has to request an association with
a controller it wishes to communicate with. This association is mediated by the anchor.
The association process between two devices is performed by the sequence steps detailed in Algorithm 7.
Registered controllers and forwarding devices are inserted in CList and FList, respectively. Notation:
As explained above, the registration process set in place shared secret keys between anchor (A) and
any controller C or forwarding device F.

Algorithm 7: Device association

1

{Of forwarding device F with controller C}
1. F → A [xg , F, GetCList],HMACF

2. A → F [xg , F, EF (CList(F), xg)],HMACF

3. F → C xg , GetAiD, F, C, EF (GetAiD, F, C, xf , xg)

4. C → A [xg , GetAiD, F, C, EF (GetAiD, F, C, xf , xg),

EC(GetAiD, F, C, xc, xg)],HMACC

5. A → C [xg , EF (xf , AiD), EC(xc, AiD)],HMACC

6. A destroys (AiD)

7. C → F xg , EF (xf , AiD), EAiD(SEED, xg)

8. F → C xg , EAiD(SEED ⊕ xg)

9. A, F KeAF = H(KeAF); KhAF = H(KhAF)

10. A, C KeAC = H(KeAC); KhAC = H(KhAC)

The device association implemented by Algorithm 7, has the following properties:
Controller Authorization - Any device F can only associate to a controller C authorized by the
anchor.
Device Authorization - Any device F can associate to some controller, only if F is authorized by
the anchor.
Association ID Secrecy - After termination of the algorithm, the association ID (AiD) is only
known to F and C.
Seed Secrecy - After termination of the algorithm, the seed (SEED) is only known to F and C.

SUPERCLOUD D4.4 Page 55 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

The algorithm coarse structure follows the line of the Needham-Schroeder (NS) original authentica-
tion and key distribution algorithm [108], but contemplates anti-replay measures such as including
participant IDs, and a global initial nonce as suggested in [116]. Unlike NS, it uses encrypt-then-MAC
to further prevent impersonation. Furthermore, it is specialized for device association, managing
authorization lists, and distributing a double secret in the end (association ID and seed). Secure com-
munication protocols running after association can, as explained below in Section 4.1.3.9, use iDVVs
on a key-per-message or key-per-session basis, rolling from the initial seed and secret association ID.
The association process starts with a forwarding device (F) sending an association request to the
anchor (A) (line 1 in Algorithm 7). This request contains a nonce xg, the identification of the device
and the operation request GetCList (get list of controllers). The request also contains an HMAC to
avoid device impersonation attacks. The anchor checks if F is in FList (registered devices), and if so,
it replies (line 2) with a list of controllers (CList(F)) which F is authorized to associate with. The list
of controllers (and the nonce xg) is encrypted using a key (set up during registration) shared between
A and F. This protects the confidentiality of the list of controllers, and xg ensures that the message
is fresh, providing protection against replay attacks. A message authentication code also protects the
integrity of the anchor’s reply, avoiding impersonation attacks.
Next, F sends an association request to the chosen controller C (line 3). The request contains a message
that is encrypted using a key shared between F and A. This message contains the get association id
(GetAiD) request, the identity of the principals involved (F,C), a nonce xf , and binds to the nonce
xg. The controller forwards this message to A (line 4), adding its own encrypted association request
field, similar to F’s, but containing C’s own noncexc instead. This prevents the impersonation of the
controller since only it would be able to encrypt the freshly generated xg.
In line 5, C trusts that A’s reply is fresh because it contains xg. The controller also trusts that it
is genuine (from A) because it contains xc. As such, C endorses F as an authorized device and AiD
as the association key for F. Future compromise of A should not represent any threat to established
communication between C and F. To achieve this goal, A immediately destroys the AiD (line 6) and
C and F further share a seed not known by A (line 7).
C forwards both the encrypted AiD message and its seed to F (line 7). The forwarding device trusts
that this message is fresh and correct because it contains xg, and xf under encryption, together
with the AiD, only know to F and C, which it endorses then as the association key. F trusts that
C is the correct correspondent, otherwise A would not have advanced to step 5. That being true,
future interactions will use AiD. F believes that the SEED is genuine, as random entropy for future
interactions, because it is encapsulated by AiD, known only to C and F. The forwarding device also
trusts that the message is fresh because it contains xg.
Finally (line 8), C trusts it is associated with F (as identified in step 3 and confirmed by A in step 5),
when F replies showing it knows both the AiD and the SEED, by encrypting the SEED XOR’ed
with the current nonce xg, with AiD. Replay and impersonation attacks are avoided because all
encrypted interactions are dependent on nonces, so will become void in the future.
At the end of each device association protocol, all keys shared between a device (F or C) and anchor
will be updated to the hash value of this key (lines 9, 10). Again, this is used to provide perfect
forward secrecy. All nonces are random, i.e., not predictable.
A discussion of the correctness of Algorithm 7 can be found in Appendix C of [87].

4.1.3.8 Controller recommendation

Similarly to moving target defense strategies [158], devices (e.g., controllers) are hidden by default,
i.e., only registered and authenticated devices can get information about other devices. Even if a
forwarding device finds out the IP of a controller, it will be able to establish a connection with the
controller only after being registered and authorized by the anchor.
Controllers can be recommended to forwarding devices using different parameters, such as latency, load,
or trustworthiness. When a forwarding device requests an association with one or more controllers,
the anchor sends back a list of authorized controllers to connect with. The forwarding device will be

SUPERCLOUD D4.4 Page 56 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

restricted to associate itself with any of the controllers on the list. In other words, forwarding devices
will not be allowed to establish connections with other (e.g., hostile or fake) controllers. Similarly,
fake forwarding devices will be, by default, forbidden to set up communication channels with non-
compromised controllers.

4.1.3.9 Device-to-device communication

Communication between any two devices happens only after a successful association. Consider the end
of an association establishment, as per Algorithm 7, e.g. between a controller C and a forwarding device
F: at this point, both sides, and only them, have the secret and unique material (SEED,AiD) (as
proved in Appendix C of [87]). Using them, they can bootstrap the iDVV protocol (see Section 4.1.3.4
above), which from now on can be used at will by any secure communication primitives. As explained
earlier, iDVV generation is flexible and low cost, to allow the generation: (a) on a per message basis;
(b) for a sequence of messages; (c) for a specific interval of time; or (d) for one communication session.
NaCl [24], as mentioned in previous sections, is a simple, efficient, and provably secure alternative to
OpenSSL-like implementations, and is thus our choice for secure communication amongst controllers
and devices.
Researchers have shown that NaCL is resistant to side-channel attacks [11] and that its implementation
is robust [24]. Different from other cryptographic libraries, NaCL’s API and implementation is kept
very simple, justifying its robustness. Through anchor, the SDN communication channels are securely
encrypted using symmetric key ciphers provided by NaCl, with the strong cryptographic material
required by the ciphers generated by our mechanisms, allowing secret codes per packet, session, time
interval, or pre-defined ranges of packets.

4.1.3.10 Post-compromise recovery

As previously mentioned, after anchor has been reinstated in the sequel of a compromise, it is crucial
to have a way to automatically re-establish the secure communication channels between anchor and
all participants.
Algorithm 8 presents how to re-establish the secure communication channels when anchor is compro-
mised. Intuitively, since anchor’s master recovery keys Kerec and Khrec are stored securely offline,
these keys are unknown to the attacker who has stolen all secrets from the anchor server. As de-
scribed before, all M and all Di recovery keys can be recursively computed from the master keys,
offline (line 1). Once this done, the operator imports those keys into the anchor server. To continue
the recovery process, anchor generates new random keys to be shared with all Ms, and all Di (line
2).
Now anchor can send to each M (line 3) a recovery message to re-share keys (contained in Mk)
both between that manager and the devices controlled by it. The messages are secured by using the
according recovery keys. The new shared keys will be used to protect future communications. Each
M implements the operation with each of the devices it manages (line 4).
The new keys replace the possibly compromised keys at M and each Di (lines 5-6, and 9). Likewise,
when the recovery process has been completed, the recovery keys will be updated to their hash value
(lines 7-8, and 10-11). As mentioned previously, this key update is used to provide perfect forward
secrecy (PFS).
Note that at line 3, an additional MAC value on the entire message under the current MAC key KhAM

is created. Since the recovery keys are stored offline, without having this additional MAC value, the
manager will have to perform the verification offline manually. This MAC value prevents possible
DoS attacks where an attacker creates and sends fake recovery messages to network managers, as this
additional MAC value can be verified online efficiently, and it cannot be created without having access
to the current MAC key KhAM .
In case of compromise of a manager M , once it has recovered, it can also re-establish its shared secrets
with anchor and associated devices in a similar way as described above. A recovery is excluded,

SUPERCLOUD D4.4 Page 57 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Algorithm 8: anchor recovery.

1

{For each manager M and its associated devices {Di}ni=1}}
1. A computes KreAM , KrhAM , KreADi

, KrhADi
;

2. generates Mk = (Ke′AM ,Kh′
AM , {Ke′ADi

,Kh′
ADi
}ni=1).

3. A → M [Recovery,A, M ID, [EKreAM
(Mk)],HMACKrhAM

],HMACM .

{For each device Di}
4. M → Di [Recovery,A, M ID, Di, EKreADi

(Ke′ADi
,Kh′

ADi
)],HMACKrhADi

.

5. M destroys Ke′ADi
,Kh′

ADi
;

6. KeAM = Ke′AM ; KhAM = Kh′
AM ;

7. KreAM = H(KreAM); KrhAM = H(KrhAM);

8. KeMDi
= H(KeMDi

); KhMDi
= H(KhMDi

).

9. Di KeADi
= Ke′ADi

; KhADi
= Kh′

ADi
;

10. KreADi
= H(KreADi

); KrhADi
= H(KrhADi

);

11. KeMDi
= H(KeMDi

); KhMDi
= H(KhMDi

).

and the next steps are made only for a single M instead of all M , and with some differences: M gets
the recovery keys (line 1) from anchor through an out-of-band channel, KreAM , KrhAM , and all
KreADi , KrhADi from i = 1ton. These keys remain the same, but M had lost them, having been
rebuilt from scratch. Then, in lines 2-3, M will get (generated by A) the Ke′MDi

,Kh′MDi
keys for

managing all devices, instead of Ke′ADi
,Kh′ADi

, which do not need to be changed. In line 4, the former
are sent to each Di, instead of the latter.

4.1.4 Implementation

A prototype of anchor has been implemented as envisioned in Figure 4.2. Our implementation,
using the NOX controller and CBench3 (OpenFlow switches emulator), has approximately 2k lines of
Python code and 700 lines of C code (integration with CBench). It uses Google’s protobuf [64] for
defining the communication protocols and efficiently serializing the data. In this section we give an
overview of some important system implementation details.

4.1.4.1 A source of strong entropy

Each external source of noise (e.g., forwarding device, controller) sends heartbeats to the anchor.
Each heartbeat carries statistics of the current network traffic, idleness of links, and number of packets
received by a controller within a specific time frame.
Recall from Algorithm 4 that for setting up the external entropy, the bytes read from the local source
are combined (through an XOR operation) with the output of hashing function H(data). We have
chosen SHA512 as our strong hashing function H [50]. After that, a second read of local random bytes
is XORed with the external entropy to setup the internal entropy.
For implementing the entropy update(), one can use the pools of noise in a circular approach (e.g., P0

and P1, P2 and P3, and so forth), in a combined circular and random way (P0 and P7, P1 and P31,
and so forth), or in a completely random fashion, for instance. Using several pools of events, we create
enough data to make it nearly impractical for an attacker to enumerate the possible values for the
events used to update the generator’s internal state [58]. In other words, the attacker will arguably
be unable to rebuild the internal state of the source of strong entropy.
Even if an attacker is controlling two or more external sources in a timely manner, it will be hard
to guess the new state of the external entropy. First, the attacker needs to enumerate the events of
the pools being used on each update. This, by itself, is something hard to achieve since the attacker
does not know the update sequence of these pools, i.e., which external sources are being used, in
which sequence, to update each pool. In other words, he/she would have to know all sources of noise,

3CBench is the default and most widely used tool for benchmarking control plane performance [137, 77, 172].

SUPERCLOUD D4.4 Page 58 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

and the sequence in which they are being used to update the pools. It is also worth emphasizing
that the external sources need to have a pre-defined maximum rate for sending the heartbeats, i.e.,
compromised sources cannot send data at a higher frequency to influence subsequent updates of the
external entropy. Second, the attacker would need to have additional knowledge regarding the internal
entropy, which is a result of two combined values, as explained in the following paragraph.
Pools of noise. The 32 pools of events are feed by four different sources, (1) incoming packet rate
sent by controllers; (2) incoming packet rate of anchor; (3) network statistics of forwarding devices;
and (4) random bytes from local systems. Each of the source feeds the pools in its own way. For
instance, sources (1) and (3) use round-robin, while sources (2) and (4) use a random approach to
select the next pool to put the new event in. In this way, we have a diversity of approaches for feeding
the pools of noise, making the “guessing task” of an attacker even harder. Each pool needs to store
only a single value, the digest of a hashing function (e.g., SHA512). The current digest and the newly
arrived events are used as input of the hashing function. Lastly, once the pool has been used by the
source of strong entropy, it is reset to a new initial state, which consists of the digest of a hash function
using as input random bytes of a local entropy source such as /dev/urandom.

4.1.4.2 Pseudorandom generator (PRG)

Our PRG, as was shown in Algorithm 5, combines the strengths of different solutions such as the PRF
of SPINS [118] (which is based on an HMAC function), provably secure constructions for building
robust PRGs [52, 58], and unbounded state spaces through cryptographic primitives [147].
As HASH function we have chosen SHA512. As HMAC function, we have chosen the one time
authentication function crypto onetimeauth() from NaCl [24]. It ensures security and performance
while generating outputs of 16 bytes that are indistinguishable from random.
PRG at the controller. As the controller might not have a source of strong entropy, we implemented
a slightly modified version of Algorithm 5. Essentially, we replace the entropy get() function by
entropy remote(). This function makes an entropy request to the anchor. This means that the
recovering security by refreshing, which makes a PRG more resilient, is using our source of strong
entropy. With this approach, we are strengthening the controller’s PRG.

4.1.4.3 iDVV generators

Based on the algorithm we will detail in Section 4.2, we have implemented an iDVV generator that
supports seven different cryptographic primitives. In this case, the idvv next(primitive id) also has
an input, which is the id of the primitive to be used. In the implementation, we used the follow-
ing primitives to generate the iDVVs: MD5, SHA1, SHA512, SHA256, poly1305aes authenticate,
crypto onetimeauth, and crypto hash. While the first four functions are provided by OpenSSL, the
last three are provided by an independent implementation of Poly1305-AES and NaCl. As MD5 and
SHA1 are deprecated, we use them only for performance comparison purposes.

4.1.5 Evaluation

In this section we evaluate the essential security mechanisms and services of our architecture.
For the performance measurements, we used machines with two quad-core Intel Xeon E5620 2.4GHz,
with 2x4x256KB L2 / 2x12MB L3 cache, 32GB SDIMM at 1066MHz, with hyper-threading enabled.
These machines were interconnected by a Gigabit Ethernet switch and ran Ubuntu Server 14.04 LTS.

4.1.5.1 Source of entropy and PRGs

We empirically evaluate both the source of strong entropy and PRGs through statistical methods
and tools, following state of the art recommendations [17]. To achieve our goal, we used NIST’s test
suite [109]. We generated one file containing 50MB of random bits per generator. These files were
used as input for the test suite tool STS [109]. In the end, our generators passed the absolute majority

SUPERCLOUD D4.4 Page 59 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

of tests and sub-tests: they failed only 2 sub-tests out of 188 (passed 146 out of 148 non-overlapping
template matching), as summarized in Table 4.1. This gives a very high level of confidence to our
generators.

Test Result

Frequency X

Block Frequency X

Cumulative Sums (forward) X

Cumulative Sums (backward) X

Runs X

Longest Run of Ones X

Binary Matrix Rank X

Discrete Fourier Transform X

Non-overlapping Template Matching 146/148

Approximate Entropy X

Random Excursions 8/8

Random Excursions Variant 18/18

Serial (first) X

Serial (second) X

Linear Complexity X

Table 4.1: STS: results of the single tests

4.1.5.2 Device-to-device communication performance

Connection establishment. While a TLS connection takes around 19 ms to be established, a device
association using the anchor takes less than 0.06 ms. In other words, our connection setup process
outperforms the TLS handshake because we have only half the number of steps, namely, we do not
incur the cost of exchanging data to generate the session keys, and we use NaCl for secure and fast
ciphering.
Communications overhead. Figure 4.3 shows the results of communication between OpenSSL,
TCP, and our proposal. For communication of up to 128 forwarding devices, sending 10k control
messages each, our solution requires (while offering stronger security guarantees - see below) only half
of the resources and time of an OpenSSL-based implementation using AES256-SHA, the most widely
available cipher suite — adopted by most IT providers.
In Figure 4.3, we can also observe the overhead of confidentiality (TCP-iDVV-EMAC). In comparison
with providing only authenticity and integrity (TCP-iDVV-MAC), confidentiality incurs in an overhead
of 15%. Out-of-band control channels are one example scenario where confidentiality of control plane
communications might not be always required.
It is worth emphasizing that we achieved these results by ensuring also much stronger security, as we
generated one iDVV (i.e., one secret) per packet. On the other hand, the OpenSSL-based implemen-
tation used a single key (for the symmetric ciphering) for the entire communication session.

4.1.5.3 Traditional solutions versus anchor

In Table 4.2 we provide a summarised comparison between a traditional solution and our anchor. As
traditional solutions we considered the EJBCA (http://www.ejbca.org/) and OpenSSL, two popular

SUPERCLOUD D4.4 Page 60 of 118

http://www.ejbca.org/

D4.4 - Implementation of Self-Management of Network Security and Resilience

 0.1

 1

 10

 100

2 4 8 16 32 64 128

* *

A
c
c
u
m
u
l
a
t
e
d

l
a
t
e
n
c
y

(
s
)

Number of forwarding devices

TCP-ONLY

TCP-iDVV-MAC

TCP-iDVV-EMAC

OpenSSL-AES256

Figure 4.3: Control plane communication costs

implementations of PKI and TLS, respectively. As we have shown before, our bootstrap process (device
registration and association) is much faster and our connection latency is also significantly lower. An
interesting take away is that our solution has nearly one order of magnitude less LoC and uses four
times less external libraries and only four programming languages. This makes a difference from a
security and dependability perspective. For instance, to formally prove more than 717k LoC (EJBCA
+ OpenSSL) is by itself a tremendous challenge. And it gets considerably worse if we take into account
eighty external libraries and eleven programming languages.
In conclusion, our proposed architecture offers a functionally equivalent level of security (with respect
to security properties such as authenticity, integrity and confidentiality) to traditional alternatives by
combining NaCl, our anchor, and the iDVV mechanism. Additionally, our anchor offers a higher
level of security by providing post-compromise security (PCS) and post-quantum security (PQS).
While the former is ensured through post-compromise recovery (see Section 4.1.3.10), the latter is a
consequence of using only symmetric cryptography. Further, the lightweight nature of our mechanisms,
such as the iDVV, make them amenable to be used on a per message basis to secure communication,
increasing cryptographic robustness. Moreover, by having less LoC, we significantly reduce the threat
surface.
Finally, it is worth emphasizing that the perfect forward secrecy of traditional solutions, such as those
provided by the different implementations of TLS, is not easy or simple to enforce. First, in spite
of TLS providing ciphers that offer PFS, in practice, different cipher suites do not feature it [139].
This means that not all implementations and deployments of TLS offer PFS or provide it with very
low encryption grade [71, 51, 106]. To give an example, widely deployed web servers, such as Apache
and Nginx, may suffer from weak PFS configuration [51]. Second, research results have recurrently
shown that most DHE- and ECDHE-enabled servers use weak DH parameters or practices that greatly
reduce the protection afforded by PFS, such as private value reuse, TLS session resumption, and TLS
session tickets, i.e., provide a false sense of security [71, 5, 146].

4.1.6 Related work

Most attacks to SDN exploit different vulnerabilities of the control plane, such as the lack of authen-
tication, authorization and other essential security properties (e.g., integrity, confidentiality and data
freshness) [134, 13, 90]. As a consequence, the absolute majority of the works on security of SDN are
related to the controller, applications, forwarding devices, or a set of specific attacks (e.g. DDoS, IP
and MAC spoofing, eavesdropping on the data plane) [143, 135, 122, 142, 144, 157, 15]. However, not
much attention has been paid to the security requirements of control plane associations and commu-
nication between devices (see [134, 85, 49] for broad surveys), one of the aspects we address in this

SUPERCLOUD D4.4 Page 61 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Table 4.2: Traditional solutions versus anchor

Functionality Traditional solutions AnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchorAnchor

Typical Software EJBCA (PKI) + OpenSSL (TLS) anchor + iDVV + NaCl

Device Identifi-
cation

based on certificates; costs = issue a certifi-
cate

based on unique IDs controlled by the an-
chor; costs = register the device (assign a
unique ID)

Device Registra-
tion

based on certificates; costs = certificate in-
stallation + security control policy/service

registration protocol; costs = register the de-
vice + iDVV bootstrap

Device Associa-
tion & KeyGen

12 step mutual handshake + DH for session
keys (incl. certificate validation - any two de-
vice can establish an association)

6 step trust establishment with anchor +
iDVVs per message, session, interval of time,
... (anchor has to authorize association)

Security Properties

Authenticity 3 3

Integrity 3 3

Confidentiality 3 3

PFS 3(*) 3

PCS 7 3

PQS 7 3

Communications symmetric cryptography (cipher: AES256-
SHA)

symmetric cryptography (cipher: Salsa20)

TLS stack highly configurable and complex (717k LOC) easy to use, simple (85k LOC), and efficient

work.
TLS and IPSec are examples of protocols that can be used to secure the communication between
forwarding devices and controllers. While TLS is the one recommended by ONF, recent research
discusses the strengths and weaknesses of these protocols as a mean to provide authenticated and
encrypted control channels [130]. While the of use these protocols gives important security properties,
they have an impact on control plane performance. Additionally, the complexity of existing software
has been recurrently pointed out as one of the main cause for a high number of reported vulnerabilities,
that in many cases have led to security attacks [175, 100, 101, 70]. By logically-centralizing crucial
security mechanisms, our anchor removes complexity from both controllers and switches, enhancing
the robustness of the infrastructure, without significant compromise in performance.
Recently, the use of lightweight information hiding based authentication (by means of secrecy through
obscurity) has been proposed as one way of protecting SDN controllers from DoS attacks [4]. The
idea is to use a specific field in the IP protocol to hide the switch authentication ID. In order for the
scheme to be workable, it is assumed that a look-up table and unique IDs are shared among devices
through existing key distribution protocols. While such lightweight technique can indeed be used to
mitigate DoS attacks, it does not address the security issues of control plane communications – such
as authenticity, integrity, confidentiality, and data freshness – we address here.
To our knowledge, an architectural approach as the one we propose here (which ultimately led to
following the SDN philosophy of “logical centralization”) was lacking. Importantly, this approach
allowed us to gain a global perspective of the relevant gaps in SDN and the limitations of existing
solutions to the problem. This first step gave insight into one of the most relevant problems of
SDN (as noted by the ONF or MEF security groups [113, 103]): the security of the associations
and communications between devices— which jointly with the architecture itself, is one of the main
contributions of this work.

SUPERCLOUD D4.4 Page 62 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

4.1.7 Discussion

We briefly discuss how we filled the gaps identified in Section 4.1.2, with our specialization of the
logically centralized anchor architecture for ‘security’. Incidentally, we also show, in Appendix D of
[87], to which extent these solutions cover ONF’s security requirements. We conclude the section with
a critique of our choices and results.

4.1.7.1 Meeting the challenges

Security vs performance? Control channels need to provide high performance (high throughput and
low latency) while keeping the communication secure. However, as it has been shown, security prim-
itives have a non-negligible impact on performance. To mitigate this problem, we selected the most
appropriate cryptographic primitives (SHA512) and libraries (NaCl) to ensure the security of control
plane communications. Additionally, the proposed integrated device verification values (iDVVs) al-
low systematic refreshing of cryptographic material with high performance, while further improving
cryptographic robustness. By logically centralizing the fundamental aspects of these mechanisms in
the anchor, the performance overhead introduced in forwarding devices and controllers is limited, as
they require only minimal functionality to ‘hook’ to the anchor instructions.
Complexity vs robustness? Traditional implementations of SSL/TLS, such as OpenSSL, have a large,
complex code base, that recurrently leads to vulnerabilities been discovered. Similar problems are
observed in PKI subsystems. It is well know that an effective means to achieve robustness is by
reducing complexity. Hence our choice for the NaCl and iDVV mechanisms to help filling this gap,
since they are respectively lightweight (small code base), efficient, yet secure alternatives to OpenSSL-
like implementations. As such, they are a robust solution to provide authentication and authorisation
material for the secure communications protocols we propose. They are also amenable to verification
mechanisms aimed to assure correctness, which are much harder to employ in very large code bases.
Again, the centralization of the nuclear parts of the non-functional mechanisms introduced in our
solution is the key to reduce complexity of networking devices, improving their robustness.
Global security policies? We have argued that controllers and network devices often employ suboptimal
network authentication and secure communication mechanisms, despite recommendations from ONF
and other such organizations for the opposite. This problem is very similar in nature to the state of
affairs in networking before SDN. In traditional networks, enforcing relatively “simple” policies such as
access control rules [43] or traffic engineering mechanisms [75] was either very hard or even impossible
in practice. Given the current undesirable situation, we believe the same to be true to non-functional
properties, with security as a prominent example. Our logically centralized anchor architecture
addresses this gap by providing a means for making centralized policy rules (e.g., about registration,
authentication and association of network devices) and the necessary mechanisms to enforce them,
permeating the SDN architecture in a global and coherent way.
Resilient roots-of-trust? We debated that there is a (probably reduced) number of functions which
should not be left to ad-hoc implementations, due to their criticality on system correctness. The list
is not closed, but we hope to have shown that strong sources of entropy, resilient indistinguishable-
from-random number generators, and accurate, non-forgeable global time services, are clear examples
of difficult-to-get-right mechanisms that benefit from such logically centralized approach. anchor
addresses this issue, by providing the motivation to design and verify careful and resilient once-and-
for-all implementations of such root-of-trust mechanisms, which can then be reinstantiated in different
SDN deployments.

4.1.7.2 Devil’s advocate analysis

Doesn’t the logical centralization of non-functional properties create a single point of failure?
As mentioned in the introduction, we have a long-term strategy towards this problem. The results
from this work already go a long way improving robustness of a single root-of-trust, compared to
the state of the art: lowering failure probability; mitigating and recovering from the consequences of

SUPERCLOUD D4.4 Page 63 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

failure. The logical next step would be to try and prevent failures in the first place. However, the
failure of a simplex system of reasonable complexity cannot be prevented. Nevertheless, note that
logical centralization is not necessarily physical centralization.
Our plan for future work is to leverage state-of-the-art security and dependability mechanisms using
replication. For instance, to achieve tolerance of crash and Byzantine faults and attacks, we can read-
ily enhance anchor by replication, taking advantage of state machine replication libraries such as
BFT-SMaRt [26], replicating and diversifying components to prevent failure of this logically central
point, with the desired confidence. These concepts have been applied to root-of-trust like configura-
tions similar to anchor [174, 41, 83]. Furthermore, systems designed with state machine replication
in mind can also handle different types of threats, such as DoS and resource exhaustion, without
compromising the operation of the service [89].

Won’t the natural hardware evolution be by itself enough to reduce the penalty imposed by cryptographic
primitives? The recent reality seems to contradict this assertion – hardware evolution does not seem
enough, for several reasons. First, new hardware architectures can (potentially) benefit different exist-
ing software-based solutions. For instance, both NaCl and OpenSSL take advantage of hardware-based
AES accelerators. Second, and as is well known, the fixed price of advancements in hardware seems
to be coming to an end [73]. Third, most of the major IT companies, such as Google and Microsoft,
have been redesigning existing software to make it more usable, efficient, secure, and robust [95]. In
short, hardware will not be the panacea.

Aren’t traditional PKI and TLS implementations enough? Following what is becoming recurrently
advocated by many in the industry and in the security community, we have tried to argue that the
simplicity and size of software and IT infrastructure matters [46, 156]. Higher complexity has been
shown to lead inevitably to an increased likelihood of bugs and security incidents in software. In-
deed, different implementations of PKI and TLS have been recently used as powerful “weapons” for
cyber-attacks and cyber-espionage [123, 32], leading to concerns about their robustness. Contrary to
what this argument may suggest, that does not mean PKI and TLS are “broken”. We believe they
remain fundamental to various IT infrastructures. However, as the main challenges of securing SDN
are usually relatively constrained to within a network domain, we have come to understand that sim-
pler, domain-specific solutions seem to be preferable in this environment when compared to complex
infrastructures such as the PKI, and large code bases as OpenSSL.

Wouldn’t the use of out-of-band control channels solve most problems? Out-of-band channels may be
useful in some contexts, but they are not “intrinsically” secure. It is a recurrent mistake to consider
physical isolation, per se, as a form of security. Several studies have indeed argued the opposite: that
out-of-band channels worsen the problem, by making control plane management more complex and
less flexible, endangering control plane communications [54, 99]. We do not take a stance in this
discussion, but the fact is that real incidents, such as NSA sniffing of Google’s cables between data
centers [132], seem clear examples that out-of-band channels are not, per se, enough.

4.1.8 Conclusions

In this section, we proposed a solution to the problem of enforcing non-functional properties in SDN,
such as security or dependability. Re-iterating the successful philosophy behind the inception of SDN
itself, we advocate the concept of logical centralization of SDN non-functional properties provision,
which we materialize in terms of the blueprint of an architectural framework, anchor.
Taking ‘security’ as a proof-of-concept use case, we have shown the effectiveness of our proposal.
We made a gap analysis of security in SDN, and populated the anchor middleware with crucial
mechanisms and services to fill those gaps and enhance the security of SDN.
We evaluated the architecture, especially focusing on the security-performance analysis tradeoff, giving
proofs of the algorithms, cryptographic robustness analyses, and experimental performance evalua-

SUPERCLOUD D4.4 Page 64 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

tions. By resorting to recent primitives, lightweight albeit secure, like NaCl and iDVV, we outperform
the most widely used encryption of OpenSSL by 50%, with a higher level of security. Our solution
also fulfills eleven of the security requirements recommended by ONF.
The mechanisms we propose are certainly not the final answer to SDN security problems. That is not
our claim. We however believe, and hope to have justified here, that an architecture that logically
centralizes the non-functional properties of an SDN to have the potential to address some of the most
prement unsolved problems regarding the robustness of the infrastructure. We thus hope our work to
trigger an important discussion on these fundamental architectural aspects of SDN.

4.2 Secure and efficient control plane communications

As explained above, in Software-Defined Networking (SDN), network control is separated from the
forwarding devices and logically centralised in a controller. This separation is achieved by means of a
protocol (typically, OpenFlow) that enables the SDN controller to remotely populate the forwarding
tables of network switches. The OpenFlow standard includes Transport Layer Security (TLS) (see
IETF RFC 5246) as an optional security feature for authenticating forwarding devices and controllers
and for encrypting the communication channel. However, to date most reported deployments still
use TCP for control traffic, and SDN controllers and switching hardware with TLS support are still
rare [85]. This makes the control plane communication vulnerable to different attacks [85, 134].
Four fundamental issues can slow down the rate of adoption of secure mechanisms in SDN:

• First, securing communications has a non-negligible cost in terms of increased communication
latency and reduced performance. Several recent studies have analysed this overhead in various
contexts [107].

• Second, the computing capabilities of commodity switches are typically weak. The typical SDN
switch is equipped with a single or dual-core CPU running at approximately 1GHz, which com-
pares unfavourably with the multi-core CPUs found in typical commodity servers. Imposing the
additional cost of TLS to these computing-constrained networking devices is a problem.

• Third, poor choice of cryptographic primitive implementations can also have a significant impact
on the performance of the control plane communications handled by the controller.

• Finally, the Public Key Infrastructure (PKI) on which TLS relies is complex and thus vulnerability-
prone [159], opening a large surface for successful attacks [153].

In order to meet these challenges, we propose a modular secure SDN control plane communications
solution, KISS4 SDN (Section 4.2.1), which aims to increase the robustness of control communications
whilst enhancing their performance, by decreasing the complexity of the support infrastructure, as an
alternative to current approaches based on classic configurations of TLS and PKI.
A core novel component of our architecture is the integrated device verification value (iDVV), a de-
terministic but indistinguishable-from-random secret code generation protocol (Section 4.2.2). As
explained in the previous section, the concept was inspired by the iCVVs (integrated card verification
values) used in credit cards to authenticate and authorize transactions in a secure and inexpensive
way. We develop and extend the idea for SDN, proposing a flexible method of generating iDVVs by
adapting proven one-time password-like techniques. iDVV codes allow the safe decentralized genera-
tion/verification of keys at both ends of the channel, at will, even on a per-message basis.
To understand and minimize the cost of security, we quantify (Section 4.2.3) the impact of secure
primitives on the performance and scalability of control plane communications, through a performance
study of different implementations of TCP vs. TLS, complemented by a deeper study of underlying
hashing and message authentication code (MAC) primitives. Those experiments confirm our intuition

4Keep It Simple and Secure

SUPERCLOUD D4.4 Page 65 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

that the choice of protocols and primitives used in secure communication may well be one strong reason
behind the slow adoption of these mechanisms in SDN. This in-depth study leads to the selection of
the NaCl cryptographic library [24], and the best performing MAC and strong hash primitives —
Poly1305 and SHA512 OpenSSL – as the baseline secure channel technologies for KISS.
iDVVs team-up with NaCl, in order to safely replace the cryptographic primitives and key-exchange
protocols and key derivation functions commonly used in TLS. As a result, the NaCl-iDVV compound,
while achieving the same functional level of security, is simpler, potentially leading to a higher level
of implementation robustness by vulnerability reduction. In fact, we estimate the proposed security
architecture footprint to be smaller than TLS-PKI alternatives with traditional protocols, by an order
of magnitude, in terms of the number of lines of code (LOC). Such a differential also points to reducing
the cyclomatic complexity. These metrics are typically used to assess the robustness and estimate
verifiability of software systems.
Finally, in Section 4.2.4 we discuss aspects related to the security and robustness of our solution. We
close this section with related work and some directions to further work.

4.2.1 KISS SDN

In this section we present KISS SDN, a secure and efficient control plane communications solution
for SDN offering alternatives to classic configurations of secure channel and authentication protocols
and subsystems followed in TLS and PKI. We assume a typical SDN architecture, as illustrated in
Figure 4.4, composed of controllers and forwarding devices. It also includes an instance of ANCHOR:
‘KDC’, standing for key distribution center. We further assume that device registration and association
services are in place. As they were presented in the section 4.1, we do not discuss them in detail but,
for self-containment, we discuss some properties and their interface below.
The two components encapsulated by the KISS boxes (the “hooks” of this solution) are the crucial
components of the architecture, and the main subject of our study: a secure channel protocol suite,
composed of a judicious choice of state-of-the-art mechanisms and protocols, which we dub SC for
convenience of description, and a novel deterministic but indistinguishable-from-random secret code
generation protocol, which we call iDVV.
We have considered using TLS implementations (e.g. OpenSSL) as the baseline protocol for SC. How-
ever, the experiments in Section 4.2.3 have alerted us to: the sheer performance cost of cryptographic
communication; and the further impact of sub-optimal choices of cryptographic primitives. This mo-
tivated us to adopt NaCl [24], a high performance yet secure cryptographic library, as the substrate
of SC, complemented by the MAC and strong hash primitives with best performance according to
our experiments – Poly1305 and SHA512 OpenSSL. SHA-512 is used by the iDVV generator while
Poly1305 is a fast MAC algorithm.
The iDVV, a novel component we propose, helps to further enhance the security of SC, through
strong crypto material generated at a low cost (e.g. one-time keys, per-message authentication and
authorization codes) to be used by NaCl ciphers. The indistinguishability-from-random allied to the
determinism allow the safe decentralized generation/verification of per-message keys at both ends of
the channel.

4.2.1.1 System and threat model

For simplicity and without loss of generality, we assume that the controllers and forwarding devices
are registered and associated through a secure and robust key distribution service provided by a key
distribution center (KDC), an instance of the ANCHOR architecture.
The device registration process is by default invoked by network administrators to the KDC, to register
new devices. As the result of device registration, the device and the KDC securely share a symmetric
key. We denote Kkc the shared key between the KDC authority and a registered controller, and Kkf

the shared key between the KDC authority and a registered forwarding device.

SUPERCLOUD D4.4 Page 66 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Device	Registration

Device	Association

Net	AppNet	App

SDN CONTROLLER

Network
O.S.

Net	AppNet	App

FLOW	TABLES

KISS

KISS

Net	AppNet	App

SDN DEVICE

iDVV

iDVV

SC

SC

‘KDC’

Figure 4.4: General architecture

Registered controllers and forwarding devices must be securely associated, also through the KDC
authority, as a pre-condition to communicate securely. The most common case is a forwarding device
fi requesting an association to a controller cj , through the KDC. After associating, a controller and a
forwarding device share two symmetric secrets (of size 256 bits), namely a seedij and a keyij . The key
is generated by the KDC and the seed is generated by the KDC in cooperation with the controller.
These secrets will be used to bootstrap the iDVV module (see Section 4.2.2.1).
As threat model, we consider a Dolev-Yao style attacker, who has complete control of the network,
namely the attacker logs all messages, and can arbitrarily delay, drop, re-order, insert, or modify
messages. In addition, this strong attacker is able to compromise any network device (e.g. a controller
or a forwarding device) at any time. We assume the security of the used cryptographic primitives,
including MAC (i.e. Poly1305), hash function (i.e. SHA-512), and symmetric encryption algorithm
(e.g. AES).

4.2.1.2 Security goals

The main goal of KISS is to provide security properties including authenticity, integrity, and confiden-
tiality for control plane communications, while minimizing cost and complexity.
The secure communication between participants can be easily guaranteed when a secure encryption
algorithm is used, as long as the shared secret key is kept secure. To provide a robust SDN system, we
focus on advanced security guarantees for the situation when the shared key is exposed to an attacker,
as this might happen in practice. In particular, if an attacker has compromised a device and learnt its
shared keys, then we are aiming at providing “perfect forward secrecy” (PFS) of communications. That
is, the secrecy of a device’s past communications should be protected when the device is compromised
and its shared keys are exposed to an attacker. It is important to emphasize again that PFS is an
essential requirement for SDN. The lack of it can lead to information disclosure, i.e., reveal different
aspects of the network’s state and the controller’s strategy (e.g., proactive or reactive flow setup).
Established KDC technologies like Kerberos have robust implementations and are intensely used by
industry, which makes us consider the logical single-point-of-failure they present as moderate, and an
acceptable option for the current state of the art. We present mitigation measures to achieve PFS

SUPERCLOUD D4.4 Page 67 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

in case of compromise of the KDC. We also plan, as future work, to investigate the development of
SDN KDCs resilient to accidental and malicious faults, drawing from fault and intrusion tolerance
techniques [155].
On the devices side, we make no claim about their sheer resilience, since this is largely dependent on
vendors. More precisely, when a controller and/or a forwarding device is compromised, we consider
that the attacker is able to obtain all knowledge of the victim device(s), including all stored secrets and
the session status. However, it is our goal to guarantee the confidentiality of all past communications
through measures that allow us to achieve perfect forward secrecy.

4.2.2 iDVV: Keep It Simple and Secure

Integrated device verification values (iDVVs) are sequentially generated to protect and authenticate
requests between two networking devices. The generator is conceived so that its output sequence has
the indistinguishability-from-random and determinism properties. In consequence, the same sequence
of random-looking secret values is generated on both ends of the channel, allowing the safe decentralized
generation/verification of per-message keys at both ends. However, if the seed and key initial values
and the state of the generator are kept secret, there is no way an adversary can know, predict or
generate an iDVV.
In other words, an iDVV is a unique secret value generated by a device A (e.g. a forwarding device),
which can be locally verified by another device B (e.g. a controller). The iDVV generation is made
flexible to serve the needs of SDN. iDVVs can therefore be generated: (a) on a per message basis; (b)
for a sequence of messages; (c) for a specific interval of time; and (d) for one communication session.
The main advantages of iDVVs are their low cost and the fact that they can be generated locally, i.e.,
without having to establish any previous agreement.
Different from standard KDF algorithms such as HKDF, which assumes that keying material is not
uniformly random or pseudorandom, our keying material (i.e. seed and key) are random symmetric
secrets (each of size 256 bits), generated by the KDC, with high entropy. In such cases, a strong hash
function can be safely used to derive a key (RFC 4880). As shown by the results in Section 4.2.3, the
iDVV generation is simpler and faster than standard KDF algorithm such as HKDF (RFC 5869) and
similar solutions.

4.2.2.1 iDVV bootstrap

As discussed before, the association between two SDN devices, e.g., forwarding device fi and controller
cj , happens through the help of KDC, under the protection of the long-term secret keys obtained from
registration (Kkf , resp. Kkc). The outcome of the association protocol is the distribution of two
random secrets to both devices: a seed seedij , and an association key keyij . The iDVV mechanism is
bootstrapped by installing these two secret values in both the controller and the switch, to animate
the iDVV generation algorithms, which we describe next.
Note that the set-up and generation of the iDVV values are performed in a deterministic way, so that
they can be done locally at both ends. However, as iDVVs will be used as keys by cryptographic
primitives such as MAC or encryption functions, they have to be indistinguishable from random.
Hashing primitives are natural choices for our algorithms, since they provide indistinguishable-from-
random values if one or more of the input values are known only by the sender and the receiver.
This explains why it is crucial that seed and association key are sent encrypted and therefore known
only to the communicating devices. Moreover, in order to prevent information leakage, all variables
seed, key, and idvv in the algorithms below should have the same length, which we chose to be 256
bits in our design. This length is commonly considered robust. From our experiments discussed in
Section 4.2.3, the hashing primitive to be used is SHA512, which yields 512 bits, of which we will
use the most-significant q bits if we need to reduce the output length to q (as recommended by IETF
RFC 4880). For example, we use the most-significant 256 bits of the SHA512 output as the key for
symmetric ciphers.

SUPERCLOUD D4.4 Page 68 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

The initial iDVV value is deterministically created at both ends of the association between two devices5,
by calling function idvv init, which performs hashing on the concatenation of the initial seed and
key, as illustrated by algorithm 9. After set-up, the generator is ready for first use, as described in
the following section.

Algorithm 9: iDVV set-up

1: idvv init()

2: idvv ← H(seed || key)

4.2.2.2 iDVV generation

After the bootstrap with the initial idvv value, the idvv next function is invoked on-demand (again,
synchronously at both ends of the channel) to autonomously generate authentication or encryption
keys that will be used for securing the communications, as illustrated by algorithm 10.
The key remains the only constant shared secret between the devices. The seed evolves to a new
indistinguishable-from-random value each time idvv next is invoked to generate a new iDVV. The
new seed is the outcome of a hashing primitive H over the current seed and current idvv (line 2).
The new idvv, output of function idvv next, is the outcome of a hashing primitive H over the
concatenation of the new seed and association key key.

Algorithm 10: iDVV generation

1: idvv next()

2: seed ← H(seed || idvv)
3: idvv ← H(seed || key)

4.2.2.3 iDVV synchronization

The iDVV mechanism is agnostic w.r.t. secure communication protocols, and can be used in a number
of ways, in a number of protocols, as a key-per-message or key-per-session, etc. The only key issue
about iDVV generation, is to keep it synchronized in both ends of the channel. So, we present some
recommendations in this regard.
The most general style of iDVV use is Indexed iDVV : iDVVs are indexed by the generation number,
and they are operated in ”one key per direction” mode, i.e., at each end, one iDVV is generated for each
communication direction. This way, they support competitive, non-synchronized correspondents. This
mode also supports unreliable, connectionless protocols like UDP. Each iDVV generated is indexed by
a sequence number (the initial iDVV being idvv0) and the sequence number is included in the message
where the respective idvv is used. This way, each receiving end (this works in either direction, as we
have two pairs of iDVVs) can know the exact idvv number that should be used and, for example, detect
and recover from omissions, by generating idvv’s the necessary number of times to resynchronize.
iDVVs can get out of sync for a number of reasons, such as speed differences, omission errors, or even
DoS attacks. When de-synchronization happens, a baseline technique consists of advancing the iDVV
of the “slower” end, to catch up. The process is made robust by two techniques. First, communication
should be authenticated (encrypt-then-MAC recommended), such that any messages failing crypto
(decryption or MAC verification), can be simply discarded. Second, when say, idvvk is advanced to
idvvl (k < l) to re-synchronize, and the operation is not successful (crypto fails), the old idvvk is
restored (and the message motivating the recovery, is discarded, as per above). This restoration does
not affect the PFS of communications because the idvvk (or newer) has not yet been used to secure
the traffic between the two communicating devices. Finally, in the case of attacks, these robustness
techniques also help to foil them, since the attacker cannot mimic valid crypto, so the message is
discarded, and the node returns to the original iDVV state.

5For readability, we omit the device-identifying subscripts in the variables.

SUPERCLOUD D4.4 Page 69 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

4.2.2.4 iDVV implementation and application

iDVVs require minimal resources, which means that they can be implemented on any device, from a
simple and very limited smart card to most existing devices. In other words, they are a simple and
viable solution that can be embedded in any networking device. Just three values per association have
to be securely stored — the seed, the association key and the iDVV itself — in order to use iDVV
continuously. Furthermore, only hash functions, simple to implement and with a very small code base,
are required to generate iDVVs. Such kind of resource is already available on all networking devices
that support traditional network protocols and basic security mechanisms.
We advocate (and demonstrate in Section 4.2.3.2) that iDVVs are inexpensive and, as a result, can be
used on a per-message basis to secure communication. It is worth emphasizing that, from a security
perspective, one fresh iDVV per message makes it much harder for attacks such as key recovery,
advanced side channel attacks, among other general HMAC attacks, to succeed. In fact, the one-time
key approach was initially used for generating MACs. Yet, it was set aside (i.e. replaced by keys with
a longer lifetime) due to performance reasons. However, as the iDVV generation has a low cost, we
incur a lower penalty.
Finally, iDVVs can have further practical applications. For instance, the TLS handshake can be used
to bootstrap the iDVV. After that, iDVVs can be used as session keys, i.e., in security mechanisms
such as encrypt-then-MAC.

4.2.3 On the cost of security

In this section we provide a quantitative analysis of the impact of cryptographic primitives on control
plane communication. Although the number of use cases is expanding, SDN has been mainly targeting
data centers. As such, SDN controllers have to be capable of dealing with the challenging workloads
of these large-scale infrastructures. In these environments new flows6 can arrive at a given forwarding
device every 10 µs, with a great majority of mice traffic lasting less than 100ms [19]. This means that
current data centers need to handle peak loads of tens of millions of new flows/s. The control plane
has to meet both the network latencies and throughputs required to sustain these high rates. Current
controllers are capable of achieving a throughput of up to 20M flows/s using TCP [85].
So any effort to systematically secure control plane communications has to meet these challenges. In
the following we try to put the problem in perspective, by analysing the effect of including even the
most basic security primitives to ensure authenticity, confidentiality and integrity when considering
peak loads of this magnitude. We start by analyzing the latency impact of TLS, relative to TCP, and
then we focus on hashes and MACs as they are the essential primitives for authenticity and integrity
of communication.

4.2.3.1 The cost of secure channels

Our first experiments assess the compared average latency of TCP and TLS on control plane commu-
nication. We analyse the latency of connection setup and of OpenFlow PACKET IN/FLOW MOD messages.
The OpenFlow PACKET IN message is used by switches to send packets to the controller (e.g. when
there is no rule matching the packet received in the switch). FLOW MOD messages allow the controller
to modify the state of an OpenFlow switch.
The connection setup time for TLS is two orders of magnitude higher than for TCP, since TLS has
a more elaborate handshake protocol between the devices [84]. Also, PolarSSL (a library used in
systems from companies such as Gemalto, ARM, and Linksys) induces nearly twice the overhead of
OpenSSL. However important, a high connection cost can be amortized by maintaining persistent
connections. As such, we focus on the communications cost. Figure 4.5 shows the latency of FLOW MOD

messages, averaged over 10k messages. The results with PACKET IN messages were similar so we omit

6In spite of the fact that there are several definitions of flow in SDN [85], we equate SDN flow with TCP flow for the
sake of simplicity.

SUPERCLOUD D4.4 Page 70 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

them for clarity. The costs of TCP, OpenSSL and PolarSSL grow nearly linearly with the number
of forwarding devices. OpenSSL latency is approximately 3x higher than TCP. This is explained by
the high overhead of cryptographic primitives, as we further analyse in the next section. PolarSSL is
significantly worse, increasing the latency by up to 7x when compared with TCP.

Conclusions: The main findings of this analysis can be summarised in two points. First, different
implementations of TLS present very different performance penalties. Second, the additional com-
putation required by the cryptographic primitives used in TLS leads to a non-negligible performance
penalty in the control plane. In consequence, we turn to lightweight cryptographic libraries, such as
NaCl [24] and TweetNaCl [25], which are starting to be used in different applications.
NaCl has been designed to be secure [11, 24] and to be embedded in any system [25], taking a clean
slate approach and avoiding most of the pitfalls of other libraries (e.g. OpenSSL – misuse issues):

• First, it exposes a simple and high-level API, with a reduced set of functions for each operation.

• Second, it uses high-speed and highly-secure primitives, carefully implemented to avoid side-
channel attacks.

• Third, NaCl is less error-prone because low-security options are eliminated and it also provides
a limited number of cryptographic primitives. In other words, users do not need deep knowledge
regarding security to use it correctly. This is one of the major differences between it and other
libraries such as OpenSSL. For instance, it has been recurrently shown that developers have been
using OpenSSL in incorrect ways, leading to several security issues.

• Fourth, it has already been shown that secure and high-performance network protocols, outper-
forming OpenSSL, can be designed and implemented using NaCl [119].

 0.1

 1

 10

 100

 1000

2 4 8 16 32 64 128 256

* *

L
a
t
e
n
c
y

o
f

c
o
n
t
r
o
l

c
o
m
m
u
n
i
c
a
t
i
o
n
s

(
s
)

Number of forwarding devices

FLOW-MOD.TCP

FLOW-MOD.OpenSSL

FLOW-MOD.PolarSSL

Figure 4.5: FLOW MOD latency (in log scale)

SUPERCLOUD D4.4 Page 71 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

4.2.3.2 A closer look at the cost of cryptography

To understand in more detail the cause of the previous findings we now perform a fine-grained analysis
of two main classes of security primitives used in secure channel protocols: hashing and MAC.
We analyse the performance of nine hashing primitives. The results are presented in Figure 4.6. The
red bars represent primitives that are provided by OpenSSL, while white bars (BLAKE and KECCAK)
indicate the original implementation of primitives that are not part of OpenSSL. From Figure 4.6, we
observe that the primitives with smaller digest sizes (SHA-1 and MD5) achieve better performance,
as expected. The stronger versions of the SHA and BLAKE families achieve comparable performance
(slightly slower), with higher security guarantees. Interestingly, SHA-512 outperforms SHA-256. This
behavior is explained by the fact that on a 64-bit processor each round can process twice as much
data (64-bit words instead of 32-bit words). However, SHA-256 is faster on a 32-bit processor.
To understand the variance between different implementations, we present in Figure 4.7 the costs of
the five hashing primitives for which different implementations were available. The OpenSSL imple-
mentation shows the best performance performance for hashing primitives. With the exception of
RIPEMD160, the PolarSSL implementation always presented higher message latencies.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

K
E
C
C
A
K
2
5
6

K
E
C
C
A
K
5
1
2

B
L
A
K
E
2
5
6

S
H
A
2
5
6

R
I
P
E
M
D
1
6
0

B
L
A
K
E
5
1
2

S
H
A
5
1
2

S
H
A
1

M
D
5

T
i
m
e

(
i
n

m
s
)

Latency for messages of 56 bytes

Red bars: OpenSSL implementation

White bars: standard implementation

Figure 4.6: Hashing primitives

Finally, Figure 4.8 shows the results of the latency analysis of six MAC primitives. It is clear that
Poly1305 outperformed all other primitives, being approximately two times faster than OpenSSL’s
HMAC-SHA1, and close to four times faster than HMAC-SHA512, for instance.

Conclusions: From the results of Figure 4.8, considering the MAC primitive with best performance in
the analysis (Poly1305 with 0.001ms per message), around 20 dedicated cores are needed to compute a
MAC in order to maintain a rate of 20M flows/s. To understand the importance of judiciously selecting
the security primitives implementation, the HMAC-SHA512 OpenSSL (worst case performance in the
analysis) would require over three times more cores (up to 65) to compute MACs at these rates. From
the hashing primitive analysis in Figures 4.6 and 4.7, of the strong primitives (i.e. all except SHA1 and
MD5), SHA-512 performs the best. However, concerning MAC primitives, the performance of HMAC-
SHA512 disappoints, and it is clear that Poly1305 outperformed all other primitives, providing security
with high speed and low per-message overhead.

SUPERCLOUD D4.4 Page 72 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

SHA256 RIPEMD160 SHA512 SHA1 MD5

T
i
m
e

(
i
n

m
s
)

Latency for messages of 56 bytes

PolarSSL

OpenSSL

Figure 4.7: Implementations of hashing primitives

Figure 4.9 shows the performance of different primitives for generating cryptographic material. We
compare the iDVV generator using SHA512 (iDVV-S5), with an implementation of a common key
derivation function (KDFx) with different values for the exponent c (128, 64, 32, and 16, respectively),
the Diffie-Hellman implementation used by OpenSSL (DH-OSSL), and the randombytes() function
(NaCl-R) provided by NaCl. The latencies of the several primitives are significantly higher than iDVV.
Even the randombytes() primitive of NaCl, the second fastest after iDVV, still presents a latency at
least 2.6x higher.
In summary, our findings in this section indicate that:

• the inclusion of cryptographic primitives results in a non-negligible performance impact on the
latency and throughput of the control plane; and that

• a careful choice of the primitives used and their respective implementations can significantly
contribute to reduce this performance penalty and enable feasible solutions in certain scenarios.

Taking the outcome of our analysis into consideration, and given the benefits of NaCl described
in Section 4.2.3.1, we have selected the NaCl lightweight cryptographic library, and the MAC and
strong hash primitives with best performance – Poly1305 and SHA512 OpenSSL – as the baseline SC
secure channel component technologies. NaCl is complemented in our architecture with the iDVV
mechanism to generate cryptographic material (e.g. keys) used by NaCl ciphers. Taken together they
provide, as per our evaluation, the best trade-off between security and performance for control plane
communications in SDN.

4.2.4 Discussion

4.2.4.1 On the security of iDVV

With respect to the secrecy of iDVVs, it is ensured from initialization and so long as neither the KDC,
controller, nor forwarding device is compromised. Our scheme also achieves perfect forward secrecy
in the face of compromise of either KDC, controller, or forwarding device. In short, when the KDC is

SUPERCLOUD D4.4 Page 73 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

H
M
A
C
-
S
H
A
5
1
2

H
M
A
C
-
S
H
A
2
5
6

H
M
A
C
-
R
I
P
E
M
D
1
6
0

H
M
A
C
-
S
H
A
1

H
M
A
C
-
M
D
5

P
o
l
y
1
3
0
5

T
i
m
e

(
i
n

m
s
)

Latency for messages of 56 bytes

PolarSSL

OpenSSL

Poly1305

Figure 4.8: MAC primitives

compromised, then the attacker would be able to obtain all the shared secrets (between the authority
and registered devices), decrypt the past communication that delivered the initial seed and key to the
associated devices, re-generate iDVVs and, in consequence, decrypt past conversations.
We provide a simple mechanism for providing PFS even when the authority is compromised: we update
the shared key each time a forwarding device is associated with a controller. The key is updated as
follows: Kkc ← H(Kkc) and Kkf ← H(Kkf). This way, a shared key captured cannot decrypt any
past messages, since they have been encrypted with previous generations of that key, which have been
“forgotten” in the system, given the irreversible nature of hashes.
As far as devices are concerned, when they are compromised, the current values of seed, key and idvv
are captured. Note that key stays as the original secret, but seed is rolled forward everytime a new
iDVV is generated. So, the attacker will be unable to synthesize any past iDVVs since day one and
so, cannot decrypt past conversations, achieving PFS, as we desired.

4.2.4.2 On the solution robustness

Our proposal compares well with traditional solutions such as EJBCA (http://www.ejbca.org/) and
OpenSSL, two popular implementations of PKI and TLS, respectively.
The first interesting take away is that our solution has nearly one order of magnitude less LOC (85k)
and uses four times less external libraries and only four programming languages. This makes a huge
difference from a security and dependability perspective. For instance, to formally prove more than
717k LOC (OpenSSL + EJBCA) is by itself a tremendous challenge. And it gets considerably worse
if we take into account eighty external libraries and eleven development languages. Moreover, it is
worth emphasizing that libraries such as OpenSSL suffer from different fundamental issues such as too
many legacy features accumulated over time, too many alternative modes as result of tradeoffs made
in the standardization, and too much focus on web and DNS names.
Second, OpenSSL is complex and highly configurable. This has been also the source of many security
incidents, i.e., developers and users frequently use the library in an inappropriate way. It has also
been shown that the majority of the security incidents are still caused by errors and misconfiguration
of systems. Lastly, recent research has uncovered new vulnerabilities on TLS implementations [29].

SUPERCLOUD D4.4 Page 74 of 118

http://www.ejbca.org/

D4.4 - Implementation of Self-Management of Network Security and Resilience

 0

 0.05

 0.1

 0.15

 0.2

 0.25

K
D
F
1
2
8

K
D
F
6
4

K
D
F
3
2

K
D
F
1
6

D
H
-
O
S
S
L

N
a
C
l
-
R

i
D
V
V
-
S
5

T
i
m
e

(
i
n

m
s
)

Latency to generate one iDVV

16B

Figure 4.9: Latency to generate keys

In contrast, our proposed architecture exhibits gains in both performance and robustness, contributing
to solving the dilemma we outlined in the introduction. By having less LOC, we significantly reduce
the threat surface – by one order of magnitude – and by combining NaCl and the iDVV mechanism, we
provide a potentially equivalent level of security, but quite increased performance/robustness product,
as keys can be rolled even on a per message basis.

4.2.4.3 On the cost of iDVV

Similarly to iCVVs, iDVVs are a low overhead solution that requires minimal resources. This solu-
tion is thus feasible to be integrated into compute-constrained devices as commodity switches. Our
preliminary evaluation has revealed that the iDVV mechanism is faster than traditional solutions,
namely, the key-exchange algorithms embedded in the OpenSSL implementation. Considering a setup
with 128 switching devices, sending PACKET IN messages to and receiving FLOW MOD messages from
the controller, our results shows our proposed solution (iDVV + NaCl’s ciphers) to be more than
30% faster than an OpenSSL-based implementation using AES256-SHA (the most common high per-
formance cipher suite, used by IT companies such as Google, Facebook, Microsoft, and Amazon).
Importantly, we were able to outperform OpenSSL-based deployments while still providing the same
security properties: authenticity, integrity, and confidentiality. In addition, we achieved this result
not only while offering the same properties, but also with stronger security guarantees: the tests were
made by generating one iDVV per packet, while the OpenSSL-based implementation uses a single key
(for symmetric ciphering) for the entire communication session.

4.2.5 Related work

There are several feasible attacks against the SDN control plane [134]. Most of them explore vul-
nerabilities such as the lack of authentication, authorization and other essential security properties.
However, almost no attention has been paid to the security requirements of control plane associations
and communication between devices. For instance, only recently, the use of secrecy through obscurity
has been proposed to protect SDN controllers from DoS attacks [4]. In this case, the switch authenti-

SUPERCLOUD D4.4 Page 75 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

cation ID is hidden in a specific field in the IP protocol. It is assumed that the devices share a look-up
table and unique IDs. However, in spite of being capable of mitigating DoS attacks, this technique
does not address the security issues of control plane communications.

4.2.6 Conclusions

In this section, we set out to explore and confirm our intuition for the possible reasons behind a slower
than expected adoption of security mechanisms in SDN, and based on those findings, we proposed
KISS, a secure and efficient solution for SDN control plane communications.
We started by investigating the impact of essential cryptographic primitives and TLS implementations
on the control plane performance. We showed that whilst even the most basic security primitives add
a non-negligible degradation of performance, a judicious choice of these primitives and their specific
implementations can mitigate the penalty significantly. This is particularly important for the typical
SDN scenario that resorts to commodity hardware, sometimes with modest computing capabilities.
The second problem we explored in this work was the complexity of the centralized support infrastruc-
ture for authentication and key distribution. We proposed iDVV, a simple and robust decentralized
mechanism for generating and verifying the secrets necessary for secure communications between net-
work devices.
Our results are encouraging in terms of an increase of performance — 30% improvement over OpenSSL
— and robustness — an order of magnitude reduction in the number of LOC, and implied cyclomatic
complexity. This also means that formal verification is more tractable, which is one of our future goals
for iDVV, for instance.
An extended report of this work can be found in [84], extending discussion of the iDVV performance,
forward secrecy, randomness, and proofs of its security properties.

4.3 Fault-tolerant control plane

Software-Defined Networking (SDN) decouples the network control plane from the data plane via a
well-defined programming interface (such as OpenFlow). This decoupling allows the control logic to
be logically centralized, easing the implementation of network policies, enabling advanced forms of
traffic engineering (e.g., Google’s B4 [74]), and promoting innovation.
The controllers are the crucial enabler of the SDN paradigm: they maintain the logically centralized
network state to be used by applications and act as a common intermediary with the data plane.
Figure 4.10 shows the normal execution in an SDN environment. Upon receiving a packet it does not
know how to handle, the switch sends an event to the controller. The controller delivers the event to
the applications, which afterwards apply their logic based on this event, and eventually instruct the
controller to send commands to the switches (e.g., to install flow rules).

Figure 4.10: SDN flow execution

A trivial implementation of SDN using a centralized controller would lead to an undesirable outcome:

SUPERCLOUD D4.4 Page 76 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

a single point of failure. To guarantee the required availability of network control, it is necessary the
controller platform to be made fault-tolerant. Fault tolerance demands transparency: for a controller
that claims having such ability – in other words, for it to be logically centralised – applications that run
on it should operate correctly in the presence of faults. This is a fundamental requirement, as in case
of controller failures the network view needs to be maintained consistent, otherwise applications will
operate in a stale network view, leading to network anomalies that can have undesirable consequences
(e.g., security breaches) [93].
To address this problem, traditional replication techniques are usually employed [110, 92, 114]. How-
ever, achieving a consistent network view in the controllers is not enough to offer logically centralised
control – as such existing approaches are prone to the above-mentioned anomalies. In SDN, it is
necessary to include switch state into the system model to fulfil this goal. Since switches are pro-
grammed by controllers (and controllers can fail), there must be mechanisms to ensure that the entire
event-processing cycle of SDN is handled consistently.
A correct, fault-tolerant SDN environment needs to ensure observational indistinguishability [76] be-
tween an ideal central controller and a replicated controller platform. Informally, to ensure observa-
tional indistinguishability the fault-tolerant system should behave the same way as a fault-free SDN
for its users (end-hosts and network applications). For this purpose, it is necessary the following three
properties to be met: total event ordering ; exactly-once event processing ; and exactly-once execution
of commands. We elaborate on these requirements in Section 4.3.1.
To the best of our knowledge, the problem of correct, fault-tolerant SDN control has only been ad-
dressed in the work by Katta et al. [76]. The proposed solution, Ravana, handles the entire event-
processing cycle as a transaction – either all or none of the components of this transaction are executed.
By correctly handling switch state this system guarantees SDN correctness even under fault. To achieve
these properties, however, Ravana requires modifications to the OpenFlow protocol and to existing
switches. These requirements preclude its adoption on existing systems.
Faced with this challenge, we propose Rama, a fault-tolerant SDN controller platform that, similar
to Ravana, offers a transparent control plane that allows unmodified network applications to run in
a consistent and fault-tolerant environment. The novelty of the solution lies in Rama not requiring
changes to OpenFlow nor to the underlying hardware, allowing immediate deployment. For this
purpose, Rama exploits existing mechanisms in OpenFlow and orchestrates them to achieve its goals.
The main contributions of this work can be summarized as follows:

• A protocol for fault-tolerant SDN that provides the correctness guarantees of a logically cen-
tralised controller without requiring changes to OpenFlow or modifications to switches.

• The implementation and evaluation of a prototype controller – Rama – that demonstrates the
overhead of the solution to be modest.

4.3.1 Fault-tolerant SDN

Traditional techniques for replicating controllers do not ensure correct network behaviour in case of
failures. The reason is that these techniques address only part of the problem: maintaining consistent
state in controller replicas. By not considering switch state (and the interaction controller-switches)
inconsistencies may arise, resulting in potentially severe network anomalies. In this section we present
a summary of the problems of using techniques that do not incorporate switches in the system model,
which lead to the design requirements of a correct fault-tolerant SDN solution. We also present
Ravana [76], the first fault-tolerant controller that achieves the required correctness guarantees for
SDN.

4.3.1.1 Inconsistent event ordering

Since OpenFlow 1.3, switches can maintain TCP connections with multiple controllers. In a fault-
tolerant configuration switches can be set to send all their events to all known controller replicas.

SUPERCLOUD D4.4 Page 77 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

As replicas process events as they are received, each one may end up building a different internal
state. Although TCP guarantees the order of events delivered by each switch, there are no ordering
guarantees between events sent to controllers by the different switches, leading to the problem.
Consider a simple scenario with two controller replicas (c1 and c2) and two switches (s1 and s2) that
send all events to both controllers. Switch s1 sends two events – e1 and e2, in this order – and switch
s2 sends two other events – e3 and e4, in this order. One possible outcome where both controllers
receive events in a different order while respecting the TCP FIFO property is c1 receiving events in
the order e1, e3, e2, e4 and c2 receiving in the order e3, e4, e1, e2. Unfortunately, an inconsistent
ordering of events can lead to incorrect packet-processing decisions. As a result of this consistency
problem we derive the first design goal for a fault-tolerant and correct SDN controller:

Total event ordering: controllers replicas should process the same (total) order of events and
subsequently all controller application instances should reach the same internal state.

4.3.1.2 Unreliable event delivery

In order to achieve a total ordering of events between controller replicas two approaches can be used:

1. The master (primary) replica can store controller state (including state from network applica-
tions) in an external consistent data-store (as in Onix [82]);

2. The controller state can be kept consistent using replicated state machine protocols.

Although both approaches ensure a consistent ordering of events between controller replicas, they are
not fault-tolerant in the standard case where only the master controller receives all events.
If we consider - for the first approach – that the master replica can fail between receiving an event
and finishing persisting the controller state in the external data-store (which happens after processing
the event through controller applications), that event will be lost and the new master (i.e., one of
the other controller replicas) will never receive it. The same can happen in the second approach: the
master replica can fail right after receiving the event and before replicating it in the shared log (which
in this case happens before processing the event through the controller applications). In these cases,
since only the crashed master received the event, the other controller replicas will not have an updated
view of the network. Again, this may cause severe network problems. Similar problems can occur in
case of repetition of events. These problems lead to the second design goal:

Exactly-once event processing: All the events sent by switches are processed, and are neither lost
nor processed repeatedly.

4.3.1.3 Repetition of commands

In either traditional state machine replication or consistent storage approaches, if the master controller
fails while sending a series of commands, the new elected master may send repeated commands. This
may happen when the old master fails before informing the slave replica of its progress. Since some
commands are not idempotent, its duplication can lead to undesirable network behaviour. This prob-
lem leads to the third and final design goal:

Exactly-once command execution: any series of commands are executed only once on the switches.

4.3.1.4 Existing approaches

Ravana [76] is the first controller to provide correct fault-tolerant SDN control. To achieve this, the
system processes control messages transactionally and exactly once (at both the controllers and the
switches) using a replicated state machine approach, but without involving the switches in an expensive
consensus protocol.

SUPERCLOUD D4.4 Page 78 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

The protocol used by Ravana is briefly explained here. Switches buffer events (as they may need to
be retransmitted) and send them to the master controller that will replicate them in a shared log with
the slaves. The controller will then reply back to the switch acknowledging the reception of the events.
Then, events are delivered to applications that may after processing require one or more commands to
be sent to switches. Switches reply back to acknowledge the reception of these commands and buffer
them to filter possible duplicates.
While Ravana allows unmodified applications to run in a fault-tolerant environment, it requires mod-
ifications to the OpenFlow protocol and to switch hardware. Namely, Ravana leverages on buffers
implemented on switches to retransmit events and filter possible repeated commands received from
the controllers. Also, explicit acknowledgement messages must be added to the OpenFlow protocol so
that the switch and the controller acknowledge received messages. Unfortunately, these requirements
preclude immediate adoption of Ravana. For instance, it is not antecipated OpenFlow to be extended
to include the required messages anytime soon. These limitations are the main motivation for our
proposal.

4.3.2 Design

Our proposal, Rama7, is driven by the following four requirements. First, the system should maintain
a correct and consistent state even in the presence of failures (in both the controllers and switches).
Second, the consistency and fault-tolerance properties should be completely transparent to applica-
tions. Third, the performance of the system should not degrade as the number of network elements
(events and switches) grows. Fourth, the solution should work with existing switches and not require
new additions to the OpenFlow protocol, for immediate deployability.

4.3.2.1 Architecture

The main components of the architecture of Rama are: (i) OpenFlow enabled switches (switches that
are implemented according to the OpenFlow specification), (ii) controllers that manage the switches
and (iii) a coordination service. In our model, we consider only one network domain with one primary
controller and one or more backup controllers, depending on the number of faults to tolerate. Each
switch connects to one primary controller and multiple (f to be precise) backup controllers (to tolerate
up to f crash controller faults). This primary/backup model is supported by OpenFlow in the form
of master/slave and allows the system to tolerate controller faults. When the master controller fails,
the remaining controllers will elect a new leader to act as the new master for the switches managed
by the crashed master. This election is supported by the coordination service.
The coordination service offers strong consistency and abstracts controllers from complex primitives
like fault detection and total order, making them simpler and more robust. Note that the coordination
system requires a number of replicas equal to 2f+1, with f being the number of faults to tolerate.
The strong consistency model assures that updates to the coordination service made by the master
will only return when they are persistently stored. This means that slaves will always have the fresh
modifications available as soon as the master receives confirmation of the update. This results in a
consistent network view among all controllers even if some fail. In addition to the controllers’ state,
the switches also maintain state that must be handled consistently in the presence of faults. Fulfilling
this request is the main goal of the protocol we present next.

4.3.2.2 Rama protocol

In an SDN setting, switches generate events (e.g., when they receive packets or when the status of a
port changes) that are forwarded to controllers. The controllers run multiple applications that process
the received events and may send commands to one or more switches in reply to each event. This
cycle repeats itself in multiple switches across the network as needed.

7In the Hindu epic Ramayana, Rama is the hero whose wife (Sita) is abducted by Ravana.

SUPERCLOUD D4.4 Page 79 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

In order to maintain a correct system in the presence of faults, one must handle the state in the
controllers and the state in the switches consistently. To ensure this, the entire cycle presented in
Figure 4.11 is processed as a transaction: either all or none of the components of this transaction
are executed. This means that (i) the events are processed exactly once at the controllers, (ii) all
controllers process events in the same (total) order to reach the same state, and (iii) the commands
are processed exactly once in the switches. Because the standard operation in OpenFlow switches is
to simply process commands as they are received, the controllers must coordinate to guarantee the
required exactly-once semantics.

Figure 4.11: Rama control loop

By default, in OpenFlow a master controller receives all asynchronous messages (e.g., OFPT PACKET IN),
whereas the slaves controllers only receive a subset (e.g., port modifications). With this configuration
only the master controller would receive the events generated by switches. There are two options to
solve this problem. One is for slaves to change this behaviour by sending an OFPT SET ASYNC message
to each switch that modifies the asynchronous configuration. As a result, switches send all required
events to the slaves. Alternatively, all controllers can set their role to EQUAL. The OpenFlow protocol
specifies that switches should send all events to every controller with this role. Then, controllers need
to coordinate between themselves who the master is (i.e., the one that processes and sends commands).
We have opted for the second solution and use the coordination service for leader election amongst
controllers.
The fault-free execution of the protocol is represented in Figure 4.12. In the figure we consider a
switch to be connected with one master controller and a single slave controller. The main idea is that
switches must send messages to all controllers, so that they can coordinate themselves even if some
fail at any given point.
The master controller then replicates the event in a shared log with the other controllers, imposing
a total order on the events received (to simplify, the coordination service is omitted from the figure).
When the event is replicated to the shared log between controller replicas, it is processed by the
master controller applications, which will generate zero or more commands. To guarantee exactly-
once semantics, the commands are sent to the switches in bundles (a feature introduced in OpenFlow
1.4). With this feature a controller can open a bundle, add multiple commands to it and then instruct
the switch to commit all commands present in the bundle in an atomic and ordered fashion.
Rama uses bundles in the following way. When an event is processed by all modules, the required com-
mands are added by the master controller to a bundle. The master then sends an OFPBCT COMMIT REQUEST

message to each switch affected by the event. The switch processes the request and tries to apply all
the commands in the bundle in order. Afterwards, it sends a reply message indicating if the Commit
Request was successful or not. This message is used by Rama as an acknowledgement.
Again, we need to make sure that this reply message is sent to all controllers. This is a challenge,

SUPERCLOUD D4.4 Page 80 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 4.12: Fault-free case of the protocol

because Bundle Replies are Controller-to-Switch messages and hence are only sent to the controller that
made the request (using the same TCP connection). To overcome this challenge we introduce a new
mechanism in Rama. The way we inform other controllers if the bundle was committed or not (so that
they can decide later if they need to resend specific commands) is by including one OFPT PACKET OUT

message in the end of the bundle with the action output=controller. The outcome is that the switch
will send the information included in the OFPT PACKET OUT message to all connected controllers in a
OFPT PACKET IN message. This message is set by the master controller to inform slave controllers
about the events that were fully processed by the switch (in this bundle). This prevents a new master
from sending repeated commands, thus guaranteeing exactly-once semantics.
The master finishes the transaction by replicating an event processed message in the log, informing
backup controllers that they can safely feed the corresponding event in the log to their applications.
This is done to simply bring the slaves to the same updated state as the master controller (the resulting
commands sent by the applications are naturally discarded).

Fault cases. When the master controller fails, the backup controllers will detect the failure (by
timeout) and run a leader election algorithm to elect a new master for the switches. Upon election,
the new master must send a Role Request message to each switch, to register as the new master.
There are three main cases where the master controller can fail:

1. Before replicating the received event in the distributed log (Figure 4.13);

2. After replicating the event but before sending the Commit Request (Figure 4.14);

3. After sending the Commit Request message.

SUPERCLOUD D4.4 Page 81 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 4.13: Case of the protocol where the master fails before replicating the event received

In the first case, the master failed to replicate the received events to the shared log. As slave controllers
receive and buffer all events, no events are lost. First, the new master must finish processing any events
logged by the older master. Note that events marked as processed have their resulting commands
filtered. This makes the new master reach the same internal state as the previous one before choosing
the new order of events to append to the log (this is valid for all other fault cases). The new elected
master then appends the buffered events in order to the shared log and continues operation (feeding
the new events to applications and sending commands to switches).
In the cases where the event was replicated in the log (cases 2 and 3), the master that crashed may
or may not have issued the Commit Request message. Therefore, the new master must carefully
verify if the switch has processed everything it has received before re-sending the commands and the
Commit Request message. To guarantee ordering, OpenFlow provides a Barrier message, to which a
switch can only reply after processing everything it has received before. If a new master receives a
Barrier Reply message without receiving a Commit Reply message (in form of OFPT PACKET OUT), it
can safely assume that the switch did not receive nor execute a Commit Request for that event from
the old master (case 2)8. Even if the old master sent all commands but did not send the Commit
Request message, the bundle will never be committed and will eventually be discarded. Therefore,
the new master can safely resend the commands. In case 3, since the old master sent the Commit
Request before crashing, the new master will receive the confirmation that the switch processed the
respective commands for that event and will not resend them (guaranteeing exactly-once semantics
for commands).

8This relies on the FIFO properties of the controller-switch TCP connection.

SUPERCLOUD D4.4 Page 82 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 4.14: Case of the protocol where the master fails after replicating the event

Property Ravana Rama

At least once events
Buffering and retransmission of

switch events
Switches send events to every
controller with role EQUAL

At most once events Event IDs and filtering in the log

Total event order Master appends events to a shared log

At least once commands
RPC acknowledgments from

switches
Bundle commit is known by

every controller by
piggybacking PacketOut in

OpenFlow BundleAt most once commands
Command IDs and filtering at

switches

Table 4.3: How Rama and Ravana achieve the same consistency properties using different mechanisms

4.3.3 Correctness

The Rama protocol we propose in this work was designed to guarantee correctness of fault-tolerant
SDN control. We define correctness as in [76], where the authors introduce the concept of observational
indistinguishability in the SDN context, defined as follows:
Observational indistinguishability: If the trace of observations made by users in the fault-tolerant
system is a possible trace in the fault-free system, then the fault-tolerant system is observationally
indistinguishable from a fault-free system.

SUPERCLOUD D4.4 Page 83 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

For observational indistinguishability, it is necessary to guarantee transactional semantics to the en-
tire control loop, including (i) exactly-once event delivery, (ii) event ordering and processing, and (iii)
exactly-once command execution. In this section we summarize how the mechanisms employed by our
protocol fulfil each of these necessary requirements. For a brief comparison with Ravana, see Table 4.3.

Exactly once event processing: events cannot be lost (processed at least once) due to controller
faults nor can they be processed repeatedly (they must be processed at most once). Rama does not
need switches to buffer events neither that controllers acknowledge each received event to achieve at-
least once event processing semantics. Instead, Rama relies on switches sending the generated events
to all (f+1) controllers (considering that the system tolerates up to f crash faults) so that at least
one will know about the event. Upon receiving these events, the master replicates them in the shared
log while the slaves add the events to a buffer. As such, in case the master fails before replicating
the events, the new elected master can append the buffered events to the log. If the master fails after
replicating the events, the slaves will filter the events in the buffer to avoid duplicate events in the
log. This ensures at-most once event processing since the new master only processes each event in the
log once. Together, sending events to all controllers and filtering buffered events ensures exactly-once
event processing.

Total event ordering: to guarantee that all controller replicas reach the same internal state, they
must process any sequence of events in the same order. For this, Rama relies on a shared log across
the controller replicas (implemented using the external coordination service) which allows the master
to dictate the order of events to be followed by all replicas. Even if the master fails, the new elected
master always preserves the order of events in the log and can only append new events to it.

Exactly once command execution: for any given event received from one switch, the resulting
series of commands sent by the controller are processed by the affected switches exactly once. As
Rama cannot rely on switches acknowledging and buffering the commands received from controllers
(to filter duplicates), it uses OpenFlow Bundles to guarantee transactional processing of commands.
Additionally, the Commit Reply message, which is triggered after the bundle finishes, is sent to all
controllers (by including the Packet Out message at the end of the bundle) and thus acts as an
acknowledgement that is independent of controller faults. This way, upon becoming the new master,
the controller replica has the required information to know if the switch processed the commands
inside the bundle or not, without relying on the crashed master. Furthermore, the new master sends a
Barrier Request message to the switch. Receiving the corresponding Barrier Reply message guarantees
that commands will be processed by the switches exactly-once.
It is important to note that we also consider the case where switches fail. However, this is not a special
case of the protocol because it is already treated by the OpenFlow protocol under normal operation. A
switch failure will generate an event in the controller which will be delivered to applications, for them
to act accordingly (e.g., re-route traffic around the failed switch). A particularly relevant case is when
a switch fails before sending the Commit Reply to the master and the slave controllers. Importantly,
this event does not result in transaction failure. Since this is a normal event in SDN, the controller
replicas simply mark pending events for the failed switch as processed and continue operation.
While we detail our reasoning as to why our protocol meets the correctness requirements of observa-
tional indistinguishability in SDN, modelling the Rama protocol and giving a formal proof is left as
future work.

4.3.4 Implementation

We have built Rama on top of the Floodlight controller. For coordination, we opted for ZooKeeper [72].
This service abstracts controllers from fault detection, leader election, and event transmission and
storage (for controller recovery). Rama introduces two main modules into Floodlight: the Event
Replication module and the Bundle Manager module. Additionally, the Floodlight architecture was

SUPERCLOUD D4.4 Page 84 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 4.15: Rama thread architecture

optimised for performance by introducing parallel network event collection and logging (Rama’s multi-
thread architecture is shown in Figure 4.15), and by batching events. The multi-thread paralelism is
introduced carefully, not to break TCP FIFO order of event processing, as will be explained next. An
additional requirement is to make the control plane transparent for applications to execute unmodified.

Parallelism. In the original Floodlight, worker threads are used to collect network events and to
process the modules pipeline (in Floodlight network applications are called “modules”). This design
precludes event batching and other optimisations. Ideally, we want to free the threads that collect
network events as soon as possible so that they can keep collecting more events. For this purpose, the
worker threads’ only job in Rama is to push events to the Replication Queue. Events for a particular
switch are collected always by the same thread (although each thread can be shared by several switches)
and thus TCP FIFO order is guaranteed in the Replication Queue. Next, the Rama runtime imposes
a total order on the events by giving them a monotonically increasing ID. As such, several Replication
threads can then take events from this queue and execute the logic in the Event Replication module,
which will send the events to ZooKeeper in batches, without breaking the required total order for
correctness. When ZooKeeper replies to the request, the events are added to the Pipeline Queue to
be processed by the Floodlight modules. A single thread is used in this step, to guarantee the total
order. The slave replicas also follow the total order from the IDs assigned by the master.
The Event Replication module is transparent to other modules as it acts before the pipeline. The
modules will continue to receive events as usual in Floodlight and process them by changing their
internal structures and sending commands to switches.

Event Replication and ZK Manager. The Event Replication module is the bridge between
receiving events from the worker threads and pushing them into the pipeline queue to be processed
by Floodlight modules. Events are only added to the pipeline queue after being stored in ZooKeeper.
To separate tasks, Event Replication leverages on the ZK Manager, an auxiliary class that acts as
ZooKeeper client (establishing connection, making requests and processing replies) and keeps state
regarding the events (an event log and an event buffer in case of slaves) and switch leadership. Event
Replication and the ZK Manager work together to attain exactly-once event delivery and total order
as follows.
When an event arrives at the Event Replication module, we check whether the controller is in master
or slave mode. In master mode the event is replicated in ZooKeeper and added to its in-memory log.
The events are replicated in ZooKeeper in batches, so each replication thread simply adds an event
to the current batch and becomes free to process a new event. Eventually the batch will be sent to

SUPERCLOUD D4.4 Page 85 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

ZooKeeper containing one or more events to be stored. Upon receiving the reply, the events are pushed
to the pipeline queue, ordered according to the identifier given by the master to guarantee total order.
In slave mode, the event is simply buffered in memory (to be used in the case where the master con-
troller fails). A special case is when the event received is the Packet Out that the master controller
included in the bundle. In this case, the slave marks that this switch already processed all commands
for this event. Slaves also keep an event log as the master, but only events that come from the master
are added to it. An important detail is that event identifiers are set by the master controller. There-
fore, the events will be queued in the same order as they were in the master controller replica.

Bundle Manager. This module keeps state related to the open bundles for each switch (as result
of an event) and is responsible for adding messages to the bundle, closing and committing it. We
modified the write method in OFSwitch.java (the class that is used by all modules to send com-
mands to switches) to call the Bundle Manager. This makes the process transparent to applications.
This module will wrap the message sent by application modules in a OFPT BUNDLE ADD MESSAGE and
send it to the switch. Before committing the bundle, the Bundle Manager also adds the required
OFPT PACKET OUT message.

Event batching. Floodlight thread architecture was modified to allow event batching, for perfor-
mance reasons. The ZKManager groups events before sending them to ZooKeeper in batches. Batches
are sent to ZooKeeper using a special request called multi, which contains a list of operations to
execute (e.g., create, delete, set data). For event replication, the multi request will have a list with
multiple create operations as parameter. This request is sent after reaching the maximum configured
amount of events (e.g., 1000) or some time after receiving the first event in the batch (e.g., 50ms).
This means that each event has a maximum delay bound (regarding event batching).

4.3.5 Evaluation

In this section we evaluate Rama to understand the costs associated with the mechanisms used to
achieve the desired consistency properties.

4.3.5.1 Setup

For the evaluation we used 3 machines connected to the same switch via 1Gbps links. Each machine
has an Intel Xeon E5-2407 2.2GHz CPU and 32 GB (4x8GB) of memory. Machine 1 runs one or more
Rama instances, machine 2 runs ZooKeeper 3.4.8, and machine 3 runs Cbench to evaluate controller
performance. This setup tries to emulate a realistic scenario with ZooKeeper on one machine for
fault-tolerance purposes, and Cbench on a different machine to include network latency.

4.3.5.2 Rama performance

We have compared the performance of Rama against Ravana [76]. Figure 4.16a shows the throughput
for each controller (for Ravana we use the results reported in the paper, as its authors considered a
similar setup). For Rama measurements we run Cbench emulating 16 switches.
Rama achieves a throughput close to 30K responses per second. This figure is lower than Ravana’s,
as our solution incurs in higher costs compared to Ravana for the consistency guarantees provided.
The additional overhead is caused by two requirements of our protocol. First, current switches’
lack of mechanisms to allow temporary storage of OpenFlow events and commands require Rama
to instruct switches to send all events to all replicas, increasing network overhead. Second, the lack
of acknowledgement messages in OpenFlow leads Rama to a more expensive solution – bundles – to
achieve its goals. The overhead introduced by these mechanisms is translated into reduced throughput
when compared with Ravana.
In figure 4.16b we show, separately, throughput results considering the different levels of consistency
provided by both Rama and Ravana. The exactly-once events consistency level () ensures that no

SUPERCLOUD D4.4 Page 86 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Ravana Rama
0

20

40

60

46.4

28.3

T
h

ro
u

gh
p

u
t

(K
R

es
p

on
se

s/
s)

(a) Fault-tolerant con-
trollers throughput

Ravana Rama
0

20

40

60

5
2

3
5.

6
50
.1

4
6

2
8
.3

T
h

ro
u

gh
p

u
t

(K
R

es
p

o
n

se
s/

s)

Exactly-once events
Exactly-once commands
Both

(b) Throughput with
different consistency
guarantees

1 2 4 8 16 32 64
0K

10K

20K

30K

40K

50K

60K

Number of switches

T
h
ro

u
gh

p
u
t

(R
es

p
on

se
s/

s)

Exactly-once events
Exactly-once commands

Both

(c) Rama throughput with
different number of switches

10 100 200 400 600 800 1000

15K

20K

25K

30K

Batch size

T
h
ro

u
gh

p
u
t

(R
es

p
on

se
s/

s)

(d) Variation of Rama
throughput with batch size

1 2 3 4 5 6 7 8 9 10
0

1

Time (s)

B
an

d
w

id
th

(M
b
it

s/
se

c)

(e) Rama failover time

Figure 4.16: Evaluation results

events are lost and that controllers do not process repeated events. Additionally, controllers must
agree on a total order of events to be delivered to applications. For the latter, both Rama and Ravana
rely on ZooKeeper to build a shared log across controllers. Note that neither Rama nor Ravana wait
for ZooKeeper to persistently store requests on disk (they both use ZooKeeper in-memory).
The Exactly-once commands semantics () ensures that commands sent by controllers are not lost and
that switches do not receive duplicate commands. Ravana relies on switches to explicitly acknowledge
each command and filter repeated ones. For Rama, this includes maintaining state of all opened
bundles for switches, and sending additional messages to the switches. Instead of replying only with a
Packet Out as in Floodlight, Rama must send messages to open the bundle, add the Packet Out to it,
close the bundle and commit it. To evaluate this case, we modified Cbench to make switches increase
their counters only when they receive a Commit Request message from the controller. This allows a
fair evaluation of the performance of Rama in a real system – indeed, in Rama a packet will only be
forwarded after committing the bundle on the switch to guarantee consistent processing.
As shown in Figure 4.16b, some guarantees are costlier to ensure than others9. For instance, the cost of
providing Exactly-once events semantics is higher than Exactly-once commands semantics. This result
brings with it an important insight: the system bottleneck is the coordination service. In other words,
the additional mechanisms Rama uses to guarantee the desired consistency properties add overhead
but, crucially, system performance is not limited by these mechanisms.
Figure 4.16c shows how maintaining multiple switch connections affects Rama throughput. As switches
send events at the highest possible rate, the throughput of the system saturates with around 16
switches. Importantly, the throughput does not decrease with a higher number of switches.

9Note that we do not include the results from Exactly-once commands in Ravana as these are not available in [76].
It is possible, however, to extrapolate that the results will be inline with the rest of the analysis.

SUPERCLOUD D4.4 Page 87 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

4.3.5.3 Event batching

Rama batches events to reduce the communication overhead of contacting ZooKeeper. In practice,
events are sent to ZooKeeper after reaching a configurable number of events in the batch (batching
size) or after a configurable timeout (batching time).
To evaluate batching we conducted a series of tests with different configurations to understand how
the batching size and time affects Rama performance (Figure 4.16d). Intuitively, a larger batching
size will increase throughput, but as downside will also increase latency. As batching size increases,
throughput increases due to the reduction of RPC calls required to replicate events.

4.3.5.4 Failover Time

To measure the time for Rama to react to failures we use the network emulator Mininet, Open-
vSwitch [120], and iperf. We setup a simple topology in Mininet with one switch and two hosts, one
to act as iperf server and another as client. We start the client and server in UDP mode, with the
client generating 1 Mbit/sec for 10 seconds. The switch connects to two Rama instances and sends
all events to both controllers. Each Rama instance is connected to the ZooKeeper server running on
another machine (as before) with a negotiated session timeout of 500ms. To make sure that no rules
are installed on the switch – so that events are sent to the controllers each time a packet arrives – we
run Rama with a module that only forwards packets (using Packet Out messages) without modifying
the switch’s tables.
Figure 4.16e shows the reported bandwidth from the iperf server and indicates the time taken by
Rama to react to failures. Namely, the slave replica takes around 550ms to react to faults. This
includes the time for: (a) ZooKeeper to detect the failure and notify the slave replicas (500ms); (b)
electing a new leader for the switches; (c) the new leader to transition to master (finish processing
logged events from the old master to reach the same internal state); (d) append buffered events to the
log and start delivering unprocessed events in the log to applications so they start sending commands
to the switches. As is clear, the major factor affecting failover time is the time ZooKeeper needs to
detect the failure of the master controller.

4.3.5.5 Summary

Rama comes close, but does not achieve the performance of Ravana. This is due to the fact that our
system incurs in higher costs. Rama requires more messages to be sent over the network and introduces
new mechanisms, such as bundles, which increase the overhead of the solution. Importantly, the overall
cost to achieve the same consistency properties without changes to switches or OpenFlow is relatively
modest.

4.3.6 Related work

Consistent SDN. Levin et al. [93] have explored the trade-offs of state distribution in a distributed
control plane, motivating the importance of strong consistency in applications’ performance. How-
ever, as noted in the CAP theorem, a system can not provide availability while also achieving strong
consistency in the presence of network partitions. As such, fault-tolerant SDN architectures must use
techniques to explicitly handle partitions in order to optimize consistency and availability (and thus
achieving a tradeoff between them) [38]. OF.CPP [117] explores the consistency and performance
problems associated with packet processing at the controller and proposes the use of transactional
semantics to solve them. However, the proposed semantics in packet processing are not enough: con-
trollers should also coordinate to guarantee the same semantics in the switches’ state, a fundamental
requirements our work fulfils.

Consistent network updates. The concepts of per-packet and per-flow consistency in SDN were
introduced in [126] to provide a useful abstraction for applications: consistent network updates. With

SUPERCLOUD D4.4 Page 88 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

consistent updates, packets or flows in flight are processed exclusively by the old or by the new network
policy (never a mix of both). The main mechanism used to guarantee consistent network updates is
the use of a two-phase protocol to update the rules on the switches. In [42], Canini et al. extend this
idea to a distributed control plane and formalize the notion of fault-tolerant policy composition. This
class of proposals addresses consistent network updates, which is an orthogonal problem to the one
addressed here.

Fault-tolerance in SDN. Botelho et al. [34] address fault tolerance in the control plane while
achieving strong consistency with SMaRtLight, a fault-tolerant controller architecture for SDN. The
controllers are coordinated through a data store, used to achieve durability and strong consistency.
In [35] the authors extend their solution to a distributed deployment. In contrast to our solution,
SMaRtLight requires applications to be modified to use the data store directly. More importantly,
the solution does not consider the consistency of switch state in the system model. Ravana [76] was
the first fault-tolerant controller that integrates switches into the problem. The techniques proposed
by its authors guarantee correctness of event processing and command execution in SDN. The main
differentiating factor of our work against Ravana is that our solution does not require changes to the
OpenFlow protocol nor to switches.

Traditional fault-tolerance techniques. Viewstamped Replication [110], Paxos [92], and Raft [114]
are well-known distributed consensus protocols used for replication of state machines in client-server
models. None of these widely-used protocols is directly applicable in the context of SDN, where to
guarantee correctness it is necessary not only to have consistent controller state, but also switch state.

4.3.7 Conclusions

In a fault-tolerant SDN, maintaining consistent controller state is not enough to achieve correctness.
Unlike traditional distributed systems, in SDN it is necessary to consistently handle switch state to
avoid loss or repetition of commands and events under controller failures. To address these chal-
lenges we proposed Rama, a consistent and fault-tolerant SDN controller that handles the entire event
processing cycle transactionally.
Rama differs from existing approaches by not requiring modifications to the OpenFlow protocol nor to
switches. This comes at a cost, as the techniques introduced in Rama incur in a higher overhead. As
the overhead leads to a relatively modest decrease in performance, we expect this to be compensated
by the fact that our solution is immediately deployable. We make our software available open source
to further foster adoption of fault-tolerant SDN.
As for future work, besides devising a formal proof on the consistency guarantees Rama provides, we
plan to address correctness in distributed SDN deployments and to consider richer fault models.

After presenting the techniques proposed to enhance the security and dependability of the multi-
cloud network virtualization infrastructure, we now turn to the modules of our solution that deal with
self-management of network security, before closing this deliverable.

SUPERCLOUD D4.4 Page 89 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Chapter 5 Self-Management of Network Security

This chapter presents the autonomic security management and enforcement framework for a SUPER-
CLOUD SDN-based network environment. First, we introduce a security agent for a Opendaylight
cloud platform for flexible service chaining (Section 5.1). We then describe the framework for security
policy management and enforcement (Section 5.2). Finally, we describe a use case on DDoS attack
mitigation (Section 5.3) and present experimental results (Section 5.4).

5.1 OpenDaylight Security Agent

This security agent enables the definition of flexible chains of network security services, building on
features already provided by an SDN such as OpenDaylight, instead of re-implementing them from
scratch. We first introduce the context (Section 5.1.1). We then present OpenDaylight protocols used
by the agent (Sections 5.1.2, 5.1.3, and 5.1.4) and how they may be combined (Section 5.1.5).

5.1.1 Motivation

Thousands of network service functions, especially security service functions like firewall, load balanc-
ing, NAT, HTTP enrichment, etc., are currently deployed. The way they are deployed today is static:
each network service function is dedicated to one delivered service of a unique client, and setting this
involves direct network configuration. Thereby, deploying a service can take long, is hardly scalable,
is not resource-optimized, and may have a negative impact on time-to-market.
The purpose of service chaining is to simplify the way service functions are deployed and to make
them application-driven. It consists of a service function domain containing a large group of service
functions that can be dynamically linked together to deliver a service. This domain is bound to
classifiers that decide which type of traffic enters into a chain of the domain. Service functions are
presented as resources available for consumption that can be linked together based on policy. It
provides a more generic approach to think about a service.
However, deployed service functions today are quite limited. Network traffic for each service delivered is
not isolated and flows through all services regardless of need. Deploying granular and isolated services
defined by a service policy increases configuration complexity. Service chains are still limited to acyclic
graphs and there is no service policy that can be expressed in terms of intent rather than network
configuration. More importantly, there is no service plane (like subscriber/employee information)
carried and exchanged between service functions, drastically limiting possibilities in terms of QoS,
policy and security enforcement.
OpenDaylight (ODL) modules for Service Function Chaining (SFC) and Group Based Policy (GBP)
with Network Service Header (NSH) aim at enabling this approach. The SFC module used with NSH
allows the definition of flexible service chains with a true service plane in an application-driven way.
GBP allows policy definition, service chain selection, and service plane without requiring network
knowledge or configuration.
The OpenDaylight security agent illustrates this approach, showing how these elements work together
on a real implementation.

SUPERCLOUD D4.4 Page 90 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 5.1: SFC domain with its components

5.1.2 SFC and NSH with OpenDaylight

A network integrating SFC allows to define an ordered list of network services through which certain
network flows must pass. Services are then linked together in the network to create the service chain.
ODL SFC can meet a wide range of architecture requirements. It ignores all the network complexity
(VLAN, overlay, etc...) and allows users to focus on configuration and on links between the services in
the chain. With SFC, the service chain becomes “application-driven” (i.e., application A dialogues with
application B through a dedicated chain). Services are built using flexible, not linear, service chains.
The insertion of services is done without having to take into account the topology of the network. To
aim towards “application-driven” service chaining, the SFC relies on an SFC encapsulation header.
This header/protocol gives information on the graph that the packet passes through and on its precise
location in this graph. The Network Service Header is an example of SFC encapsulation that allows
the user to define a complete service plane carrying granular service function information.
To achieve dynamic service chaining, the ODL SFC module includes the following components, shown
in Figure 5.1:

• Classifier: determines which types of traffic need to be chained based on a policy table.

• Service Function Forwarder: redirect packets to the right service function based on the SFC
encapsulation information.

• Service Function Proxy: handles SFC encapsulation information for SFC-unaware service func-
tion.

• Service Function: a function responsible for specific treatment of packets.

These components handle the graph defined by the user. Graphs define a Service Function Chain
(SFC), where each graph node represents a Service Function (SF). Such SF graph nodes can be part
of zero, one, or many SFCs. A given graph node can appear one or multiple times in a given SFC.

5.1.3 Network Service Header

The Network Service Header is a data plane protocol and SFC encapsulation used by ODL for repre-
senting a service chain in the network. This header is added to the packets transmitted in the chain.
It indicates which service functions (Firewall, DPI, Load Balancer, etc...) they must pass through.
Figure 5.2 presents the content of an NSH header.

SUPERCLOUD D4.4 Page 91 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 5.2: Network Service Header protocol

NSH is added to the package via a Service Classifier. The Service Classifier is an element that will
enrich packets with information from the service chain it borrows and the metadata defined by the
Group Based Policy module. The Base Header provides information about the service header and the
payload protocol. The Service Path Header reflects the selection of a service path through a unique
Service Path Identifier (SPI). The location of the packet in the SPI is given by the Service Index.
SPI and SI tell the packet where to go without the need for configuration flow metadata or packet
information itself. Finally, the Context Header carries metadata information along with a service path
that can be shared between NSH-aware service functions. Such metadata can be derived from different
sources (external system, network nodes, devices, orchestrator, service functions, etc.) and be used
for QoS, policy and security enforcement, like in the use case shown in Figure 5.3.

Figure 5.3: Security use case by Network Service Header

In this use case, SF1 reads the metadata and processes to inspection if the metadata matches “Ten-
ant A”, detects an attack and changes metadata from “Internet” to “attack”. Based on the new
information, SCL2 changes SPI and SI in order to send the packet to a scrubber (SF10). As shown
in this example, NSH is not a transport or network header. NSH is never used by network nodes to
transfer packets, but only to build the service plane.

SUPERCLOUD D4.4 Page 92 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 5.4: Intent System description

5.1.4 GBP: a new declarative way of expressing network configuration

GBP is at the core of OpenDaylight. It allows users to express network configuration in a declarative
vs. imperative manner (i.e., “what you want” rather than “how to do it”). GBP lets the user focus
on modeling, enabling processing and automation of policies without the hassle of network operations
and configurations. GBP is achieved with the implementation of an Intent System, which can be seen
as a process around an intent-driven data model containing no domain specifics and able of addressing
multiple semantic definitions of intent (see Figure 5.4).
The GBP architecture is based on two models: the Access Model which is the core of the GBP Intent
System policy resolution process, and the Forwarding Model which addresses networking topology
description.

5.1.4.1 GBP Access Model

Figure 5.5: GBP Access Model

The GBP Access model, shown in Figure 5.5, allows a user to define how entities in a network can
communicate. A user can set End Points which describe an entity and contracts describing the
communication. In this model, the underlying network used is not specified.
Each entity is seen as a unique End Point. End Points with common policy rules are grouped together
in an End Point Group (EPG).
Contracts describe how End Points and/or End Point Groups can communicate. As shown in Fig-
ure 5.6, a contract consists of a set of subjects which describes in which way EPG can communicate.
A subject is triggered by a clause matching against requirements and capabilities exposed by EPGs.
Based on the traffic EPGs want to use, the subject applies the corresponding rule and performs any
necessary actions on that traffic. A rule consists of a set of classifiers and actions applied to the traffic
based on its classification.

SUPERCLOUD D4.4 Page 93 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Figure 5.6: GBP Access Model contract

An sample classifier would match against all TCP traffic on port 80. An action describes what the
operations to perform on the traffic before it reaches its destination. Actions could include tagging or
encapsulating the traffic, redirecting the traffic, or applying a Service Function Chain.

5.1.4.2 GBP Forwarding Model

Figure 5.7: GBP Forwarding Model

This model, shown in Figure 5.7 describes different network containers that contracts and End Points
can leverage.
It consists of an L3 context which is a namespace where traffic is passed at Layer 3. Several subnets
can be included in an L3 context. Under this context, one finds the L2 bridge context where traffic
can be sent at Layer 2. Several different subnets may also be defined. Finally, the L2 flood domain
describes the network flooding behavior.

5.1.5 Combining GBP and SFC

Service policies can easily be applied to service chains, e.g., to add a policy to a firewall via informa-
tion from the Group Based Policy module. For example, using Group Based Policy, we can express
relationships such as “the EPGA group can communicate with the EPGB group” without having to
worry about the underlying exchanges between the service layer and the groups. To achieve this, SFC
integrates metadata representing EPGA and EPGB, the representational metadata. These metadata,

SUPERCLOUD D4.4 Page 94 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

generated by GBP, will transport information such as subscribers or employees information to the
various services and enable use cases such as the one described Section 5.1.3. This ability to transmit
high-level information is essential for SFC.

Figure 5.8: Interaction between GBP and SFC

Figure 5.8 describes a typical interaction and the scope of each module. Concerning the contract
between End Point h35 − 2 and h36 − 3, GBP defined the action “SFC A”. GBP asks SFC if it has
the chain “SFC A”. SFC then creates the needed overlay bridges and forwarding rules into flow tables.
After that, SFC return path-ID, starting index, first hop IP:Port and encapsulation to GBP. Finally,
GBP creates the necessary classifier rules to direct packets according to the contract.

5.2 Policy Driven Management and Enforcement Framework

In this Section, we will firstly present a short description of the policy management and enforcement
framework defined for the SUPERCLOUD project. Secondly, we will introduce the two use cases and
finally, we will detail the experimental results which demonstrate that our framework can successfully
reduce the collateral damage on a customer network caused by the attack traffic targeting another
customer network.

5.2.1 Design Components

The functional components of the policy management framework are described as follows:

• The SDN Controller provides an interface with the switches. The controller is logically cen-
tralized, and multiple controllers can also be used to provide scalability. When a message is
received by the framework to push or modify the rule, the controller is responsible for sending
the messages to the switches.

• The Monitoring Component (MC) is responsible for receiving alerts and notifications from
the different customers. Particularly, it extracts the events and conditions from the security
alerts and QoS request messages, which are used by the Policy Decision Point (PDP) in order
to select the policy from the policy database.

• The Policy DataBase (PDB) is essentially a repository containing the high-level security
and network policies defined by the network operator, without detailing the specific deployment
strategy. Policies can be specified in any format defined by the network administrator. A Policy

SUPERCLOUD D4.4 Page 95 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Monitoring plane

Presentation layer

Decision layer

Translation layer

Monitoring component

Network information base

Network

administrator
 Security policy editor

Policy decision

point

Policy orchestrator

and implementer

1

2

3

4

5

6

7

Figure 5.9: Policy Management and Enforcement Framework

ID is used to index the policies in the database, which helps in retrieving the policy when an
event occurs.

• The Policy Decision Point (PDP) is in charge of the global policy decision. It acts as an
orchestrator between different components in the framework. Moreover, the PDP maintains a
table containing the list of middleboxes that can be traversed in the network for the different
types of suspicious traffic. For example, the PDP can specify that a suspicious traffic should
traverse a firewall or a Network Address Translator (NAT).

• The Network Information Base (NIB) maintains a table containing the list of paths ordered
by bandwidth guarantees. It computes paths in the list depending on the network status of the
ISP. Network status information may be obtained from external tools, such as OpenNetMon [152],
which allow to maintain a traffic matrix for different paths and switches in the network. NIB
also maintains a mapping table containing the list of middleboxes and their deployment location
in the network to where suspicious flows can be steered.

• The Policy Orchestrator and Implementer (POI) contains the OpenFlow rule templates
for high-level actions to be enforced in the data plane devices. OpenFlow rule templates contain
the guidelines to specify how the different activities can be executed in the network. It provides
an additional level of modularity to define the format for the different types of tasks that can be
performed. It is an important part of the translation process as it provides an abstract view for
the concrete rules which are to be deployed.

SUPERCLOUD D4.4 Page 96 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

5.2.2 Operational Workflow

The design overview of our framework is shown in Fig. 5.9, consisting of several functional components
as described in Section 5.2.1. To better illustrate the specific functions of the different components, a
detailed operational workflow is given as follows:

1. A policy database is populated by the administrator with the high-level network and security
policies.

2. An event is triggered at the ISP controller when a security alert is received by the Monitoring

component from the customer. Then, some information is extracted from the alert. It contains a
number of conditions such as the attack type (referred to as event), the flow class (e.g., suspicious)
and the impact severity (e.g., low), as well as the flow information (i.e., source and destination
IP addresses). This information is then forwarded to the PDP [68].

3. Based on the event and conditions received from the MC, the PDP activates a policy in the
PDB which outputs a high-level action (e.g., forward, redirect or drop) to be enforced. Then
the PDP forwards the high-level action, along with the flow information and the bandwidth to
be provided, to the NIB to obtain the details of a concrete path to route the flow.

4. The NIB computes one or multiple best-fitted paths based on the transmitted parameters. Flow
information allows to identify the ingress and egress nodes within the ISP networks; bandwidth
requests indicate a required level of QoS or a required degradation against a suspicious flow.

5. After computation, the NIB forwards the path details containing the switch IDs and associated
output ports and a Network Service Header (NSH) to the PDP. If all the paths in the ISP
network are congested then the NIB returns a message stating that “no paths are available” to
the PDP.

6. The PDP forwards the path details, NSH and flow information as an OpenFlow match field to
the POI for enforcing low-level rules. In the case when no paths are available to route the traffic,
the PDP outputs a rate-limit action against the flows which are causing the congestion in the
path, in order to maintain a fair share of bandwidth to all flows.

5.3 Use Case

This Section gives a use case about DDoS attack mitigation. The network topology is illustrated in
Fig. 5.10, which consists of one ISP, three customers (C1, C2, and C3) and four external hosts (H1,
H2, H3, and H4). In this use case, we consider that hosts H1 and H2 send malicious traffic towards
customer C1. H2 aims to congest C1’s network as well as the ISP network, while H3 and H4 generate
legitimate traffic towards C2 and C3 respectively. In the following, we firstly describe the settings with
respect to the deployment of our translation mechanism. We will then give a step-by-step example to
showcase how a high-level mitigation policy can be translated into low-level rules for enforcement.

5.3.1 Settings for On-demand Attack Mitigation

Security alert sent by the customer: Security alerts are used to report attacks. They contain
the network and assessment attributes. Security alerts are described using the IDMEF [57] format.
Listing 5.1 shows a security alert forwarded by the customer C1 to the ISP.

• The network attributes are comprised of the IP addresses and the attack type. The security
alert contains network information such as the source IP address, here 10.0.0.2 (H2), and the
destination IP address, here 10.0.0.3 (C1), while the attack type is ICMP Flood.

SUPERCLOUD D4.4 Page 97 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

S1

S2 S3 S6 S9

S10

S4

S58

S29 S59

S57 S60

S96

S97

H1 H2 H3 H4

C1

S98

C2

S99

C3

S27 S5

S7

S8

S28
ISP Controller

Controller of the C1 network

Controller of the C2 network

Controller of the C3 network

Figure 5.10: Experimental scenario: One ISP with three customers

• The assessment attributes describe the effect of the attack on the network. For instance, a
low impact severity, as shown in the alert, represents the fact that the congestion level in the
customer network is 70%. Moreover, the flow class indicates that the flow of concern is considered
suspicious.

DDoS attack mitigation policy at the ISP controller: This is the policy to process the received
security alerts. The example policy shown in Listing 5.2 provides a high level action, here redirect,
that processes ICMP flood traffic with a low impact severity.

SUPERCLOUD D4.4 Page 98 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Table 5.1: Traffic generation: source and destination

Hosts Destination network

H1 C1

H2 C1

H3 C2

H4 C3

Table 5.2: Path descriptions

Path Bandwidth Destination Network

P4 Low C1, C2, C3

P5 Medium C1, C2, C3

P6 High C1, C2, C3

Listing 5.1: Security alert sent by customer C1

<IDMEF−Message version=” 1 .0 ”>
<Aler t>
<Analyzer a na l y z e r i d=”CUSTOMER C1”/>
<Source>
<Address category=” ipv4−addr”>

<address>1 0 . 0 . 0 . 2</ address>
</ Address>

</ Source>
<Target>
<Address category=” ipv4−addr”>

<address>1 0 . 0 . 0 . 3</ address>
</ Address>

</ Target>
<C l a s s i f i c a t i o n event=”ICMP Flood”>
</ C l a s s i f i c a t i o n>
<Assessment>

<Impact s e v e r i t y=”Low”/>
</ Assessment>
<Addit ionalData>type=” s t r i n g ”meaning=” f low c l a s s ”>
<s t r i n g>Susp i c i ou s</ s t r i n g>
</ Addit ionalData>
</ Aler t>
</IDMEF−Message>

SUPERCLOUD D4.4 Page 99 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Listing 5.2: Policy to redirect suspicious traffic in
the ISP network

<Pol i cy Pol icyID=” Mit iga t i on ”>
<Event Type = ”ICMP Flood”>

</Event>
<Condit ion>
<f l ow c l a s s=” s u s p i c i o u s ”/>
<Impact s e v e r i t y=”Low”/>

</ Condit ion>
<Actions ac t i on=” Redi rec t ”/>
</ Act ions>

</ Po l i cy>

Instantiation of the template to redirect the suspicious traffic: This information describes
how to redirect the suspicious traffic through the low bandwidth path or through the middleboxes.
Table 5.2 provides the path to route the flow depending on the impact severity mentioned in the alert
sent by the customer. Furthermore, Listing 5.3 provides the concrete path details including the switch
IDs and output ports to steer the flow.

Listing 5.3: Paths of low bandwidth

P4 :{ Switch : S1 , output (8) ; Switch : S9 , output (2) , Switch : S10 , output (2) ; . . . ;
Switch : S27 ; Switch : S4 , output (4)}

P5 :{ Switch : S1 , output (9) ; Switch : S28 , output (2) ; Switch : S29 , output (2) ; . . . ;
Switch : S57 , output (2) ; Switch : S4 , output (4)}

P6 :{ Switch : S1 , output (1 0) ; Switch : S58 , output (2) ; Switch : S59 , output (2) ;
Switch : S60 , output (2) ; . . . ; Switch : S96 , output (2) ; Switch : S4 , output (2)}

Path={5:P5 , 6 : P6 , 7 : P7}}

5.4 Experimental Results

This section describes the results of our experimentations to assess both the performance of the high-
level policy translation mechanism, and the effectiveness of the mitigation policies in reducing collateral
damage. The scenarios are created using the Mininet emulator [2]. Three scenarios with different
numbers of switches are specified for the mitigation policies as shown in Fig. 5.10. As explained
earlier, suspicious flows have been classified in three classes according to their impact severity (low,
medium and high). So, we provision three different bandwidths for the mitigation policies. The
methodology to classify these flows in three different classes is outside the scope of this proposed
framework. We assume that the customer uses some detection mechanism to classify the flows in
different classes [37]. Moreover, three different scenarios with a varying number of switches are also
specified for the QoS policies as shown in Table 5.3.

5.4.1 Evaluation metrics

The objective of our experiments is to evaluate the time to implement the high-level policies into
low-level OpenFlow rules in the switches. Moreover, we also aim to evaluate how our framework can
successfully reduce the collateral damage on a customer network caused by the attack traffic targeting
another customer network. The metrics used to evaluate our prototype are specified in Table 5.4.
They include the implementation time of the policy, the packet loss, the throughput and the network
jitter.

SUPERCLOUD D4.4 Page 100 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Table 5.3: QoS Policies in different scenarios with varying number of switches in the path

QoS policies A B C

Gold:No.of switches 3 5 7

Silver:No.of switches 4 8 15

Bronze:No.of switches 5 10 20

Table 5.4: Defined metrics to evaluate the prototype

Metric Definition Unit

Implementation
time

It measures the time taken to translate the high-
level policy and deploy them as OpenFlow rules in
the switch. It increases with the increasing number
of data plane devices for the deployment of the rules.

seconds

Packet loss It evaluates the number of packets lost due to con-
gestion or attack. Packet loss increases as long as the
network is congested. Packet loss also occurs during
the deployment of the rules in the switches because
of some delay in the deployment.

number of
packets

Throughput Volume of traffic received in average unit of time. It
decreases when the congestion increases in the net-
work.

Mbps

Network jitter Measures the variation in arrival time between pack-
ets and further provides the understanding of con-
gestion or attack traffic on the system. It increases
dramatically in the presence of congestion.

milliseconds

5.4.2 Implementation time of mitigation policy

From Fig. 5.11, we can see that the implementation time to deploy the policy to handle suspicious
flows remains under 75 milliseconds, even for flows with a high impact severity. It is significantly
higher than the implementation time of mitigation policies for flows with a low and medium impact
severity, as well as the one to implement the policy to block the malicious flows. Since the path with
the highest number of hops is provisioned for processing the high impact severity flows. If we consider
the number of switches in the path for the deployment of the rules, it is still reasonable in between 75
to 80 millisecond. The implementation time to deploy the policy to handle low and medium impact
severity flows are around 37 and 55 millisecond respectively.
Interestingly, the deployment time to block malicious flows is significantly lower as compared to the
deployment time of other policies. It is because of the fact that the block action is only enforced at
the ingress switch of the ISP and no further deployment is required.
We conclude that the deployment time of the policies is reasonable, but it can be further reduced if
the number of devices for policy deployment can be reduced. This can be done with pre-installed rules
in some devices of the network. If the policies are pre-deployed in the core switches, then only at the
border switches policies need to be deployed dynamically reducing the overall implementation time.
We also conducted the experimentation to evaluate the deployment time of the policy to handle
suspicious flows with varying traffic rates. We wanted to evaluate whether the traffic rate affects the

SUPERCLOUD D4.4 Page 101 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

0

10

20

30

40

50

60

70

80

Low Impact Medium Impact High Impact Block

Ti
m

e
 (

m
s)

Mitigation Policies

Figure 5.11: Implementation time of mitigation policies

implementation time of the policy. Fig. 5.12 shows that the deployment time of the low-level rules
corresponding to the high-level policy to process the suspicious flows of high impact severity is close to
constant. Experimentation was run with varying traffic rates from 1 Mbps to 15 Mbps. In all cases, it
is around 75 milliseconds. It shows that the traffic rate does not affect our policy translation process
and the deployment of corresponding low-level rules in the network.

5.4.3 Malicious traffic filtering

Filtering malicious flows at the border router of the ISP network is better for their customers, as it
reduces the impact on the incoming legitimate traffic to the customer flows traversing through the
ISP network. Therefore, we measured the number of packets that bypassed the ingress switch while
the alert to drop the malicious flows was being processed. This was evalutated against varying traffic
rates. As can be seen in Fig. 5.13, when the traffic rate is 1 Mbps then around 18 packets crossed the
ingress switch and reached the customer network. It is worth noting that the number of packets that
crossed the ingress switch and reached the customer network increases as the traffic rate increases. As
shown in Fig. 5.13, when the traffic rate is at 5 Mbps then close to 125 packets are able to reach the
customer network which was under attack. There is a sharp increase in the number of packets that
reached the customer network when the traffic rate increases from 10 to 15 Mbps. It occurs because
of the minimum delay in processing the security alert and the deployment low-level rules to drop the
malicious flows.

5.4.4 Implementation time of QoS policies

Some experimentations were run to evaluate the implementation time of the different QoS policies. In
a similar way, the high-level QoS policies were translated into low-level OpenFlow rules depending on
the request from the customers of the ISP. It is worth noting that the implementation time of the gold
QoS policy is the lowest in comparison to the silver and bronze QoS policies. The implementation
time for the gold QoS policy is high in scenario C as it has more switches than scenarios A and B. The
implementation time reported in Fig. 5.14 for the silver QoS policy also follows the same increasing
trend with according to the number of switches in the topology. As can be seen in Fig. 5.14, the

SUPERCLOUD D4.4 Page 102 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

0

10

20

30

40

50

60

70

80

1 Mbps 5 Mbps 10 Mbps 15 Mbps

Ti
m

e
 (

m
s)

Traffic Rate

Figure 5.12: With varying traffic rate, time required to deploy the rules to process the flows

1 5 10 15
0

500

1000

1500

2000

2500

Packet Rate in Mbps

P
ac

ke
ts

Figure 5.13: Number of Packets that bypass during the implementation of block action at the ingress
switch

deployment time in scenario C is around 28 milliseconds, which is reasonable considering the number
of switches in the path (15) for scenario C as specified in Table 5.3.
Similarly, the deployment time of the bronze QoS policy increases with the number of switches in the
path. It takes around 36 milliseconds to deploy the low-level rules on the bronze path in scenario C (20
switches as indicated in Table 5.3). Considering the number of switches in the path, the deployment
time of policy in the bronze path is still in the order of a few milliseconds.

5.4.5 Packet loss

We also measured the packet loss during the deployment of low-level rules according to our mechanism.
As shown in Fig. 5.15, the packet loss also follows an increasing trend. But, with our mechanism, we
are able to minimize this loss to a large extent. It can be seen, in Fig. 5.15, that there is no packet loss
when the traffic rate is around 1 Mbps. Even at 15 Mbps of traffic rate, the packet loss is around 7.2
percents as compared to the 37 percents, without our mechanism. It shows that our mechanism greatly
reduces the packet loss percentage while deploying the low-level rules in the OpenFlow switches.
Our strategy to reduce packet loss relies on deploying the low-level rules in the core switches first,

SUPERCLOUD D4.4 Page 103 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

0

5

10

15

20

25

30

35

40

A B C

Ti
m

e
 (

m
s)

QoS Policies

Gold QoS

Silver QoS

Bronze QoS

Figure 5.14: Implementation time of QoS policies with different scenarios

1 5 10 15
0

10

20

30

40

50

Traffic Rate in Mbps

P
ac

ke
t L

os
s

(%
)

Without our mechanism
With our mechanism

Figure 5.15: Packet loss during the deployment of the policy

before modifying the rules in the ingress and egress switches. While the mitigation rules are being
deployed, the flows of concern still traverse the previous path, so as to reduce the packet loss. The
packet loss still occurs because of the delay in deploying the low-level rules from the controller to the
border switches.

5.4.6 Throughput of legitimate traffic

The throughput was measured in the presence of DDoS attacks. As shown in Figure 5.10, we used
H2 to generate DDoS attack traffic, and observed the impact on the legitimate traffic going to the
customers C1, C2 and C3. As we can see in Figure 5.16, the throughput of all the legitimate traffic

SUPERCLOUD D4.4 Page 104 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

0 20 40 60 80 100 120
0

100

200

300

400

Time(sec)

Le
gi

tim
at

e
tr

af
fic

 th
ro

ug
hp

ut
(M

bp
s)

 C1
 C2
 C3

Request for redirections

Figure 5.16: Throughput of legitimate traffic going towards customer network after redirection.

dropped sharply as soon as H2 started to attack. As a result, the SDN controller of customer C3 sends
an alert, which contains the FlowID (source IP, destination IP) and the security class (legitimate), to
the MC at the ISP controller, prompting the PDP to instruct the controller on redirecting the flow.
Subsequently, the NIB computes the best path, i.e., P3, and forwards the NSH with the path details
to the PDP. Finally, the corresponding OpenFlow rules are loaded to the PEPs, namely the OpenFlow
switches. As shown in Figure 5.16, the legitimate traffic heading to C3 was thus able to quickly return
to its normal level.
Similarly, the traffic flow going to C2 was redirected through path P2 upon the request of customer C2,
in order to restore its throughput to the normal level. Afterwards, the alert of customer C1 reached
the ISP controller, which interestingly redirected the traffic originating from host H1 (which has the
higher throughput) to path P2 as well, degrading the throughput of the traffic (originating from host
H3) to customer C2 down to zero, as shown in Figure 5.16. This indicates that, due to the limited
availability of high QoS paths in the ISP network, ensuring the QoS for one customer may incur
negative impact on other customers.

5.4.7 QoS provisioning of legitimate traffic

Following the previous experiment, we examine how the QoS of legitimate traffic can be provisioned
if all the paths with high bandwidth are congested. In this experiment, we assume that customer C1

requests a better QoS for the traffic sent from H1. As shown in Figure 5.17, since the legitimate traffic
going towards customers C2 and C3 was protected from collateral damage, the traffic from H1 was
redirected to the lower bandwidth path P4, ensuring that the QoS was not heavily impacted despite
the congestion of the legitimate path P1.

5.4.8 Network jitter of legitimate traffic

Finally, we tested how the network jitter of legitimate traffic varies in the presence of congestion. As
Fig. 5.18 shows, the network jitter of legitimate traffic going towards customers C1, C2, and C3 started
to increase when the attack traffic from H2 congested the network. However, all of them immediately
decreased when the ISP controller redirected the traffic flows upon receiving the mitigation requests
from the customers. Despite the similar changing pattern, the network jitter of the traffic going to C3

decreased earlier in comparison to those of C2 and C1. This is simply because customer C3 sent an
alert earlier than customers C2 and C1 did.

SUPERCLOUD D4.4 Page 105 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Time(sec)

Le
gi

tim
at

e
tr

af
fic

 th
ro

ug
hp

ut
(M

bp
s)

C1
C2
C3

Figure 5.17: Throughput of legitimate traffic in the case the traffic going towards C1 is redirected
through the low suspicious path.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

Time(sec)

N
et

w
or

k
Ji

tte
r(

m
s)

 C1
 C2
 C3

Request for redirections

Figure 5.18: Network jitter of legitimate traffic.

SUPERCLOUD D4.4 Page 106 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Chapter 6 Conclusions

In this deliverable we have presented the architecture of the SUPERCLOUD network virtualization
platform. We started with an overview of the architecture, followed by a description of our solution
to the core component of the network hypervisor: the secure virtual network embedding. Third,
we presented the design, implementation, and evaluation of the techniques introduced to improve
the security and dependability of the infrastructure. Finally, we detailed the autonomic security
management services for the virtualization platform.
The integration of the network hypervisor with components from other work packages has been posi-
tively tested, namely with:

• the authentication service (Work Package 2);

• the storage service Janus (Work Package 3);

• the Maxdata use case (Work Package 5); and

• the Phillips use case (Work Package 5).

Our multi-cloud network virtualization platform thus fulfilled (and extended) all objectives defined
for Work Package 4.
As anticipation of future work, we expect the network hypervisor to be enhanced along three axis:

• First, to provide elasticity to virtual networks, by allowing tenants to scale up and down their
virtual infrastructures.

• Second, to improve the efficiency of the substrate infrastructure by integrating mechanisms to
migrate network and compute resources transparently.

• Third, to enhance virtual networks with advanced security services and other network functions,
by leveraging the recent advances on programmable data planes [33].

SUPERCLOUD D4.4 Page 107 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

Bibliography

[1] ViNE-Yard. http://www.mosharaf.com/ViNE-Yard.tar.gz.

[2] Mininet: An instant virtual network on your laptop, 2016.

[3] VIS.JS. http://visjs.org/, 2017. Accessed: 2017-10-25.

[4] O. I. Abdullaziz, Y. J. Chen, and L. C. Wang. Lightweight authentication mechanism for software
defined network using information hiding. In 2016 IEEE Global Communications Conference
(GLOBECOM), pages 1–6, Dec 2016.

[5] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green,
J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Ben-
jamin VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann. Imperfect
forward secrecy: How diffie-hellman fails in practice. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages 5–17, New York, NY,
USA, 2015. ACM.

[6] Adnan Akhunzada, Ejaz Ahmed, Abdullah Gani, Muhammad Khurram Khan, Muhammad
Imran, and Sghaier Guizani. Securing software defined networks: taxonomy, requirements, and
open issues. IEEE Communications Magazine, 53(4):36–44, 2015.

[7] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru Parulkar, Elio Sal-
vadori, and Bill Snow. Openvirtex: Make your virtual sdns programmable. In Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, pages 25–30,
New York, NY, USA, 2014. ACM.

[8] Ali Al-Shabibi et al. OpenVirteX: Make your virtual SDNs programmable. In HotSDN, 2014.

[9] Max Alaluna et al. Secure and Dependable Multi-Cloud Network Virtualization. In XDOM0,
2017.

[10] Martin R Albrecht, Davide Papini, Kenneth G Paterson, and Ricardo Villanueva-Polanco. Fac-
toring 512-bit RSA moduli for fun (and a profit of $9,000), 2015.

[11] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Barbara Vieira. Formal verification
of side-channel countermeasures using self-composition. Science of Computer Programming,
78(7):796 – 812, 2013. Special section on Formal Methods for Industrial Critical Systems (FMICS
2009 + FMICS 2010) & Special section on Object-Oriented Programming and Systems (OOPS
2009), a special track at the 24th ACM Symposium on Applied Computing.

[12] R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello, and C. Cavazzoni. Com-
prehensive survey on T-SDN: Software-defined networking for transport networks. IEEE Com-
munications Surveys Tutorials, PP(99):1–1, 2017.

[13] Markku Antikainen, Tuomas Aura, and Mikko Srel. Spook in your network: Attacking an SDN
with a compromised openflow switch. In Karin Bernsmed and Simone Fischer-Hbner, editors,
Secure IT Systems, Lecture Notes in Computer Science, pages 229–244. Springer International
Publishing, 2014.

SUPERCLOUD D4.4 Page 108 of 118

http://www.mosharaf.com/ViNE-Yard.tar.gz
http://visjs.org/

D4.4 - Implementation of Self-Management of Network Security and Resilience

[14] Cyril Arnaud and Pierre-Alain Fouque. Timing attack against protected rsa-crt implementation
used in polarssl. In Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013, volume 7779 of
Lecture Notes in Computer Science, pages 18–33. Springer Berlin Heidelberg, 2013.

[15] Ahmad Aseeri, Nuttapong Netjinda, and Rattikorn Hewett. Alleviating eavesdropping attacks in
software-defined networking data plane. In Proceedings of the 12th Annual Conference on Cyber
and Information Security Research, CISRC ’17, pages 1:1–1:8, New York, NY, USA, 2017. ACM.

[16] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards predictable
datacenter networks. In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 242–253, New York, NY, USA, 2011. ACM.

[17] Lawrence E. Bassham, III, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles E.
Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark Vangel, David L. Banks,
Nathanael Alan Heckert, James F. Dray, and San Vo. Sp 800-22 rev. 1a. a statistical test suite for
random and pseudorandom number generators for cryptographic applications. Technical report,
Gaithersburg, MD, United States, 2010.

[18] M. Ben-Yehuda et al. The turtles project: Design and implementation of nested virtualization.
In 9th USENIX - OSDI’10, 2010.

[19] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteristics of data
centers in the wild. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Mea-
surement, IMC ’10, pages 267–280, New York, NY, USA, 2010. ACM.

[20] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understanding data center
traffic characteristics. SIGCOMM Comput. Commun. Rev., 40(1):92–99, January 2010.

[21] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio
Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al. ONOS: towards an
open, distributed sdn os. In Proceedings of the third workshop on Hot topics in software defined
networking, pages 1–6. ACM, 2014.

[22] Daniel J. Bernstein. Introduction to post-quantum cryptography, pages 1–14. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[23] Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: a standardized back door.
In The New Codebreakers, pages 256–281. Springer, 2016.

[24] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryp-
tographic library. In Progress in Cryptology - LATINCRYPT, volume 7533 of L. N. in CS.
Springer, 2012.

[25] Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen, Tanja Lange, Peter Schwabe, and
Sjaak Smetsers. TweetNaCl: A crypto library in 100 tweets. In Diego F. Aranha and Alfred
Menezes, editors, Progress in Cryptology - LATINCRYPT 2014, volume 8895 of Lecture Notes
in Computer Science, pages 64–83. Springer International Publishing, 2015.

[26] A. Bessani, J. Sousa, and E. E. P. Alchieri. State machine replication for the masses with BFT-
SMART. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 355–362, June 2014.

[27] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa. Depsky:
Dependable and secure storage in a cloud-of-clouds. Trans. Storage, 9(4):12:1–12:33, November
2013.

SUPERCLOUD D4.4 Page 109 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

[28] Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel Correia, Marcelo Pasin,
and Paulo Verissimo. Scfs: A shared cloud-backed file system. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages 169–
180, Berkeley, CA, USA, 2014. USENIX Association.

[29] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A messy
state of the union: Taming the composite state machines of TLS. In 2015 IEEE Symposium on
Security and Privacy, pages 535–552. IEEE, 2015.

[30] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Haw-
blitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch, et al. Ever-
est: Towards a verified, drop-in replacement of https. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 71. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[31] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves
Strub. Implementing TLS with verified cryptographic security. In Security and Privacy (SP),
2013 IEEE Symposium on, pages 445–459. IEEE, 2013.

[32] KEVIN BOCEK. Infographic: How an attack by a cyber-espionage operator bypassed security
controls, Jan. 2015.

[33] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4: Programming
protocol-independent packet processors. SIGCOMM Comput. Commun. Rev., 44(3), July 2014.

[34] F. Botelho, A. Bessani, F.M.V. Ramos, and P. Ferreira. On the design of practical fault-tolerant
sdn controllers. In Third European Workshop on Software Defined Networks, EWSDN ’14, 2014.

[35] F. Botelho, T. A. Ribeiro, A. Bessani, F. M. V. Ramos, and P. Ferreira. Design and imple-
mentation of a consistent datastore for a distributed sdn control plane. In EDCC16: The 12th
European Conference on Dependable Computing, 2016.

[36] Fábio Botelho, Tulio A Ribeiro, Paulo Ferreira, Fernando MV Ramos, and Alysson Bessani.
Design and implementation of a consistent data store for a distributed SDN control plane. In
Dependable Computing Conference (EDCC), 2016 12th European, pages 169–180. IEEE, 2016.

[37] R. Braga, E. Mota, and A. Passito. Lightweight DDoS flooding attack detection using
NOX/OpenFlow. In 35th IEEE Conference on Local Computer Networks (LCN), pages 408–415,
Oct 2010.

[38] E. Brewer. Cap twelve years later: How the ”rules” have changed. Computer, 45(2):23–29, 2012.

[39] BillyBob Brumley and Nicola Tuveri. Remote timing attacks are still practical. In Vijay Atluri
and Claudia Diaz, editors, Computer Security - ESORICS 2011, volume 6879 of Lecture Notes
in Computer Science, pages 355–371. Springer Berlin Heidelberg, 2011.

[40] D. Buhov, M. Huber, G. Merzdovnik, E. Weippl, and V. Dimitrova. Network security challenges
in android applications. In 2015 10th International Conference on Availability, Reliability and
Security, pages 327–332, Aug 2015.

[41] C. Cachin and A. Samar. Secure distributed dns. In International Conference on Dependable
Systems and Networks, 2004, pages 423–432, June 2004.

[42] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. Software transactional net-
working: Concurrent and consistent policy composition. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13, 2013.

SUPERCLOUD D4.4 Page 110 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

[43] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott
Shenker. Ethane: Taking control of the enterprise. In Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications, SIG-
COMM ’07, 2007.

[44] M. Chowdhury et al. PolyViNE: Policy-based Virtual Network Embedding Across Multiple
Domains. In ACM SIGCOMM VISA, 2010.

[45] N. M. M. K. Chowdhury et al. Virtual network embedding with coordinated node and link
mapping. In INFOCOM 2009, IEEE, pages 783–791, April 2009.

[46] Cisco. Annual security report, 2014.

[47] P. A. R. S. Costa, F. M. V. Ramos, and M. Correia. Chrysaor: Fine-grained, fault-tolerant cloud-
of-clouds mapreduce. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pages 421–430, May 2017.

[48] Bob Cromwell. Massive failures of internet PKI, 2017. http://cromwell-intl.com/

cybersecurity/pki-failures.html.

[49] M. C. Dacier, H. Konig, R. Cwalinski, F. Kargl, and S. Dietrich. Security challenges and
opportunities of software-defined networking. IEEE Security Privacy, 15(2):96–100, March 2017.

[50] Quynh Dang. Recommendation for existing application-specific key derivation functions. NIST
Special Publication, 800:135, Dec 2010.

[51] DigiCert Inc. Enabling perfect forward secrecy, 2017. https://www.digicert.com/

ssl-support/ssl-enabling-perfect-forward-secrecy.htm.

[52] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergniaud, and Daniel Wichs. Se-
curity analysis of pseudo-random number generators with input: /dev/random is not robust. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’13, pages 647–658, New York, NY, USA, 2013. ACM.

[53] Benjamin Dowling, Douglas Stebila, and Greg Zaverucha. Authenticated network time synchro-
nization. In 25th USENIX Security Symposium (USENIX Security 16), pages 823–840, Austin,
TX, 2016. USENIX Association.

[54] Chris Edwards. Researchers probe security through obscurity. Communications of the ACM,
57(8):11–13, 2014.

[55] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical study
of cryptographic misuse in Android applications. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, pages 73–84, New York, NY,
USA, 2013. ACM.

[56] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking openssl implementation of ecdsa
with a few signatures. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1505–1515. ACM, 2016.

[57] Benjamin Feinstein, David Curry, and Herve Debar. The Intrusion Detection Message Exchange
Format (IDMEF). RFC 4765, October 2015.

[58] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography engineering: design prin-
ciples and practical applications. John Wiley & Sons, 2011.

[59] Andreas Fischer et al. Position paper: Secure virtual network embedding. Praxis der Informa-
tionsverarbeitung und Kommunikation, 2011.

SUPERCLOUD D4.4 Page 111 of 118

http://cromwell-intl.com/cybersecurity/pki-failures.html
http://cromwell-intl.com/cybersecurity/pki-failures.html
https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm
https://www.digicert.com/ssl-support/ssl-enabling-perfect-forward-secrecy.htm

D4.4 - Implementation of Self-Management of Network Security and Resilience

[60] Andreas Fischer et al. Virtual Network Embedding: A Survey. IEEE Communications Surveys
Tutorials, 15(4):1888–1906, 2013.

[61] A. Froehlich. 9 spectacular cloud computing fails. Information Week, July 2015.

[62] C. Fuerst, S. Schmid, L. Suresh, and P. Costa. Kraken: Online and elastic resource reservations
for multi-tenant datacenters. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9, April 2016.

[63] GLPK. GNU Linear Programming Kit. http://www.gnu.org/software/glpk/, 2008.

[64] Google. Protocol buffers, 2017.

[65] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim,
Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2: A scalable and
flexible data center network. SIGCOMM Comput. Commun. Rev., 39(4):51–62, August 2009.

[66] Marcella Hastings, Joshua Fried, and Nadia Heninger. Weak keys remain widespread in network
devices. In Proceedings of the 2016 ACM on Internet Measurement Conference, pages 49–63.
ACM, 2016.

[67] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, pages 35–35, Berkeley, CA, USA, 2012. USENIX
Association.

[68] Shai Herzog. The COPS (Common Open Policy Service) Protocol. RFC 2748, January 2000.

[69] Brad Hill. Failures of trust in the online PKI marketplace cannot be fixed by ”raising the bar”
on certificate authority security, 2013.

[70] Jaap-Henk Hoepman and Bart Jacobs. Increased security through open source. Commun. ACM,
50(1):79–83, January 2007.

[71] L. S. Huang, S. Adhikarla, D. Boneh, and C. Jackson. An experimental study of TLS forward
secrecy deployments. IEEE Internet Computing, 18(6):43–51, Nov 2014.

[72] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper: Wait-
free coordination for internet-scale systems. In USENIX Annual Technical Conference, volume 8,
page 9, 2010.

[73] IEEE Spectrum. Special report: 50 years of Moore’s law, 2015.

[74] Sushant Jain et al. B4: Experience with a globally-deployed software defined wan. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, 2013.

[75] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Sub-
baiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart,
and Amin Vahdat. B4: experience with a globally-deployed software defined wan. In Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM, SIGCOMM ’13, pages 3–14, New York,
NY, USA, 2013. ACM.

[76] N. Katta, H. Zhang, M. Freedman, and J. Rexford. Ravana: Controller fault-tolerance in
software-defined networking. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, SOSR ’15, 2015.

SUPERCLOUD D4.4 Page 112 of 118

http://www.gnu.org/software/glpk/

D4.4 - Implementation of Self-Management of Network Security and Resilience

[77] Z. K. Khattak, M. Awais, and A. Iqbal. Performance evaluation of OpenDaylight SDN controller.
In 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS),
pages 671–676, Dec 2014.

[78] Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee. Predictability of Android OpenSSL’s pseudo
random number generator. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, CCS ’13, pages 659–668, New York, NY, USA, 2013. ACM.

[79] Timo Kiravuo, Mikko Sarela, and Jukka Manner. A survey of ethernet lan security. IEEE
Communications Surveys & Tutorials, 15(3):1477–1491, 2013.

[80] Rowan Klöti, Vasileios Kotronis, and Paul Smith. OpenFlow: A security analysis. In IEEE
Proc. Wkshp on Secure Network Protocols (NPSec), 2013.

[81] Teemu Koponen et al. Network virtualization in multi-tenant datacenters. In USENIX NSDI,
2014.

[82] Teemu Koponen and other. Onix: A distributed control platform for large-scale production
networks. In Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, 2010.

[83] D. Kreutz, A. Bessani, E. Feitosa, and H. Cunha. Towards secure and dependable authentication
and authorization infrastructures. In 2014 IEEE 20th Pacific Rim International Symposium on
Dependable Computing, pages 43–52, Nov 2014.

[84] D. Kreutz, P. Esteves-Verissimo, C. Magalhaes, and F. M. V. Ramos. The KISS principle in
Software-Defined Networking: An architecture for Keeping It Simple and Secure. ArXiv e-prints,
June 2017.

[85] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky, and
S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1),
Jan 2015.

[86] D. Kreutz, J. Yu, P. Esteves-Verissimo, C. Magalhaes, and F. M. V. Ramos. The KISS principle in
software-defined networking: a framework for secure communications. IEEE Security & Privacy,
2017. Accepted for publication.

[87] D. Kreutz, J. Yu, F. M. V. Ramos, and P. Esteves-Verissimo. ANCHOR: logically-centralized
security for Software-Defined Networks. ArXiv e-prints, November 2017.

[88] Diego Kreutz et al. Software-defined networking: A comprehensive survey. Proceedings of the
IEEE, Jan 2015.

[89] Diego Kreutz, Oleksandr Malichevskyy, Eduardo Feitosa, Hugo Cunha, Rodrigo da Rosa Righi,
and Douglas D.J. de Macedo. A cyber-resilient architecture for critical security services. Journal
of Network and Computer Applications, 63:173 – 189, 2016.

[90] Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. Towards secure and dependable
software-defined networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, pages 55–60, New York, NY, USA, 2013.
ACM.

[91] M. Lacoste et al. User-Centric Security and Dependability in the Clouds-of-Clouds. IEEE Cloud
Computing, 3(5):64–75, 9 2016.

[92] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2), May 1998.

SUPERCLOUD D4.4 Page 113 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

[93] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja Feldmann. Logically
centralized?: state distribution trade-offs in software defined networks. In Proceedings of the
first workshop on Hot topics in software defined networks, pages 1–6. ACM, 2012.

[94] Shuhao Liu et al. Security-Aware Virtual Network Embedding. In IEEE ICC, June 2014.

[95] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios Var-
doulakis. In defense of soundiness: A manifesto. Commun. ACM, 58(2):44–46, January 2015.

[96] Chowdhury M. et al. ViNEYard: Virtual Network Embedding Algorithms with Coordinated
Node and Link Mapping. IEEE/ACM Transactions on Networking, 20(1):206–219, February
2012.

[97] D. Mahu, V. Dumitrel, and F. Pop. Secure entropy gatherer. In 2015 20th International Con-
ference on Control Systems and Computer Science, pages 185–190, May 2015.

[98] Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Goldberg. Attacking the network
time protocol. IACR Cryptology ePrint Archive, 2015:1020, 2015.

[99] Konstantinos Manousakis and Georgios Ellinas. Attack-aware planning of transparent optical
networks. Optical Switching and Networking, (0):–, 2015.

[100] G. Markowsky. Was the 2006 Debian SSL debacle a system accident? In 2013 IEEE 7th Interna-
tional Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS),
volume 02, pages 624–629, Sept 2013.

[101] G. McGraw. Software security. IEEE Security Privacy, 2(2):80–83, Mar 2004.

[102] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innovation in campus net-
works. ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[103] MEF. MEF, 2017.

[104] Michael Mimoso. GPG patches 18-year-old libgcrypt RNG bug, 2016.

[105] M. Naldi. Connectivity of Waxman Topology Models. Computer Communications, 29(1):24–31,
December 2005.

[106] Namecheap.com. Cipher suites configuration (and forcing perfect forward secrecy),
2015. https://www.namecheap.com/support/knowledgebase/article.aspx/9601/

/cipher-suites-configuration-and-forcing-perfect-forward-secrecy.

[107] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco Mellia, Maur-
izio Munafo, Konstantina Papagiannaki, , and Peter Steenkiste. The cost of the ”S” in HTTPS.
In Proceedings of the Tenth ACM Conference on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’14, page 7, New York, NY, USA, 2014. ACM.

[108] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12), December 1978.

[109] NIST. NIST statistical test suite, 2017.

[110] Brian M Oki and Barbara H Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the seventh annual ACM
Symposium on Principles of distributed computing, pages 8–17. ACM, 1988.

SUPERCLOUD D4.4 Page 114 of 118

https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy
https://www.namecheap.com/support/knowledgebase/article.aspx/9601//cipher-suites-configuration-and-forcing-perfect-forward-secrecy

D4.4 - Implementation of Self-Management of Network Security and Resilience

[111] ONF. Openflow switch specification (version 1.5.0), Dec. 2014.

[112] ONF. Principles and practices for securing software-defined networks. Technical report, Open
Networking Foundation, Feb. 2015. ONF TR-511.

[113] ONF. Open Networking Foundation, 2017.

[114] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In Pro-
ceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX
ATC’14, 2014.

[115] OpenSSL.org. OpenSSL security advisory [10 nov 2016], November 2016.

[116] Dave Otway and Owen Rees. Efficient and timely mutual authentication. SIGOPS Oper. Syst.
Rev., 21(1), January 1987.

[117] Peter Pereš́ıni, Maciej Kuzniar, Nedeljko Vasić, Marco Canini, and Dejan Kostiū. Of. cpp: Con-
sistent packet processing for openflow. In Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, pages 97–102. ACM, 2013.

[118] Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David E. Culler. Spins: Security
protocols for sensor networks. Wirel. Netw., 8(5):521–534, September 2002.

[119] W. Michael Petullo, Xu Zhang, Jon A. Solworth, Daniel J. Bernstein, and Tanja Lange. Min-
imaLT: Minimal-latency networking through better security. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, CCS ’13, pages 425–438, New
York, NY, USA, 2013. ACM.

[120] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Rajahalme, Jesse
Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon, and Mart́ın Casado. The
design and implementation of open vswitch. In Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation, NSDI’15, pages 117–130, Berkeley, CA, USA,
2015. USENIX Association.

[121] Google Cloud Platform. Google compute engine incident 16007. https://status.cloud.

google.com/incident/compute/16007, April 2016.

[122] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and Guofei Gu.
A security enforcement kernel for OpenFlow networks. In Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, HotSDN ’12, pages 121–126, New York, NY, USA,
2012. ACM.

[123] PwC, CSO magazine and CERT/CMU. US cybercrime: Rising risks, reduced readiness. Tech-
nical report, PwC, 2014.

[124] M. Rahman et al. Survivable Virtual Network Embedding. In NETWORKING, pages 40–52,
May 2010.

[125] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth Sundaresan,
Johanna Amann, and Phillipa Gill. Studying TLS usage in android apps. In Proceedings of the
13th ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT ’17,
page 7, New York, NY, USA, 2017. ACM.

[126] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions
for network update. In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication, pages 323–334. ACM,
2012.

SUPERCLOUD D4.4 Page 115 of 118

https://status.cloud.google.com/incident/compute/16007
https://status.cloud.google.com/incident/compute/16007

D4.4 - Implementation of Self-Management of Network Security and Resilience

[127] RightScale. 2017 state of the cloud report, February 2017.

[128] Francisco Javier Ros and Pedro Miguel Ruiz. Five nines of southbound reliability in software-
defined networks. In Proceedings of the third workshop on Hot topics in software defined net-
working, pages 31–36. ACM, 2014.

[129] Matthias Rost, Carlo Fuerst, and Stefan Schmid. Beyond the stars: Revisiting virtual cluster
embeddings. SIGCOMM Comput. Commun. Rev., 45(3):12–18, July 2015.

[130] Dominik Samociuk. Secure communication between OpenFlow switches and controllers. AFIN
2015, page 39, 2015.

[131] Bruce Schneier. Lousy random numbers cause insecure public keys, Feb 2012.

[132] Bruce Schneier. Data and Goliath: The hidden battles to collect your data and control your
world. WW Norton & Company, 2015.

[133] J. Schonwalder and V. Marinov. On the impact of security protocols on the performance of
SNMP. IEEE Trans. on Net. and Service Management, 8(1), 2011.

[134] S. Scott-Hayward, S. Natarajan, and S. Sezer. A survey of security in software defined networks.
IEEE Communications Surveys Tutorials, 18(1):623–654, Firstquarter 2016.

[135] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. SDN security: A survey. In Future Networks
and Services (SDN4FNS), 2013 IEEE SDN for, pages 1–7, Nov 2013.

[136] N. Shahriar et al. Connectivity-Aware Virtual Network Embedding. In IFIP Networking, June
2016.

[137] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan Smeliansky.
Advanced study of SDN/OpenFlow controllers. In Proceedings of the 9th Central and Eastern
European Software Engineering Conference in Russia, CEE-SECR ’13, pages 1:1–1:6, New York,
NY, USA, 2013. ACM.

[138] Prateek Sharma, David Irwin, and Prashant Shenoy. How not to bid the cloud. In 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 16), 2016.

[139] Y. Sheffer, R. Holz, and P. Saint-Andre. Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security (DTLS). RFC 7525, May 2015.

[140] C. Shen, E. Nahum, H. Schulzrinne, and C. P. Wright. The impact of TLS on SIP server
performance: Measurement and modeling. IEEE/ACM Trans. on Networking, 20(4), Aug 2012.

[141] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick McKeown,
and Guru Parulkar. Can the production network be the testbed? In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, OSDI’10, pages 365–
378, Berkeley, CA, USA, 2010. USENIX Association.

[142] Seugwon Shin, Phillip Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu, and Mabry Tyson.
FRESCO: Modular composable security services for software-defined networks. In Internet So-
ciety NDSS, Feb. 2013.

[143] Seungwon Shin and Guofei Gu. Attacking software-defined networks: A first feasibility study.
In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, HotSDN ’13, pages 165–166, New York, NY, USA, 2013. ACM.

SUPERCLOUD D4.4 Page 116 of 118

D4.4 - Implementation of Self-Management of Network Security and Resilience

[144] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip Porras,
Vinod Yegneswaran, Jisung Noh, and Brent Byunghoon Kang. Rosemary: A robust, secure,
and high-performance network operating system. In Proceedings of the 21st ACM Conference
on Computer and Communications Security (CCS), Nov. 2014. To appear.

[145] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon, Seb
Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala, Jeff Provost, Jason
Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. Jupiter
rising: A decade of clos topologies and centralized control in google’s datacenter network. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 183–197, New York, NY, USA, 2015. ACM.

[146] Drew Springall, Zakir Durumeric, and J. Alex Halderman. Measuring the security harm of tls
crypto shortcuts. In Proceedings of the 2016 Internet Measurement Conference, IMC ’16, pages
33–47, New York, NY, USA, 2016. ACM.

[147] Philip B. Stark. Don’t bet on your random number generator, Mar 2017.

[148] Harlan Stenn. Securing network time protocol. Commun. ACM, 58(2):48–51, January 2015.

[149] Raphael E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John
Wiley, New York, 546 pp, 1986.

[150] USA Today. Massive Amazon cloud service outage disrupts sites. https://www.usatoday.

com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/

98530914/, February 2017.

[151] J. Tsidulko. The 10 biggest cloud outages of 2016 (so far). The Channel Company, July 2016.

[152] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. Opennetmon: Network monitoring
in openflow software-defined networks. In 2014 IEEE Network Operations and Management
Symposium (NOMS), pages 1–8, May 2014.

[153] Nicole van der Meulen. DigiNotar: Dissecting the first dutch digital disaster. Journal of Strategic
Security, 6(2), 2013.

[154] Apostol Vassilev and Timothy A. Hall. The importance of entropy to information security.
Computer, 47(2):78–81, 2014.

[155] Paulo Verissimo, Miguel Correia, Nuno Ferreira Neves, and Paulo Sousa. Intrusion-resilient
middleware design and validation. In Information Assurance, Security and Privacy Services,
volume 4 of Handbooks in Information Systems, pages 615–678. Emerald Group Publishing
Limited, May 2009.

[156] Verizon. 2015 data breach investigations report. Technical report, Verizon, 2015.

[157] T. Wan, A. Abdou, and P. C. van Oorschot. A Framework and Comparative Analysis of Control
Plane Security of SDN and Conventional Networks. ArXiv e-prints, March 2017.

[158] Huangxin Wang, Quan Jia, Dan Fleck, Walter Powell, Fei Li, and Angelos Stavrou. A moving
target DDoS defense mechanism. Computer Communications, 46(0):10 – 21, 2014.

[159] Ahmad Samer Wazan, Romain Laborde, Franois Barrere, Abdelmalek Benzekri, and DavidW.
Chadwick. PKI interoperability: Still an issue? a solution in the x.509 realm. In Info. Assurance
and Sec. Education and Training, volume 406. Springer, 2013.

SUPERCLOUD D4.4 Page 117 of 118

https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/
https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/
https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/

D4.4 - Implementation of Self-Management of Network Security and Resilience

[160] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. The xen-blanket: Virtualize once,
run everywhere. In Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 113–126, New York, NY, USA, 2012. ACM.

[161] Dan Williams and Ricardo Koller. Unikernel monitors: extending minimalism outside of the
box. In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16). USENIX
Association, 2016.

[162] Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Kompella. The only constant is change: Incorpo-
rating time-varying network reservations in data centers. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, SIGCOMM ’12, pages 199–210, New York, NY, USA, 2012. ACM.

[163] Yuval Yarom and Naomi Benger. Recovering openssl ecdsa nonces using the flush+reload cache
side-channel attack. IACR Cryptology ePrint Archive, 2014:140, 2014.

[164] H. Yu et al. Cost Efficient Design of Survivable Virtual Infrastructure to Recover from Facility
Node Failures. In IEEE ICC, June 2011.

[165] Jiangshan Yu, Mark Ryan, and Cas Cremers. DECIM: Detecting endpoint compromise in
messaging. Cryptology ePrint Archive, Report 2015/486, 2017. http://eprint.iacr.org/

2015/486.

[166] Jiangshan Yu, Mark Ryan, and Cas Cremers. DECIM: Detecting endpoint compromise in
messaging. IEEE Trans. Information Forensics and Security, 2017.

[167] Jiangshan Yu and Mark Dermot Ryan. Device attacker models: Fact and fiction. In Security
Protocols XXIII - 23rd International Workshop, Cambridge, UK, March 31 - April 2, 2015,
Revised Selected Papers, pages 158–167, 2015.

[168] L. Yu and Z. Cai. Dynamic scaling of virtual clusters with bandwidth guarantee in cloud
datacenters. In IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, pages 1–9, April 2016.

[169] M. Yu et al. Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and
Migration. ACM SIGCOMM Computer Communication Review, 38(2):17–29, April 2008.

[170] Ellen W. Zegura et al. How to Model an Internetwork. In IEEE INFOCOM, pages 594–602,
March 1996.

[171] Kim Zetter. Researchers solve juniper backdoor mystery; signs point to NSA, Dec 2015.

[172] Y. Zhao, L. Iannone, and M. Riguidel. On the performance of SDN controllers: A reality check.
In 2015 IEEE Conference on Network Function Virtualization and Software Defined Network
(NFV-SDN), pages 79–85, Nov 2015.

[173] L. Zheng et al. How to bid the cloud. In ACM SIGCOMM, 2015.

[174] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. Coca: A secure distributed online
certification authority. ACM Trans. Comput. Syst., 20(4):329–368, November 2002.

[175] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In 2012
IEEE Symposium on Security and Privacy, pages 95–109, May 2012.

SUPERCLOUD D4.4 Page 118 of 118

http://eprint.iacr.org/2015/486
http://eprint.iacr.org/2015/486

	Introduction
	Objective of the document
	Outline

	Multi-Cloud Network Virtualization Architecture
	General design and operation
	Architecture
	Overview of Sirius operation

	Network virtualisation core components
	Multi-cloud orchestrator
	Hypervisor
	Virtualisation runtime: achieving isolation
	Additional implementation details

	Self-management network security

	Network Virtualization
	Secure Virtual Network Embedding
	Network model
	Secure Virtual Network Embedding Problem
	A Policy Language to Specify SecVNE
	MILP formulation
	Decision variables
	Objective Function
	Security Constraints
	Mapping Constraints
	Capacity Constraints

	Evaluation
	Experimental Setup
	Metrics
	Evaluation Results

	Related work
	Conclusions

	Scalable Virtual Network Embedding
	Design requirements
	Virtual and Substrate Networks
	Virtual Network Embedding
	Network model

	Scalable VNE
	Utility Functions
	Scalable and Secure VNE Algorithm

	Evaluation
	Testing environment
	Simulations
	Prototype performance

	Related work
	Conclusions

	Infrastructure
	Logically-centralized security
	Architecture
	Challenges
	Security vs performance
	Complexity vs robustness
	Global security policies
	Resilient roots-of-trust

	Security architecture
	Hardening anchor
	A source of strong entropy
	Pseudorandom generator (PRG)
	Integrated device verification value
	System roles and setup
	Device registration
	Device association
	Controller recommendation
	Device-to-device communication
	Post-compromise recovery

	Implementation
	A source of strong entropy
	Pseudorandom generator (PRG)
	iDVV generators

	Evaluation
	Source of entropy and PRGs
	Device-to-device communication performance
	Traditional solutions versus anchor

	Related work
	Discussion
	Meeting the challenges
	Devil's advocate analysis

	Conclusions

	Secure and efficient control plane communications
	KISS SDN
	System and threat model
	Security goals

	iDVV: Keep It Simple and Secure
	iDVV bootstrap
	iDVV generation
	iDVV synchronization
	iDVV implementation and application

	On the cost of security
	The cost of secure channels
	A closer look at the cost of cryptography

	Discussion
	On the security of iDVV
	On the solution robustness
	On the cost of iDVV

	Related work
	Conclusions

	Fault-tolerant control plane
	Fault-tolerant SDN
	Inconsistent event ordering
	Unreliable event delivery
	Repetition of commands
	Existing approaches

	Design
	Architecture
	Rama protocol

	Correctness
	Implementation
	Evaluation
	Setup
	Rama performance
	Event batching
	Failover Time
	Summary

	Related work
	Conclusions

	Self-Management of Network Security
	OpenDaylight Security Agent
	Motivation
	SFC and NSH with OpenDaylight
	Network Service Header
	GBP: a new declarative way of expressing network configuration
	GBP Access Model
	GBP Forwarding Model

	Combining GBP and SFC

	Policy Driven Management and Enforcement Framework
	Design Components
	Operational Workflow

	Use Case
	Settings for On-demand Attack Mitigation

	Experimental Results
	Evaluation metrics
	Implementation time of mitigation policy
	Malicious traffic filtering
	Implementation time of QoS policies
	Packet loss
	Throughput of legitimate traffic
	QoS provisioning of legitimate traffic
	Network jitter of legitimate traffic

	Conclusions
	Glossary
	Bibliography

