
Symposium on Innovative Smart Grid Cybersecurity Solutions 2017 Vienna Austria

Intrusion-Tolerant Eclipse SCADA

André Nogueira Alysson Bessani Nuno Neves

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract – The paper describes an open-source SCADA system

that was enhanced with intrusion-tolerant capabilities, focusing on

the aspects related to the challenges that were addressed and the

architecture of the solution. Some preliminary performance results

are also included.

1. Introduction

Supervisory Control and Data Acquisition (SCADA) systems form

the backbone of most critical infrastructures, including the power

grid. To enrich the control of critical infrastructures, modern

information and communication technologies are being integrated,

sometimes with interconnections to corporate networks. This can

cause SCADA systems to become exposed to similar attacks as

Internet-based systems, which may lead to operational failures.

Often, companies have depended on firewalls and intrusion detec-

tion systems (IDS) to secure their critical infrastructures. These

technologies can detect well-known threats and identify suspicious

activities by analyzing the network traffic data. However, in most

cases, they are unable to defend against novel attacks (associated

with zero-day vulnerabilities) that permit attackers to compromise

and perform malicious operations. For instance, in most IDS, there

is always a vulnerable time window between the discovery of a

new threat and its signature being available.

A major thread for SCADA occurs when the attacker gains access

to the central component of the system – the SCADA Master. This

component manages all operations under the SCADA supervision,

and therefore an intrusion can result in a catastrophic scenario. By

resorting to appropriate replication techniques, the SCADA Master

could be enhanced to operate correctly not only in the presence of

accidental faults but also when there are compromises. This new

intrusion-tolerant SCADA would contain improved protection

capabilities against malicious attacks, complementing more tradi-

tional security solutions [1].

We have developed such an intrusion-tolerant approach and ap-

plied it to the open-source Eclipse SCADA project. Generically,

we resort to State Machine Replication (SMR) to manage multiple

replicas of the SCADA Master. The key idea is to make replicas

execute deterministically the same sequence of requests in such a

way that, despite the failure of a fraction of the replicas, the re-

maining ones have the same state and ensure correctness of the

offered services through a voting on their responses. The protocols

were built to address arbitrary (or Byzantine) failures, which

include ordinary problems like crashes but also (compromised)

replicas that act maliciously.

In this paper, we briefly discuss several issues that must be ad-

dressed to integrate an intrusion-tolerant approach with a SCADA

Master. We also give an overview of the architecture of our cur-

rent prototype, where we tried to minimize changes to the existing

system
1
, and discuss the performance costs of adding the intru-

sion-tolerance capability based on a preliminary evaluation.

1 http://www.eclipse.org/eclipsescada/

Fig. 1 Simplified view of the architecture of Eclipse SCADA (top),

and intrusion-tolerant Eclipse SCADA (bottom).

2. Main Challenges

Here, we identify and discuss some of the main issues related to

the integration of a Byzantine fault tolerant (BFT) replication

library with the Master server of Eclipse SCADA.

Multiple communications. The Master encompasses several

communication entry points (see Figure 1 (top)). To interact with

the Frontends, which are connected to the RTUs/IEDs, the Master

server uses a data acquisition (DA) protocol. In a similar way,

while communicating with the Human Machine Interface (HMI),

it resorts both to the DA and the Alarms & Events (AE) protocols.

Consequently, the Master can receive simultaneously requests and

replies from all these modules, which are executed in some ran-

dom order. The effect is that in a replicated system, each replica

can end up processing messages in a different order even if all

replicas get the same set of messages. This architecture does not

guarantee that the processing of requests will be deterministic,

which a fundamental requirement of our replication approach.

Concurrency in processing. Internally, the Master server does

not operate sequentially. The DA and AE subsystems have several

modules that execute concurrently with multiple threads, enabling

several requests to be processed in parallel. In a context of SMR,

this concurrency is a major difficulty because the execution of the

requests becomes non-deterministic across replicas.

Timestamps. In the AE subsystem, some modules retrieve infor-

mation from the operating system to process. For instance, when

an event is created, a timestamp is retrieved from the operating

system and assigned to the event. In a replicated solution, it is

necessary to ensure that all replicas generate the same timestamp

for the same event to avoid the violation of determinism.

http://www.eclipse.org/eclipsescada/

Symposium on Innovative Smart Grid Cybersecurity Solutions 2017 Vienna Austria

Asynchrony. Eclipse SCADA implements a publish/subscribe

architecture. To receive data or events associated with an item, the

HMI must subscribe to that item in the Master. After subscription,

the HMI starts receiving messages asynchronously. The Master

server can send to the HMI multiple messages in response to a

single event reported by a frontend. As the HMI receives messages

asynchronously from a set of replicas, the messages must contain

some sort of information that enables it to understand in which

context that messages were produced. Currently, this context

information is not available in Eclipse SCADA messages.

Performance. Some critical infrastructures use Eclipse SCADA

nowadays, confirming that its performance is suitable for deploy-

ments in the field. The current Eclipse SCADA only supports a

single Master server. In a replicated version of the Master server,

the performance may be affected due to the overhead introduced

by the intrusion-tolerant library.

3. Intrusion-Tolerant Eclipse SCADA

Figure 1 (bottom) shows the architecture of our intrusion-tolerant

Eclipse SCADA. It augments the existing system with three new

components: ProxyServer, ProxyHMI and ProxyFrontend. These

components were designed to address one of the key objectives of

our integration, which was to avoid changes in the BFT library and

minimize changes in the Eclipse SCADA, while solving the chal-

lenges described in previous section.

The ProxyServer is responsible to forward all Eclipse SCADA

messages that come from the Frontend and the HMI to a Master

replica. Each ProxyServer has a BFT server module, which is the

server-side of the intrusion-tolerant library where a Byzantine fault

tolerance protocol runs. This protocol is responsible to guarantee

that the received messages are delivered in the same order even if

a fraction of the BFT servers is malicious. After the messages are

ordered, each BFT server passes to the Adapter module, which

demultiplexes and forwards messages to the Master server using

either the DA or AE client components.

The ProxyHMI receives all messages from the HMI and sends

them to the ProxyServer, using the client-side part of BFT replica-

tion library. In this proxy, we have a DA server and AE server

which simulate the servers available in the Master server. As a

result, the HMI is not aware that it is communicating with a proxy.

The ProxyFrontend guarantees the communication between the

Frontend and the Master server. This proxy employs the client-

side part of the replication library to send all relevant messages

that come from the Frontend to the Master server. When the Mas-

ter server needs to communicate with the Frontend, the

ProxyFrontend receives the messages from the client-side of

intrusion-tolerant library and sends them using the DA client. We

also propose a modification in the Master server, which guarantees

that all messages that come from the Frontend are placed in the

right component of the Master server – DA client. We propose

channels between the DA server and the DA clients. This way,

when the DA server receives a message from the Frontend, it

forwards the message into the DA client of the item placing the

message in its channel. A similar approach is followed with the

ProxyHMI.

All these three new components and the proposed modifications

allow us to convert the multiple entry points into a single entry

point. This way, the Master server does not receive messages

simultaneously and all messages that the Master server processes

are ordered, ensuring the determinism necessary for SMR.

Fig. 2 Performance results for both solutions. Left side is about

update processing and right side is related to writes in items.

4. Perliminary Evaluation

To develop the Intrusion-Tolerant Eclipse SCADA (BFT Eclip-

seSCADA), we integrated a fault-tolerant state machine replica-

tion library called BFT-SMaRt [2] with the Eclipse SCADA. BFT-

SMaRt is an open-source Java-based library implementing BFT

state machine replication.

Figure 2 shows the results of some preliminary experiments con-

ducted in a cluster of six machines interconnected by a Gigabit

Ethernet switch. The machines have two quad-core 2.27 GHz Intel

Xeon E5520, 32 GB of RAM, and run Linux kernel 3.13 and Java

1.7.0. We deployed the Eclipse SCADA in three machines: one

Frontend, one Master server and one HMI; each one containing its

application. In contrast, we used six machines to deploy the BFT

EclipseSCADA solution: one Frontend, four Master servers and

one HMI; each one containing its application and its proxy.

We show results for a scenario in which the Frontend contains a

set of items that are being updated by a RTU 1000 times per

second (left). As a result, the Frontend is sending to the Master

server 1000 update messages per second. It is possible to observe

a performance drop of 6% in the BFT EclipseSCADA. The causes

for such performance drop are the additional communication steps

required in the replicated version (6 vs 2 in the conventional

system) and the lack of parallelism on message processing (to

avoid problems with determinism).

Figure 2 (right) also shows results for a scenario where the HMI

performs synchronous writes in an item in the Frontend (which

would them be sent to a RTU). This means that, for each write

operation, the HMI waits until the write operation is completed.

We can observe that the BFT EclipseSCADA introduces an over-

head of 78%. We checked that the intrusion-tolerant library only

added an overhead of 12%. The remaining 66% was introduced by

the necessity of extra communication. While in the Eclipse

SCADA it takes 4 communication steps to perform a write opera-

tion, in the BFT EclipseSCADA it takes up to 12 steps.

Acknowledgements. This work was partially supported by the EC

through project FP7-607109 (SEGRID), and through funds of the

Fundação para a Ciência e a Tecnologia (FCT) with reference to

UID/CEC/00408/2013 (LaSIGE).

References

[1] P. Veríssimo, N. Neves, M. Correia, Intrusion Tolerant Archi-

tectures: Concepts and Design, Architecting Dependable Systems,

LNCS 2677, 2003.

[2] A. Bessani, J. Sousa, E. Alchieri. State Machine Replication

for the Masses with BFT-SMaRt. Proc. of 2014 IEEE/IFIP De-

pendable Systems and Networks Conference, 2014.

