
Efficient Byzantine-Resilient Reliable Multicast
on a Hybrid Failure Model�

Miguel Correia Lau Cheuk Lung Nuno Ferreira Neves Paulo Veŕıssimo
Faculdade de Ciências da Universidade de Lisboa

Bloco C5, Campo Grande, 1749-016 Lisboa - Portugal
�mpc,lau,nuno,pjv�@di.fc.ul.pt

Abstract

The paper presents a new reliable multicast protocol that
tolerates arbitrary faults, including Byzantine faults. This
protocol is developed using a novel way of designing secure
protocols which is based on a well-founded hybrid failure
model. Despite our claim of arbitrary failure resilience, the
protocol needs not necessarily incur the cost of “Byzantine
agreement”, in number of participants and round/message
complexity. It can rely on the existence of a simple dis-
tributed security kernel – the TTCB – where the participants
only execute crucial parts of the protocol operation, under
the protection of a crash failure model. Otherwise, partici-
pants follow an arbitrary failure model.

The TTCB provides only a few basic services, which al-
low our protocol to have an efficiency similar to that of ac-
cidental fault-tolerant protocols: for f faults, our protocol
requires f+2 processes, instead of 3f+1 in Byzantine sys-
tems. Besides, the TTCB (which is synchronous) allows se-
cure operation of timed protocols, despite the unpredictable
time behavior of the environment (possibly due to attacks on
timing assumptions).

1 Introduction

Protocols that are able to tolerate Byzantine faults have
been extensively studied in the past 20 years [9, 17], and
they have been applied to a number of well-known prob-
lems, such as consensus and group communication primi-
tives with different order guarantees. These protocols are
usually built for a system composed by a set of cooperating
processes (or machines) interconnected by a network. The
processes may fail arbitrarily, e.g., they can crash, delay or

�This work was partially supported by the EC, through project
IST-1999-11583 (MAFTIA), and by the FCT, through the Large-
Scale Informatics Systems Laboratory (LASIGE) and the project
POSI/1999/CHS/33996 (DEFEATS).

not transmit some messages, generate messages inconsis-
tent with the protocol, or collude with other faulty processes
with malicious intent. The synchrony assumptions about
the network and process execution have either been the syn-
chronous or the asynchronous models. Recent research in
this area, however, has mostly focused on asynchronous
systems, since this model is well-suited for describing net-
works like the Internet and other WANs with unpredictable
timeliness (examples can be found in [4, 18, 10, 8, 14, 3]).
The assumption of this model has also one added advantage
– the resulting protocol tolerates timing attacks.

Nevertheless, the asynchronous model has some draw-
backs, and among them is the constrain that it imposes on
the maximum number of processes that are allowed to fail
simultaneously. For instance, Bracha and Toueg showed
that, assuming Byzantine faults, it is impossible to send
reliable multicasts if there are more than � � ���

�
faulty

processes in a system with � processes [2]. Their proof
was valid even under strong assumptions about the network,
such as the availability of reliable authenticated channels.
The main problem with these constraints is that they are
difficult or impossible to substantiate in practical systems,
since malicious faults (attacks and intrusions) may be per-
formed by intelligent entities. If the machines contain a set
of common vulnerabilities, it is quite feasible to build a pro-
gram that is able to attack and compromise a large number
of nodes in a short time.

This paper describes a new reliable multicast protocol
for asynchronous systems with a hybrid failure model. The
basic idea of this type of model is to make distinct failure as-
sumptions about different components of the system, rang-
ing from arbitrary to fail-controlled. In our case, processes
and network can behave in a Byzantine way, however, we
assume the existence of a distributed security kernel that
can only fail by crashing. This kernel only provides lim-
ited functionality, but can be called by processes to execute
a few small steps of the protocol. By relying on this ker-
nel, our protocol is highly efficient, for instance in terms of

message complexity, when compared with traditional pro-
tocols. Moreover, it imposes constraints on the number of
process failures that are similar to accidental fault-tolerant
protocols: for � faults, our protocol requires � � � � �
processes, instead of � � �� � �. In reality, our protocol
does not impose a minimum number of correct processes.
However, in practice, we say that the number of processes
has to be � � � � � to denote the notion that the problem
is vacuous if there are less than two correct processes. This
was already pointed out by Lamport et al. [9].

The design and implementation of the security kernel
that is being considered, the Trusted Timely Computing
Base (TTCB), has been presented elsewhere [5]. Since this
kernel is both secure and timely, it can offer security and
time related services (see Section 2). These services can
be utilized in a useful way by the processes because, by
construction, the TTCB was implemented with the follow-
ing fundamental objectives in mind: 1) the TTCB is a dis-
tributed component, with limited services and functionality,
that resides inside potentially insecure hosts, yet is and re-
mains reliable, secure and timely; and 2) it is possible to en-
sure correct –reliable, secure, timely– interactions between
processes in the host, and that component.

The paper makes the following two main contributions:

� It presents a novel way of designing asynchronous
Byzantine-resilient protocols, which rely on a dis-
tributed security kernel to execute a few crucial steps.

� It describes a new reliable multicast protocol which is
highly efficient and imposes constraints on the number
of faulty processes in the order of � � � � �.

2 System Model and the TTCB

Figure 1 presents the architecture of the system. Each
host contains the typical software layers, such as the operat-
ing system and runtime environments, and an extra compo-
nent, the TTCB. The TTCB is a distributed entity with local
parts in the hosts and a control channel. The local parts,
or local TTCBs, are computational components with activ-
ity, conceptually separate from the hosts’ operating system.
The control channel is a private communication channel or
network that interconnects the local TTCBs. It is conceptu-
ally separated from the payload network, the network used
by the hosts to communicate. With the exception of the
TTCB, the whole system is assumed to be asynchronous.
We can make working assumptions on message delivery de-
lays; they may even hold many times; we can (and will) use
them to ensure system progress; but we can never assume
that bounds are known or even exist, for message delivery or
for the interactions between a process and the local TTCB.

The following sections describe the TTCB respectively
from the point of view of security and timeliness.

� � � � � � � �

� � � 	
 � �
 � �
 � � � � � � 	

� � � � � � �
� � � �

� � � 	 � �

� � � � � � � �

� � � 	
 � �
 � �
 � � � � � � 	

� � � � � � �
� � � �

� � � 	 � �

� � � � � � � �

� � � 	
 � �
 � �
 � � � � � � 	

� � � � � � �
� � � �

� � � 	 � �

� � � 	 � � � � � � � � � � �

� � � � � � � � � 	 ! � � "

Figure 1. System architecture with a TTCB.

2.1 TTCB and Security

Most of the research and engineering on security aims
at making complete systems secure, or at building concepts
and mechanisms useful to reach this goal. The construction
of a secure system is a hard task as the constant news of suc-
cessful attacks show. In our work with the TTCB, however,
we have shown that it is feasible to build a secure distributed
component with limited functionality [5].

The idea of designing protocols with the assistance of
a secure component is novel, and relies on the concept of
hybrid failure assumptions. Fault-tolerant systems are usu-
ally built using either arbitrary or controlled failure assump-
tions. Arbitrary failure assumptions consider that compo-
nents can fail in any way, although in practice constraints
have to be made. These assumptions are specially ade-
quate for systems with malicious faults –attacks and intru-
sions [16]– since these faults are induced by intelligent en-
tities, which are hard to restrict and model. Byzantine pro-
tocols follow this type of assumption since they consider
that processes can fail arbitrarily, although they put limits
on the number of processes that are allowed to fail. Con-
trolled failure assumptions are used for instance in systems
where components can only fail by crashing. Hybrid failure
assumptions bring together these two worlds: some compo-
nents are assumed to fail in a controlled way, while others
may fail arbitrarily. The TTCB is suited for this type of sys-
tems because it only fails by crashing, and the rest of the
system, e.g., the payload network, processes, and operating
systems, can follow an arbitrary failure model.

The protocol uses only two TTCB’s security-related ser-
vices. The Local Authentication service allows processes to
communicate securely with the TTCB. The service authen-
ticates the local TTCB before the process, and establishes a
shared symmetric key between both [5].

The Trusted Block Agreement service is the main build-
ing block for secure protocols. It delivers a value obtained
from the agreement of values proposed by a set of pro-
cesses. The values are blocks with limited size, so this
service cannot be used to make all agreement related op-
erations of the system, but only to do critical steps of the

protocols.
The agreement service (for short) is formally defined

in terms of three functions: TTCB propose, TTCB decide
and decision. A process proposes a value when it calls
TTCB propose. A process decides a result when it calls
TTCB decide and receives a result. The function decision
defines how the result is calculated in terms of the inputs
to the service. The value is a “small” block of data with
fixed length (currently 160 bits). The result is composed by
a value and two masks with one bit per process involved in
the service. Formally, the agreement service is defined by
the following properties:

� Termination. Every correct process eventually decides
a result.

� Integrity. Every correct process decides at most one
result.

� Agreement. If a correct process decides result, then all
correct processes eventually decide result.

� Validity. If a correct process decides result then result
is obtained by applying function decision to the values
proposed.

� Timeliness. Given an instant ������ and a known con-
stant ����������, a process can decide by ������ �
����������.

It is assumed that a correct process is capable of se-
curely calling the interface of the local TTCB, i.e., an at-
tacker can not systematically intercept, delay or substi-
tute without detection the information exchanged between
the process and the local TTCB (see discussion is Sec-
tion 2.3). The last property, Timeliness, only guarantees that
by ����������������� the decision is available at the local
TTCB. Since the environment is asynchronous, it will prob-
ably take longer for the process to obtain the result (a call
to function TTCB decide can be arbitrarily delayed).

The interface of the agreement service has two functions:

out �TTCB propose(eid, elist, tstart, decision, value)

result �TTCB decide(eid, tag)

A process calls TTCB propose to propose its value. ��	
is the unique identification of a process before the TTCB,
obtained using the Local Authentication Service. �
��� is
a list with the eids of the processes involved in the agree-
ment. ������ is a timestamp with the following objective.
Ideally the agreement should be executed when all pro-
cesses in �
��� proposed their value. However, if the ser-
vice was to wait for all processes to propose, a malicious
process would be able to postpone the service execution
eternally simply by not proposing its value. The purpose
of ������ is to avoid this problem: when all processes pro-
posed, the service starts; however, if the service is not ini-
tiated by ������, then it starts at that instant and no more

proposals are accepted. A proposal made after ������ is re-
jected and an error is returned. decision indicates the func-
tion that should be used to calculate the value that will be
decided (the TTCB offers a limited set). value is the value
proposed. Function TTCB propose returns a structure ���
with two fields: out.error is an error code and out.tag is
a unique identifier of the execution of the agreement. The
TTCB knows that two calls to propose made by different
processes pertain to the same agreement execution if they
have the same value for (elist, tstart, decision).

Processes call TTCB decide to get the result of the
agreement. �� is the unique identifier returned by
TTCB propose, and is used to specify the agreement in-
stance. result is a record with four fields: result.error
gives an error code; result.value is the value decided;
result.proposed-ok is a mask with one bit per process in
�
���, where each bit indicates if the corresponding process
proposed the value that was decided or not; result.proposed-
any is a similar mask but that indicates which processes pro-
posed any value.

2.2 TTCB and Time

From the point of view of time, the objective of the
TTCB is to support systems with partial-synchronous mod-
els. Research in distributed systems has traditionally been
divided between two canonical models: fully synchronous
and fully asynchronous. Partial-synchronous models try to
give the best of both worlds, allowing timeliness specifica-
tions but accepting that they can fail [22, 6].

The TTCB provides a set of time services whose main
objective is precisely to detect the failure of timeliness spec-
ifications. This is only possible because the TTCB is timely,
i.e., the TTCB is a real-time (synchronous) component.
Many of the time related ideas and services of the TTCB
were based on the work of the Timely Computing Base [23].

The protocol presented in this paper uses a single time
service – the Trusted Absolute Timestamping Service. This
service provides globally meaningful timestamps. It is pos-
sible to obtain timestamps with this characteristic because
local TTCBs clocks are synchronized.

2.3 Processes and Failures

A process is correct if it always follows the protocol until
the protocol completion. There are several circumstances,
however, that might lead to a process failure. In an arbitrary
failure model, which is the model being considered in this
paper, no restrictions are imposed on process failures, i.e.,
they can fail arbitrarily. A process can simply stop work-
ing, or it can send messages without regard of the protocol,
delay or send contradictory messages, or even collude with
other malicious processes with the objective of breaking the

protocol. In the rest of this section we will look into a few
examples of attacks that are specific to our architecture, and
that might lead to the failure of the corresponding process.

A personification attack can be made by a local adver-
sary if it is able to get the pair ���	� �������, which lets a
process communicate securely with the local TTCB. Be-
fore a process starts to use the TTCB, it needs to call the
Local Authentication Service to establish a secure channel
with the local TTCB. The outcome of the execution of this
procedure is a pair ���	� �������, where ��	 is the identifier
of the process and ������ is a symmetric key shared with
the local TTCB. If an attacker penetrates a host and obtains
this pair, it can impersonate the process before the TTCB
and the TTCB before the process.

Another personification attack is possible if the attacker
obtains the symmetric keys that a process shares with other
processes. In this case, the attacker can forge some of the
messages sent between processes. Most of the messages
transmitted by the protocol being proposed do not need to
be authenticated and integrity protected because corruptions
and forgeries can be detected with the help of the TTCB.
The only exception happens with the acknowledgments sent
by the protocol, where it is necessary to add a vector of
message authentication codes. A successful attack to a host
and subsequent disclosure of the shared keys of a process,
allows an attacker to falsify some acknowledgements. If the
keys can be kept secret, then he or she can only disrupt or
delay the communication, in the host or the network.

A denial of service attack happens if an attacker prevents
a process from exchanging data with other processes by
systematically disrupting or delaying the communication.
In asynchronous protocols typically it is assumed that mes-
sages are eventually received (reliable channels), and when
this happens the protocol is able to make progress. To im-
plement this behavior processes are required to maintain a
copy of each message and to keep re-transmitting until an
acknowledgement arrives (which might take a long time,
depending on the failure). In this paper we decided to take
a different approach: if an attacker can systematically dis-
rupt the communication of a process, then the process is
considered failed as soon as possible, otherwise the attacker
will probably disturb the communication long enough for
the protocol to become useless. For example, if the pay-
ment system of an e-store is attacked and an attempt of pay-
ing an item takes 10 hours (or 10 days) to proceed, that is
equivalent to a failure of the store.

In channels with only accidental faults it is usually con-
sidered that no more than �	 messages are corrupted/lost
in a reference interval of time. �	 is the omission degree
and tests can be made in concrete networks to determine
�	 with any desired probability [24]. If a process does
not receive a message after �	 � � retransmissions from
the sender, with �	 computed considering only accidental

faults, then it is reasonable to assume that either the pro-
cess crashed, or an attack is under way. In any case, we will
consider the receiver process as failed. The reader, however,
should notice that �	 is just a parameter of the protocol. If
�	 is set to a very high value, then our protocol will start to
behave like the protocols that assume reliable channels.

Note that the omission degree technique lies on a syn-
chrony hypothesis: we ‘detect’ omissions if a message does
not arrive after a timeout longer than the ‘worst-case de-
livery delay’ (the hypothesis). Furthermore, we ‘detect’
crash if the omission degree is exceeded. In our environ-
ment (since it is asynchronous, bursts of messages may be
over-delayed, instead of lost) this artificial hypothesis leads
to forcing the crash of live but slow (or slowly connected)
processes. There is nothing wrong with this, since it allows
progress of the protocol, but this method is subject to in-
consistencies if failures are not detected correctly. In our
system, we rely on the timing failure detector of the TTCB
to ensure complete and accurate failure detection amongst
all participants [23], and feed a membership service com-
plementing the reliable multicast protocol being described.
These mechanisms are out of the scope of the present pa-
per, but substantiate the correctness of the omission degree
technique for asynchronous environments.

3 Protocol Definition and Properties

In each execution of a multicast there is one sender pro-
cess and several recipient processes. A message trans-
mitted to a group should be delivered to all member pro-
cesses (with the limitations mentioned below), including the
sender. No assurances, however, are provided about the or-
der of message delivery. Each process can deliver its mes-
sages in a distinct order. In the rest of the paper, we will
make the classical separation of receiving a message from
the network and delivering a message – the result of the
protocol execution.

Informally, a reliable multicast protocol enforces the fol-
lowing [2]: 1) all correct processes deliver the same mes-
sages, and 2) if a correct sender transmits a message then
all correct processes deliver this message. These rules do
not imply any guarantees of delivery in case of a malicious
sender. However, one of two things will happen, either the
correct processes never complete the protocol execution and
no message is ever delivered, or if they terminate, then they
will all deliver the same message. No assumptions are made
about the behavior of the malicious (recipient) processes.
They might decide to deliver the correct message, a distinct
message or no message.

Formally, a reliable multicast protocol has the properties
below [7]. The predicate ���	����� gives the message
field with the sender, and ������� gives the “group” of
processes involved, i.e., the sender and the recipients (note

BRM-M Sender and Recipient protocol
1 // ——— Phase 1 ———
2 if I am the sender then // SENDER process
3 M := (DAT, my-eid, elist, TTCB getTimestamp() + �� , data);
4 multicast M to elist except sender; n-sends := 1;
5 else // RECIPIENT processes
6 read blocking(M); n-sends := 0;
7 propose := TTCB propose(M.elist, M.tstart,

TTCB TBA RMULTICAST, H(M));
8 do decide:=TTCB decide(propose.tag);

while (decide.error ��TTCB TBA ENDED);
9 if (decide.proposed-ok contains all recipients) then deliver M; return;
10 // ——— Phase 2 ———
11 M-deliver :=�;
12 mac-vector := calculate macs of (ACK, my-eid, M.elist, M.tstart,

decide.value);
13 M-ack := (ACK, my-eid, M.elist, M.tstart, mac-vector);
14 n-acks := 0; ack-set := eids in decide.proposed-ok;
15 t-resend := TTCB getTimestamp();
16 do
17 if (M.type = DAT) and (H(M) = decide.value) then
18 M-deliver := M;
19 ack-set := ack-set � �my-eid�;
20 if (my-eid �� decide.proposed-ok) and (n-acks � Od+1) then
21 multicast M-ack to elist except my-eid; n-acks := n-acks + 1;
22 else if (M.type = ACK) and (M.mac-vector[my-eid] is ok) then
23 ack-set := ack-set � �M.sender�;
24 if (M-deliver �� �) and (TTCB getTimestamp() � t- resend) then
25 multicast M-deliver to elist except (sender and eids in ack- set);
26 t-resend := t-resend + Tresend; n-sends := n-sends + 1;
27 read non blocking(M); // sets M = � if no messages to be read
28 while (ack-set does not contain all recipients) and (n-sends � Od+1);
29 deliver(M-deliver);

Figure 2. BRM-M protocol.

that we consider that the sender also delivers).

� Validity: If a correct process multicasts a message M,
then some correct process in ������� eventually de-
livers M.

� Agreement: If a correct process delivers a message M,
then all correct processes in ������� eventually de-
liver M.

� Integrity: For any message M, every correct process �
delivers M at most once and only if � is in �������,
and if ���	����� is correct then M was previously
multicast by ���	�����.

4 The BRM-M Protocol

The Byzantine Reliable Multicast BRM-M protocol is
executed in two phases. In the first, the sender multicasts
the message one time for the recipients, and then it securely
transmits a hash code through the TTCB agreement service.
This hash code is used by the receivers to ensure the in-
tegrity and authenticity of the message. If there are no at-
tacks and no congestion in the network, with high probabil-
ity the message is received by all recipients, and the proto-
col can terminate immediately. Otherwise, it is necessary to

enter the second phase. Here, processes retransmit the mes-
sage until either a confirmation arrives or the �	 � � limit
is reached.

Figure 2 shows an implementation of the protocol.
A message consists of a tuple with the following fields
������ ���	��� �
���� ������� 	����. ���� indicates if it is
a data message (DAT) or an acknowledgement (ACK).
���	�� is the identifier of the sender process, and 	��� is
either the information given by the application or a vector
of MACs (see below). �
��� is a list of ��	’s with the for-
mat accepted by the TTCB agreement service. The first
element of the list is the ��	 of the sender, the others are
the ��	 of the receivers. ������ is the timestamp that will
be given to the agreement service. Each execution of the
protocol is identified by ��
���� �������. The protocol uses
two low level read primitives, one that only returns when
a new message is available, ���	 �
�������, and another
that returns immediately either with a new message or with
a non-valid value (�) to indicate that no message exists,
���	 ��� �
�������. These two primitives only read mes-
sages with the same value of ��
���� ������� which corre-
spond to a given instance of the protocol execution. Other
values of the pair are processed by other instances of the
protocol. We assume that there is a garbage collector that
throws away messages for instances of the protocol that
have already finished running (e.g., delayed message re-
transmissions). This garbage collector can be constructed
by keeping in a list the identifiers of the messages already
delivered and comparing these with the arriving messages.

With the exception of the beginning, the code presented
in the figure is common both to the sender and the recipi-
ents. If the process is a sender, it constructs and multicasts
the message to the receivers (lines 3-4). ������ is set to the
current time plus a delay ��. �� should be proportional to
the average message transmission time, i.e., it should be cal-
culated in such a way that there is a reasonable probability
of message arrival before ������.

Recipient processes start by blocking, waiting for a mes-
sage arrival (line 6). Depending on whether there are or
not message losses, the received message might be of type
��� or ���, or a corrupted message with the fields
��
���� ������� correct. The variable n-sends contains the
number of messages that were multicast (lines 4 and 6).
Next, both sender and recipients propose the hash of the
message, ����, to the agreement service (� is the mes-
sage transmitted by the sender, or the first message received
by the recipient), and then they block waiting for the result
of the agreement (line 7-8). The decision function used by
the protocol, ���� ��� �������� � , selects as
result the value proposed by the first process in �
���, which
in our case is the sender. A hash function is basically a
one-way function that compresses its input and produces a
fixed sized digest (e.g., 128 bits for MD5). We assume that

� �

� #

� �

� $

� � � �

� � % � � 	
 � � � 	 & %

� � � � � � ' � � � � � � 	
� � � �
 � �

	 � 	 � � 	

� �
 � �
 � � � (� ' � � � �) � � * � + � "

& � (� �
 � � � �
� � � � , - � � - � � �) �) % * *

� � � � , � � �
 � �) �) % * * & � (� �

Figure 3. Protocol execution (best case).

an attacker is unable to subvert the cryptographic proper-
ties of the hash function, such as weak and strong collision
resistance [12]. Since the system is asynchronous, there
is always the possibility, although highly improbable, that
the sender experiences some delay and it tries to propose
after ������. In this case, ���� ������� will return the
error ���� � ���� !"#��!� and the sender pro-
cess should abort the multicast, and the application can retry
the multicast later (for simplicity this condition is omitted
from the code). If all processes proposed the same hash of
the message, all can deliver and terminate (line 9). Recall
that field proposed-ok indicates which processes proposed
the same value as the one that was decided, i.e., ����.
Figure 3 illustrates an execution where processes terminate
after this first phase of the protocol.

The second phase is executed if for some reason one or
more processes did not propose the hash of the correct mes-
sage by ������. Variable M- deliver is used to store the mes-
sage that should be delivered, and is initialized to a value
outside the range of messages (line 11). The protocol uti-
lizes message authentication codes (MAC) to protect ACK
messages from forgery [12]. This type of signature is based
on symmetric cryptography, which requires a different se-
cret key to be shared between every pair of processes. Even
though, MACs are not as powerful as signatures based on
asymmetric cryptography, they are sufficient for our needs,
and more importantly, they are several orders of magnitude
faster to calculate. Since ACKs are multicast to all pro-
cesses, an ACK does not take a single MAC but a vector of
MACs, one per each pair (sender of ACK, other process in
�
���) [4]. A MAC protects the information contained in the
tuple (ACK, my-eid, M.elist, M.tstart, decide.value), and is
generated using the secret key shared between each pair of
processes (lines 12-13). Next, processes initialize variables
n-ack and ack-set (line 14). The first one will count the
number of ACKs that have been sent. The second one will
store the eid of the processes that have already confirmed

the reception of the message, either by proposing the correct
���� to the agreement (line 14) or with an acknowledge
message. t-resend indicates the instant when the next re-
transmission should be done (line 15). It is initialized to the
current time, which means that there will be retransmission
as soon as possible.

The loop basically processes the arriving messages (lines
17-23), does the periodic retransmissions (lines 24-26), and
reads new messages (line 27). The loop goes on until�	��
messages are sent or all recipients acknowledged the recep-
tion of the message (line 28).

� �

� #

� �

� $

� � � �

� � % � � 	
 � � � 	 & %

� � � � � � ' � � � � � � 	
� � � �
 � �

	 � 	 � � 	 	 � 	 � � 	 � . � � � ' � � � � � � 	

� � ' � � � � � � 	 � �
 � �
 � � � (� ' � � � �) � � * � + � �

& � � � � 	 � � � � � � ' �

& � (� �
 � � � �

� � � � , - � � - � � �) �) % * *

� � � � , � � �
 � �) �) % * * & � (� �

& � � � /

Figure 4. Protocol execution.

Figure 4 represents an execution of the protocol. The
sender multicasts the message once, P2 receives it in time
to propose ����, P3 receives the message late and P4
does not receive. When the agreement terminates all pro-
cesses except P4 have the message and get the result from
the TTCB (P4 does not even know that the protocol is be-
ing executed). At this point, by observing the result of the
agreement, all become aware that only P1 and P2 proposed
the hash. Therefore, both P1 and P2 multicast the message
to P3 and P4. P3 multicasts an ACK to all processes con-
firming the reception and sends the message to P4. P1 ter-
minates at this moment because it has already sent the mes-
sage �	 � � times. The first message P4 receives is the
ACK sent by P3. P4 saves it in ack-set and gets the result
of the agreement. Then it receives the right message, and
multicasts an ACK. At this moment all processes terminate.

5 Protocol Proof

This section proves that the protocol is a reliable mul-
ticast and tolerates � failures out of � � � processes. In
fact the protocol tolerates any number of faulty processes
but the problem is vacuous if there are less than two correct
processes. In those situations, the protocol definition does
not impose any particular behavior.

In Section 2.3 we exemplified the cases in which a pro-
cess was failed. Here we formalize those cases as a set of

conditions. A process is failed (or not correct) if:

� F1. The process does not follow the protocol or it
crashed.

� F2. The process can not communicate with the TTCB
or is impersonated by an attacker, e.g., if the attacker
managed to capture the process’ pair (eid, secret).

� F3. An attacker manages to falsify a MAC that should
have been created by the process, e.g., if the attacker
discovers one of the processes’ symmetric keys.

� F4. The process can not send or receive successive
copies of a message because its communication is sys-
tematically disrupted by an attacker.

� F5. The process does not get the result of an agreement
because the TTCB discarded that result (the TTCB dis-
cards results after some time).

Theorem 1 BRM-M is a reliable multicast protocol that
tolerates � failed processes out of � � � � � processes.

Proof. The theorem is valid if the protocol verifies the
three properties of Validity, Agreement and Integrity as de-
fined previously (Section 3). The proof is developed in such
a way that it imposes no limits on the number of faulty pro-
cesses (only requires two correct processes). We prove each
property in turn:

Validity. This property refers to a correct sender and a
correct recipient. If a correct sender multicasts a message
then a correct recipient in ������� (i.e., in �
���) will
eventually receive it, since F1, F2 and F4 are false. This
will happen either due to the message sent in the first mul-
ticast (line 4) or to a retransmission (line 25). The correct
recipient also receives the correct ����, since F1, F2 and
F5 are false and the TTCB Agreement Service gives correct
results. After receiving a message and the hash, the correct
recipient will eventually deliver the message (F1 and F2 are
false). This will happen either because phase 1 was com-
pleted successfully (line 9), or because it will eventually
leave the loop (possibly after �	 � � message multicasts)
and end phase 2 (line 29).

Agreement. First, let us prove that if a correct recipi-
ent � delivers a message � then all correct recipients in
������� eventually receive � . If � is correct then it fol-
lows the protocol (F1 is false) and it delivers � only after:
(1) receiving ACKs from all recipients in �������, i.e.,
in �
��� (lines 8-9 and 22-23); or (2) sending �	�� copies
of the message to every recipient from which it did not re-
ceive an ACK (line 24-26 and 28). If � receives an ACK
from another recipient then, either the ACK was genuine
(sent by the recipient) or fake. If the ACK was fake then
the corresponding recipient is not correct (condition F3) and
therefore the property of Agreement does not apply to this
process. In case (2), if � sends�	�� copies of a message to
a recipient then either that recipient receives the message or

it is failed and the property does not apply (F4). Therefore,
if � delivers � then all correct recipients receive � .

Now we have to prove that if a correct recipient � � re-
ceives � then it eventually delivers � . If �� is correct it
follows the protocol (condition F1) and it manages to com-
municate with the TTCB (condition F2). Since process �
delivered � , then it must have obtained a correct ����
from the TTCB agreement. Therefore, since condition F5
is false, �� can also get ���� from the TTCB agreement.
After receiving� and checking that it is the message corre-
sponding to ����, �� will eventually deliver the message.

This proves that if a correct recipient delivers � then
all correct recipients deliver � . A correct sender always
delivers the message so this proves that the protocol verifies
the Agreement property.

Integrity. For all messages with the same pair
��
���� �������, every correct process runs a single instance
of the protocol code. Additionally, an instance of the pro-
tocol always returns after delivering a message (lines 9 and
29). Therefore, every correct process delivers a message �
at most once. Any correct process not in �������, i.e.,
not in �
���, can not get ���� from the TTCB, therefore it
can not deliver � . Now let us prove the second part of the
property. The process ���	����� is the process whose ��	
is the first in �
���. The value returned by the agreement is
the ���� proposed by the first element in �
��� (decision
TTCB TBA RMULTICAST in line 7), i.e., by ���	�����
since it is correct (F2). Therefore, the value of ���� re-
turned by the agreement is always the value proposed by the
sender. Consequently, a correct process can deliver a mes-
sage� only if� was previously multicast by ���	�����,
since a correct process follows the protocol (F1) and checks
if the hash of the message it received is equal to ���� (as-
suming the hash function is collision resistant). �

6 Performance Evaluation

The experimental setting used to evaluate the protocol
consisted of a COTS-based implementation of the TTCB
described in [5]. The implementation of a TTCB has to be
made highly secure to ensure (with high coverage) that our
assumptions are not violated, otherwise, the protocol will
not behave as expected. Therefore, the conceptual separa-
tion between local TTCBs and the operating systems has to
be strongly enforced, since operating systems are in gen-
eral attackable. This means, for instance, that local TTCBs
could be implemented inside a hardware appliance board of
some kind. In this case, the communication between that
board and the rest of the host can be limited and therefore
attacks against it can be prevented. The first implementation
of the TTCB used a different approach. The local TTCB re-
sides inside of a Real Time Linux Kernel (RT-Linux) and
the separation is obtained by a set of security mechanisms.

This software-based version of the local TTCB has less cov-
erage of the security assumptions than the one based on
hardware, however, it is easier to deploy. Consequently, it
becomes simpler to freely distribute the TTCB by the re-
search community, allowing it to be tested and evaluated by
other research groups. The TTCB control channel must also
be protected. Currently, it is a dedicated Ethernet network,
but other solutions are possible [5].

More specifically the performance results were obtained
on a system with five PCs, each containing a Pentium III
processor running at 450 Mhz and 64 Mbytes of main mem-
ory. The operating system of all PCs was RT-Linux. The
PCs were connected by two 100 Mbps Fast-Ethernet LANs,
one for the general purpose payload network and another
for the internal control network of the TTCB. The proto-
col was implemented in C, compiled with the standard gcc
compiler. The hash function that was utilized was MD5.
Whenever possible, the communication among processes
was based on IP multicast. Five processes were used in the
tests, each one running on a distinct PC, and we assumed
a setting where all processes were correct, i.e., no failed
processes (f = 0). Throughout the experiments the value
adopted for the omission degree was two (Od = 2). Each
measurement was repeated at least 4500 times.

In the first set of experiments we tried to determine in
which phase the protocol terminated. From the observed re-
sults, it is possible to conclude that for reasonable values of
������, in the order of 2 ms, the protocol always terminates
in the first (optimistic) phase. We noticed that although IP
multicast is unreliable, all messages apparently reached the
processes, and for this reason, they were able to propose
their hash value before ������ (see Figure 3). If messages
were lost or if some of the processes were malicious, we
would expect that in most cases the second phase would
have had to be executed.

0

�

�

#

$

1

2

3

4

5

� 0

� �

� �

0 � 0 0 $ 0 0 2 0 0 4 0 0 � 0 0 0 � � 0 0 � $ 0 0

% � � � � ' � � �
 6 � � �) 7 � 	 � � *

�
�
�
��
'
�
��
�
�
�
�
��
�	

�

�
�

)�

�

�
�
�
�
�
�
�
*

� � % & %

8 � � % � � 	
 � � � 	

Figure 5. Five-node average delivery time for
different message sizes.

In the second set of experiments we obtained message
delivery times for the protocol. Since the protocol always
finishes at the end of the first phase, it is possible to use
the following methodology to calculate the delivery times.
One of the processes is randomly selected as the sender,
and then it reliably multicasts a message � of a given size.
Then, immediately after delivery, a single recipient is se-
lected to send a reply. This reply is an IP multicast for the
same set of processes, with a message of the same size. For
each execution of this procedure two times were measured:
the round-trip time and the recipient processing time. The
round-trip time (��) is obtained by the sender, and it cor-
responds to the time measured between the multicast and
the reception of the reply. The recipient processing time
(�����) is the time taken between the reception of the mes-
sage � in the recipient and its reply. This time includes
all tasks executed by the recipient, such as hash calculation,
and it corresponds mostly to the time waiting for the TTCB
Agreement Service, i.e., calling TTCB propose and waiting
for TTCB decide to return the result of the agreement (lines
7-8). If one assumes that an IP multicast always takes the
same amount of time, we can use the following formula to
calculate the protocols message delivery time:

�	 � ���	� ������$� � ����� (1)

Message size Time (usec) Standard dev

0 8273 2522
50 8335 2527
100 8378 2539
200 8426 2540
500 8727 2489
1000 9255 2524
1400 9634 2496

Table 1. Five-node average and standard de-
viation of the delivery time.

Figure 5 plots the average delivery time of the protocol
(with 5 processes) as a function of the message data size.
These results are compared with the unreliable IP Multicast
(over UDP sockets) performance, also implemented in C
and in the same environment of execution. In addition, Ta-
ble 1 presents the delivery times together with the standard
deviation for each package size.

The protocol overheads are mainly three: one IP mul-
ticast, some processing time (calculate the hash), and the
execution of one TTCB Agreement. Figure 5 shows that
the additional cost of the protocol in relation to an unreli-
able IP multicast is approximately 8 ms, on average. Since
the processing time is in order of a few tens of microsec-
onds, most of this cost corresponds to the waiting period
due to the TTCB Agreement. Consequently, we expect our
protocol will perform better as the TTCB is optimized, and
faster protocols are used to implement the agreement ser-

vice. Nevertheless, it should be noticed that the current
performance results are already very good when compared
with other Byzantine resilient protocols that have been pub-
lished in the literature. For instance, in [18], for a group of 5
processes and message sizes of 0 and 1 Kbytes, the delivery
times were approximately 47 and 50 ms, respectively.

0

1

� 0

� 1

� 0

� 1

0 � 0 0 $ 0 0 2 0 0 4 0 0 � 0 0 0

% � � � � ' � � � � � 7 � �

(
�
�
�
�
��
�	

�

�
�)
�

�

�
�
�
�
�
�
�
*

Figure 6. Five-node delivery times for 1000
messages with a size of 0 bytes.

The delivery time values exhibit a reasonably high stan-
dard deviation. Figure 6 displays the delivery times for
1000 executions of the protocol using a message data size of
0 bytes. The main explanation for this behavior is related to
the internal implementation of the agreement service of the
TTCB. Currently, it uses a time-triggered protocol where
interactions with the network only happen every 4 ms (e.g.,
it only reads messages from the network at the beginning of
the 4 ms interval). Therefore, an agreement will take more
or less time depending on the instant when processes pro-
pose their values within the 4 ms interval.

7 Related Work

There is a significant amount of work in the area of re-
liable broadcasts for distributed systems – most of it, how-
ever, has focused on benign failures and/or assumed a syn-
chronous model [7]. Reliable multicast protocols tolerat-
ing Byzantine faults make no assumptions about the behav-
ior of faulty processes (similar to “Byzantine agreement” in
the synchronous time model [9]). In asynchronous systems,
it was proved a theoretical maximum that less than a third
(� � ���

�
) process may be corrupted [2]. In our protocol,

with the support of the TTCB, we can overcome this limit,
and require only � � �� �.

The Rampart toolkit contains a reliable multicast pro-
tocol where processes communicate through authenticated

reliable channels and use public-key cryptography to digi-
tally sign some of the messages [18]. The protocol is based
on a simple echo protocol where the sender starts by mul-
ticasting a hash of the message, then it expects a confirma-
tion from a subset of the processes, and finally it multicasts
the message (this protocol improves the echo protocol by
Toueg [21] in terms of message complexity at the cost of
more computation). Rampart assumes a dynamic member-
ship provided by a protocol which also utilizes a three-phase
commit strategy [19]. Later, Malki and Reiter optimized the
Rampart protocol using a method of chaining acknowledg-
ments to amortize the cost of computing the digital signa-
tures through several messages [11]. Malkhi, Merrit and
Rodeh proposed a secure reliable multicast protocol based
on dissemination quorums, as a way to reduce delays spe-
cially in the case where � � � [10]. This protocol assumes
similar channels and uses public key signatures as the previ-
ous protocols, but considers, like in [11], static membership.

The SecureRing system provides a reliable message de-
livery protocol that uses public key cryptography and as-
sumes a fully connected network [8]. The multicast is im-
posed on a logical ring, where a token controls who can
send the messages. The Secure Trans protocol, which is
implemented in the SecureGroup system, uses retransmis-
sions and acknowledgments to achieve reliable delivery of
messages [14]. These acknowledgments are piggybacked
on messages that are themselves broadcasted. Each mes-
sage is digitally signed to ensure authenticity and integrity.
Both systems, SecureRing and SecureGroup, provide sup-
port for dynamic group membership changes.

There are some secure group communication systems
which consider a non Byzantine failure model: Horus, En-
semble and Secure Spread. These systems assume that com-
munication can be attacked but that hosts do not fail. Secure
multicast protocols based on message authentication codes
are given explicitly for Horus and Secure Spread [20, 1].

The BRM-M protocol does not need public key cryptog-
raphy, one of the main bottlenecks of group communica-
tion performance [4], since it uses the TTCB to securely ex-
change a digest of the message. In terms of the network we
have assumed unreliable channels, which results on a mes-
sage complexity proportional to the omission degree. This
paper does not discuss the membership service, but our pro-
tocol is suited for dynamic groups, such as those based on
the MAFTIA architecture [16].

There is a body of research, starting with [13], on hybrid
failure models that assume different failure type distribu-
tions for different nodes. For instance, some nodes are as-
sumed to behave arbitrarily while others are assumed to fail
only by crashing. Such a distribution might be hard to pre-
dict in the presence of malicious intelligent entities, unless
their behavior is constrained in some manner. Our work
might best be described as architectural hybridization, in

the lines of works such as [15, 25], where failure assump-
tions are in fact enforced by the architecture and the con-
struction of the system components, and thus well-founded.

8 Conclusion

The paper presents a new reliable multicast protocol for
asynchronous systems with an hybrid failure model. This
type of failure model allows some components to fail in
a controlled way while others may fail arbitrarily. In our
case, we assume the existence of a simple distributed secu-
rity kernel, the TTCB, that can only fail by crashing, while
the rest of the system can behave in a Byzantine way. By
relying on the services of the TTCB, the protocol exhibits
excellent behavior in terms of time and message complexity
when compared with more traditional Byzantine protocols.
Moreover, it only requires � � � � � correct processes,
instead of the usual � � �� � �.

Besides describing a novel Byzantine-resilient protocol,
the paper introduces the design of protocols based in our
architectural hybrid failure model and, more specifically,
the design of protocols using our distributed security ker-
nel, the TTCB. In the future, we will pursuit these design
principles to develop a complete suite of Byzantine-resilient
group communication protocols, which is being produced in
the context of project MAFTIA.

References

[1] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru,
T. Schlossnagle, J. Schultz, J. Stanton, and G. Tsudik. Se-
cure group communication in asynchronous networks with
failures: Integration and experiments. In Proc. the 20th
IEEE International Conference on Distributed Computing
Systems, pages 330–343, Apr. 2000.

[2] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM, 32(4):824–840,
Oct. 1985.

[3] C. Cachin, K. Kursawe, and V. Shoup. Random oracles
in Contanstinople: Practical asynchronous Byzantine agree-
ment using cryptography. In Proc. the 19th ACM Symposium
on Principles of Distributed Computing, 2000.

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In Proc. the Third Symposium on Operating Systems Design
and Implementation, Feb. 1999.

[5] M. Correia, P. Verı́ssimo, and N. F. Neves. The design of a
COTS real-time distributed security kernel. In Proc. Fourth
European Dependable Computing Conference, Oct. 2002.

[6] F. Cristian and C. Fetzer. The timed asynchronous system
model. In Proc. the 28th IEEE International Symposium on
Fault-Tolerant Computing, pages 140–149, 1998.

[7] V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcasts and related problems. Technical Report
TR94-1425, Cornell University, Department of Computer
Science, May 1994.

[8] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The
SecureRing protocols for securing group communication. In
Proc. the 31st Annual Hawaii International Conference on
System Sciences, volume 3, pages 317–326, Jan. 1998.

[9] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Lan-
guages and Systems, 4(3):382–401, July 1982.

[10] D. Malkhi, M. Merrit, and O. Rodeh. Secure reliable mul-
ticast protocols in a WAN. In International Conference on
Distributed Computing Systems, pages 87–94, 1997.

[11] D. Malkhi and M. Reiter. A high-throughput secure reli-
able multicast protocol. The Journal of Computer Security,
5:113–127, 1997.

[12] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1997.

[13] F. Meyer and D. Pradhan. Consensus with dual failure
modes. In Proc. the 17th IEEE International Symposium
on Fault-Tolerant Computing, July 1987.

[14] L. E. Moser, P. M. Melliar-Smith, and N. Narasimhan. The
SecureGroup communication system. In Proc. the IEEE
Information Survivability Conference, pages 507–516, Jan.
2000.

[15] D. Powell, editor. Delta-4 - A Generic Architecture for De-
pendable Distributed Computing. ESPRIT Research Re-
ports. Springer-Verlag, Nov. 1991.

[16] D. Powell and R. J. Stroud, editors. MAFTIA: Conceptual
Model and Architecture. Project MAFTIA IST-1999-11583
deliverable D2. Nov. 2001.

[17] M. O. Rabin. Randomized Byzantine Generals. In Proc. the
24th Annual IEEE Symposium on Foundations of Computer
Science, pages 403–409, 1983.

[18] M. Reiter. Secure agreement protocols: Reliable and atomic
group multicast in Rampart. In Proc. the 2nd ACM Con-
ference on Computer and Communications Security, pages
68–80, Nov. 1994.

[19] M. K. Reiter. A secure group membership protocol. IEEE
Transactions on Software Engineering, 22(1):31–42, Jan.
1996.

[20] M. K. Reiter, K. P. Birman, and R. van Rennesse. A security
architecture for fault-tolerant systems. ACM Transactions
on Computer Systems, 12(4):340–371, Nov. 1994.

[21] S. Toueg. Randomized byzantine agreements. In Proc. the
3rd ACM Symposium on Principles of Distributed Comput-
ing, pages 163–178, Aug. 1984.

[22] P. Verı́ssimo and C. Almeida. Quasi-synchronism: a step
away from the traditional fault-tolerant real-time system
models. Bullettin of the Technical Committee on Operating
Systems and Application Environments, 7(4):35–39, 1995.

[23] P. Verı́ssimo, A. Casimiro, and C. Fetzer. The Timely Com-
puting Base: Timely actions in the presence of uncertain
timeliness. In Proc. the International Conference on De-
pendable Systems and Networks, pages 533–542, June 2000.

[24] P. Verı́ssimo, L. Rodrigues, and M. Baptista. AMp: A highly
parallel atomic multicast protocol. In SIGCOMM, pages 83–
93, 1989.

[25] P. Verı́ssimo, L. Rodrigues, and A. Casimiro. Cesiumspray:
a precise and accurate global clock service for large-scale
systems. Journal of Real-Time Systems, 12(3):243–294,
1997.

