
D4.3
Proof-of-concept Prototype of the Multi-Cloud

Network Virtualization Infrastructure

Project number: 643964

Project acronym: SUPERCLOUD

Project title:
User-centric management of security and dependability in clouds of
clouds

Project Start Date: 1st February, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Demonstrator

Reference Number: ICT-643964-D4.3/ 1.0

Work Package: WP 4

Due Date: May 2017 - M28

Actual Submission Date: 23rd June, 2017

Responsible Organisation: FFCUL

Editor: Fernando M. V. Ramos, Nuno Neves

Dissemination Level: PU

Revision: 1.0

Abstract:

In this deliverable, we describe the software components that form
the multi-cloud network virtualisation infrastructure. We give an
overview of the structure of the network framework, we detail the
APIs of its main components, and we give information on how to
access and use the software developed.

Keywords:
network virtualisation, multi-cloud, software-defined networking, self-
management, security

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 643964.

This work was supported (in part) by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 15.0091.

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Editor

Fernando M. V. Ramos, Nuno Neves (FFCUL)

Contributors (ordered according to beneficiary numbers)

Ruan He, Pascal Legouge, Marc Lacoste,
Nizar Kheir, Redouane Chekaoui, Medhi Boutaka (ORANGE)
Eric Vial, Max Alaluna (FFCUL)
Khalifa Toumi, Rishikesh Sahay, Gregory Blanc (IMT)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.

This document has gone through the consortium’s internal review process and is still subject to the
review of the European Commission. Updates to the content may be made at a later stage.

SUPERCLOUD D4.3 Page I

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Executive Summary

In this deliverable, we describe the software components of the multi-cloud network virtualisation
infrastructure. We start with an overview of the network virtualisation architecture. We then detail
the APIs of its main components, including the core elements (network hypervisor and orchestrator)
and the self-management security services running on top (security monitoring, appliance chaining,
and network security). For each component, we include details on how to access and use the software
developed.

SUPERCLOUD D4.3 Page II

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Contents

Chapter 1 Introduction 1
1.1 Objective of the document . 1
1.2 Outline . 1

Chapter 2 Network virtualisation architecture overview 2
2.1 General design and operation . 2

2.1.1 Architecture . 3
2.1.2 Overview of Sirius operation . 4

2.2 Network virtualisation core components . 4
2.2.1 Multi-cloud orchestrator . 4
2.2.2 Hypervisor . 6
2.2.3 Virtualisation runtime: achieving isolation . 7
2.2.4 Additional implementation details . 9

2.3 Self-management network security . 9
Chapter 3 Network virtualisation core interfaces 10

3.1 Internal interfaces . 10
3.1.1 Hypervisor-orchestrator communication . 10
3.1.2 Orchestrator client-server communication . 11

3.2 External interfaces . 11
3.2.1 Topology request . 12

3.2.1.1 Substrate attributes . 12
3.2.1.2 Tenant attributes . 13
3.2.1.3 Topology reply . 14
3.2.1.4 Example of topology request and reply 14

3.2.2 Redirect all traffic request . 16
3.2.2.1 Response status codes . 17
3.2.2.2 Reply content . 17

3.3 Code and documentation . 17
Chapter 4 Self-management network security interfaces 18

4.1 Self-management of security . 18
4.2 Security monitoring component . 19

4.2.1 Topology handler . 19
4.2.1.1 Overview . 19
4.2.1.2 Interfaces . 19

4.2.2 Context handler . 19
4.2.2.1 Overview . 19
4.2.2.2 Interfaces . 20

4.2.3 Policy handler . 20
4.2.3.1 Overview . 20
4.2.3.2 Interfaces . 20

4.2.4 Incident handler . 20
4.2.4.1 Overview . 20
4.2.4.2 Interfaces . 20

SUPERCLOUD D4.3 Page III

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

4.3 Service chaining component . 21
4.3.1 Topology monitoring module . 22
4.3.2 Path computation module . 22
4.3.3 Path instantiation module . 22

4.4 Network security module . 23
4.4.1 Components Overview . 23

4.4.1.1 Workflow description . 23
4.4.1.2 Design Components . 24

4.5 Implementation Details . 25
4.5.1 Interoperability . 25

4.5.1.1 TOSCA Description . 25
4.5.2 Interface . 26

4.6 Code and documentation . 28
4.7 Ongoing work: a security agent for OpenDaylight . 28

Chapter 5 Conclusions 30
Bibliography 31

SUPERCLOUD D4.3 Page IV

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

List of Figures

2.1 Sirius architecture. 3
2.2 Orchestrator’s main modules. 5
2.3 Intra- and inter-clouds connections. 5
2.4 Modular architecture of the network hypervisor. 7
2.5 <Switch port, DatapathId> = host ID . 8

3.1 Sirius flow communication . 10
3.2 Packet’s header and payload . 11
3.3 Orchestrator client-server communication . 11
3.4 Example of substrate network . 15
3.5 Example of virtual networks . 15

4.1 Security monitoring component: high-level architecture 19
4.2 Service chaining component: high-level architecture . 21
4.3 Path instantiation example . 23
4.4 Network Security Module: TOSCA Description . 26
4.5 A security agent for OpenDaylight (adapted from [1]) 28
4.6 Chaining flows to different security functions . 29

SUPERCLOUD D4.3 Page V

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

List of Tables

3.1 Request/reply types . 11
3.2 Topology request overview . 12
3.3 Cloud attributes . 12
3.4 VM attributes . 12
3.5 OVS attributes . 13
3.6 Container attributes . 13
3.7 Link attributes . 13
3.8 Virtual host attributes . 14
3.9 Virtual switch attributes . 14
3.10 Virtual link attributes . 14
3.11 Redirect traffic request overview . 16

4.1 Request and Response overview . 25

SUPERCLOUD D4.3 Page VI

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Chapter 1 Introduction

The objective of SUPERCLOUD Work Package 4 (WP4) is to develop a platform that creates a vir-
tual network abstraction to the SUPERCLOUD user, spanning multiple heterogeneous Cloud Service
Providers (CSPs). Previously, we have focused on the design of the SUPERCLOUD network virtu-
alisation architecture and on prototyping its various components. The preliminary architecture was
presented in Deliverable D4.1, and in Deliverable D4.2, we presented its evolution alongside a detailed
description of its main components and the techniques used to improve the dependability, scalability,
and security of the platform.

1.1 Objective of the document

This deliverable consists of the proof-of-concept prototype of the multi-cloud network virtualisation
infrastructure. This is a demonstrator (“software”) deliverable that is accompanied by the present
document. Our purpose here is to describe the structure of the network framework and the APIs of
its main components, namely:

• The multi-cloud orchestrator that manages interactions with users through a web-based graphical
interface, keeps information about the topologies of the substrate and virtual networks and their
mappings, and configures and bootstraps VMs in the clouds in cooperation with the network
hypervisor.

• The network hypervisor that performs the embedding (i.e., defines the mapping) of the virtual
network to the substrate infrastructure, sets up the required forwarding state, and guarantees
isolation between the users’ virtual networks.

• The security monitoring component that detects and responds to security incidents.

• The service chaining component that allows end-users to compose their own security service
chains in a multi-cloud environment.

• The network security module that manages and deploys network security policies automatically,
by interacting with the security monitoring tool.

1.2 Outline

The rest of this document is organized as follows. Chapter 2 starts with an overview of the network
virtualisation architecture. Then, each of the next two chapters gives a short overview of each software
component and their internal and external APIs. In particular, Chapter 3 focuses on the API of the
core components: the orchestrator and the network hypervisor. Then, Chapter 4 describes the details
of the self-management security services, including security monitoring, service chaining, and network
security. These chapters also include information about how to obtain and use each component. We
finish this report with a discussion on integration aspects and conclusions in Chapter 5.

SUPERCLOUD D4.3 Page 1 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Chapter 2 Network virtualisation architecture overview

Current multi-tenant network hypervisors target single-provider deployments and traditional services,
such as flat L2 or L3 networks, as their goal is to enable tenants to use their existing cloud infras-
tructures. Such single-cloud paradigm has inherent limitations in terms of scalability, security, and
dependability, which may potentially dissuade critical systems to be migrated to the cloud. For in-
stance, a tenant may want to outsource part of its compute and network infrastructure to a public
cloud, but may not be willing to trust the same provider to store its confidential business data or to
run sensitive services, which should stay in a more trusted environment (e.g., a private datacenter). To
avoid cloud outages disrupting its services – a type of incident increasingly common [16] – the tenant
may also wish to spread its services across clouds, to avoid Internet-scale single points of failures.
To address this challenge, in SUPERCLOUD, we are developing Sirius, a multi-cloud network virtu-
alisation platform. Contrary to previous approaches, Sirius leverages a substrate infrastructure that
entails both public clouds and private datacenters. This brings several important benefits. First, it
increases resilience. Replicating services across providers avoids single points of failure and therefore
makes a tenant immune to any datacenter outage. Secondly, it can improve security, for instance
by exploring the interaction between public and private clouds. A tenant that needs to comply with
privacy legislation may demand certain data or specific services to be placed in trusted locations. In
addition, it can improve performance and efficiency. For example, the placement of virtual machines
may consider service affinity to reduce latencies. Specific workloads can also be migrated to clouds
which consume less energy [7]. Dynamic pricing plans from multiple cloud providers can also be
explored to improve cost-efficiency [18]. The multi-cloud model has been successfully applied in the
context of computation [17] and storage [8] recently. To the best of our knowledge, this is the first
time the model is applied for network virtualisation.
In our platform, users can define virtual networks with arbitrary topologies, while making use of the
full address space. Sirius further improves over existing network virtualisation solutions by allowing
users to specify security and dependability requirements for all virtual resources. In this chapter, we
present the Sirius architecture.

2.1 General design and operation

Sirius allows an organization to manage resources belonging to multiple clouds, which can then be
transparently shared by various users (or tenants). Resources are organized as a single substrate
infrastructure, effectively creating the abstraction of a cloud that spreads over several clouds, i.e.,
a cloud-of-clouds [12]. In this chapter, the considered resources are interconnected virtual machines
(VM) that are either acquired from public cloud providers or are placed in local facilities (i.e., private
clouds). Envisioned extensions include other cloud resources, such as storage services.
Users can define virtual networks composed of a number of containers interconnected according to
an arbitrary topology. Sirius deploys these virtual networks on the substrate infrastructure, ensuring
isolation of the traffic by setting up separated datapaths (or flows). While specifying the virtual
network, it is possible to indicate several requirements for the nodes and links, for example with respect
to the needed bandwidth, security properties, and fault tolerance guarantees. These requirements
are enforced during embedding by laying out the containers at the appropriate locations, where the
substrate infrastructure still has enough resources to satisfy the particular demands. In addition, the

SUPERCLOUD D4.3 Page 2 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

VM1

Network	Hypervisor	
SDN	controller	

VM1
Container	
Hypervisor	

VM1 VM1 VM1 Co
nt
ai
ne

r	

Container	
Hypervisor	

OvS	

Public	cloud	VM	manager	

Container	
Hypervisor	

GA
TE

W
AY

	

VM1
Container	
Hypervisor	

SECURE TUNNEL
Cloud provider 1 Cloud provider 2

Public	cloud	VM	manager	

VM1 VM1
Container	
Hypervisor	

VM1
Container	
Hypervisor	

Private cloud
SECURE TUNNEL

Mul7-Cloud	
Orchestrator	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

Co
nt
ai
ne

r	

OvS	 OvS	 OvS	 OvS	 OvS	GRE TUNNEL GRE TUNNEL GRE TUNNEL

.	.	.
Vitual Network

of Tenant 1
Vitual Network

of Tenant N

VM VM

GA
TE

W
AY

	

GA
TE

W
AY

	VM VM VM
VM

Security	
monitoring	

Network	
security	

Service	
chaining	

Figure 2.1: Sirius architecture.

datapaths are configured to follow adequate routes through the network.
In the rest of this section, we present the design of Sirius. First, we describe the architecture of the
platform and give a step-by-step overview of its operation while creating a virtual network. Next, we
elaborate on the two main components of Sirius, the network hypervisor and the cloud orchestrator.1

2.1.1 Architecture

The architecture of Sirius is displayed in Figure 2.1. This chapter focuses on the main advances
since its previous incarnation (Deliverable D4.2 and [6]): the multi-cloud orchestrator, the network
embedding module, and the isolation mechanisms. An important improvement was the addition
of the orchestrator module to the design (Section 2.2.1). The cloud orchestrator is responsible for
the dynamic creation of the substrate infrastructure by deploying the VMs and containers. It also
configures secure tunnels between gateway modules, normally building a fully connected topology
among the participating clouds. A gateway acts like an edge router, receiving local packets whose
destination is in another cloud and then forwarding them to its peer gateways, allowing data to
be sent securely to any container in the infrastructure. Intra-cloud communications between tenant
containers use GRE (Generic Routing Encapsulation) tunnels setup between the local VMs, to ensure
isolation.
The network hypervisor (Section 2.2.2) runs as an application on top of a Software-Defined Networking
(SDN) controller. It takes all decisions related to the placement of the virtual networks, and setups
the network paths by configuring software switches (OvS [14]) that are installed in all VMs (along
with OpenFlow hardware switches that may exist in private clouds, not shown in the figure). The
hypervisor intercepts the control messages between the substrate infrastructure and the users’ virtual
networks, and vice-versa, thus enabling full network virtualisation.
The hypervisor was developed using a shared controller approach (the solution also adopted in [11]).
Alternative solutions, including OVX [4], assume one controller per tenant. Ours is a more lightweight
solution, as only one logically-centralized component is needed for all tenants. It is also simpler to
implement as it can take advantage of the high-level APIs offered by the SDN controller, instead

1Like in the Sirius star system, our platform also has two companion components.

SUPERCLOUD D4.3 Page 3 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

of having to deal with “raw” Openflow messages when interacting with the switches. Finally, this
architecture follows a fate sharing design as the controller and the network hypervisor reside in the
same host. This facilitates replication for fault-tolerance.
The self-management security services run on top of the network hypervisor. They include a security
monitor to detect security incidents, a network security service that responds to these incidents, and
a service chaining component that allows users to compose their own security service chains. In
Section 2.3, we give an overview of each of these services.

2.1.2 Overview of Sirius operation

The deployment of a virtual network in the platform involves the execution of a few tasks.
The first task is to assemble the substrate infrastructure. The administrator of Sirius within the
organization needs to indicate the resources that are available to build the infrastructure. She interacts
with a graphical interface2 offered by the cloud orchestrator that allows the selection of the cloud
providers, the type and number of VMs that should be created, and the provision of the necessary
access credentials. The network topology is also specified, pinpointing for instance the connections
between clouds. For each provider, it is possible to specify a few attributes, such as the associated
trust level.
Based on such data, the orchestrator constructs the substrate infrastructure by interacting with the
cloud providers and by setting up the VMs. In each VM, a few skeleton containers are started with
minimal functionality. The gateways are also interconnected with the secure tunnels. The next step
is for the hypervisor to be initialized by obtaining, from the orchestrator, information about the
infrastructure. Then, it contacts each network switch to obtain data about the existing interfaces,
port numbers and connected containers. After populating the hypervisor’s internal data structures,
Sirius is ready to start serving the users’ virtual network (VN) requests.
The second task is run on demand, whenever a user of the organization needs to run an application
in the cloud. The user employs a graphical interface of the orchestrator to represent a virtual net-
work with the various containers that implement the application. Containers are then interconnected
with the desired (virtual) switches and links. Complete flexibility is given on the choice of the net-
work topology and addressing schemes. Attributes may be associated with the containers and links,
specifying particular requirements with respect to security and dependability. For example, certain
links may need to have backup paths to allow for fast fail-over, while certain containers may only be
deployed in clouds with the highest trust levels.
The orchestrator receives the VN request and forwards it to the hypervisor to perform the virtual
network embedding. The embedding algorithm decides on the location of the containers and network
paths considering all constraints, namely the available resources in the substrate infrastructure and
the security requirements. The computed mapping is transmitted to the orchestrator so that it can
be displayed upon request of the Sirius administrator. Hereafter, the orchestrator and the hypervisor
work in parallel to start the VN. The orchestrator downloads and initializes the containers images
in the chosen VMs, and configures the IP and MAC addresses based on the tenant’s request. The
hypervisor enables connectivity by configuring the necessary routes by setting up the flows in the
switches, while enforcing isolation between tenants.

2.2 Network virtualisation core components

2.2.1 Multi-cloud orchestrator

The main modules of the multi-cloud orchestrator are detailed in Figure 2.2. The multi-cloud or-
chestrator combines three main features. First, it manages interactions with users through a web-
based graphical interface. Users with administrator privileges can design the substrate infrastructure

2The same sort of information can also be provided through configuration files, to simplify the use of scripts.

SUPERCLOUD D4.3 Page 4 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Multi-Cloud Orchestrator

Multi-cloud
Provision Topology

Storage

User & Cloud
Manager

Topology

Substrate
infrast.

Network
Updates

Hypervisor
Support

VM config
& bootstrap

Admin GUI

Public &
Private

Cloud VMs

User GUI
Virtual
Network

Topology
inform

Network
Hypervisor

VM & Container
Storage

Figure 2.2: Orchestrator’s main modules.

topology (Admin GUI), indicating the kind of VMs that should be deployed in each cloud provider.
Similarly, normal users can represent virtual networks of virtual hosts (e.g., containers), and later
request their deployment (User GUI). The graphical interface also displays the mappings between the
containers and links in the substrate infrastructure and the status of the various components.
Second, it keeps information about the topologies of the substrate and virtual networks and their
mappings. This information is kept updated, as virtual networks are created and destroyed, thus
offering a complete view of how the infrastructure is currently organized. In addition, it maintains
in external storage a representation of the different networks that were specified, allowing their re-
utilization when users want to run similar deployments.
Third, it configures and bootstraps VMs in the clouds in cooperation with the network hypervisor and
setups the tunnels for the inter-cloud connections. Apart from that, when a virtual network is started,
it also initiates the containers in the VMs selected by the hypervisor. A storage of VM and containers
is kept locally, in case the users prefer to work and save the images within the organization.

C
lo

u
d

 B

C
lo

u
d

 A

Gateway VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
e

r

OvS

IPT IPT IPT

Gateway VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
e

r

OvS

IPT IPT IPT

Local VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
er

OvS

IPT IPT IPT

Internet

GRE Tunnel IPpriv
IPpriv

Secure tunnel

GRE Tunnel

IPpub
IPpub

Figure 2.3: Intra- and inter-clouds connections.

Figure 2.3 shows the main connections that are managed within the infrastructure. Gateways have

SUPERCLOUD D4.3 Page 5 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

public IPs that work as endpoints of secure tunnels between the clouds. In our current implementation,
OpenVPN with asymmetric key authentication is employed as the default solution as it presents the
advantage of being generic and independent from the provider’s gateway service (e.g. VPC service for
Amazon EC2). Links between VMs rely on GRE tunnels. We chose this simple approach as intra-
cloud communications are expected to be performed within a controlled environment and inter-cloud
traffic is protected by the secure tunnel. The containers use the IP addresses defined by the tenants
(without restrictions), and isolation is achieved by the network hypervisor properly configuring the
switches’ flow tables (an aspect to be detailed in Section 2.2.2).

2.2.2 Hypervisor

The design of the hypervisor software follows a modular approach. We present its building blocks in
Figure 2.4.
The Embedder addresses the problem of mapping the virtual networks specified by the tenants into
the substrate infrastructure [9]. As soon as a virtual network request arrives, the secure Virtual
Network Embedding (VNE) module finds an effective and efficient mapping of the virtual nodes and
links onto the substrate network, with the objectives of minimizing the cost of the provider and
maximizing its revenue.
This objective takes into account, firstly, constraints about the available processing capacity of the
substrate nodes and of the available bandwidth resources on the links. Moreover, we consider security
and dependability constraints based on the requirements specified by the tenants to each virtual
resource. These constraints address, for instance, concerns about attacks on virtual machines or on
substrate links (e.g., replay/eavesdropping). As such, each particular node may have different security
levels, to guarantee for instance that sensitive resources are not co-hosted on the same substrate
resource as potentially malicious virtual resources. In addition, we consider the coexistence of resources
(nodes/links) in multiple clouds, both public and private, and assume that each individual cloud may
have distinct levels of trust from a user standpoint. As future work, we plan to include latency as
an additional requirement. In the current version of the hypervisor, the VNE problem is solved using
a Mixed Integer Linear Programming (MILP) formulation. For more details we invite the interested
reader to consult [5].
The Substrate Network (sNet) Configuration module is responsible for maintaining information
about the substrate topology. It reaches its goals by performing two main functions. First, it retrieves
information from the orchestrator about the substrate nodes and links, alongside their security and
dependability characteristics. Second, it interacts with each switch to set itself as its master con-
troller, and to collect more detailed information, including switch identifiers, port information (e.g.,
which ports are connected to which containers), etc. This information is maintained in efficient data
structures to speed up data access.
The Virtual Network (vNet) Configuration module is responsible for maintaining information
about the virtual network topologies. This includes both storing tenant requests and the mapping
that results from the embedding phase. As the embedding module outputs only the substrate topology
that maps to the virtual network request, this module runs a routing algorithm to define the necessary
flow rules to install in the switches (without populating them, which is left for the next module).
The Hypervisor core module is configured as a controller module (in our case, Floodlight). Its
first component is the virtual-substrate mapper that, after interacting with the substrate topology
and virtual topology modules, requests a specific mapping to the embedder. When the VNE returns
successfully, the mapping is stored in specific data structures of the core module and this information
is shared with other interested modules (namely, the vNet configuration module).
The network monitoring component is responsible to detect changes in the substrate topology when a
reconfiguration occurs (e.g., due to failures in the substrate network). This module then sends requests
to the virtual-substrate handler to update its data structures accordingly. As ongoing work, we are
implementing mechanisms to respond to network changes.
Isolation is handled by several sub-modules, including the isolation handler, the packet-in handler and

SUPERCLOUD D4.3 Page 6 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Multi-Cloud Network Hypervisor

sNet topology
specifier & config

sNet config

sNet topology
data collector

vNet topology
specifier & config

vNet config

vNet routingsecure VNE

Embedder

virtual-substrate
mapper

flows handler
network

monitoring

virtual-substrate
handler

packet-In
handler

components
isolation handler

Hypervisor core

Interfaces handler

External Interfaces

Figure 2.4: Modular architecture of the network hypervisor.

the flows handler. These components’ goal is to guarantee that each tenant perceives itself as the only
user of the infrastructure. We currently use four main techniques for this purpose.

• First, as we have control over the entire infrastructure, from the network core to the edge, we
uniquely identify each tenants’ host by its precise location.

• Second, based on this unique identification and on the tenant ID we perform address translation
at the network edge from the tenant’s MAC to an ephemeral MAC address (eMAC) and install
the required flows based on the eMAC. For communication between all virtual nodes, a set of flows
is initially installed pro-actively by the flow handler module in such a way as to guarantee isolation
between tenants’ traffic. For efficiency reasons, flows are installed with predefined timeouts.
When a timeout expires (which means a particular pair of nodes has not communicated during
that period) the flow is removed from the switches to save flow table resources. If communication
ensues between those nodes afterwards, the first packet of the flow generates a packet-in that is
sent to the hypervisor, triggering the packet-in handler to install the required flows in switches.

• Third, we perform traffic isolation during the initial steps of communication, namely, by treating
ARP requests and replies.

• Finally, flow table isolation is guaranteed by each virtual switch having its own virtual flow
tables, with predefined size limits.

We detail these techniques further in the next section.

2.2.3 Virtualisation runtime: achieving isolation

The main requirement of our multi-tenant platform is to provide full network virtualisation. To achieve
this goal it is necessary to virtualize the topology, addressing, and service models, and guarantee
isolation between tenants’ networks. Topology virtualisation is achieved in our system by means of
the embedding procedure already described. In this section, we focus on the other three aspects.
Sirius allows tenants to configure their VMs with any L2 and L3 addresses. Tenants thus have complete
autonomy to manage their address space. They can also retain their preferred L2 and L3 service models

SUPERCLOUD D4.3 Page 7 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

(for instance, they can use VLAN services). Offering tenants these options precludes the use of labeling
techniques for virtualisation, such as using VLAN tags to identify tenants (as this would break the
L2 service model) or inserting tenant-based tags in the L2 or L3 address (as this would restrict the
addressing choices).
To achieve these two goals and guarantee isolation, we create a unique identifier for each tenant’s
hosts based on their location. We then perform edge-based translation of the host MAC address to
an ephemeral MAC address that includes this ID. Finally, we setup tunnels between every OvS (i.e.,
between every VM of the substrate infrastructure).
An alternative solution that would also fulfill our requirements would be to setup tunnels between all
tenant’s hosts (in our solution this would mean setting up tunnels between containers). This would
avoid the need to maintain host location information and of edge-based translation. The problem of
this option is scalability. The number of tunnels would grow with the number of containers (i.e., with
the number of tenant’s hosts), whereas our solution scales much better, as it grows with the number
of provider VMs (in a production setting, each VM is expected to run hundreds or even thousands of
containers).
Uniquely identifying hosts. As explained, the tenant’s hosts of our solution are containers. We
opted for this operating system virtualisation technology as it provides functionality similar to a VM
but with a lighter footprint [10]. Each container (i.e., each tenant’s host) has its own namespace (IP
and MAC addresses, name, etc.) and its own resources (processing capacity, memory), and as such
can be seen as a lightweight VM.

OvS 1
DatapathId 1:

00:00:d1:9e:1a:d7:b8:4d

2
1

3
…

p1

host ID (host location) Tenant

< 1, 00:00:d2:9e:1a:d7:b8:4d >

< 2, 00:00:d2:9e:1a:d7:b8:4d >

< 3, 00:00:d2:9e:1a:d7:b8:4d >

... ...

< p2, 00:00:e3:6a:18:33:b5:11 >

OvS 2
DatapathId 2:

00:00:e3:6a:18:33:b5:11

…

p2
…

...

TENANT N

TENANT 1

TENANT 2

1
2C

o
n

ta
in

er
 1

C
o

n
ta

in
er

 j

C
o

n
ta

in
er

 2
C

o
n

ta
in

er
 3

C
o

n
ta

in
er

 t

2

1

Figure 2.5: <Switch port, DatapathId> = host ID

To uniquely identify a tenant’s host, at this stage we use its network location (we do not yet consider
host migration – that’s part of future work). Each container is connected to a specific software switch
(identified by a DatapathID), being attached to a unique port. As such, we use as hostID the tuple
〈switch port,DatapathId〉. Figure 2.5 shows an example.
Edge address translation. Packets generated in a virtual network cannot be transmitted unmodified
in the substrate network. As different tenants can use the same addresses, collisions could occur. For
this reason, we perform edge-based address translation to ensure isolation. We assign an ephemeral
MAC address – eMAC – at the network edge, to replace the host’s MAC address. The translation
occurs at the edge switch. Every time traffic originates from a container, its host MAC is converted
to the eMAC. Before the traffic arrives at the receiving container, the reverse operation occurs at the
edge switch. The eMAC is composed of a tenant ID and a shortened version of the hostID, unique per
tenant.
This mechanism guarantees isolation in the data plane. The control plane guarantees are provided by
the hypervisor, as it has network-wide control and visibility. For this purpose the hypervisor populates
the flow tables with two types of rules: translation rules in the edge switches, as just explained; and

SUPERCLOUD D4.3 Page 8 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

forwarding rules that enable communication between all hosts from a single tenant.
ARP handling. Hosts use the ARP protocol to map an IP address to an Ethernet address. As we
want unmodified hosts to run in our platform, Sirius emulates the behavior of this protocol. When
an ARP message arrives at a switch, it is forwarded directly to the destination host. Flooding is
never needed as the switches are configured by the hypervisor. Even in those cases where the packet
arriving at the switch does not match any flow rule – because it has expired – a packet-in is sent to
the hypervisor, which populates the required tables with the necessary flow rules for the packet to be
forwarded to the destination.
Flow table virtualisation. As forwarding tables have limited capacity, in terms of TCAM (Ternary
Content Addressable Memory) entries (hardware switches) or memory (software switches), in Sirius,
each tenant has a finite quota of forwarding rules in each switch. This is important because the
failure to isolate forwarding entries between users might allow one tenant to overflow the number of
forwarding rules in a switch and prevent others from inserting their flows. Our hypervisor maintains
a counter of the number of flow entries used per tenant switch, and ensures that a preset limit is not
exceeded.
The hypervisor controls the maximum number of flows allowed per tenant, in both physical and virtual
switches. This control is performed using the OpenFlow field cookie (an opaque data value that allows
flows to be identified [13]). When the hypervisor inserts a new flow in a switch (which only occurs
if the limit was not exceeded), the cookie field is properly set to identify its tenant owner, and the
counter for the number of flows in this switch that belong to this particular tenant is incremented.
When a flow is removed, the hypervisor is informed, extracts from the cookie the tenant owner of the
flow just removed, and decrements the corresponding counter.

2.2.4 Additional implementation details

The Sirius network hypervisor is implemented in Java as a Floodlight controller module. The orches-
trator runs in an Apache Tomcat server. The client GUI is written in Javascript/ JQuery and uses
vis.js [3], an open-source library for network visualization. Communication between the HTTP client
and server is performed using Servlet technology.
We have deployed the Linux VMs and the Docker containers in two cloud infrastructures: Amazon
EC2 as public cloud, and a private platform based on a set of VMs running in VirtualBox. In order to
interconnect clouds, we use openvpn tunnels installed in each gateway VM (as illustrated in Figure 2.1).
To interconnect the OVS of each VM, we use GRE tunnels.
We manage the public cloud using Apache jclouds [2], a library that offers a simple interface to manage
VMs running in public clouds. More importantly, it supports a large number of cloud providers and
its generic API assures higher portability, which will facilitate future integration of other public clouds
into the substrate infrastructure.

2.3 Self-management network security

The self-management security module is composed of three components: security monitoring, network
security, and service chaining. The security monitoring component allows the detection of security
incidents in a tenant network hosted over a multi-cloud. For this purpose, it collects and processes
information from these infrastructures to have a complete view of the state of the network, enabling
automatic response to security incidents. These responses can be materialised by means of the network
security component, that manages and deploys network security policies automatically by interacting
with the security monitoring module. Finally, the service chaining component can be used as a
response, and also to allow users to customize the composition of security services. Chapter 4 further
details each of these services.

SUPERCLOUD D4.3 Page 9 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Chapter 3 Network virtualisation core interfaces

In this chapter, we will describe the APIs of the core network virtualisation components, namely the
orchestrator and the hypervisor. We consider two types of communication interfaces – internal and
external (Figure 3.1). The internal interfaces refer to the communication between the core components
whereas the external interface allows an authorized HTTP application such as the self-management
security modules (Chapter 4) to send requests (over the Internet or locally) to the hypervisor.

Figure 3.1: Sirius flow communication

3.1 Internal interfaces

There are two main internal interfaces, one between the hypervisor and the orchestrator Java VMs;
the second between the orchestrator HTTP client (running the graphical user interface) and the
orchestrator server. The Java VMs can run on the same machine or on different platforms, and we
assume this communication to be made in a controlled environment. As such, communications are
not secured.

3.1.1 Hypervisor-orchestrator communication

The two main functions of this interface are as follows:

• Substrate initialization and update: The orchestrator is in charge of the local topology
database. At bootstrap, the hypervisor requests the substrate topology. Similarly, any modifi-
cation of the substrate topology will be sent to the hypervisor as a topology update.

• Tenant topology and embedding result: The orchestrator allows the creation or modifica-
tion of a tenant’s topology. This request is sent to the hypervisor, which returns the result of
the embedding process.

The communication between the hypervisor and the orchestrator uses a TCP channel, with the or-
chestrator configured as TCP server. The data is XML-encoded, and a simple protocol was developed
to support packet reception in both synchronous and asynchronous modes.

SUPERCLOUD D4.3 Page 10 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Although both the hypervisor and the orchestrator were written in Java, we do not use the native
Java serialization mechanisms: data is XML-encoded and is sent as an array of bytes (UTF8 charset).

Figure 3.2: Packet’s header and payload

As shown in Figure 3.2, the header of our protocol is composed of a protocol ID field, packet length
(length of the payload + 4 bytes) and the packet type. The type field allows having several types of
requests and replies, all of which are listed in Table 3.1.

Value Source Payload Description

1 Hypervisor None Request to get the substrate topology

2 Orchestrator XML topology Reply containing the substrate topology

3 Orchestrator Error string message Request has failed

4 Orchestrator XML topology Request to send the tenant topology

5 Hypervisor XML topology Reply containing the embedding result

6 Hypervisor Error string message Request has failed

Table 3.1: Request/reply types

Reply types 3 and 6 are failure codes. As with the XML topology, the error message is coded as an
array of bytes (UTF8 charset).

3.1.2 Orchestrator client-server communication

Communication between the orchestrator’s server and client relies on the HTTP protocol. The server
runs a Web servlet to handle the HTTP requests sent by the browser (see Figure 3.3).

Figure 3.3: Orchestrator client-server communication

The information sent by the orchestrator server is JSON-encoded. Requests are mainly GET HTTP
methods. HTTP response status codes are standard. The common error/success codes can be returned
to inform the client that a request has failed. For instance, HTTP code 200 means the request has
been processed properly; client error code 400 informs of a bad request; and server error code 500
represents a server internal error.

3.2 External interfaces

The external Sirius REST API allows a remote client application to connect to the hypervisor syn-
chronously. Client requests fall into two categories:

SUPERCLOUD D4.3 Page 11 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

• Requests to get topology information (about substrate and tenant networks).

• Requests to perform redirection of all traffic from one virtual host to another.

The API contains only GET HTTP methods. The response status codes are the same as for the or-
chestrator client-server communication. A request failure may be due to an invalid syntax (malformed
arguments) or because the server could not complete the requested action (e.g., action not authorized).
In the following we detail each category of requests.

3.2.1 Topology request

The topology request syntax, arguments, and responses are given in Table 3.2.

Request Arguments Response

GET URL/topology? id=ID JSON encoded object

Table 3.2: Topology request overview

The request arguments are as follows. The identifier of the source topology is id = 0 for the sub-
strate topology and id > 0 for a given tenant topology. Next, we present the attributes of the main
components of the substrate and tenant topologies, followed by the reply content returned by the
server.

3.2.1.1 Substrate attributes

We consider the following items as part of the substrate topology definition: Clouds, VMs, Containers,
OVS Switches and Links. Each item has a set of configured attributes, used by the Hypervisor in the
routing process. Tables 3.3, 3.4, 3.5, 3.6, and 3.7 present the main attributes for each item class.

Attribute name Description Type and range

id Cloud’s identifier (key attribute) Integer ≥ 1

name Cloud’s name String

provider Cloud provider’s name String

securityLevel Cloud’s security level Integer ≥ 1

Table 3.3: Cloud attributes

Attribute name Description Type and range

id VM identifier (key attribute) Integer ≥ 1

name VM name String

pid VM identifier in public provider’s network String

cid Cloud identifier Integer ≥ 1

publicIp Public IP address String

privateIp Private IP address String

location VM geographical location String

gateway Whether the VM is a cloud gateway Boolean

deployed Whether the VM is currently in use Boolean

Table 3.4: VM attributes

Note that some attributes exist only for specific components. For instance, in Table 3.4, the pid
attribute identifies the VM inside the public cloud provider. Due to its different characteristics, this
attribute does not exist in private clouds. Note also that in tables 3.5, 3.6, and 3.7, we use the

SUPERCLOUD D4.3 Page 12 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

concept of “node”. In these tables, a node is either a container or an OVS switch, depending on the
context. Importantly, in each topology the node ID is unique, to allow easy identification of source
and destination components (i.e., the “from” and “to” attributes) in the link definition.

Attribute name Description Type and range

id Node identifier (key attribute) Integer ≥ 1

name OVS switch name String

vid VM identifier Integer ≥ 1

openflowVersion Open Flow version (V1.X) Integer[1–5]

dpid OVS switch datapath identifier String

securityLevel OVS switch security level Integer ≥ 1

dependabilityLevel OVS switch dependability level Integer ≥ 1

maxFlowSize Maximum number of flows Integer >= 1

bridgeName Name of the OVS bridge String

cpu OVS Switch CPU strength [0–100]

deployed Whether the switch is currently in use Boolean

Table 3.5: OVS attributes

Attribute name Description Type and range

id Node identifier (key attribute) Integer ≥ 1

name Container name String

vid VM identifier Integer ≥ 1

deployed Whether the container is currently in use Boolean

Table 3.6: Container attributes

Attribute name Description Type and range

id Link identifier (key attribute) Integer ≥ 1

from Source node identifier Integer ≥ 1

to Destination node identifier Integer ≥ 1

bandwidth Link bandwidth strength Integer[0− 100]

delay Link latency (milliseconds) Integer ≥ 0

lossRate Link loss rate (percentage) Integer[0–100]

securityLevel Link security level Integer ≥ 1

Table 3.7: Link attributes

3.2.1.2 Tenant attributes

Virtual networks contain less components, namely they include the definition of virtual hosts, virtual
switches, and virtual links. Virtual hosts and switches are associated both to a tenant network
(through a tenant ID) and to a substrate component (a container or an OVS switch). The concept
of node is similar to the substrate case presented previously. A node refers to a virtual host or a
virtual switch, and is unique inside a tenant network topology. The current version of the hypervisor
supports a one-to-one mapping between the substrate and virtual hosts, and a one-to-many mapping
between substrate and virtual switches. In other words, a container is associated exclusively to a
tenant network, while an OVS switch can implement various virtual switches, each one associated to
a different tenant. Tables 3.8, 3.9, 3.10 list the attributes of virtual hosts, virtual switches and virtual
links.

SUPERCLOUD D4.3 Page 13 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Attribute name Description Type and range

id Virtual node identifier (key attribute) Integer ≥ 1

name Virtual host’s name String

ip Virtual host’s IP address String

mac Virtual host’s MAC address String

tenant Tenant’s identifier Integer ≥ 1

mapping Mapped physical node id (container id) Integer ≥ 1

Table 3.8: Virtual host attributes

Attribute name Description Type and range

id Node identifier (key attribute) Integer ≥ 1

name Virtual switch’s name String

tenant Tenant’s identifier Integer ≥ 1

mapping Mapped physical node id (OVS switch id) Integer ≥ 1

Table 3.9: Virtual switch attributes

Attribute name Description Type and range

id Link identifier (key attribute) Integer ≥ 1

from Virtual source node’s identifier Integer ≥ 1

to Virtual destination node’s identifier Integer ≥ 1

route Physical link ids included in the route ArrayofInteger

Table 3.10: Virtual link attributes

3.2.1.3 Topology reply

The topology reply is translated into a JSON object. For each key/value pair, keys corresponds to
the network components while values are arrays containing the component objects. The position in
the array is irrelevant as each component is identified by its id attribute.

{ ” cloud ” : [<cloud1> . . <cloudN>] , ”vm” : [<vm1> . . . <vmN>] , ”
con ta ine r ” : [<conta iner1> . . . <containerN>] , ” switch ” : [<switch1>
. . . <switchN>] , ” l i n k ” : [<l ink1> . . . <l ink2>] }

Substrate topologies contain clouds, VMs, hosts, links and switches objects, while tenant topologies
only contain hosts, links and switches objects.

3.2.1.4 Example of topology request and reply

Figure 3.4 shows an example of a substrate network that hosts two virtual tenant networks shown in
Figure 3.5. In the example we consider that all VMs belong to the same cloud (“id” = 1) and that
each VM runs one OVS switch and two Docker containers.
Tenant1 and Tenant2 networks make a request for, respectively, two and four hosts. When the
hypervisor performs the embedding, the mapping between virtual and substrate networks is performed
as follows:

• Tenant1: Host1 and Host2 are mapped to Container8 and Container4, respectively.

• Tenant2: Host1, Host2, Host3, and Host4 are mapped to Container1, Container2, Container3,
and Container6, respectively.

SUPERCLOUD D4.3 Page 14 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Figure 3.4: Example of substrate network

Note that the OVS2 switch is shared between both tenants, and that Container6 and Container7
remain unused.

Figure 3.5: Example of virtual networks

Below is the JSON reply to the substrate topology request (GET URL/topology?id=0). For clarity
sake, we omit some of the attributes in the reply (replaced by small dots).

{ ” cloud ” : [{ ” id ” : 1 , ”name ” : ” c loud1 ” . . . }] , ”vm” : [{ ” id ” : 1 , ”
name ” : ”vm1” , ” c id ” : 1 . . . } , { ” id ” : 2 , ”name ” : ”vm2” , ” c id ” : 1 . . .
} , { ” id ” : 3 , ”name ” : ”vm3” , ” c id ” : 1 . . . } , { ” id ” : 4 , ”name ” : ”vm4”

, ” c id ” : 1 . . . }] , ” conta ine r ” : [{ ” id ” : 1 , ”name ” : ” conta ine r1 ” , ”
vid ” : 1 . . . } , { ” id ” : 2 , ”name ” : ” conta ine r2 ” , ” vid ” : 1 . . . } , { ” id
” : 3 , ”name ” : ” conta ine r3 ” , ” vid ” : 2 . . . } , { ” id ” : 4 , ”name ” : ”
conta ine r4 ” , ” vid ” : 2 . . . } , { ” id ” : 5 , ”name ” : ” conta ine r5 ” , ” vid ” : 3

. . . } , { ” id ” : 6 , ”name ” : ” conta ine r6 ” , ” vid ” : 3 . . . } , { ” id ” : 7 , ”
name ” : ” conta ine r7 ” , ” vid ” : 4 . . . } , { ” id ” : 8 , ”name ” : ” conta ine r8 ” ,
” vid ” : 4 . . . }] , ” switch ” : [{ ” id ” : 9 , ”name ” : ” ovs1 ” , ” vid ” : 1 . . .

SUPERCLOUD D4.3 Page 15 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

} , { ” id ” : 10 , ”name ” : ” ovs2 ” , ” vid ” : 2 . . . } , { ” id ” : 11 , ”name ” : ”
ovs3 ” , ” vid ” : 3 . . . } , { ” id ” : 12 , ”name ” : ” ovs4 ” , ” vid ” : 4 . . . }] , ”
l i n k ” : [{ ” id ” : 1 , ” from ” : 1 , ” to ” : 9 . . . } , { ” id ” : 2 , ” from ” : 2 , ”
to ” : 9 . . . } , { ” id ” : 3 , ” from ” : 3 , ” to ” : 10 . . . } , { ” id ” : 4 , ” from ” :

4 , ” to ” : 10 . . . } , { ” id ” : 5 , ” from ” : 5 , ” to ” : 11 . . . } , { ” id ” : 6 , ”
from ” : 6 , ” to ” : 11 . . . } , { ” id ” : 7 , ” from ” : 7 , ” to ” : 12 . . . } , { ” id
” : 8 , ” from ” : 8 , ” to ” : 12 . . . } , { ” id ” : 9 , ” from ” : 9 , ” to ” : 10 . . . } ,
{ ” id ” : 10 , ” from ” : 9 , ” to ” : 10 . . . } , { ” id ” : 11 , ” from ” : 10 , ” to ” :

11 . . . } , { ” id ” : 12 , ” from ” : 11 , ” to ” : 12 . . . }] }

Next, we present the JSON reply to the tenant1’s topology request (GET URL/topology?id=1).

{ ” host ” : [{ ” id ” : 1 , ”name ” : ” host1 ” , ” tenant ” : 1 , ”mapping ” : 8 . . . } ,
{ ” id ” : 2 , ”name ” : ” host2 ” , ” tenant ” : 1 , ”mapping ” : 4 . . . }] , ” switch
” : [{ ” id ” : 3 , ”name ” : ” switch1 ” , ” tenant ” : 1 , ”mapping ” : 12 } , { ” id
” : 4 , ”name ” : ” switch2 ” , ” tenant ” : 1 , ”mapping ” : 10 }] , ” l i n k ” : [{ ”
id ” : 1 , ” from ” : 1 , ” to ” : 3 , ” route ” : [8] . . . } , { ” id ” : 2 , ” from ” :
2 , ” to ” : 4 , ” route ” : [4] . . . } , { ” id ” : 3 , ” from ” : 3 , ” to ” : 4 , ”
route ” : [9 , 10] . . . }] }

Finally, we show the JSON reply to the tenant2’s topology request (GET URL/topology?id=2).

{ ” host ” : [{ ” id ” : 1 , ”name ” : ” host1 ” , ” tenant ” : 2 , ”mapping ” : 1 . . . } ,
{ ” id ” : 2 , ”name ” : ” host2 ” , ” tenant ” : 2 , ”mapping ” : 2 . . . } , { ” id ” :
3 , ”name ” : ” host3 ” , ” tenant ” : 2 , ”mapping ” : 3 . . . } , { ” id ” : 4 , ”name
” : ” host4 ” , ” tenant ” : 2 , ”mapping ” : 6 . . . }] , ” switch ” : [{ ” id ” : 5 ,
”name ” : ” switch1 ” , ” tenant ” : 2 , ”mapping ” : 9 } , { ” id ” : 6 , ”name ” : ”

switch2 ” , ” tenant ” : 2 , ”mapping ” : 11 } , { ” id ” : 7 , ”name ” : ” switch3 ” ,
” tenant ” : 2 , ”mapping ” : 10 }] , ” l i n k ” : [{ ” id ” : 1 , ” from ” : 1 , ” to ” :
5 , ” route ” : [1] . . . } , { ” id ” : 2 , ” from ” : 2 , ” to ” : 5 , ” route ” : [2]

. . . } , { ” id ” : 3 , ” from ” : 3 , ” to ” : 7 , ” route ” : [3] . . . } , { ” id ” :
4 , ” from ” : 4 , ” to ” : 6 , ” route ” : [6] . . . } , { ” id ” : 5 , ” from ” : 5 , ” to
” : 7 , ” route ” : [10] . . . } , { ” id ” : 6 , ” from ” : 6 , ” to ” : 7 , ” route ” : [
11] . . . } , { ” id ” : 7 , ” from ” : 5 , ” to ” : 6 , ” route ” : [9 , 12] . . . }]
}

3.2.2 Redirect all traffic request

This request is used to ask the hypervisor to redirect all flows sent to a specific virtual host – the original
destination – to another one – the new destination (which could be any other virtual host). When
this request is submitted to the hypervisor, the original destination virtual host will stop receiving
any flow, which will be redirected to the new destination host.
The topology request syntax, arguments, and responses are given in Table 3.11.

Request Arguments Response

GET URL/redirect all?
id=ID; origin host ip=IP ADDRESS;

Boolean to indicate success or fail
new host ip=IP ADDRESS

Table 3.11: Redirect traffic request overview

SUPERCLOUD D4.3 Page 16 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

The arguments refer to: the tenant identifier, which should be id > 0, the original destination host IP
address, and the new destination IP address.

3.2.2.1 Response status codes

The response status codes are boolean and indicate if the action of redirecting all traffic from one
virtual host to another one has been processed correctly. A request failure may be due to invalid
syntax (malformed arguments) or because the server could not complete the requested action (non
authorized action, for instance).

3.2.2.2 Reply content

The redirect all reply is a boolean that if true indicates the action occurred properly, and false other-
wise.

3.3 Code and documentation

The code for the network virtualisation core components can be accessed on the SUPERCLOUD pri-
vate github repository at https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/

WP4/sirius. Instructions for installation are detailed in the README file.

SUPERCLOUD D4.3 Page 17 of 31

https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/sirius
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/sirius

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Chapter 4 Self-management network security interfaces

This chapter describes the three components of the SUPERCLOUD network virtualization framework
that form the self-management security module: a security monitor to detect security incidents, a
service chaining component that allows users to compose their own security service chains, and a
network security service that responds to these incidents. The chapter concludes by sketching ongoing
directions to adapt this framework to the OpenDaylight ecosystem1.

4.1 Self-management of security

Recent studies on security incidents and on abusive use of cloud services show that such incidents
are very different and varied. It is therefore very difficult to anticipate certain types of incidents or
attacks as threats are constantly changing. Moreover, malicious users tend to move some components
of their infrastructures within the cloud itself. For instance, a research study on EC2 showed that
Amazon might not be sufficiently responsive to mitigate and manage incidents in time to prevent
security breaches and abuse of its users. Those observations motivate the need for an autonomous
security management system enabling:

• Detection of security incidents in a tenant network hosted over a multi-cloud. This
requires to collect and to process information from these infrastructures to have a complete view
of the state of the network. The SDN model does not provide mechanisms to raise security alerts
from a security equipment. Hence the interest of a new solution enabling these devices to send
alerts to process them and to combine them with statistics sent from switches. Those features
are mainly provided by the security monitoring component presented in Section 4.2.

• Customizability of composition of security services and of responses to incidents.
Since the nature of attacks are different, security components for monitoring the network data
plane and for defining reactions to security incidents need to be under user control. This user-
centric approach enables to manage security to match users’ networks and usage patterns. Hence
the interest to use SDN to build a system enabling both supervision of the network data plane and
supporting security policies to steer automatic responses to security incidents. Those features
are mainly provided by the service chaining component presented in Section 4.3.

• Automatic response to security incidents. The response must correspond to coordinated
and effective actions over all infrastructures, with some consistency guarantees. Those features
are mainly provided by the network security component presented in Section 4.4.

All components for self-management of security are based on the Floodlight SDN controller. They
benefit from the controller modularity, taking advantage of both its Java API to develop modules inside
the controller (e.g., to handle security monitoring itself) and of its REST API to develop applications on
top of the controller (e.g., in Python to handle service chaining). The security monitoring component
notably makes extensive use of the Floodlight notification pattern based on event listeners for inter-
module communications.

1The OpenDaylight Project is the largest open source project aiming to promote Software-Defined Networking (SDN)
and create foundations for Network Functions Virtualization (NFV) [1].

SUPERCLOUD D4.3 Page 18 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Figure 4.1: Security monitoring component: high-level architecture

4.2 Security monitoring component

The high-level architecture of the security monitoring component is shown in Figure 4.1. Next, we
describe its main sub-modules and corresponding interfaces.

4.2.1 Topology handler

4.2.1.1 Overview

This module collects statistics regarding the network state by issuing requests to switches periodically.
It computes the network bandwidth using Rx and Tx counters. It also provides a tunable notification
service to the Context Handler for specific types of alerts (e.g., link congestion, high packet drop rate).

4.2.1.2 Interfaces

A first interface IStatisticsService is devoted to collecting statistics from switches, i.e., switches
send statistics only upon solicitation by a request. For this purpose, two activations are performed:

• Activation of statistics collection by IStatisticsService. Collection is activated (resp. dis-
abled) by invoking the collectStatistics() method, with a True (resp. False) argument.

• Thread activation to retrieve statistics collected by the IStatisticsService service. This
operation is performed by executing periodically the run() method of this class.

A second interface ITopologyAlertsListeners is dedicated to allow the Context Handler to be
notified when a particular event occurs, such as congestion on a link.

4.2.2 Context handler

4.2.2.1 Overview

This module defines security contexts. The definition of a context is the context itself and the pre-
conditions for it to be considered valid. The preconditions concern the information collected: alerts
and statistics brought up by security equipments and switches. For example, the system may be in a
“malware” context if two preconditions are met: (1) a malware detection alert has occurred; and (2)
a connection to a suspicious domain name has been triggered from an infected device.

SUPERCLOUD D4.3 Page 19 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

When the first precondition for the context is met, a context instance is created. The context be-
comes active when all preconditions are fulfilled. Several types of contexts are distinguished for hosts,
switches, or alerts.
When a context is active for a switch or host, the Context Handler notifies the Policy Handler by
sending all necessary information: host address, switch to which it is attached, attacker address if it
exists, and relevant context(s).

4.2.2.2 Interfaces

This module needs to subscribe to the notification services provided by Incident Handler and Topology
Handler modules. It must therefore implement the corresponding interfaces (ISecurityAlertService
and ITopologyAlertsListeners). It also provides another interface IActiveContextAlertService

capturing the offered notification service towards other modules such as the Policy Handler when a
context has become active.

4.2.3 Policy handler

4.2.3.1 Overview

This module implements the actions specified by the user-defined security policies. These policies
describe reactions to trigger when a security context is active. For example, if a host is affected by
the “malware” context, the reaction might be to put the machine in quarantine. Policies are stored
using the JSON format following the Event-Condition-Action (ECA) model.
This module has access to user-defined security policies and receives notifications from the Context
Handler. The latter notifies it when a host or switch is concerned by a context. After receiving an
alert, the Policy Handler checks if an action is scheduled. If so, it notifies the Dispatcher module to
execute the action. The Policy Handler implements very simple policy-based reactions. Much richer
security policy management is also possible through the the network security component described in
Section 4.4.

4.2.3.2 Interfaces

This module offers a REST API to allow users to define policies through POST HTTP requests. It
must implement the IActiveContextAlertService interface to receive notifications from the Context
Handler. It also has an outgoing interface towards the Dispatcher for execution of actions, either
directly to install FlowMod rules in switches, or for processing by the service chaining component.

4.2.4 Incident handler

4.2.4.1 Overview

This module provides an interface with security equipments. It enhances the information collected
by the controller for security monitoring of the data plane, as statistics provided by OpenFlow are
insufficient. This module allows the security equipment to exchange information (alerts) with the
control plane in a standard format (IDMEF or JSON). Such information will then be processed to
be sent to the Context Handler module. This service can be customized to ensure that the Context
handler module is notified only for specific alerts. This module does not check to see if an alert is
present. It is “awakened” by the security equipment which will trigger the processing of the alert.

4.2.4.2 Interfaces

This module offers a REST API that allows network security functions to raise alerts with simple POST
HTTP requests. It also offers a security alert notification service through the ISecurityAlertService
interface, i.e., modules that register for this service will be notified each time an alert is received.

SUPERCLOUD D4.3 Page 20 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Figure 4.2: Service chaining component: high-level architecture

4.3 Service chaining component

Operators and cloud service providers are facing a real issue regarding management of middle-boxes
commonly deployed in data centers, enterprise networks, etc. Such middle-boxes include security
services such as firewalls or DPIs. The lack of reliable and mature routing protocol for traffic through
a series of security services requires such operators and service providers to use complex, low-level and
error-prone configurations. This leads to static configurations and increase service deployment time.
The service chaining component takes advantage of recent developments in SDN architecture. It takes
the form of an application running over a centralized SDN controller, presenting an abstract view of
the infrastructure. This allows the end-user to easily compose his own security service chains (online
or off-line) in a multi-cloud environment.
The application runs on top of the Floodlight controller and uses its REST API to discover the
topology, get traffic statistics or install the OVS in the switches. REST commands used are only valid
for switches compatible with OpenFlow version 1.3, which must be explicitly activated in OVS.

SUPERCLOUD D4.3 Page 21 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

The application architecture is shown in Figure 4.2. It includes 5 modules:

• Topology monitoring module: This module periodically sends requests to discover changes
regarding the topology, flow and port statistics.

• Congestion and fault detection module: With the information returned by the Monitoring
module, this module allows redirection of the flows in the event of a fault at the level of a link,
a switch or a security service.

• Path computation module: This module enables to compute optimal paths between the
source and the destination through a series of services while respecting the applicable constraints
and minimizing a cost function.

• Path instantiation module: This module allows to translate the abstract path calculated by
the Path computation module into FlowMod rules to be installed on the switches constituting
the optimal path.

• Incident handler module: This module interfaces with an external security policy manager
(e.g., the network security component, see Section 4.4). The aim is to interpret security alerts
and to force some flows through specific paths to respond to detected security threats.

4.3.1 Topology monitoring module

This module gathers different information via the REST API of Floodlight in order to make it available
to other modules. This data is stored in a database to facilitate its exploitation. This module then
uses the data to construct a graph object that gathers all the relevant information and displays it
dynamically to follow the evolution of flows as new channels are installed. Data that can be retrieved
from the controller may be relevant to switches (e.g., packets received, transmitted, lost), end-device
nodes, links, etc.

4.3.2 Path computation module

This module computes the complete multi-constrained path of a service chain (shortest path between
successive pairs of equipments). It concatenates each partial path to obtain the total path taking into
account several constraints.
Integration of the computing model is done in an iterative way: (1) defining the different flow routing
constraints and an ”objective to minimize” function; (2) translating these constraints into mathemat-
ical form and describing them in an object-oriented format to serve as input to a specialized solver
for integer programming problems; and (3) integrating this code with the rest of the solution and
validating the results of the optimization.
The constraints considered by the model are the following: list of security services; order of services;
capacity of each security service; constraints of sovereignty.

4.3.3 Path instantiation module

Instantiation of a path translates a list of nodes (virtual switches, security service, and source and
destination traffic servers) into OpenFlow rules that the SDN controller will install on each device
in the data path. It takes as parameter the list of devices that the traffic must traverse. Routing is
performed at layer 2.
This module traverses the path calculated previously, and installs the rules in the switches of the path.
An example is shown in Figure 4.32.

2The module maintains a variable current src mac which represents the source MAC address of the traffic at each
step of the route of the list and which is likely to change. After each traversal of a security device, the source MAC
address changes, since the network packet is extracted and then re-encapsulated in a new Ethernet frame at the service
level and will therefore carry the MAC address of the passing host.

SUPERCLOUD D4.3 Page 22 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Figure 4.3: Path instantiation example

4.4 Network security module

The network security module aims at managing and deploying network security policies automatically.
It interacts with the security monitoring tool which provides alerts and statistics about the SDN
networks exposed by the network hypervisor.
This component is a sub-module of the network security self-management. It is deployed as an ap-
plication on top of the network hypervisor. It reacts to the notifications received by the monitoring
tool and instructs the network hypervisor to deploy the changes in order to dynamically adapt the
network to the context of the environment. The reaction is chosen according to security policies. It
can provide several reactions, such as:

• Modifying the path quality for a specific flow

• Redirecting a flow to another path

• Isolating a host

• Dropping a flow

• Instantiating new VMs or switches to change the topology and re-route flow according to the
new topology

4.4.1 Components Overview

4.4.1.1 Workflow description

Our solution is based on two modules, a Policy DataBase (PDB) and a Policy Decision Point (PDP).
These modules will interact with the monitoring tool described before and with the network hypervisor
to achieve its goals. The operational workflow is given as follows:

1. An event is triggered at the ISP controller when a notification, which can be a security alert or
a network status update, is received by the monitoring tool.

2. The monitoring module analyzes the notification and extracts the information of concern to be
sent to the PDP.

SUPERCLOUD D4.3 Page 23 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

3. The PDP selects the high-level action from the policy database based on the event and its
corresponding conditions. The high-level action, bandwidth request, and flow information are
then forwarded to the network hypervisor.

4. Based on the high-level action, the network hypervisor identifies the Policy Enforcement Points
(PEPs) and computes the paths.

5. The resulting path(s) is/are then deployed via the network hypervisor by translating the high-
level action into a set of OpenFlow rules that are distributed to the OpenFlow switches along
the path(s).

4.4.1.2 Design Components

The functional components of the policy management system are discussed.
Policy Decision Point (PDP) is in charge of the global policy decisions. It firstly activates the
context3 based on the status of the networks and/or the received alerts. Then, based on the activated
context and the alert information, the PDP requests the PDB for which actions to take (e.g, redirect,
drop, forward). The resulting actions, together with the flow information, are finally sent to the
network hypervisor to be enforced.
Policy Database (PDB) is essentially a repository containing the high-level security policies speci-
fied by the network administrator, without detailing the specific deployment strategy.

Listing 4.1: Syntax of high-level security policy

Event = {UDP Flood | TCP SYN | ICMP Flood | DNS Amplif ication | QoS Request}
Condit ion = { S e c u r i t y C l a s s | Impact Sever i ty | ISP Network Status }
S e c u r i t y C l a s s = { Susp i c i ou s | Mal i c ious | Leg i t imate }
Impact Sever i ty = {Low | Medium | High}
ISP Network Status = {Normal | Congested}
Action = {Redi rec t | Block | Forward}

Listing 4.2: A sample policy for suspicious traffic redirection in the face of UDP flood

<Pol i cy name=”S e c u r i t y p o l i c y”>
<Event name=”UDP Flood”>
</Event>
<Condition>

<S e c u r i t y c l a s s=”Susp i c i ou s ”/>
<Impact Sever i ty=”Medium”/>
<ISP Network Status=”Normal”/>

</Condition>
<Action/>

Redi rec t
</Action>

</Pol icy>

Specifically, security policies are structured using the Event-Condition-Action (ECA) model which we
believe is suitable for dynamic policy management. In particular, each Event refers to a specific attack
or incident and is associated with a set of rules. The rules are described as a set of Conditions that
describes the context in which the attack or incident occurs, i.e. derived from the received security
alert and the current network status. At last, the Action, is essentially a high-level action to be
enforced against the identified flows.

3The context allows to fine-tune the policy that should be enforced, so as to minimize the side effects of policy
enforcement.

SUPERCLOUD D4.3 Page 24 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Formally, we provide a syntax to deal with DDoS mitigation attacks, as shown in Listing 4.1. An
Event may indicate one of several types of DDoS attacks or QoS requests. The Condition set allows
to match the contexts in which the attack or incident has occurred. One context deals with the
information extracted from the security alert, which includes the security class – e.g., Malicious labels
from an attacker; Legitimate represents the flows that are considered benign in nature; and Suspicious
denotes a mixture of malicious and legitimate traffic – and the impact severity of the target traffic on
the customer network (low, medium or high). Another context captures the current status of the ISP
network (i.e., either normal or congested). That last aspect enables the fine-tuning of the reaction
policy, in order to reduce as much as possible the collateral damage on other flows. The list of possible
actions is detailed in Sect. 4.5.2.
To illustrate the specification of the policy according to the given syntax, a sample policy addressing
UDP flood attacks is given in Listing 4.2, which shows that the flows identified as UDP flood are
labeled with a suspicious security class, and evaluated to affect the customer network with a medium
impact. If the ISP network is in a normal status, the flows will be redirected elsewhere in the network.

4.5 Implementation Details

This section reports on the implementation details of the PDB and PDP and the alert handler.
In order to process alerts, a prototype alert handler has been implemented in Python as a RESTful API.
It accepts requests from the customer network that contain the source and destination IP addresses,
as well as the security class, impact severity and attack type fields. Table 4.1 shows the REST API
exposed to the customer for issuing security alerts. The incident handler introduced in Sect. 4.2.4
could be alternatively used to collect alert information for the PDP.

Table 4.1: Request and Response overview

REST API Parameters Response

POST url/alert source IP, destination IP, security class, impact severity status=200

PUT url/action source IP, destination IP, action=forward, drop, redirect status=200

Regarding the PDB, the security policies are described in the XML language. Policies can be specified
by the network administrator using the syntax shown in Listing 4.1.
The PDP is also implemented using Python. It can be deployed as a daemon to communicate with
any controller, as long as the SDN controller exposes a RESTful API, such as the one displayed in
Tab. 3.11, in the case of traffic redirection.

4.5.1 Interoperability

4.5.1.1 TOSCA Description

In Figure 4.4, we present a first draft of the TOSCA description of the network security module.
TOSCA4 is a standad topology description language developed by the OASIS consortium. This de-
scription will permit the deployment of the two services, the PDP and the PDB. Mainly, our component
will take two inputs: a path to store the network security policies and a port number that will be used
by the other components to communicate with our services based on a RESTful API.

4The specification of the TOSCA language version 1 can be found at: https://docs.oasis-open.org/tosca/TOSCA/
v1.0/os/TOSCA-v1.0-os.html.

SUPERCLOUD D4.3 Page 25 of 31

https://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Figure 4.4: Network Security Module: TOSCA Description

4.5.2 Interface

The following table details the set of possible actions designed with our solution.

Action name Description

Forward Middlebox
Middlebox belongs to {firewall, NAT,
IDS}

According to the network or system context, our so-
lution may request from the network hypervisor to
forward through a middlebox (e.g., firewall, NAT)
before reaching the destination.

Examples: Example: Forward firewall NAT

a Forward firewall

b Forward firewall NAT

c Forward NAT

In a network, a policy can specify that all the traf-
fic should traverse a firewall and then a Network
Address Translator (NAT) before accessing a web
server. In this scenario, when a flow enters the net-
work, forwarding rules are deployed in the down-
stream switches based on its destination IP address
(e.g, web server) to forward the flow through the
firewall and NAT devices.

Redirecting Low Bandwidth Path This action specifies to detour a flow through an-
other path having a lower bandwidth. In this
case, the controller dynamically deploys rules in the
switches along the low-bandwidth path. In Open-
Flow, we can modify existing rules in the switch
flow table. Likewise, we can install fresh rules for
the flow to process in different switches along the
new path.

SUPERCLOUD D4.3 Page 26 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Action name Description

Redirecting Network Service Functions
Network Service Functions belongs to
{firewall, NAT, IDS}

This action means that we need to activate and use
a service function that should be installed in the
controller to act as a firewall, IDS or a NAT service.
In this case, when a flow needs to be processed
through these service functions, rules are deployed
at a switch or multiple switches to redirect the flow
towards them.

Drop This action asks the network hypervisor to block
a flow at the ingress switch in the network. The
empty action in OpenFlow specifies the drop rule.

Redirect all This action means that the controller has to redi-
rect all the flows sent to a specific server to another
one (a replicate or a second server). In this case,
the main server will not receive flows anymore.

Redirect new This action means that any flow related to a new
session needs to redirected to another server (i.e.,
a replicate or a second server).

Replicate This action means that the controller has to for-
ward any flow to a backup server. This means that
all packets related to a specific flow should be sent
simultaneously to the main server and the backup
server.

Rate Limit This action means that a flow has to be rate-limited
to reduce the congestion in the network. We can
set the maximum rate and the minimum rate in
the queue of the OpenFlow switch. For instance,
queue 0 can specify a maximum rate of 10 Mbps
and queue 1 a maximum rate of 5 Mbps. When
the flow arrives at the switch, the action can be
specified to forward the flow to a specific queue
based on its IP address for rate limiting.

On-demand QoS This action specifies that a client can ask its ser-
vice provider to provide a high QoS or low QoS
to flows depending on the network conditions (i.e.,
congested or normal)

Examples:
a) Gold QoS Request a) It specifies that when a client requires a gold

QoS then the flow should be redirected through a
path with high bandwidth. For example, we can
set the bandwidth for gold class to 200 Mbps.

b) Silver QoS Request b) It specifies to forward the traffic through a silver
bandwidth path. For example, for silver bandwidth
class, the bandwidth can be set to 150 Mbps.

c) Bronze QoS Request c) It specifies to forward the traffic through a
bronze path. For instance, the bandwidth can be
set to 100 Mbps for the bronze class.

Isolate Host This action means that a host should be isolated
from other hosts in the network. That is, the host
should not be able to send and receive packets from
outside hosts.

SUPERCLOUD D4.3 Page 27 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

4.6 Code and documentation

The security monitoring and appliance chaining components are being put in open source. At the time
of publication of this document, final authorizations are needed before the code can be fully released.
The code then can be accessed on github for Orange open source software5. It will also be published
on the SUPERCLOUD private repository6. Repository access may be granted by sending an email to
marc.lacoste@orange.com. A more complete description of the system can be found in Chapter 5
of SUPERCLOUD D4.2 [15]. Further documentation about the software is also distributed together
with the code release.
The code for the network security module can also be accessed on the SUPERCLOUD repository7.
Instructions for installation are detailed in the README file.

4.7 Ongoing work: a security agent for OpenDaylight

Figure 4.5: A security agent for OpenDaylight (adapted from [1])

Some of the security features of the previous components may be adapted to the OpenDaylight ecosys-
tem where a set of Network Functions have already been developed in the SDN controller. Through
its MD-SAL (Model-Driven Service Abstraction Layer), different network functions can be reused and
aggregated to build new network functions.
To perform this adaptation, a security agent (northbound application) for OpenDaylight is currently
developed. This agent uses existing functions like GBP (Group-Based Policy) and SFC (Service
Function Chaining). Network flows are first identified by GBP. Through different policies, flows are
then re-directed to different service chains. SFC enables dynamic chaining of security functions to
map the identified flow through the defined policy.
In the scenario shown in Figures 4.5 and 4.6, several types of flows are identified and chained to
different security functions. For instance, h35 and h36 are chained to different security functions like
firewalling and IDS. A PDP (Policy Decision Point) will be added later on to the security agent to
enable local security decisions for the whole network through the SDN controller.

5https://github.com/Orange-OpenSource
6https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/monitoring and https://github.

com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/service-chaining
7https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/network-security

SUPERCLOUD D4.3 Page 28 of 31

marc.lacoste@orange.com
https://github.com/Orange-OpenSource
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/monitoring
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/service-chaining
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/service-chaining
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP4/network-security

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Figure 4.6: Chaining flows to different security functions

SUPERCLOUD D4.3 Page 29 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Chapter 5 Conclusions

This document forms part of the deliverable that presents the proof-of-concept prototype of the multi-
cloud network virtualization infrastructure. Our purpose was to describe the architecture of the
network framework, the APIs of its main components, and information on how to access and run the
software developed.

• We have started by an overview of the architecture that focused on its core components: the
multi-cloud orchestrator and the network hypervisor.

• We then presented the internal and external APIs for all components. Namely, the interfaces
from the orchestrator and hypervisor core modules, and from the self-managed security services,
including security monitoring, service chaining, and network security.

The next, final steps are dedicated to integration, an effort already in process that includes:

• Integration into the substrate infrastructure – that is currently composed of a private cloud from
FFCUL and a public cloud (Amazon) – of another private cloud (the IMT testbed) and another
public cloud.

• Integration of the self-management security solutions into the network virtualisation platform.

• Integration of the the storage service Janus (from Work Package 3) into the platform.

• Integration of the Maxdata and Phillips use cases defined in Work Package 5.

SUPERCLOUD D4.3 Page 30 of 31

D4.3- Proof-of-concept Prototype of the Multi-Cloud Network Virtualization Infrastructure

Bibliography

[1] OpenDaylight. https://www.opendaylight.org/.

[2] jclouds. https://jclouds.apache.org/, 2017. Accessed: 2017-02-20.

[3] VIS.JS. http://visjs.org/, 2017. Accessed: 2017-02-20.

[4] A. Al-Shabibi et al. OpenVirteX: Make your virtual SDNs programmable. In HotSDN, 2014.

[5] M. Alaluna, L. Ferrolho, J. Rui Figueira, N. Neves, and F. M. V. Ramos. Secure Virtual Network
Embedding in a Multi-Cloud Environment. ArXiv, 2017.

[6] M. Alaluna, F. Ramos, and N. Neves. (Literally) Above the Clouds: Virtualizing the Network
Over Multiple Clouds. In Proc. IEEE NetSoft, 2016.

[7] J. Baliga, R.Ayre, K. Hinton, and R. Tucke. Green cloud computing: Balancing energy in
processing, storage, and transport. Proceedings of the IEEE, 2011.

[8] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia, M. Pasin, and P. Verissimo. Scfs: A
shared cloud-backed file system. In Proc. USENIX ATC, 2014.

[9] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach. Virtual network embedding:
A survey. IEEE Communications Surveys Tutorials, 2013.

[10] J. Higgins, V. Holmes, and C. Venters. Orchestrating docker containers in the HPC environment.
In Proc. ISC High Performance, 2015.

[11] T. Koponen et al. Network virtualization in multi-tenant datacenters. In Proc. USENIX NSDI,
2014.

[12] M. Lacoste, M. Miettinen, N. Neves, F. Ramos, M. Vukolic, F. Charmet, R. Yaich, K. Oborzynski,
G. Vernekar, and P. Sousa. User-Centric Security and Dependability in the Clouds-of-Clouds.
IEEE Cloud Computing, 3(5), 9 2016.

[13] ONF. OpenFlow Switch Specification, 2015.

[14] B. Pfaff et al. The design and implementation of open vswitch. In Proc. USENIX NSDI, 2015.

[15] Fernando M. V. Ramos, Nuno Neves, Marc Lacoste, Nizar Kheir, Max Alaluna, André Mantas,
Luis Ferrolho, José Soares, Grégory Blanc, Fabien Charmet, and Khalifa Toumi. D4.2 - Speci
cation of Self-Management of Network Security and Resilience. SUPERCLOUD, 2016.

[16] USA TODAY. Massive amazon cloud service outage disrupts sites, February 2017.

[17] D. Williams, H. Jamjoom, and H. Weatherspoon. The xen-blanket: Virtualize once, run every-
where. In Proc. ACM EUROSYS, 2012.

[18] L. Zheng, C. Joe-Wong, C. Tan, M. Chiang, and X. Wang. How to bid the cloud. In Proc. ACM
SIGCOMM, 2015.

SUPERCLOUD D4.3 Page 31 of 31

https://www.opendaylight.org/
https://jclouds.apache.org/
http://visjs.org/

	Introduction
	Objective of the document
	Outline

	Network virtualisation architecture overview
	General design and operation
	Architecture
	Overview of Sirius operation

	Network virtualisation core components
	Multi-cloud orchestrator
	Hypervisor
	Virtualisation runtime: achieving isolation
	Additional implementation details

	Self-management network security

	Network virtualisation core interfaces
	Internal interfaces
	Hypervisor-orchestrator communication
	Orchestrator client-server communication

	External interfaces
	Topology request
	Substrate attributes
	Tenant attributes
	Topology reply
	Example of topology request and reply

	Redirect all traffic request
	Response status codes
	Reply content

	Code and documentation

	Self-management network security interfaces
	Self-management of security
	Security monitoring component
	Topology handler
	Overview
	Interfaces

	Context handler
	Overview
	Interfaces

	Policy handler
	Overview
	Interfaces

	Incident handler
	Overview
	Interfaces

	Service chaining component
	Topology monitoring module
	Path computation module
	Path instantiation module

	Network security module
	Components Overview
	Workflow description
	Design Components

	Implementation Details
	Interoperability
	TOSCA Description

	Interface

	Code and documentation
	Ongoing work: a security agent for OpenDaylight

	Conclusions
	Bibliography

