
On the Horizon
Editor: O. Sami Saydjari, ssaydjari@cyberdefenseagency.com

from happening—by developing
systems without vulnerabilities, for
example, or by detecting attacks and
intrusions and deploying ad hoc
countermeasures before any part of
the system is damaged. But what if
we could address both faults and at-
tacks in a seamless manner, through a
common approach to security and
dependability? This is the proposal of
intrusion tolerance, which assumes that

• systems remain somewhat faulty
or vulnerable;

• attacks on components will some-
times be successful; and

• automatic mechanisms ensure that
the overall system nevertheless re-
mains secure and operational.

No large-scale computer network
can be completely protected from
attacks or intrusions. Just as chains
break at their weakest link, any in-
conspicuous vulnerability left be-
hind by firewall protection or any
subtle attack that goes unnoticed
by intrusion detection will be
enough to let a hacker defeat a
seemingly powerful defense. Using
ideas from fault tolerance that put
emphasis on automatically detect-
ing, containing, and recovering
from attacks, the European project
MAFTIA (Malicious-and Acci-
dental-Fault Tolerance for Internet

Applications; www.maftia.org) set
out to develop an architecture and
a comprehensive set of mechanisms
and protocols for tolerating both
accidental faults and malicious at-
tacks in complex systems. Here, we
report some of the advances made
by the several teams involved in this
project, which brought together
international expertise in the areas
of information security and fault
tolerance.

Intrusion tolerance
in a nutshell
Building an intrusion-tolerant sys-
tem to arrive at some notion of in-
trusion-tolerant middleware for
application support presents multi-
ple challenges. Surprising as it might
seem, intrusion tolerance isn’t just
another instantiation of accidental
fault tolerance.

To capture the essence of intru-
sion tolerance, we must first con-
sider that an intrusion is in fact a
malicious fault that has two underly-
ing causes: a weakness, flaw, or vul-
nerability, or a malicious act or attack
that attempts to exploit the former.

Attacks, vulnerabilities,
and intrusions
Vulnerabilities are the primitive
faults within a system—in particu-
lar, design or configuration faults—

that can be introduced during the
system’s development or operation.
For example, as a step in an overall
plan of attack, an attacker might in-
troduce vulnerabilities in the form
of malware.

Attacks are malicious faults that
attempt to exploit one or more vul-
nerabilities. An attack that success-
fully exploits a vulnerability results
in an intrusion, which is normally
characterized by an erroneous sys-
tem state (for example, a system file
with unwarranted access permis-
sions for the attacker). If nothing is
done to handle these errors, a secu-
rity failure will probably occur. At-
tacks often assume the form of
inconsistent interactions with differ-
ent legitimate participants in order
to confuse them. Resilient systems
should be able to handle these so-
called Byzantine faults.

Figure 1a represents a fundamen-
tal sequence: attack � vulnerability
� intrusion � error � failure. This
well-defined relationship is called
the AVI fault model.

Classical security methodologies
mainly focus—quite successfully—
on preventing intrusion. However,
as reality painfully proves every day,
it’s impossible, even infeasible, to
guarantee perfect prevention: sim-
ply put, we can’t handle all attacks
because they aren’t all known, and
new ones appear constantly. As a
consequence, a few inconspicuous
weaknesses are easy prey to hackers,
and what’s worse, the resulting in-
trusions that escape the intrusion-pre-
vention barrier, as Figure 1b suggests,
will go unnoticed and will likely
cause security failures.

The last resort is intrusion toler-
ance, which, as the name suggests, acts

PAULO E.
VERÍSSIMO

AND NUNO F.
NEVES

University of
Lisbon,
Portugal

CHRISTIAN

CACHIN AND

JONATHAN

PORITZ

IBM Zurich
Research

DAVID POWELL

AND YVES

DESWARTE

Laboratory
for Analysis
and
Architecture
of Systems,
CNRS

ROBERT

STROUD AND

IAN WELCH

University of
Newcastle
upon Tyne

T
he pervasive interconnection of systems throughout

the world has given computer services a significant

socioeconomic value that both accidental faults and

malicious activity can affect. The classical approach

to security has mostly consisted of trying to prevent bad things

Intrusion-Tolerant Middleware
The Road to Automatic Security

54 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/06/$20.00 © 2006 IEEE ■ IEEE SECURITY & PRIVACY

On the Horizon

after intrusion and before failure. In-
trusion-tolerance techniques are in
essence automatic, relying on local
mechanisms and distributed proto-
cols, and assume combinations of de-
tection (of corrupted hosts or
tampered communications), recovery
(neutralization of intruder activity), or
masking (use of spare components or
replicas, such that the whole resists the
intrusion of a minority).

Trust and trustworthiness
The relationship between the no-
tions of trust and trustworthiness is im-
portant to understand how intrusion
tolerance can lead to secure designs.

Let’s consider trust to be a com-
ponent’s accepted dependence on a
set of (desirable) properties of an-
other component, subsystem, or sys-
tem.1 If A trusts B, then A accepts
that a violation of B’s properties
might compromise A’s correct oper-
ation. It might also happen that
those properties A trusts don’t corre-
spond quantitatively or qualitatively
to B’s actual properties. Thus trust-
worthiness is the measure in which a
component (say, B) meets a set of
properties. Clearly, a robust design
implies that trust in B should be
placed to the extent of B’s trustwor-
thiness—that is, the relation “A
trusts B” should imply A’s substanti-
ated belief that B is trustworthy in
the measure of B’s trustworthiness.

There is a separation of concerns
between how to make a component

trustworthy (constructing the com-
ponent) and what to do with the trust
placed in the component (building
fault-tolerant algorithms). These iter-
ative chains of trust–trustworthiness
relations, with the proper specifica-
tion and verification tools—lead to
very clear arguments about system se-
curity and dependability.2,3

MAFTIA architecture
The MAFTIA architecture selec-
tively uses intrusion-tolerance
mechanisms to build layers of pro-
gressively more trusted compo-
nents and middleware subsystems
from baseline untrusted compo-
nents (hosts and networks). This
leads to an automation of the

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 55

Related work in intrusion tolerance

One of the first architectural attempts to build a secure and

robust architecture was Delta-4, a system developed in a

European project in the 1980s.1 It provided distributed intrusion-

tolerant services for data storage, authentication, and authorization.

More recently, several projects have also addressed this

problem, providing secure middleware,2 secure group or broadcast

communication,3 or secure authentication.4 Oasis is a large US

program on intrusion-tolerance research comparable to MAFTIA.5

References

1. D. Powell et al., “The Delta-4 Approach to Dependability in Open Distrib-

uted Computing Systems,” Proc. 18th IEEE Int’l Symp. Fault-Tolerant Com-

puting, IEEE CS Press, 1988, pp. 246–251.

2. M.K. Reiter, “Distributing Trust with the Rampart Toolkit,” Comm. ACM,

vol. 39, no. 4, 1996, pp. 71–74.

3. Y. Amir et al., “Secure Group Communication in Asynchronous Networks

with Failures: Integration and Experiments,” Proc. 20th IEEE Int’l Conf. Dis-

tributed Computing Systems, IEEE CS Press, 2000, pp. 330–343.

4. L. Zhou, F. Schneider, and R. van Renesse, “COCA: A Secure Distributed

On-Line Certification Authority,” ACM Trans. Computer Systems, vol. 20,

no. 4, 2002, pp. 329–368.

5. J.H. Lala, ed., Foundations of Intrusion Tolerant Systems, IEEE CS Press, 2003.

Figure 1. Intrusion sequence. In the (a) attack-vulnerability-intrusion (AVI) fault model,
an attack hits a vulnerability, causing an intrusion which, if not handled, will cause a
failure; (b) intrusion tolerance, the last resort for protection.

Intrusion
fault

Intrusion
prevention

Intrusion
tolerance

Vulnerability
fault

(b)

Vulnerability
prevention

Vulnerability removal

Attack
prevention

Attack removal

Error Failure

Intruder

Vulnerability
fault

Error Failure

Intruder

(a)

Intruder/
designer/
operator

Intrusion
fault

Attack fault

Attack
fault

Intruder/
designer/
operator

On the Horizon

process of building resilience: at
lower layers, a trustworthy commu-
nication subsystem is constructed
with basic intrusion-tolerance
mechanisms. Higher-layer distrib-
uted software can then trust this
subsystem for secure communica-
tion among participants without
worrying about network intrusion
threats. Alternatively, an even more
trustworthy higher layer can be
built on top of the communication
subsystem—by incrementally using
intrusion-tolerance mechanisms—
such as a replication management
protocol that’s resilient against both
network and host intrusions.

Architectural options
A MAFTIA host’s structure relies on
a few main architectural options,
some of which are natural conse-
quences of the discussions in the pre-
vious section:

• The notion of trusted—versus un-
trusted—hardware. Most of MAF-
TIA’s hardware is untrusted, but
small parts of it are trusted to the ex-
tent of some quantifiable measure of
trustworthiness—for example, being
tamper-proof by construction.

• The notion of trusted support soft-
ware that can execute a few functions
correctly, albeit in an environment
subjected to malicious faults.

• The notion of a runtime environ-
ment that extends operating system
capabilities and hides heterogeneity
among host operating systems by
offering a homogeneous API and
framework.

• The notion of trusted distributed
components, materialized by
MAFTIA middleware, which are
modular and multilayered. Each
layer overcomes lower layers’ faulty
behavior.

We can depict the MAFTIA ar-
chitecture in at least three different
dimensions (see Figure 2). The
hardware dimension includes the
host and networking devices that
compose the physical distributed
system. Within each node, the op-
erating system and runtime plat-
form (which can vary from host to
host) provide local support services.
Finally, MAFTIA provides distrib-
uted software: the layers of middle-
ware running on top of the runtime
support both the mechanisms that
each host provides and MAFTIA’s
native services—authorization, in-
trusion detection, and trusted third
parties. To operate securely across
several hosts even in the presence of
malicious faults, applications run-
ning on MAFTIA use the abstrac-
tions that the middleware and
application services provide.

Hardware
We assume that the hardware in indi-
vidual MAFTIA hosts is untrusted in
general. In fact, most of a host’s oper-
ations run on untrusted hardware—
such as the usual PC or workstation
machinery connected through the
normal networking infrastructure to
the Internet, which we call the pay-
load channel. However, some hosts
might have pieces of hardware that
are trusted to the extent of seeming
tamper-proof (that is, we assume in-
truders don’t have direct access to the
inside of these components). MAF-
TIA features two incarnations of
such hardware, both of which are
easy to incorporate in standard ma-
chines because they’re commercial-
off-the-shelf (COTS) products. One
is a smart card (actually a Java card),
connected to the machine’s hardware
and interfaced by the operating sys-
tem. The other is an appliance board,
which has a processor and an adapter
to a (trusted) control network. The
runtime support has specialized
functions provided by the trusted
support software and implemented
in two components, the Java Card
Module (JCM) and the Trusted
Timely Computing Base (TTCB).
For less demanding configurations,
we also designed a software-imple-
mented TTCB.4

Local runtime support
The MAFTIA architecture’s run-
time support dimension essentially
consists of the operating system aug-
mented with appropriate extensions.
The middleware, service, and appli-
cation software modules run on the
Java virtual machine (JVM) runtime
environment. The JCM assists the
operation of a reference monitor that
supports the MAFTIA authorization
service.5 This reference monitor
checks all accesses to local objects and
autonomously manages all access
rights for local objects. We trust the
Java card to be tamper-proof for ap-
plication services whose value is
much less than the effort—in means
or time—necessary to subvert it.

56 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2006

Figure 2. The MAFTIA architecture’s three dimensions. Hardware, local support, and
distributed software help applications operate securely across several hosts, even in the
presence of malicious faults.

Untrusted
hardware

Trusted
hardware

Payload
channel

(Internet)

Control
channel

AS

TTP

IDS

TTCB

Applications

Activity support services

Communication
support services

Multipoint network
Trusted
software

Hardware Distributed softwareLocal support

Runtime
environment
(JVM + Appia)

Operating
system

On the Horizon

Distributed
runtime support
The TTCB is a distributed trusted
component responsible for provid-
ing a basic set of trusted time and se-
curity services to middleware
protocols for communication and
activity support. The TTCB services
are accessed locally through runtime
support but can have global reach,
such as making a value known to all
local TTCB parts, thus limiting the
potential for Byzantine faults by ma-
licious protocol participants, as we
discuss later. We can assume that the
TTCB component is infeasible to
subvert, but it might be possible to
interfere with its software compo-
nent interactions through the JVM.
Although this exposes a local host to
compromise, it doesn’t undermine
the distributed TTCB operation.

Middleware
The middleware layers implement
functionality at different levels of ab-
straction and make it accessible at the
interfaces of several middleware
modules. These interactions occur
through the runtime environment
via predefined APIs.

As mentioned earlier, a middle-
ware layer can overcome the fault
severity at lower layers and provide
certain functions in a trustworthy
way. A (distributed) transactional
service, for example, trusts that a
(distributed) atomic multicast com-
ponent ensures typical properties
(agreement and total order), regard-
less of the fact that the underlying
environment can suffer malicious
Byzantine attacks.

MAFTIA’s intrusion-
tolerance strategies
Given the variety of possible MAF-
TIA applications, different archi-
tectural strategies should be
available to cope with different risk
scenarios. MAFTIA offers several
intrusion-tolerance strategies
through a versatile combination of
admissible failure assumptions. Sys-
tem designers can apply these

strategies at several levels of abstrac-
tion in the architecture and, most
important, in the implementation
of the middleware and application
services. An extended discussion
appears elsewhere.6

Ultimately, MAFTIA supplies
different solutions for different levels
of threats and criticality (depending
on the value of services or informa-
tion), keeping the best possible
performance-resilience trade-off.
However, anything less than “arbi-
trary behavior” as an assumption
raises eyebrows among many security
and cryptography experts, so this
statement deserves discussion.

A crucial aspect of any fault- or
intrusion-tolerant architecture is the
fault model on which the system ar-
chitecture is conceived and compo-
nent interactions are defined.
Classically, making assumptions
about hacker behavior isn’t very sen-
sible, which is why many system de-
signers tend to assume any behavior
is possible (asynchronous, arbitrary,
or Byzantine).

However, such weak assump-
tions limit the system’s power and
performance—for example, could it
still fulfill a service-level agreement
(SLA), which is a contract a service
provider makes with a client about
quality of service (QoS)?

Architectural
hybridization
Up until recently, increased system
performance or QoS have meant less
security. But MAFTIA has advanced
the state of the art, demonstrating
that it’s possible to build applications
that gather the best of both worlds:
high resilience at the level of arbi-
trary failure systems and high perfor-
mance at the level of controlled
failure systems.

Through the innovative concept
of architectural hybridization, the archi-
tecture simultaneously supports
components with different kinds and
severity of vulnerabilities, attacks,
and intrusions.7 For example, part of
the system might be assumed to be

subject to malicious attacks, whereas
other parts are specifically designed
in a different manner, to resist differ-
ent sets of attacks. These hybrid fail-
ure assumptions are in fact enforced
in specific parts of the architecture,
by system component construction,
and are thus substantiated. That is, in
MAFTIA, trusting an architectural
component doesn’t mean making
possibly naive assumptions about
what a hacker can or can’t do to that
component. Instead, the component
is specifically constructed to resist a
well-defined set of attacks.

Wormholes model
Architecture isn’t enough to solve
the resilience problem, though. The
correctness arguments of the algo-
rithms and protocols rely on the
wormholes model, a hybrid distrib-
uted-systems model that postulates
the existence of enhanced parts (or
wormholes) of a distributed system
capable of providing stronger behav-
ior than is assumed for the rest of the
system. MAFTIA perfected this hy-
brid distributed-system model
specifically for Byzantine faults.7

Protocol participants exchange
messages in a world full of threats. If
some of them are malicious and
cheat, a wormhole can implement a
degree of trust for low-level opera-
tions: as a local oracle whose infor-
mation can be trusted, as a channel
that participants can use to get in
touch with each other securely
(even for rare moments and for
scarce bits of information), or as a
processor that reliably executes a few
specific functions or synchroniza-
tion actions. Systems using strands of
this model have received increasing
amounts of attention lately.

A wormhole in the particular
use of a trusted security component
might look like a trusted comput-
ing base with a reference monitor.
In fact, the concept is more general
in two senses. First, trusted com-
puting base’s philosophy was based
on system-level prevention of in-
trusions, whereas wormhole mod-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 57

On the Horizon

els have intrusion tolerance in
mind: they would allow (and toler-
ate) intrusions even in the re-
ference-monitor-protected part,
significantly reducing the part of
the system about which strong
claims of tamper-proofness are
made. Second, a wormhole can im-
plement any semantics, including a
reference monitor, but also simpler
mechanisms, such as random num-
ber generators or key distribution,
or innovative distributed agree-
ment microprotocols.8

Real wormholes
The wormholes model can be real-
istically implemented via the
notion of architectural hybridiza-
tion.7 MAFTIA implements each
wormhole as a trusted–trustworthy
component—a component that
can be trusted because it’s “better”
by construction.

Figure 3 shows a snapshot of a
real system that uses TTCB worm-
holes. The general, or payload, sub-
systems are the normal machines and
networks depicted in dark shading in
the figure. Each host contains the
typical software layers such as the op-
erating system, runtime environ-
ment, and middleware. Think of a
small appliance board connected to
the machine bus (these boards exist

as COTS components), implement-
ing a set of useful functions in a pro-
tected manner. This is the MAFTIA
TTCB wormhole, depicted with
light shading in Figure 3. This proof-
of-concept prototype was built
using simple prevention techniques.
However, adequately designed
MAFTIA wormholes can withstand
extreme attack levels, even life-cycle
attacks (insertion of malicious code
during development), by resorting
to recursive design: a wormhole can
itself be a modular or distributed
subsystem designed with intrusion-
tolerance techniques (replication,
diversity, obfuscation, rejuvenation),
to substantiate trustworthiness
claims as firmly as desired, such as
eliminating single points of failure.

As we mentioned earlier, worm-
holes can be local or distributed.
The TTCB is distributed through a
control channel, which is a private
network. As a practical example,
consider a Web server farm in a data
center that’s tolerant to intrusions
from the Internet: servers are con-
nected through the payload Ether-
net to the Internet, but the local
wormhole boards are isolated from
the directly attackable servers. The
boards are interconnected through a
secondary Ethernet that’s com-
pletely isolated from the payload

Ethernet or Internet—this is the pri-
vate control channel. Even if the ma-
chine is corrupted, the hacker can’t
tamper with the local wormhole
board or with the control channel.

Trusted–trustworthy
components
MAFTIA assumes a fairly severe
fault model, assuming that hosts and
the communication environment
are asynchronous and can all be in-
truded upon. However, hosts can
have local trusted components im-
plementing certain functions (such
as random number generation, sig-
nature, and time) that can be in-
voked at certain steps of the
MAFTIA software’s operation and
whose result can be trusted as always
correct, regardless of intrusions in
the rest of the system. The construc-
tion of the MAFTIA authorization
service followed this local trusted
components strategy, which is im-
plemented around Java cards fitted in
some hosts.5

The distributed trusted compo-
nents strategy amplifies the scope of
trust. As such, certain global actions
can be trusted (such as global time
and block agreement), despite gen-
erally malicious communication and
host environments. MAFTIA im-
plements this strategy through the
TTCB, which is in effect a security
kernel distributed across several
hosts. Several of the MAFTIA mid-
dleware protocols follow this strat-
egy, and in fact these protocols
support the MAFTIA intrusion-
tolerant transactional service.6

Arbitrary failure
assumptions
The hybrid failure approach, how-
ever resilient, relies on trusted
component assumptions, or trust-
worthiness. Several operations will
have a value or criticality such that
the risk of failure due to possible
violation of these assumptions,
however small, can’t be incurred.

The only way to lower the risk
even further is by resorting to arbi-

58 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2006

Figure 3. Architecture with a Trusted Timely Computing Base (TTCB) wormhole. The
general systems are depicted in dark shading, and the wormhole is in light shading.

k

R

Process calls a service of the local wormhole

P1 P2 P3 Pi

Pi

Control channel
Payload network

Process uses the payload network
to send messages to other processes

Local wormhole exchanges data
through the secure control channel

On the Horizon

trary failure modes, in which noth-
ing is assumed about the way com-
ponents could fail. Consequently,
this is another strategy pursued in
MAFTIA—arbitrary-failure-re-
silient components—namely, com-
munication protocols of the
Byzantine class that don’t make as-
sumptions about the existence of
trusted components. Some of the
protocols the MAFTIA middleware
uses to follow this strategy are of the
probabilistic Byzantine class and
offer several qualities of service (bi-
nary and multivalued Byzantine
agreement and atomic broadcast).
Some MAFTIA trusted-third-party
services rely on them.9

MAFTIA middleware
Figure 4 shows the MAFTIA mid-
dleware’s layers. The lowest layer is
the multipoint network (MN), which
is created on the physical infra-
structure. Its main properties are
the provision of multipoint ad-
dressing, basic secure channels, and
management communications, all
of which hide the underlying net-
work’s specificities.

The communication support services
(CS) module implements basic
cryptographic primitives, Byzantine
agreement, group communication
with several reliability and ordering
guarantees, clock synchronization,
and other core services. The CS
module depends on the MN mod-
ule to access the network. The activ-
ity support services (AS) module
implements building blocks that as-
sist participant activity, such as repli-
cation management, leader election,
transactional management, autho-
rization, key management, and so
forth. It depends on the services the
CS module provides.

The block to the left of the fig-
ure implements failure detection
and membership management.
Failure detection assesses remote
hosts’ connectivity and correctness
and local processes’ liveness. Mem-
bership management, which de-
pends on failure information, helps

create and modify group member-
ships (registered members) and the
view (currently active, nonfailed,
or trusted members). Both the AS
and CS modules depend on this
information.

As discussed earlier, an estab-
lished way for achieving fault or in-
trusion tolerance is to distribute a
service among a set of servers and
then use replication algorithms for
masking faulty servers. No single
server has to be trusted completely,
and the overall system derives its in-
tegrity from a majority of correct
servers. Consequently, a very im-
portant part of the MAFTIA archi-
tecture is related to the algorithmic
suites that implement communica-
tion and agreement among processes
in different hosts.

Let’s look more closely at the two
main configurations of the MAF-
TIA middleware and algorithms.6

Byzantine agreement
in an arbitrary world
In this configuration, the system
model doesn’t include timing as-
sumptions and is characterized by a
static set of servers with point-to-
point communication and the use
of modern threshold cryptography.
There are no a priori trusted com-
ponents, and trusted applications
are implemented by deterministic

state machines replicated on all the
servers and initialized to the same
state. An atomic broadcast protocol
delivers client requests, imposing a
total order on all of them and guar-
anteeing that the servers perform
the same sequence of operations.
The atomic broadcast is built from
a randomized consensus proto-
col—that is, a protocol for Byzan-
tine agreement.

Model. This asynchronous model is
subject to Fischer, Lynch, and Pater-
son’s10 impossibility result of reach-
ing consensus by deterministic
protocols (FLP). Many developers of
practical systems seem to have
avoided this model in the past and
built systems that are weaker than
consensus and Byzantine agree-
ment. However, randomization can
solve Byzantine agreement in an ex-
pected constant number of rounds,
as MAFTIA does. We use Byzantine
agreement as a primitive for imple-
menting atomic broadcast, which in
turn guarantees a total ordering of all
delivered messages.

Cryptography. To protect keys, we
use threshold cryptography, an intru-
sion-tolerant form of secret sharing.
Secret sharing lets a group of nparties
share a secret such that t or fewer of
them have no information about it,

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 59

Figure 4. Detail of the MAFTIA middleware, showing the different architectural blocks.

Network

Failure
detection

and
membership

Multipoint network (MN)

Applications

Middleware

Participant
m

Participant
n

Participant
p

Activity support services (AS)

Communication support services (CS)

On the Horizon

but t + 1 or more can uniquely re-
construct it. However, someone
can’t simply share a cryptosystem’s
secret key and reconstruct it to de-
crypt a message because as soon as a
single corrupted party knows the
key, the cryptosystem becomes com-
pletely insecure and unusable.

In a threshold public-key cryptosys-
tem, for example, each party holds a
key share for decryption, which is
done in a distributed way. Given a ci-
phertext resulting from encrypting a
message, individual parties decrypt-
ing it output a decryption share. At
least t + 1 valid decryption shares are
required to recover the message. An-
other important cryptographic algo-
rithm is the threshold coin-tossing
scheme, which provides a source of
unpredictable random bits that only
a distributed protocol can query. It’s
the key to circumventing the FLP
impossibility result, and the ran-
domized Byzantine agreement pro-
tocol uses it in MAFTIA.

No timing assumptions. Working
in a completely asynchronous model
is attractive because the alternative of
specifying timeout values actually
constitutes a system’s vulnerability.
It’s sometimes easier, for example,
for a malicious attacker to simply
block communication with a server
than subvert it, but a system with
timeouts would nevertheless classify
the server as faulty.

This is how attackers can fool
time- or timeout-based failure de-
tectors into making an unlimited
number of wrong failure suspicions
about honest parties. The problem
arises because a crucial assumption
underlying the failure detector ap-
proach—namely, that the commu-
nication system is stable (failure
detection is accurate) for a suffi-
ciently long period to allow protocol
termination—doesn’t hold against a
malicious adversary.

Secure asynchronous agreement
and broadcast. Several protocols
are used in this architecture configu-

ration, such as reliable and consistent
broadcast, atomic broadcast, and se-
cure causal atomic broadcast. De-
tailed descriptions appear
elsewhere.9,11,12 These protocols
work under the optimal assumption
that fewer than one-third of the
processes become faulty at any time.
They’re implemented in a modular
and layered way.

Byzantine agreement requires all
parties to agree on a binary value
proposed by an honest party. Our
randomized protocol checks if the
proposal value is unanimous or else
adopts a random value.11 Multival-
ued Byzantine agreement is based
on the previously described protocol
and provides agreement on values
from large domains.12 A basic broad-
cast protocol in a distributed system
with failures is reliable broadcast,
which provides a way for a party to
send a message to all other parties. It
requires that all honest parties deliver
the same set of messages and that this
set includes all messages broadcast by
such parties, but makes no assump-
tions if a message’s sender is cor-
rupted. An atomic broadcast
guarantees a total order on messages
such that honest parties deliver mes-
sages in the same order. Any imple-
mentation of atomic broadcast must
implicitly reach agreement whether
to deliver a message sent by a cor-
rupted party, and, intuitively, this is
where the Byzantine agreement
module is needed: the parties pro-
ceed in global rounds and agree on a
set of messages to deliver via multi-
valued agreement.12 A secure causal
atomic broadcast ensures a causal
order among all broadcast messages.
It’s implemented by combining
atomic broadcast with a robust
threshold cryptosystem. Encryption
ensures that messages remain secret
up to the moment at which they’re
guaranteed to be delivered, prevent-
ing any violations of causal order by a
corrupted party.

Reliable communication
Other MAFTIA middleware con-

figurations follow a strategy based on
distributed trusted components and
architectural hybridization. In this
configuration we implemented sev-
eral distributed protocols, such as re-
liable multicast, atomic multicast,
and consensus. These protocols’
correctness arguments rely on the
wormholes model.

Model. In this configuration, a
group of processes executes a proto-
col, as Figure 3 suggests. Processes
run outside the wormhole (in the
dark part) and communicate by
sending messages through the pay-
load network. At certain points of
their execution, however, they can
request trusted services from the
wormhole by calling its interface.

The global system assumptions in
this configuration are weak: the sys-
tem is assumed to be asynchronous,
and processes and communication
can suffer Byzantine faults. Conse-
quently, this model is also bound to
the FLP impossibility result10 men-
tioned earlier. The wormholes
model lets processes invoke functions
that have enough power to circum-
vent the FLP impossibility, while still
maintaining a generically weak and
thus resilient model.7,13 In this case,
the TTCB and the control channel
provide timely (synchronous) execu-
tion and communication among
TTCB modules. In practical imple-
mentations, these synchrony guaran-
tees can be ensured (despite the rest
of the system being completely asyn-
chronous) because the wormhole
has complete control over its re-
sources. Furthermore, it’s assumed to
fail only by crashing: it either pro-
vides its services as expected, or it
simply stops running.

Example TTCB wormhole ser-
vices. In MAFTIA, the wormholes
metaphor is materialized by the
TTCB, whose most important ser-
vices are the local authentication ser-
vice, which makes the necessary
initializations and authenticates the
local wormhole component before

60 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2006

On the Horizon

the process; the trusted time-stamp-
ing service returns timestamps with
the current global time; and the
trusted block agreement service ap-
plies an agreement function to a set
of values and returns information
about who proposed what.

Designing wormhole-aware pro-
tocols. In the project, we designed
several protocols to form a coherent
Byzantine-resilient communication
suite, comprising reliable multi-
cast,14 atomic multicast, simple,8 and
vector consensus,13 and state ma-
chine replication management.15

A correct use of the wormholes
principle mandates that most of the
protocol execution occurs in the
payload subsystem. The wormhole
services are only invoked when
there is an obvious trade-off be-
tween what is obtained from the
wormhole service and the com-
plexity or cost of implementing it in
the payload subsystem.

As a quick example, let’s assume a
reliable broadcast execution. The
protocol starts with the sender mul-
ticasting a message through the pay-
load channel; now the message’s
integrity and reception must be
checked. In classical protocols, this
entails some complexity or delay be-
cause the sender might be malicious
or the network might be attacked or
have omission failures. Wormholes
can help here: the sender and all re-
cipients send a hash of the message to
the wormhole, which runs a simple
agreement on the hashes in its pro-
tected environment, returning to
everyone the sender’s hash as a result.
If all goes well, the protocol termi-
nates in an extremely quick manner.
In case of faults, additional informa-
tion returned by the wormhole al-
lows fast termination after a few
additional interactions.

One achievement related to our
model is that most of the protocols
have lowered known bounds on the
required total number n of processes
to tolerate a given number of Byzan-
tine faults f, from n > 3f to n > f + 1

for reliable multicast14 and n > 2 f for
state-machine replication.15

Another achievement concerns
performance and complexity. Despite
maintaining Byzantine resilience and
working on essentially weak arbitrary
and asynchronous settings, the proto-
cols—thanks to wormholes—exhibit
unusually high performance and low
complexity when compared to alter-
native implementations.

Y ou can find a detailed description
of MAFTIA’s history at http://

istresults.cordis.lu/index.cfm/section/
news/tpl/article/BrowsingType/
Features/ID/69871.

Acknowledgments
MAFTIA was a project of the EU’s IST (In-
formation Society and Technology) program.
The EC supported this work through project
IST-1999-11583.

References
1. P. Veríssimo, N.F. Neves, and M.

Correia, “Intrusion-Tolerant Archi-
tectures: Concepts and Design,”
Architecting Dependable Systems,
LNCS 2677, R. Lemos, C. Gacek,
and A. Romanovsky, eds., Springer-
Verlag, 2003, pp. 3–36.

2. D. Powell and R.J. Stroud, eds.,
Conceptual Model and Architecture of
MAFTIA, Project MAFTIA
Deliverable D21, Jan. 2003;
www.maftia.org/maftia/deliver-
ables/D21.pdf.

3. R. Stroud et al., “A Qualitative
Analysis of the Intrusion-Tolerant
Capabilities of the MAFTIA
Architecture,” Proc. Int’l Conf. De-
pendable Systems and Networks (DSN
04), 2004, pp. 453–461.

4. M. Correia, P. Verissimo, and N.F.
Neves, “The Design of a COTS
Real-Time Distributed Security
Kernel,” Proc. 4th European Depend-
able Computing Conf., Springer Ver-
lag, 2002, pp. 234–252.

5. Y. Deswarte et al., “An Intrusion-
Tolerant Authorization Scheme for
Internet Applications,” Proc. Int’l
Conf. Dependable Systems and Net-

works, IEEE CS Press, 2002, pp.
C1.1–C1.6.

6. P. Veríssimo et al., “Intrusion-Tol-
erant Middleware: The MAFTIA
Approach,” tech. report DI/FCUL
TR 04–14, Dept. of Informatics,
Univ. of Lisbon, Nov. 2004.

7. P. Verissimo, “Uncertainty and
Predictability: Can They Be Rec-
onciled?” Future Directions in Dis-
tributed Computing, LNCS 2584,
Springer-Verlag, 2003, pp.
108–113.

8. N.F. Neves, M. Correia, and P.
Verissimo, “Solving Vector Con-
sensus with a Wormhole,” IEEE
Trans. Parallel and Distributed Sys-
tems, vol. 16, no. 12, 2005, pp.
1120–1131.

9. C. Cachin and J.A. Poritz, “Secure
Intrusion-Tolerant Replication on
the Internet,” Proc. Int’l Conf.
Dependable Systems and Networks,
IEEE CS Press, 2002, pp. 167–176.

10. M.J. Fischer, N.A. Lynch, and M.S.
Paterson, “Impossibility of Dis-
tributed Consensus with One
Faulty Process,” J. ACM, vol. 32,
no. 2, 1985, pp. 374–382.

11. C. Cachin, K. Kursawe, and V.
Shoup, “Random Oracles in Con-
stantinople: Practical Asynchronous
Byzantine Agreement Using Cryp-
tography,” Proc. 19th ACM Symp.
Principles of Distributed Computing,
ACM Press, 2000, pp. 123–132.

12. C. Cachin et al., “Secure and Effi-
cient Asynchronous Broadcast Pro-
tocols,” Advances in Cryptology,
LNCS 2139, J. Kilian, ed., Springer-
Verlag, 2001, pp. 524–541.

13. M. Correia et al., “Low Complex-
ity Byzantine-Resilient Consen-
sus,” Distributed Computing, vol. 17,
no. 3, 2005, pp. 237–249.

14. M. Correia et al., “Efficient Byzan-
tine-Resilient Reliable Multicast on
a Hybrid Failure Model,” Proc. 21st
IEEE Symp. Reliable Distributed Sys-
tems, IEEE CS Press, 2002, pp. 2–11.

15. M. Correia, N.F. Neves, and P.
Verissimo, “How to Tolerate Half
Less One Byzantine Nodes in
Practical Distributed Systems,”
Proc. 23rd IEEE Symp. Reliable Dis-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 61

On the Horizon

tributed Systems, IEEE CS Press,
2004, pp. 174–183.

Paulo E. Veríssimo is a professor at the
University of Lisbon Faculty of Sciences
and director of the LASIGE research lab-
oratory. His research interests include
architecture, middleware, and protocols
for distributed, pervasive, and embedded
systems, in the facets of real-time adapt-
ability, security, and fault and intrusion
tolerance (http://navigators.di.fc.ul.pt/).
Contact him via www.di.fc.ul.pt/~pjv.

Nuno F. Neves is an assistant professor
at the University of Lisbon, Portugal. His
research interests include security and
fault tolerance in parallel and distributed
systems. Neves has a PhD in computer
science from the University of Illinois at
Urbana-Champaign. He is a member of
the IEEE. Contact him via www.di.
fc.ul.pt\~nuno.

Christian Cachin is a research staff
member at the IBM Zurich Research Lab-

oratory. His research interests include
cryptographic protocols, security in dis-
tributed systems, and steganography.
Cachin has a PhD in computer science
from ETH Zürich. He is a member of the
IACR, ACM, and IEEE. Contact him via
www.zurich.ibm.com/~cca.

Jonathan Poritz is a lecturer at Colorado
State University. His research interests
include mathematical cryptography,
quantum computing, privacy technology,
trusted computing, and computer visual-
ization of geometry. Poritz has a PhD in
mathematics from the University of
Chicago. He is a member of the ACM and
the American Mathematical Society. Con-
tact him via www.poritz.net/jonathan.

David Powell is a “directeur de
Recherche CNRS” at LAAS-CNRS. His
research interests include distributed
algorithms for software-implemented
fault-tolerance, ad hoc networked sys-
tems, and critical autonomous robotic
systems. Powell has a PhD in computer
science from the Toulouse National Poly-

technic Institute. Contact him at David.
Powell@laas.fr.

Yves Deswarte is a “directeur de
recherche” at the CNRS Laboratory for
Analysis and Architecture of Systems. His
research interests include fault-tolerance,
security, and privacy in distributed com-
puting systems. Contact him at Yves.
Deswarte@laas.fr.

Robert Stroud is a reader in computing
science at the University of Newcastle
upon Tyne. His research interests include
security and fault-tolerance. Stroud has a
PhD in computing science from Univer-
sity of Newcastle upon Tyne. Contact him
via www.cs.ncl.ac.uk/people/r.j.stroud/.

Ian Welch is a lecturer at Victoria Uni-
versity, New Zealand. His research
interests include secure auctions, intru-
sion detection, aspect-oriented develop-
ment, and community computing. Welch
has a PhD from the University of New-
castle upon Tyne. Contact him at ian@
mcs.vuw.ac.nz.

62 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2006

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org
Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org
Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Southeast (product)
Bill Holland
Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@yahoo.com

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Steve Loerch
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email:
steve@didierandbroderick.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

A D V E R T I S E R / P R O D U C T I N D E X J U L Y / A U G U S T 2 0 0 6

Addison Wesley 5

ISSE 2006 11

LinuxWorld Conference & Expo 2006 13

Usenix Security Symposium 2006 Cover 4

Boldface denotes advertisements in this issue.

Advertising PersonnelAdvertiser Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org
Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

