ReSIST: Resilience for Survivability in IST

A European Network of Excellence

Contract Number: 026764

Deliverable D12

Resilience-Building Technologies: State of Knowledge

Report Preparation Date: September 2006

Classification: Public Circulation

Contract Start Date: 1st January 2006

Contract Duration: 36 months

Project Co-ordinator: LAAS-CNRS

Partners:

Budapest University of Technology and Economics
City University, London
Technische Universitit Darmstadt

Deep Blue Srl
Institut Eurécom

France Telecom Recherche et Développement

IBM Research GmbH

Université de Rennes 1 — IRISA

Université de Toulouse III — IRIT

Vytautas Magnus University, Kaunas

Fundagao da Faculdade de Ciencas da Universidade de Lisboa
University of Newcastle upon Tyne

Universita di Pisa
QinetiQ Limited

Universita degli studi di Roma "La Sapienza"

Universitiat Ulm

University of Southampton

B

Information Society

Ia P

c—
_—
—
—
—
—
—
—
y 4
-

SIXTH FRAMEWORK PROGRAMME

CONTENTS:

D12: “Resilience-building Technologies: State of Knowledge”

INEFOAUCTION <.ttt sttt intro 1
Part Arch — Resilience Architecting and Implementation Paradigms...........c.ccccceeveevecveenene. arch 1
TNETOAUCTION ...ttt ettt ea et e bt e e b e e at e et e et e e bt e saeeenbeeteeaeeeaseebeenne arch 2
1 — Service Oriented ATCHITECTUIES.ccuervirieiiriieierteeieie ettt ettt ettt ss e e b e eseensesseeaeen arch 4
INETOAUCTION .ttt ettt sb et st eat et ebeentesbeeneesbeeneens arch 4
1.1 ReSEarch 0N SOA ..ot sttt st saeeeee st sreens arch 6
1.2 Recent research work in RESISTooooiiiiiiiiiieeeeeeeeeee e arch 10
2 — Mobile Services and their INfrastrucCtures..........ooceevieriieiieiieniese e arch 13
INEEOQUCHION ...ttt ettt sttt et sttt e eseesens arch 13
2.1 Fundamental research 1iNescoceeverieiienirieienieeeee e e arch 14
2.2 Recent research work in RESISTcoooiiiiiiiiiiieeeeeeeee e arch 16
3 — Building Resilient Architectures with Off-the-shelf Componentsccccovceevenincenennene. arch 18
INETOAUCTION ..ttt ettt e s et e et e e st e st e et e enbeannean arch 18
3.1 Lines of research on resilience with OTS componentscceveeeeveeneevenieneenen arch 20
3.2 Recent Research Work in ReSISTcc.ooieiiiiiiieiiiieieee e arch 23
4 — Intrusion Tolerant ATCRIECTUIES.ccveririerieriieiereeteete sttt sttt et eneens arch 26
INETOAUCHION ..ottt ettt ettt e et et e st e e e e et e enseenseesnseenseenseenneas arch 26
4.1 Intrusion-tolerance in COMPULING SYSEMSccueerureriieriierieeiieeieerieesieeeiie e eeee e arch 27
4.2 Intrusion-tolerance MeChaniSIMScceeverierierieriieiere ettt eee e arch 29
4.3 Examples of intrusion-tolerant systems and architecturesc.cceeereereereeeennenn. arch 31
4.4 Recent Research Work in ReSISTc.ooiiiiiiiiiiiiieeeeeeee e arch 32
CONCIUSIONSveeeieiiesiie ettt et et e et e et et e et e stt e et e e st esteesssessseenseasseesseessseanseanseanseenseesnsesssesssennsens arch 36
RETEICIICES ...ttt ettt ettt et e et e e bt et e e bt e bt e eaeesnbeenbeebeesneesnneensean arch 37
Part Algo — Resilience Algorithms and MechaniSms.............ccccociverieieieieiieseeeeeeeee v algo 1
INEEOAUCTION ...ttt ettt e b et e bt eetbeetbeesbeesbaesseessbeesbeesseesseesssesssesseesssessseasns algo 2
1- Byzantine Consensus in Asynchronous Message-Passing Systems: a
STV ..ttt et ettt et ettt e e at e e et et e e st e eateeateeab e e st e eateea bt e bt e eRteenteen bt eaneeenteneeeneesaeeenneenne algo 9
INEEOAUCTION ...ttt ettt ettt ettt e sttt et e e st entesbeeneesaesseenseseenne algo 9
1.1. Byzantine Consensus Definitions..........ccccueeieiiiiinieniiiiiiceseee et algo 10
1.2, FLP IMPOSSIDIIILY . ..veviieiiiiiieiteeiiecie ettt ettt et e stteseveesveesseesaesssessnessseenseens algo 12
1.3. Circumventing FLPcooiiiiiiiiiie e algo 13
1.4. Performance and Scalability...........ccooiiiiiiiieiieiie e algo 16
1.5. Related and Equivalent Problems.............cccoveeievienieienieieieceieeee e algo 17
CONCIUSION ...ttt ettt b et ettt e bt e e bt e et e et e bt e s bt e sabeeaneennean algo 18
2 — On-Line Diagnosis of Transients in Distributed SyStemsccceceeverierieneeieneneerieneeenns algo 19
INEEOAUCHION ...ttt ettt ettt e e et e e s st e e sseesseesseessaessseanseenseennean algo 19
2.1, BaCKGIOUNAooiiiiiiie ettt ettt algo 20
2.2. State of Knowledge in ReSISTooiiiiiiiiiiieeeeeeeteee e algo 21
2.3. On-going and Future DIr€Ctions..........ccceerieriieiiiiiieieesieesee et algo 24
3 — A Survey of Cooperative Backup Mechanisms...........cccceeevevieninienenieieneeeeieneeeeee e algo 26

RESIST D12 contents i

D12 Contents

3.1. Introduction and MOTIVALIONSccueeruierieeieeiieiiesteeie et e seee e enieeseeseeenbeeseeeneas algo 26
3.2. Characterization of Cooperative Backup Systemscccccevoeiviiiiiiiiiinieiiceieeee, algo 28
3.3. Existing Cooperative Backup Systems..........ccccceeiiiiiiiiiiiiiinciieeeeeesee e algo 31
3.4, Storage ManageImMENLtcccueeiuieiuiiiiieie ettt ettt ettt et ettt e st st e enaean algo 32
3.5. Dependability TEChNIQUES......c..coiiiiieiieriie e eiieieeste e sre e ebe e ee b e easeeneeas algo 34
CONCIUSION ...ttt ettt ettt et e et e bt e ste e e st e et e ete e seesneeenseenseenseesneesnseanseannean algo 38
4 - Wait-free objects: an introduction for the SOphomoreocceiiiiiiiiniiiniieeee e, algo 39
INETOAUCTION ..ttt ettt ettt et e bt e s ate et e enbeennean algo 39
4.1. Computation MOAELc.ccirieriiiiiierie ettt e algo 40
4.2. A very simple wait-free object: @ COUNLETccvvevvierieiiieieciiecee e algo 42
4.3. Another simple wait-free object: @ SPIttercceeevverieririie e algo 43
4.4. A less trivial wait-free object: a snapshot object..........coecvrieeiiiiiiiiiiieiieee e algo 45
4.5. A snapshot CONSIUCLIONoouiiiiiiiiieieetieiie ettt st algo 46
4.6. Proof of the CONSIIUCLIONeeiiiiieieie ittt algo 49
4.7. Our (2006) contribution to wait-free COMPULINGc.ccevverrreriiierrieriierieereereeeeeens algo 51
4.8. Scalability issues in wait-free COMPULINE......ccceevereerieririeneniee e algo 52
5 — Cooperation INnCentive SChEMESccceiiiiiiiiiiieteeece et algo 53
INETOAUCTION ..ttt ettt ettt e s e et e et e e st e st e enteenbeannean algo 53
5.1 APPIICALIONS ..vveviiiieiieeiieieste ettt ettt ettt ettt be st e beeseensesbeessenseeneensen algo 54
5.2. INCENEIVE SCHEMESccuviiiiiiiiciiiciietecte ettt e b b e esbeesaeennas algo 58
5.3. Validation tEChNIQUESooviriieieiieieieriieert ettt algo 68
(0103316 1 10 s B PRSPPI algo 74
6— Connectivity in Unstructured Overlay NetWorkscccceeiiiiiiiiiniiiieeeee e, algo 75
INEEOAUCTION ..ttt et be et e b eae e beeseeneesseennenes algo 75
6.1. Taxonomy of Overlay Maintenance Protocols...........ccoccvevciiriieciieiienienie e algo 76
6.2. ProtoCols DESCTIPLIONc..eeieieeiiieiiieiieeie ettt ettt e be et e e e algo 76
6.3. Protocols Evaluation...........ccoociiiiieiieiie ettt algo 81
(0103316 11 10 s B PRSPPI algo 86
7 — High assurance VOtING SYSIEIMS.ccueeueeruirteeierteeieetenteetentesseetensesssesessesssessesseensessesseensesseenes algo 87
INEEOAUCHION ...ttt et ettt e e b e et esae e s b e essaesseesseessbeessaenseensnas algo 87
7.1. The REQUITEIMENLS.cceieiieiieiieeiie et eeiee sttt steesteete bt e seteseaeebeesseesseeeeseenseenees algo 88
7.2. CryptographiC SCREIMEScevuiiiiieiieiie ettt s e e algo 89
7.3. Cryptographic PriMItIVES.c.eeiuiertieiieeitesieestteeite ettt e st e st e et e et e st e see et e ebeenneas algo 91
7.4. Voter-verifiable, cryptographic SChemes...........ceovvieriirieienieienecceee e algo 93
7.5. Scalability and Interoperabilityccccoeeeeiieiiienierie e algo 97
Conclusions and PrOSPECLSeecvieruieriierieeieerieerieesteeeteeteeteesteeseeesbeenbeeseesseesneesnseanneas algo 97
2SS 53 (S 1 o1 TSP algo 99
Part Socio — Resilient Socio-Technical SyStemS.........c.covvveeiiieciiiiciee e socio 1
Definition of @ SOCIO-teChNICAl SYStEIMevuiruiiiiiiieiiiieiere ettt ns socio 2
INEEOQUCTION ..ottt ettt ettt b ettt et sbesbestebeebesbesbens socio 2

1 — Understanding the structure and organisation of socio-technical systems: representation

ANA MNOACIIING ...ttt ettt et et e aeeste e beesstessseenseenseeseesneenseensnesanean socio 3
1.1. Elicitation and ODSEIrVALIONcc.uiiiiiiieiieiie ettt ettt seeeseee s socio 3
1.2. MOdelling the taSKc.eecieriiiieieriieieie sttt sttt ettt st naeseeeneens socio 4
1.3. MOdelling the deVICEccvuerieieiieeieie ettt ettt st ste e aeseeennens socio 5

RESIST D12 contents ii

D12 Contents

1.4. Modelling the user (syndetic modelling)...........ccceccverieriieiiienieie e socio 7
1.5, OPCN ISSUCS ... ueeutieiie et et ettt et ettt e st e et e bt e atesseeea bt e bt e aseesmteeabeeabeesseesnbeenbeenaean socio 7
2 — Evaluation and verification issues in resilience in socio-technical systems.......................... socio 10
INTEOQUCTION ..c.enteiieiieiectc ettt sttt sttt enes socio 10
2.1. Automation and function alloCationceecueririerienirnienieeeee e socio 11
2.2. Considering the user and usability evaluation............ccccceeeuveeienienienieeieeceeeeee socio 14
2.3, Safety ASSESSITIENILeeutietieiieeiie ettt et et te et ettt et e sateseteeate e bt ebeeseeesabeembeenseeseeenees socio 15
2.4. Formal verification of interactive SyStemScccceereerieeiiienienie et socio 19
2.5, ISSUES OF SCALEeevieuiiiriirtitetcteie sttt s sttt socio 20
2.6, SYStEM EVAIUATION.eevieiieieieieieeieeieeste et e eereeteetteseteseaeesseesseessaesssesssessseesseesssensns socio 21
CONCIUSIONS ...ttt eiie et et e et e sttt et e st e s ebe et e e aeesaeeesbeenseanseessaeesbeanseanseensaesssesnseenseenseensaennns socio 26
RETEICIICES ...ttt ettt et e s ate e st e et e e bt e s aeesateenbeebeenseenseenaes socio 27
Part Eval — Methods and Tools for Resilience Evaluationcccccoccvevnvineincccnccnne. eval 1
INEEOQUCTION ..ttt ettt ettt ettt eb e st e sttt sa et eneeees eval 2
1 — Compositional Modelling for Large and Evolving Systemsccccevvevierierieecieerieniee e eval 7
INTTOQUCTION ...ttt ettt ettt et st sb et eval 7
1.1. Model construction teChNIQUES...........ceverterieriirieieieeeeeee et eval 8
1.2. Solution approachiescecuiiiiiiiiee ettt ettt et s eval 13
1.3. Large and eVOIVING SYSTEIMSceeruiruieieriirieiesiieiesiteeteseeteesesseeseesesseensesseessessesseas eval 14
CONCIUSION. ...ttt ettt s eae bt aeaee eval 16
2 — Evaluation with respect to Malicious TRreatsc..ccvevierieiiieiiieiieeiecie e eval 17
INETOAUCHION ...ttt ettt et e e sebeasbeesseessaeesseenseenseesssessseensens eval 17
2.1. Security evaluation CTItETIA.eeiurreierieeriieeie et eite e ettt ettt e et eeaeas eval 17
2.2. Model-based eValluations...........cceeverierieieniinieieneeeeieeteetesteeaete et eeseeseaesesseeneas eval 18
2.3. Experimental @Valuationsc.ccceevvieriiiiiiiiieiieie et et sve e eveeseeesebeeveeaees eval 19
CONCIUSION. ...ttt ettt ettt ettt sb bbb eae bt saeaee eval 22
3 — Dependability Benchmarking............ccceccuiiviierieiiiiiecii ettt sene e s eval 24
INETOAUCTION ...ttt ettt e et e bt e s atesateenbeeseesnaeenteennean eval 24
3.1. Dependability benchmarking approaches...........cccceecvevuireeienieienieieseeeeeese e eval 24
3.2, Accidental fAUILS......cccociviririniiricicie e eval 27
3.3 INTIUSIONS .ttt ettt sttt et eb et b ettt eb ettt seeseeneebesuenee eval 29
CONCIUSION....c.vitenteiciieiieiietce et ettt st aeaee eval 30
4 — DIIVETSIEY +euveetieetieetteete et et e ettesateeateeateeteesateeateease et eenseeeneeenseanseenseenseeesseenseenseanseesseaseenseennsenn eval 32
INETOAUCTION ..ttt ettt et st e beesaeeeeteeae e eval 32
4.1, BACKEIOUNA ...ttt ettt ettt b e et ene s eval 32
4.2. Diverse parallel SYSTEIMScocuervirieriirieiirtieie sttt sttt ettt sbe et eval 35
4.3, Human-computer diVETSILYceevuirrierrieerieriieriesieeteeteesteestresseeseesseesseesssessseesens eval 39
4.4. Diversity in development to generate dependabilitycccccvvviriiieiieiienienienn. eval 39
4.5. DIVErSIty 1N AUZUITIENILS ...c..eeiutieiiietieitieeeteeteesttestteeiteeteebeasbeesaeeebeenbeesbeesneesnbeenbeenaeas eval 40
CONCIUSION ...ttt ettt b ettt ettt e bt e e bt e eabeeabeeabeesaeesaeeeneeennean eval 41
5 — DePendability CaSEScc.eeueruireieriieiieiietieteettete et ete sttt et e e e e st ebesseenbe s bt entesbeeneenbeeneeneenes eval 42
INTTOQUCHION ..ottt st s eaeas eval 42
I BT 1 o7 <SSP eval 42
5.2 SECUTILY CASES -.veeuveetieruieeteeteeitiesite et e it e sateeuteeateeseesaeesateeabeaseesaeesebeeabeeabeesaeesnseennean eval 43
(0103316 110 s PSP SUTPRRRR eval 44

RESIST D12 contents 1ii

D12 Contents

(07073167 1] 10 o PSR RRUR eval 46
| S 53 S) 1 Lo RSP STUPRURI eval 49
Part Verif — Methods and Tools for Verifying ReSilience..........c..coooovevieiiviiiciececieeeee verif 1
INTTOQUCTION ...ttt ettt sttt ettt b e eae et b b eneeneeuesaens verif 2
1 — Deductive Theorem PrOVING.........cccviiiiiiieiieiesie ettt ettt ae s teete e e ssaeseaeeanean verif 5
INETOAUCTION ...ttt et e et e b e s ate s teebeesbeeeateenteeaean verif 5
1.1. Deductive Theorem Proving for Fault-Tolerant Real-Time Systems........................ verif 7
Conclusions and Perspectivescocceveeierierieierie ettt sttt ettt s verif 11
2 = MOAE] CRECKINGveeviiiiieiiieiieeecte ettt ettt sbe et estaestbeasbeesseessaessaessbessseessaessaensns verif 13
INEOAUCTION ..ottt ettt et seee st e et eeste e saeseaesabeenseessaeseseenns verif 13
2.1. Abstraction in Model ChecKingcccocieiiiiiiiiieiiesie et verif 14
2.2. Process algebras and action-based model checking applied to
FAUIL-LOIETANT SYSLEIMSveeuveiieeieiieieeiesie ettt et te ettt ettt e st e et sbeeseetesseensesaeeneenee e verif 18
2.3. Model Checking for Exhaustive Fault Simulationccocoeceviniininiicineneeenn, verif 20
2.4. Case Studies in refinement-style Model Checking.........cccoceeviviivininiiniiniencnene verif 22
CONCIUSIONS ...ttt ettt ettt ettt et e sttt et e saeesebeeateeabeebeesseesmbeenseeaseesaeeenns verif 28
3 — Symbolic Execution and Abstract Interpretation............ceecueereerieniiiiie e verif 30
INEEOQUCHION ..ottt sttt st b et ens verif 30
3.1, Program SHCINEccveeeiiiiieiieeieereeteesieeeieesreeteete e tessbessbeesseesseesssessseesseesseessnas verif 30
3.2. Type Based ANALYSIScccuererirriiriiiiiierieeiesteeee ettt sttt et s verif 32
3.3, ADSLract INtETPIEtAtIONeeeietieetieeiiiete ettt ettt ettt et et e st e s eeeeeebeeeneas verif 33
CONCIUSIONS ...ttt ettt ettt ettt e et et e sateseeeeateenbeeseesseesabeenseeaseeseeeenns verif 36
4 — RODUSINESS TOSTIMNEZeeeutientieiiiieiietie sttt ettt ettt et et e bt e sateeee et e enbeesaeenaeeens verif 37
INTEOQUCTION ..ottt ettt ettt enes verif 37
4.1. Workload-based approaches............cceceeviirieieniiienenieeeeeeeee e verif 38
4.2. Faultload-based approachesccccceeviieriieriiieniesiecreeeeee et verif 38
4.3. Mixed Workload- and Faultload-based Approaches............ccccceevirriiiiieninninnnnns verif 41
Conclusions and PerSPeCtiVeceveeieiieierieeieiesieeieie ettt ste e saeseeens verif 46
ACKNOWIEAZEIMENES ..ottt ettt sttt sttt se et sbee e e saeenee s verif 47
5 — Verification of Systems Containing Cryptographyccccueecveeeiierienienieecieerie e e verif 48
INTTOAUCHION ...ttt et verif 48
5.1. Secure Channels as an Example of Cryptography within Larger Systems verif 48
5.2. Generalizing the EXamplecocoooiiiiiiiiiii e verif 49
5.3. Reactive SIMUulatabilityc.ccceeieiiiiieieiieieiceeee et verif 49
5.4, SYStEM MOAEL.......cciiiiieiieiie ettt s b e ebeenreennees verif 50
5.5. Individual Security Propertiesccuevuerieeiieeriieriierieeieeieesiee e sereeseeeseeesenesnneennas verif 51
5.6. DOleV-Ya0 MOMEISeeeiiiiiieiiieie ettt ettt et verif 52
CONCIUSION ...ttt ettt e sa e ettt e e bt e bt e sbeesabeemteenbeeseeeeaee verif 52
RELEICIICES ..c.venieiieiietit ettt ettt ettt sttt ebe bt st seebeeveene verif 54

RESIST D12 contents iv

APPENDIX CONTENTS:
Part ARCH

[Arief et al. 2006] B. Arief, A. Iliasov, and A. Romanovsky, "On Using the CAMA Framework for
Developing Open Mobile Fault Tolerant Agent Systems", Workshop on Software Engineering for Large-
Scale Multi-Agent Systems, pp. 29-35, May 2006.

[Avizienis 2006] A. Avizienis. "An Immune System Paradigm for the Assurance of Dependability of
Collaborative Self-Organizing Systems", Proceedings of the IFIP 19th World Computer Congress, 1st IFIP
International Conference on Biologically Inspired Computing, pp. 1-6., 2006.

[Becker et al. 2006] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky and M. Tivoli, "Towards
an Engineering Approach to Component Adaptation", R. H. Reussner, J. A. Stafford and C. A. Szyperski,
editors, Architecting Systems with Trustworthy Components, Vol. 3938 of LNCS, pp. 193-215, 2006.

[Damasceno et al. 2006] K. Damasceno, N. Cacho, A. Garcia, A. Romanovsky, and C. Lucena, "Context-
Aware Exception Handling in Mobile Agent Systems: The MoCA Case", Workshop on Software
Engineering for Large-Scale Multi-Agent Systems, May 2006.

[Gashi and Popov 2006] 1. Gashi and P. Popov. "Rephrasing Rules for Off-The-Shelf SQL Database
Servers", Proceedings of the 6th European Dependable Computing Conference, October 2006.

[Gashi et al. 2006b] I. Gashi, P. Popov and L. Strigini "Fault Tolerance via Diversity for Off-the-shelf
Products: A Study with SQL Database Servers", manuscript, 2006.

[Gonczy and Varro 2006] L. Gonezy and D. Varro "Modeling of Reliable Messaging in Service Oriented
Architectures", Andrea Polini, editor, Proceedings of the International Workshop on Web Services Modeling
and Testing, pp. 35-49, 2006.

[Karjoth et al. 2006] G. Karjoth, B. Pfitzmann, M. Schunter, and M. Waidner "Service-oriented Assurance-
Comprehensive Security by Explicit Assurances", Proceedings of the 1st Workshop on Quality of Protection,
LNCS, to appear in 2006.

[Martin-Guillerez et al. 2006] D. Martin-Guillerez, M. Banatre and P. Couderc, “A Survey on
Communication Paradigms for Wireless Mobile Appliances”, INRIA Report, May 2006.

[Mello et al. 2006] E. Ribeiro de Mello, S. Parastatidis, P. Reinecke, C. Smith, A. van Moorsel, and J.
Webber "Secure and Provable Service Support for Human-Intensive Real-Estate Processes", Proceedings of
2006 IEEE International Conference on Services Computing, Chicago, Illinois, September 2006, p495-502.
[This work won FIRST PRIZE in the IEEE International Services Computing Contest, September 2006].

[Mian et al. 2006] A. Mian, R. Beraldi, and R. Baldoni, "Survey of Service Discovery Protocols in Mobile
Ad Hoc Networks", Technical Report - Midlab 7/06, Dip. Informatica e Sistemistica "Antonio Ruberti",
Universita di Roma "La Sapienza", 2006.

[Salatge and Fabre 2006] N. Salatge and J.-C. Fabre, "A Fault Tolerance Support Infrastructure for Web
Services based Applications", LAAS Research Report No. 06365, May 2006.

RESIST D12 contents i

D12 Appendix Contents

[Stankovic and Popov 2006] V. Stankovic and P. Popov, "Improving DBMS Performance through Diverse
Redundancy", Proceedings of the 25™ International Symposium on Reliable Distributed Systems, October
2006.

[Verissimo et al. 2006] P. Verissimo, N. Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte, R. Stroud, and
I. Welch, “Intrusion-Tolerant Middleware: The Road to Automatic Security”, IEEE Security & Privacy, Vol.
4, No. 4, pp. 54-62, July/August 2006.

Part ALGO

[Baldoni et al. 2006] R. Baldoni, S. Bonomi, L. Querzoni, A. Rippa, S. Tucci Piergiovanni, A. Virgillito,
”Fighting Erosion in Dynamic Large-Scale Overlay Networks”, Technical Report - Midlab 9/06 , Dip.
Informatica e Sistemistica ”Antonio Ruberti”, Universit di Roma ”La Sapienza”, 2006.

[Baldoni et al. 2006-07] R. Baldoni, S. Bonomi, L. Querzoni, A. Rippa, S. Tucci Piergiovanni and A.
Virgillito, Evaluation of Unstructured Overlay Maintenance Protocols under Churn”, IWDDS 2006 co-
located with ICDCS2006.

[Baldoni et al. 2006-10] R. Baldoni, M. Malek, A. Milani, S. Tucci Piergiovanni, "Weakly- Persistent Causal
Objects In Dynamic Distributed Systems”, To appear in proc. of SRDS 2006, october 2006, Leeds (UK).

[Baldoni et al. 2006-11] R. Baldoni, R. Guerraoui, R. Levy, V. Quema, S. Tucci Piergiovanni, “Unconscious
Eventual Consistency with Gossips”, To appear in Proc. of SSS 2006, November 2006, Dallas (USA).

[Correia et al., 2006a] Correia, M., Bessani, A. N., Neves, N. F., Lung, L. C., and Ver’issimo, P. (2006a).
Improving byzantine protocols with secure computational components. In the report.

[Courtés et al., 2006] Courtés, L., Killijian, M.-O., and Powell, D. (2006). Storage tradeoffs in a
collaborative backup service for mobile devices. In Proceedings of the 6th European Dependable Computing
Conference (EDCC-6), number LAAS Report #05673, pages 129-138, Coimbra, Portugal.

[Mostefaoui et al. 2006] Mostéfaoui A., Raynal M. and Travers C., Exploring Gafni's reduction aand: from
Omega-k to wait-free (2p-p/k)-renaming via set agreement. Proc. 20th Symposium on Distributed
Computing (DISC’06), Springer Verlag LNCS #4167, pp. 1-15, Stockholm (Sweden), 2006.

[Raynal and Travers 2006] Raynal M. and Travers C., In search of the holy grail: Looking for the weakest
failure detector for wait-free set agreement. Invited paper. Proc. 12th Int’l Conference on Principles of
Distributed Systems, (OPODIS’06), To appear in Springer Verlag LNCS, 2006.

[Ryan and Schneider 2006] P.Y.A. Ryan and S. A. Schneider, Prét a Voter with Re-encryption Mixes,
School of Computing Science Technical Report CS-TR: 956, Newcastle University, 2006.

Part SOCIO

[Alberdi et al. 2006] Alberdi, E, Ayton, P, Povyakalo, A. A, and Strigini, L. "Automation Bias in Computer
Aided Decision Making in Cancer Detection: Implications for System Design". Technical Report, CSR, City
University, 2006. 2006.

[Barboni et al. 2006a] Barboni, E, Conversy, S, Navarre, D, and Palanque, P. "Model-Based Engineering of
Widgets, User Applications and Servers Compliant with ARINC 661 Specification". Proceedings of the 13th

RESIST D12 contents ii

D12 Appendix Contents

conference on Design Specification and Verification of Interactive Systems (DSVIS 2006). 2006. Lecture
Notes in Computer Science, Springer Verlag.

[Barboni et al. 2006b] Barboni, E, Navarre, D, Palanque, P, and Basnyat, S. "Exploitation of Formal
Specification Techniques for ARINC 661 Interactive Cockpit Applications". Proceedings of HCI aero
conference, (HCI Aero 2006). 2006.

[Basnyat and Palanque 2006] Basnyat, S and Palanque, P. "A Barrier-based Approach for the Design of
Safety Critical Interactive Application". ESREL 2006 Safety and Reliability for Managing Risk. Safety and
Reliability Conference. 2006. Balkema (Taylor & Francis).

[Basnyat et al. Submitted] Basnyat, S, Schupp, B, Palanque, P, and Wright, P. "Formal Socio-Technical
Barrier Modelling for Safety-Critical Interactive Systems Design". Special Issue of Safety Science Journal.
Submitted.

[Bryans et al. 2006] Bryans, J. W, Ryan, P. Y. A, Littlewood, B, and Strigini, L. "E-voting: dependability
requirements and design for dependability". First International Conference on Availability, eliability and
Security (ARES'06). 988-995. 2006.

[Harrison and Loer 2006] Harrison, M. D and Loer, K. "Time as a dimension in the design and analysis of
interactive systems". (in preparation).

[Harrison et al. 2006] Harrison, M. D, Campos, J. C, Dohery, G, and Loer, K. "Connecting rigorous system
analysis to experience centred design". Workshop on Software Engineering Challenges for Ubiquitous
Computing. 2006.

[Palanque et al. 2006] Palanque, P, Bernhaupt, R, Navarre.D, Ould, M, and Winckler, M. "Supporting
Usability Evaluation of Multimodal Man-Machine Interfaces for Space Ground Segment Applications Using
Petri net Based Formal Specification”. Ninth
International Conference on Space Operations, Rome, Italy, June 18-22, 2006.

[Schupp et al. 2006] Schupp, B, S.Basnyat, S, Palanque, P, and Wright, P. A Barrier-Approach to Inform
Model-Based Design of Safety-Critical Interactive Systems. 9th International Symposium of the ISSA
Research Section Design process and human factors integration: Optimising company performances. 2006.

[Sujan and Harrison 2006] Sujan, M and Harrison, M. D. "Investigation of structural properties of hazard
mitigation arguments”. Analysis of the structure of mitigation arguments and the role of barriers or defences
with particular reference to the EUROCONTROL Reduced Vertical Separation Minima Functional Hazard
Analysis. 2006.

[Sujan et al. 2006a] Sujan, M, Harrison, M. D, Steven, A, Pearson, P. H, and Vernon, S. J. "Demonstration
of Safety in Healthcare Organisations". Proceedings SAFECOMP. Springer LNCS. 2006.

Part EVAL

[Alata et al. 2006] E. Alata, V. Nicomette, M. Kaaniche and M. Dacier, “Lessons learned from the
deployment of a high-interaction honeypot”, LAAS Report 06-331, April 2006. To appear in Proc. Sixth
European Dependable Computing Conference (EDCC-6), Coimbra, Portugal, October 18-20, 2006.

RESIST D12 contents 1ii

D12 Appendix Contents

[Albinet et al. 2007] A. Albinet, J. Arlat and J.-C. Fabre, “Robustness of the Device Driver-Kernel Interface:
Application to the Linux Kernel?, LAAS Report 06-351, May 2006. To appear in Dependability
Benchmarking of Computer Systems, (K. Kanoun and L. Spainhower, Eds.), IEEE CS Press, 2007.

[Gonczy et al. 2006] L. Gonczy, S. Chiaradonna, F. Di Giandomenico, A. Pataricza, A. Bondavalli, and T.
Bartha, “Dependability evaluation of web service-based processes”. In Proc. of European Performance
Engineering Workshop (EPEW 2006), LNCS Vol. 4054, pp. 166-180, Springer, 2006.

[Kaaniche et al. 2006] M. Kaaniche, E. Alata, V. Nicomette; Y.Deswarte, M. Dacier, “Empirical analysis and
statistical modeling of attack processes based on honeypots” WEEDS 2006 - workshop on empirical
evaluation of dependability and security (in conjunction with the international conference on dependable
systems and networks, (DSN2006), Philadelphia (USA), June 25 - 28, 2006, pp. 119-124.

[Kanoun and Crouzet 2006] K. Kanoun and Y. Crouzet, “Dependability Benchmarks for operating Systems”,
International Journal of Performability Engineering, Vol. 2, No. 3, July 2006, 275-287.

[Kanoun et al. 2007] K. Kanoun, Y. Crouzet, A. Kalakech and A.-E. Rugina, “Windows and Linux
Robustness Benchmarks With Respect to Application Erroneous Behavior”, LAAS report, May 2006. To
appear in “Dependability Benchmarking of Computer Systems”, (K. Kanoun and L. Spainhower, Eds.),
IEEE CS Press, 2007.

[Lamprecht et al. 2006] C. Lamprecht, A. van Moorsel, P. Tomlinson and N. Thomas, “Investigating the
Efficiency of Cryptographic Algorithms in Online Transactions,” International Journal of Simulation:
Systems, Science and Technology, UK Simulation Society, Vol. 7, Issue 2, pp. 63—75, 2006.

[Littlewood & Wright 2006] B. Littlewood and D. Wright, “The use of multi-legged arguments to increase
confidence in safety claims for software-based systems: a study based on a BBN of an idealised example”,
2006.

[Lollini et. al. 2006] P. Lollini, A. Bondavalli, and F. Di Giandomenico, “A general modeling approach and
its application to a UMTS network with soft-handover mechanism”, Technical Report RCL060501,
University of Firenze, Dip. Sistemi e Informatica, May 2006.

[Rugina et al. 2006] A.-E. Rugina, K. Kanoun and M. Kaaniche, “A System Dependability Modeling
Framework using AADL and GSPNs”, LAAS-CNRS Report N° 05666, April 2006.

[Salako & Strigini 2006] K. Salako and L. Strigini, “Diversity for fault tolerance: effects of "dependence"
and common factors in software development", Centre for Software reliability, City University, DISPO
project technical report KS DISPOS 01, Sept 2006.

Part VERIF

[Backes et al. 2006b] M. Backes, B. Pfitzmann, and M. Waidner, “Non-Determinism in Multi-Party
Computation”; Workshop on Models for Cryptographic Protocols (MCP 2006), Aarhus, July-August 2006;
abstracts as report of ECRYPT (European Network of Excellence in Cryptology, IST-2002-507932).

[Backes et al. 2006¢] M. Backes, B. Pfitzmann, and M. Waidner, “Soundness Limits of Dolev-Yao Models”;
Workshop on Formal and Computational Cryptography (FCC 2006), Venice, July 2006 (no formal
proceedings).

RESIST D12 contents iv

D12 Appendix Contents

[Micskei and Majzik 2006] Z. Micskei and 1. Majzik, “Model-based Automatic Test Generation for Event-
Driven Embedded Systems using Model Checkers,” in Proc. of Dependability of Computer Systems
(DepCoS '06), Szklarska Porgba, Poland, pp.192-198, IEEE CS Press, 2006.

[Micskei et al. 2006] Z. Micskei, I. Majzik and F. Tam, “Robustness Testing Techniques For High
Availability Middleware Solutions,” in Proc. Int. Workshop on Engineering of Fault Tolerant Systems
(EFTS 2006), Luxembourg, Luxembourg, 12 - 14 June, 2006.

[Pfeifer and von Henke 2006] H. Pfeifer and F. von Henke, “Modular Formal Analysis of the Central
Guardian in the Time-Triggered Architecture”, Reliability Engineering & System Safety, Special Issue on
Safety, Reliability and Security of Industrial Computer Systems, Elsevier Ltd., 2006, to appear.

[Serafini et al. 2006] M. Serafini, P. Bokor and N. Suri, “On Exploiting Symmetry to Verify Distributed
Protocols”, Fast Abstract, International Conference on Dependable Systems and Networks (DSN) 2006.

[Waeselynck et al. 2006] H. Waeselynck, P. Thévenod-Fosse and O. Abdellatif-Kaddour, “Simulated
annealing applied to test generation: landscape characterization and stopping criteria”, to appear in Empirical
Software Engineering, 2006.

RESIST D12 contents v

Introduction to ReSIST deliverable D12

L. Strigini

City University

This document is the first product of work package WP2, “Resilience-building and -scaling technologies”, in
the programme of jointly executed research (JER) of the ReSIST Network of Excellence.

The problem that ReSIST addresses? is achieving sufficient resilience in the immense systems of ever-
evolving networks of computers and mobile devices, tightly integrated with human organisations and other
technology, that are increasingly becoming a critical part of the critical infrastructure of society. These
systems — large, networked, evolving systems constituting complex information infrastructures, perhaps
involving everything from supercomputers and huge server “farms” to myriads of small mobile computers
and tiny embedded devices — referred to in ReSIST as “ubiquitous computing systems”, are essential to
support and provide Ambient Intelligence (Aml) in the developing Information Society. Features of these
ubiquitous systems are already present in embryo in existing infrastructure, and the risk of a “dependability
and security gap” undermining the potential societal benefit from these systems is evident. A resilience
approach to building and operating these systems is essential: they must be capable of surviving and
delivering sufficiently dependable and secure service despite the inevitable residual development and
physical faults, interaction mistakes, or malicious attacks and disruptions that their very scale, complexity
and openness make more likely.

ReSIST identifies the research challenge here in the need for scalable resilience of policies, algorithms and
mechanisms. Quoting from ReSIST’s Description of Work: “The current state-of-knowledge and state-of-
the-art reasonably enable the construction and operation of critical systems, be they safety-critical (e.g.,
avionics, railway signalling, nuclear control) or availability-critical (e.g., back-end servers for transaction
processing). The situation drastically worsens when considering large, networked, evolving, systems either
fixed or mobile, with demanding requirements driven by their domain of application”. Therefore,

“The initial programme of jointly executed research (JER) on resilience-building technologies will
focus on surveying and developing the expertise available within the network with a view to
identifying gaps in the collective knowledge portfolio that need to be filled for these technologies to
meet the scaling challenges of ubiquitous systems.

1 This introduction only gives a very brief summary of ReSIST’s motivations and plans, which are described in full in
ReSIST’s Description of Work document (Annex | to the contract).

D12 Introduction

To this end, months 1 to 9 will be devoted to an exchange of know-how between the partners,
catalysed by the production of a deliverable at month 9, summarising the current state of knowledge
and ongoing research by the partners on methods and techniques for building resilient systems.”

The present document is that first deliverable, D12. This work is a basis for the second phase, which will last
until month 18 in the life of the network and will focus on

“the scaling challenges identified by ReSIST, identifying a roadmap of integrated research for
employing the current resilience-building technologies to develop the required resilience-scaling
technologies identified in Section 6.1, i.e.: evolvability, assessability, usability and diversity.”

The work in this first phase has been divided among five working groups (each with active participation
from the ReSIST partners that work in the corresponding research area) dealing with different aspects of
resilience building and the corresponding subdisciplinary areas:

* Resilience architecting and implementation paradigms (WG Arch)
» Resilience algorithms and mechanisms (WG Algo)

* Resilient socio-technical systems (WG Socio),

» Resilience evaluation (WG Eval)

* Resilience verification (WG Verif)

This document is therefore made up of five parts, each produced by one of the working groups. Each
working group’s activity started with a session during the first Plenary Network Meeting, at which the
participants presented their backgrounds and viewpoints. This was followed by further interaction, via E-
mail, shared “wikis” and meetings, depending on the working group. Each working group aimed to cover the
relevant areas of knowledge and recent contributions of ReSIST partners, and to situate them with respect to
the state of the art and related research in the field. Each part of the deliverable was then reviewed with an
emphasis on the viewpoint of scientists who are not specialists of the subdisciplines covered, so that the
document can serve as an introduction to the problems relevant for ReSIST in the area covered, besides
documenting the advanced results produced by ReSIST members, for those colleagues who already perform
research in closely related areas.

This document is made up of three layers dealing with the subject matter in increasing levels of detail: this
brief overview (first layer) is followed by five survey-style parts, one for each WG, which perform the role
of introduction for non-specialists (second layer); last, a set of appendices contain selected technical papers
produced (some published, some being prepared for publication) since the start of ReSIST (third layer).
These “third layer” papers, together with the other references in the second layer, allow readers to find more
in-depth reading on specific topics of interest, and can be found through references listed in boldface in the
“second layer” parts.

A brief outline of the five “second layer” parts follows.

Part Arch — Resilience Architecting and Implementation Paradigms

Part Arch surveys four lines of research, historically originating from different technical communities or
application areas, that must converge in order to address the topic of scalable resilience in ubiquitous
computing systems.

RESIST D12 introp 2

D12 Introduction

Two of these research areas, “service oriented architectures” and “mobile services and their infrastructures”,
have as their goal to exploit the existence of large-scale networks to provide enhanced flexibility of network-
based services, respectively from the viewpoint of interoperability (across differences in software technology
and across organisational boundaries) and of mobility. In this sense, this research is itself motivated by some
of the scalability goals that ReSIST addresses.

The other two research areas surveyed, “Building resilient architectures with off-the-shelf components” and
“Intrusion tolerant architectures”, are about pressing problems that arise from the state of commercial IT
technology even for “non-ubiquitous” systems; but these problems are of vital importance for ReSIST
because this same technology is the basis on which ubiquitous systems are built. The market situation that
gives us low-cost off-the-shelf components also makes them insufficiently trustworthy, requiring fault
tolerance as a safeguard. This is also part of the motivation for “intrusion tolerance”, the application of fault
tolerance techniques to security. Researchers in these two lines of research were originally motivated by
concern about different types of faults (design faults vs malicious attacks), but acknowledge that system
architectures must address both concerns. An interesting question is how their approaches scale to integrate
with the approaches developed in the other two chapters.

Part Algo — Resilience Algorithms and Mechanisms

Part Algo discusses some of the essential categories of algorithms and protocols that underlie fault tolerance
in distributed systems. As such, all of these, seen as research topics, have issues of scalability as part of their
basic formulation, where scalability is defined in terms of number of nodes connected and number of faults
to deal with. The ReSIST resilience-scaling challenge has other facets, however, like the integration of
systems built on separate lower-level infrastructures or applying different basic protocols, that may pose new
problems in the area of algorithms.

This part starts with reviewing the general problems underlying fault-tolerant distributed computing: the
problem of achieving consistent views between communicating entities despite arbitrary, possibly subtle
faults, a problem that has been heavily studied over the last three decades because the limits to its solutions
affect a broad variety of fault-tolerant algorithms; and the even more general problem of recognising faulty
(or permanently faulty) components so as to properly manage reconfiguration and preserve resilience. Next,
chapters about “cooperative backup mechanisms”, “cooperation incentive schemes”, “overlay network
connectivity” deal with “peer-to-peer” and similar approaches aiming at fully scalable, fully decentralised
resilient services. The chapter titled “Wait-free asynchronous computing” deals with an intriguing category
of distributed object designs with provable dependability and timeliness properties. Last, we have a summary
of development driven by a specific, challenging application, E-voting (also a topic of Part-Socio), where
algorithms have been developed that guarantee the traditional requirements of secrecy of vote and protection
from tampering, only with much greater confidence (as far as the algorithmic part is concerned) than the
traditional manual voting procedures.

Part Socio — Resilient Socio-Technical Systems

Part Socio deals with one of the greatest challenges in ReSIST, i.e., integrating the analysis and design of
the technical and human-organisational subsets of ubiquitous systems. ReSIST acknowledges that as
“ubiquitous” information and communication systems are deeply interwoven with human organisations and
society, it is the “socio-technical system” that they form together, not only its software-based components.
that must be the focus of analysis for its resilience characteristics.

RESIST D12 introp 3

D12 Introduction

This part thus examines the process of reasoning about complex socio-technical systems, in order from the
tasks of elucidating the intended and actual behaviour of people in the system at a descriptive level, to those
of verifying and assessing the proper functioning of the system, first logically (and possibly formally, in the
computer science sense of this word), to support for instance the finding and elimination of potential design
faults, and then probabilistically, to evaluate and compare systems.

An important topic throughout Part Socio is the tension between the need for designers and assessors to
reason about both the human and automated parts of a system in combination, and the differences that make
the application of similar techniques to both difficult. Socio-technical systems will often, while behaving
satisfactorily, actually work in ways that differ from those assumed by their designers and managers. These
discrepancies are a frequent cause of failure in the process of automation of organisations, often through loss
of the resilience previously provided by the human operators: hence the emphasis on techniques for
understanding, and languages for modelling, the structure and organisation of socio-technical systems.
Another area where the difficulties of applying common techniques to humans and to the automated parts of
a system are underscored is that of probabilistic assessment extended to human action. Much expertise is
available within ReSIST on these various topics, but it is generally acknowledged that hard problems remain
open even for relatively simple systems, and thus there are important challenges ahead in porting this
knowledge to ubiquitous systems.

Part Eval — Methods and Tools for Resilience Evaluation

Part Eval deals with evaluation techniques, with an emphasis on quantitative evaluation, in its dual role of
guiding design decisions and assessing systems as built, and in its components of mathematical modelling
and empirical measurement. This part starts from considering the stochastic modelling techniques that have
long been the basis of dependability assessment, and the basic scalability challenge created by systems with
increasing numbers of components or states. It then proceeds to address other challenges in extending the
domain of quantitative evaluation.

The first chapter, on *“compositional modelling for large and evolving systems” describes progress in
addressing the scalability problems both in the construction and in the solution of models of stochastic
processes used for performance and dependability assessment, and then summarises encouraging
applications to evaluation of systems that have some degree of “ubiquitousness”, e.g., Web-based services or
mobile telephone networks.

The next issue addressed is the extension of quantitative techniques to security assessment. A chapter on
“evaluation with respect to malicious threats” briefly introduces the common security evaluation criteria, the
contributions given by ReSIST partners to defining the topic of quantitative assessment of security and to
developing empirical measurement methods to apply to attacks and threat environments. This is still a young
research area, and its potential has yet to be explored; some immediate targets for its development are
suggested.

Another current challenge is “dependability benchmarking”, the development of repeatable measurement
practices for comparing and selecting systems and components. Here, standard “loads” of workload and
injected faults are used to evaluate resilience. This area is still being developed, mainly with reference to
small and self-contained systems.

The next chapter deals with assessment of “diversity”, shorthand for assessing the probability of common-
mode failure between redundant components, and the effects of the precautions (various ways of diversifying
the components or their environments) meant to reduce it. ReSIST partners have made substantial

RESIST D12 introp 4

D12 Introduction

contributions in this difficult area, but most of the work has concerned simple embedded systems: the models
created are general enough to address some aspects of diversity in ubiquitous systems, but pose a substantial
challenge for extending them to deal with large numbers of diverse components. Last, a chapter on
“dependability cases” deals with the difficulties in the proper organisation of the complex evidence pertinent
to the evaluation of any real system, including modelling, statistical evidence and many forms of informal
but relevant evidence.

Part Verif — Methods and Tools for Verifying Resilience

Part Verif deals with two sets of important techniques — formal methods, based on mathematical logic and
related to proving properties of systems, and method related to testing, for the empirical demonstration of
properties of system operation — all applied to resilience-related properties and the mechanisms intended to
support them.

Logic-based techniques — formal methods — are covered in the first three chapters, “Deductive Theorem
Proving”, “Model Checking”, “Symbolic Execution and Abstract Interpretation”, which document multiple
examples of application of advances by ReSIST partners to verifying fault tolerance and security properties
of systems and protocols. All these areas are concerned with, and making advances in, scalability in the size
of models to be treated, although application to ubiquitous systems may bring new problems not just of size
of models but for instance of heterogeneity of system components. A chapter on “verification of systems
containing cryptography” demonstrates results in an area that is problematic for “standard” formal methods
because the properties of cryptographic subsystems are naturally defined in probabilistic, rather than
deterministic, terms and based on computational complexity.

The empirical techniques are covered in the chapter on “robustness testing”, dealing with techniques, like
fault injection, for exposing design or physical faults in systems that are meant to be resilient and robust.
There is wide experience within ReSIST, which has led to an armoury of multiple techniques, which vary in
the methods for choosing stimuli, with much research on systematic ways for selecting stimuli with high
“power” in revealing faults, as well as in how the stimuli are applied to the system. The transition to
ubiquitous systems poses multiple challenges, including the great variety of threats against which they must
be robust, and the difficulty in building experiments (injecting stimuli and observing their effects) in systems
with mobile components and/or spread over large geographical areas.

Summary

This “state of knowledge” document is to serve as a basis for the development of ReSIST’s research
roadmap and a stepping stone in the process of integration within the ReSIST network. In pursuing this
internal goal, the five working groups have also produced substantial surveys that will be useful for all
researchers.

As can be seen, in all areas ReSIST has a substantial body of knowledge that can be applied to the challenge
of ubiquitous systems. The obstacles to be overcome in this application vary greatly between these areas.
Some research areas have successfully addressed problems in small systems but may have yet to deal with
scaling up to large size systems; other research areas have a focus on scalability problems as part of their
very definition, and the difficulties may come mainly from the need to deal with combinations of
heterogeneous systems, or the difficulty of incorporating considerations of human behaviour into a
computer-oriented discipline; others still face substantial unsolved questions for the kinds of systems to
which they were originally applied, and a start in applying them to ubiquitous systems may bring progress to

RESIST D12 introp 5

D12 Introduction

the whole area. Last, all face the need for more integration between different techniques (models,
architectural principles, protocols), between consideration of accidental and of malicious faults, and between
automated and human subsystems.

RESIST D12 introp 6

Part Arch — Resilience Architecting and Implementation
Paradigms

Co-ordinator: N. Neves

Contributors: A. Avizienis’, J. Arlat’ , R. Beraldig, C. Cachin4, M. Correia®, Y. Deswarte’ , P.
Ezhilchelvan’, J.-C. Fabre®, L. Gonczyl, Q. Inayat7, L Kocsisl, C. Lac3, N. Nevesé, A. Patariczal, P.
Popovz, D. Powell’, H. V. Ramasamy4, A. Romanovsky7, N. Salatges, L. Striginiz, R. Stroud’, P.
Verissimo®

'Budapest University, 2City University, *France Telecom, ‘IBM Zurich, "LAAS-CNRS, ®University
of Lisboa, 7University of Newcastle, *University of Roma, *Vytautas Magnus University

Chapter co-ordinators:
1 - Service Oriented Architectures: J-C. Fabre;
2 — Mobile Services and their Infrastructures: R. Beraldi and C. Lac;
3 — Building Resilient Architectures with Off-the-shelf Components: P. Popov;

4 — Intrusion Tolerant Architectures: N. Neves

Introduction

Future ubiquitous computing systems will create important new challenges to system architects, who will
have to devise solutions that will ensure the necessary levels of resilience and survivability in these pervasive
information infrastructures. These challenges result from changes in the way these systems will have to be
implemented, which can be functional, technological or environmental. A few examples of such changes are:
the growth of the complexity and size of these systems; the heterogeneity of the networks and devices (from
super-computers to tiny embedded devices); the flexible and evolving nature of the infrastructures (e.g., ad-
hoc or spontaneous networks of mobile nodes); and newer failure modes related to malicious behaviours of
users and administrators.

The background of the ReSIST partners on architectural and implementation paradigms covers a significant
number of topics, which were addressed in several successful European research projects. Several of the
ReSIST partners have been working on the resilient aspects of computing systems for the past 20 years, and
more recently they have started to address the challenges created by larger scale systems (see for example the
projects MAFTIA, GUARDS, and DSOS). This part of the ReSIST D12 deliverable provides a summary of
the ReSIST partners’ current state of knowledge and ongoing investigations on architectural solutions, with a
special focus on the areas that are relevant to the project.

This part includes four main chapters, each one corresponding to a key research area that has to be
considered and integrated in ReSIST, in order to support scalable resilience in ubiquitous systems. The first
two chapters, “Service Oriented Architectures” and “Mobile Services and their Infrastructures”, address
issues related to the large-scale, heterogeneous, and evolving nature of pervasive information infrastructures.
The other two chapters tackle a set of problems that have (and will) contributed to the rise in concerns on the
dependability and security aspects of current (and future) computing systems. These chapters are about
“Building Resilient Architectures with Off-the-shelf Components” and “Intrusion Tolerant Architectures”.

Service Oriented Architectures

Service oriented architectures (SOA) were introduced as a new approach to organize and access distributed
services spread over large-scale heterogeneous infrastructures. This type of architecture provides a uniform
way for clients to discover, access, and interact with remote servers, potentially owned and operated by
different organizations. One of the main characteristics of SOA solutions is flexibility because services can
be discovered and reached dynamically, without any prior knowledge of their underlying implementations.
Moreover, SOA promotes service reuse which can help organizations to adapt more rapidly to changing
environmental conditions, and facilitate the interconnection of existing IT systems. The “Service Oriented
Architecture” Chapter introduces the fundamental components of the architecture and their relations, and
then presents several examples, research projects and current standardization efforts related to resilience
issues. These topics are addressed in a set of sections which encompass a number of aspects of the
architecture, including the resilience of the executive support, the reliability of the SOA protocols, security
and authentication concerns, and composition and orchestration of services.

RESIST D12 archp 2

Part Arch Introduction

Mobile Services and their Infrastructures

Future ubiquitous computing systems will be complex information infrastructures involving many kinds of
distinct devices (e.g., large server farms and tiny mobile computers), some of which will be interconnected
by a collection of wireless transmission technologies. Currently, even though the wireless networks arena is
still dominated by voice-oriented cellular infrastructures, the increasing availability of small computer
devices is leading to newer architectures. These computers have mobility as their main attribute, and they
support various types of networks, ranging from personal- to wide-area networks (e.g., Bluetooth, WiFi,
UMTS). The kind of services that will accessible in these architectures will be influenced by numerous
factors, such as the lifetime of the network and the transmission range between devices. The “Mobile
Services and their Infrastructures” Chapter analyses the resilience aspects of some mobile architectures. In
particular, it considers cellular-based infrastructures and mobile ad hoc networks (MANET).

Building Resilient Architectures with Off-the-shelf Components

Cost pressure is one of the main drivers for the creation and widening of the dependability and security gap
in current and future large evolving information systems. The use of off-the-self (OTS) components has been
common in the business and government sectors for some time, but in recent years economics has created a
trend where these components are also utilized in industries that deal with critical computer applications
(e.g., telecommunication and electrical sectors). Many low-priced OTS components, however, have records
of poor dependability or lack evidence of sufficient dependability for such applications. Even though
vendors are continuously improving their development practices, in many cases, the resulting components
are still far from being fully satisfactory from a dependability perspective. From the resilience view point
there is however an upside on using OTS components — diversity in redundancy can be exploited as an
effective defense against common-mode accidental failures and malicious attacks. The chapter “Building
Resilient Architectures with Off-the-shelf Components” analyses several research lines on resilience with
OTS components. Namely, it describes efforts to identify flaws in OTS software, the use of diversity both for
fault-tolerance and security, and computer systems that are capable of being adaptive.

Intrusion Tolerant Architectures

Complexity will grow in ubiquitous information infrastructures, where support for large numbers of evolving
networks of computers and mobile devices is needed. Due to their pervasiveness, these infrastructures will be
the ideal target for both amateur hackers and professional criminals. Therefore, in order to guarantee the
necessary resilience and survivability of these infrastructures, capabilities have to be provided to deal with
malicious attacks and disruptions, in addition to accidental failures, for instance due to residual development
mistakes. Intrusion tolerance is a new approach that has emerged during the past decade that merges ideas
from the security and dependability communities. Its objective is to cope with a wide set of faults, ranging
from random defects to successful intrusions. The focus of intrusion tolerance is on ensuring that systems
remain in operation (possibly in a degrade mode) and continue to provide services despite the various kinds
of faults. The chapter “Intrusion Tolerant Architectures” discusses the main mechanisms for building
intrusion tolerant systems, and reports on recent advances on architecting this kind of systems. For instance,
the following mechanisms are addressed in light of intrusion tolerance: auditing, error processing and
intrusion detection.

RESIST D12 archp 3

1 — Service Oriented Architectures

Introduction

The term Service Oriented Architecture (SOA) refers to a style of information systems architecture in which
distributed applications are constructed by combining loosely coupled and interoperable Services that inter-
operate according to a Service Contract that is independent of the underlying platform and programming
language used to implement the service [Wikipedia 2006]. Because the service contract hides the
implementation of the service, SOA-compliant systems can be independent of any particular development
technology or execution platform. For example, a service implemented in Java running on the J2EE platform
could interact with a service implemented in C# running on the .NET platform.

In principle, SOAs can be realised using a variety of different middleware protocols (for example, CORBA
or Jini), but in practice, the term SOA is often used to refer to an SOA implemented using the web services
protocol stack (see Figure 1.1). A Web Service is essentially just a software component with a well-defined
interface that can be accessed programmatically over a network using standard protocols. In this sense, web
services are no different from conventional client-server applications built using middleware technologies
such as CORBA. However, the distinguishing characteristic of web services is the use of XML-based
protocols and languages to describe the interface to the web service and the messages that it understands and
generates. In particular, the interface to a web service is described using WSDL (Web Service Description
Language), and other systems interact with the web service using SOAP messages (Simple Object Access
Protocol), which are typically conveyed over transport protocols such as HTTP using an XML serialization.
Thus, SOAP is a protocol for delivering XML messages to applications, whereas WSDL is a language for
describing the format of the messages that an application can understand and generate.

Web services are typically implemented on top of a multilayer platform that hosts the web service within an
application server, running on top of a web service protocol stack, and a conventional operating system. In
order to interact with a web service, it is necessary for an application to obtain a copy of the web service’s
interface description, which might be stored at a known location associated with the web service endpoint,
typically described by a URI (Uniform Resource Identifier), or else discovered dynamically using a protocol
such as UDDI (Universal Description, Discovery, and Integration), which is a large and complex
specification of a distributed registry for publishing and discovering web services.

RESIST D12 archp 4

Part Arch 1 — Service Oriented Architectures

Senvice

BPELAWS composiion

Composable
senice
BSSUrBNCES

Reliable
Messaging

Security Transections

%50, WSDL, UDDI, Policy, MetadataExchange
XML, SOAF, Addrassing Massaging

HTTP. HTTPS, SMTP Transports

Figure 1.1 — Web services protocol architecture (from [IBM and Microsoft 2003]).

Interactions with web services take place via SOAP messages, but because SOAP is independent of the
underlying transport protocol, it is necessary to use additional layers of web service protocols to provide end-
to-end guarantees about the secure and reliable delivery of messages. Such guarantees can be viewed as
composable service assurances that can be added to the basic SOAP messages [IBM and Microsoft 2003].
Furthermore, since some web services may require particular service attributes to be provided, and potential
web service users may wish to know which attributes are supported by a given web service, it is necessary to
augment the WSDL description of a web service interface with additional information about the web
service’s requirements and support for these attributes, for example, whether a transactional context or
security token is required. Thus, it is necessary to define additional languages for describing policies for
interacting with a web service. Finally, since new web services can be built from existing web services by
composing them together according to a particular application workflow, it is also desirable to define a
language for web service composition. Taken together, these various web service standards define an
interoperable web services protocol architecture, such as the one depicted in Figure 1.1. Such diagrams are
not intended to imply a strict functional layering, but rather indicate the relationship between the different
functional areas. Thus, there are specifications for XML messaging, languages for describing web services
and additional web service assurances, and languages for service composition.

It is clearly important to agree on a standard set of such protocols in order to prevent application developers
from inventing their own solutions, and thus not only wasting effort but also potentially inhibiting
interoperability between different web service applications. However, unfortunately, web service
standardisation is proving to be a technical and political battleground between open standards and
proprietary standards. Although there is broad agreement about core web service standards such as SOAP
and WSDL, in general, web service standards are very immature, particularly above the messaging layer, and
there are a number of rival or overlapping proposals for standardising particular aspects of web services.

Although the benefits of Service Oriented Architectures are certainly of high interest for applications with
important dependability requirements, the lack of mature advances regarding the resilience of such
architecture is a major impairment to their use in large critical applications. Thus, the big challenge is how to
build reliable/secure distributed applications out of unreliable/insecure Web Services and communication
infrastructures.

Regarding resilience and dependability of SOAs, we propose to classify the various works and contributions
in six research domains. This separation is not always clear as problems and solutions often overlap several
domains. It is however a way to summarize our state of knowledge on SOA and related resilience issues:

RESIST D12 archp 5

Part Arch 1 — Service Oriented Architectures

e Resilience of the executive support for Web Services,
e Resilience assessments and tools,

e Security and authentication issues

o Reliability issues,

e Transaction, composition and orchestration.

e Quality of service requirements

The first dependability issue for SOA applications is to improve the reliability of the runtime support of the
Web Services, i.e., the platform on which the web service is executed. Conventional dependability
techniques can be used to address this aim, from both an architectural and evaluation viewpoint. For
example, relevant techniques include replication at various hardware and software levels (OS, middleware,
etc.), failure mode analysis using fault injection at various levels, and failure mode analysis proving inputs to
the design of fault tolerance mechanisms. This is why a large portion of current work in this area tackles the
problem in this way. In the same way, conventional techniques can be applied to the communication
infrastructure and transport protocols.

The second dependability issue is to tackle the problem at the level of actual SOA concepts, i.c., all protocols
and software components used to interact with Web Services. The works we are aware of currently address
security and reliability issues, transactional problems, flexibility of dependability solutions with respect to
the application needs, and orchestration of large-scale applications based on Web Services. Clearly, there are
still many open subjects and difficult issues to address in this second dimension. It is worth noting however
that although the backbone of an SOA may introduce multiple fault sources [Ingham et al. 2000], the
architecture also allows for design diversity in the form of alternative services and communication channels
that may be available over the Internet.

1.1 Research on SOA

In the next sections, we report on some significant examples, research projects and current standardization
efforts targeting various aspects of resilience for Service Oriented Architectures, following the six research
and development topics mentioned above.

1.1.1 Resilient executive support for Web Services

A framework for improving dependability of web services was proposed in DeW (A Dependable Web
Service Framework) [Alwagait and Ghandeharizadeh 2004], which can be understood as a register
containing the address of different copies of a web service. This register guarantees the physical-location-
independence and thus a web service-based application is able to continue running as long as a reference of
an available copy is reachable through the register. This framework enables non-stop operation in the
presence of crash faults affecting the web services or service migration. Active-UDDI [Jeckle and Zengler
2003] is based on a similar research approach.

FT-SOAP [Liang et al. 2003] enables a service provider to replicate Web Services using a passive replication
strategy. This approach is based on interceptors at the SOAP layer enabling the client application to redirect
request messages towards replicas in case of failure of the primary. At the server location, interceptors are

RESIST D12 archp 6

Part Arch 1 — Service Oriented Architectures

used to log messages, to detect faulty replicas and to manage available replicas. The important problem of
the state transfer is controlled internally, i.e., it is part of the implementation of the service. A similar passive
replication approach has been developed in the JULIET project, using .NET [Murty 2004, Dialani et al.
2002]. In both cases, the approach relies on a specific software layer that must be installed at the client and at
the provider platform, which can raise interoperability problems due to inconsistency with the notion of
SOA.

FTWeb [Santos et al. 2005] is another example of an infrastructure providing active replication strategies for
web service-based applications. This project is based on the FT-CORBA standard, WS-Reliability [SUN
2003] (see section on reliability of SOA protocols) and a global ordering service [Defago et al. 2000] of
client requests to ensure replica consistency. This project also introduces a specific software layer that may
impair interoperability. Beyond that, it is clear that this architecture strongly depends on a particular
middleware support, namely CORBA, and thus Web Services must be implemented as CORBA objects.

Thema [Merideth 2005] is a another middleware-based implementation of fault tolerance mechanisms for
web services, more precisely aiming at tolerating Byzantine Faults. The communication service relies on
former work [Rodrigues et al. 2001], providing reliable multicast and consensus policies. WS-FTM (A Fault
Tolerance Mechanism for Web Services) [Looker and Munro 2005] is a similar research effort on consensus
issues for web services.

1.1.2 Resilience assessments and tools

Most of web services must be considered as black-box components, which means that their development
process, their design features, and their robustness in the presence of faults is not known. This kind of
situation is not new, and also applies to the use of COTS components in dependable systems for which a lot
of work has been carried out, targeting operating systems [Koopman and DeVale 1999], real-time micro-
kernels [Arlat et al. 2002] and middleware such as CORBA [Marsden et al. 2002, Marsden 2004]. However
to our knowledge, the assessment of the resilience of SOA is rather limited today and currently relies on
conventional benchmarking approaches.

Although failure mode analysis has not been performed yet for web services, we can however mention the
assessment by fault injection (SWIFI) carried out in the OGSA platform based on web services [Looker and
Xu 2003, Looker et al. 2004, Looker et al. 2005]. One of the results of this work is the development of WS-
FIT (Web Services Fault Injection Tool) [Looker et al. 2004] for the assessment by fault injection of the
SOAP protocol. In practice, the SOAP parser Axis 1.1 is instrumented to inject faults on input/output request
messages. Recent results presented in [Silva et al. 2006] also reveal that version 1.3 of the Axis software
should not be used in business-critical applications because of several problems like memory-leakage,
performance degradation and hang-up situations of the server that require manual restart intervention. This
type of work relates to the discussion of dependability benchmarking in the chapter on Evaluation of System
Resilience elsewhere in this deliverable.

One benefit of such work is to propose a fault model for web service based applications, i.e., the kind of
faults affecting a web service in operation [D. Cotroneo et al. 2003] and [Gorbenko et al. 2004]. Beyond
physical faults affecting the runtime support, communication faults are one of the most important sources of
faults for large-scale applications on the Internet [5, 6]. However, because of the complexity of the web
service infrastructure at runtime (protocol analysers, dynamic code generation, application servers, virtual
machines / operating systems), software faults must be considered as a first class of problems [Ingham et al.
2000]. For example, the SOAP parser can be subject to development faults, which could lead to an incorrect

RESIST D12 archp 7

Part Arch 1 — Service Oriented Architectures

analysis of messages and/or a wrong mapping of data types. In short, the development of large-scale critical
application in this context must take into account both physical and software faults affecting the executive
and communication infrastructure but also evolution faults, e.g., inconsistency between WSDL documents
and stubs produced from older versions.

1.1.3 Security and authentication issues

A lot of work has been carried out regarding security in Services Oriented Architectures built out of web
services, and this part of the web services protocol stack is relatively mature. There are several security-
related web service standards, in particular WS-Security [OASIS 2004], which aims at providing end-to-end
security including authentication (using security tokens), confidentiality and integrity of messages. WS-
Security, which is based on XML-Signature and XML-Encryption, is implemented at the SOAP request level
by using non-functional elements in the SOAP header and by encrypting the message body. XML-Signature
[Bartel et al. 2002] is a specification targeting the creation and the processing of electronic signatures of
XML documents or part of them. XML-Encryption [Imamura et al. 2002] is a specification of object
encryption and formatting of the encrypted result in XML.

WS-Security defines a basic framework for transmitting web service messages securely. Above this layer
there is less agreement, but IBM and Microsoft have proposed the following set of layers and software
abstractions:

e S v

WS-Security

Figure 2.2: Abstractions and Software Layers for Web Services Security (from [IBM and Microsoft 2002])

WS-Policy [Bajaj et al. 2006], WS-Trust [Anderson et al. 2005] and WS-Privacy build directly on WS-
Security to add higher level security characteristics. Thus, WS-Policy specifies the security contract,
describing how to express the security requirements of the provider and the capabilities of the client, WS-
Trust specifies the model of the mechanisms to establish trusted relations, either directly or indirectly via
trusted third party services, whilst WS-Privacy (in progress) is a language for the specification of privacy
features (on both machine- and human-readable format) that can be interpreted by user agents.

Higher-level protocols build on top of these protocols to solve interoperability issues between heterogeneous
security approaches. Thus, WS-SecureConversation [Anderson et al. 2004], WS-Federation [Bajaj et al.
2003], and WS-Authorization (in progress) provide a general framework for authorization mechanisms in
web services architectures.

1.1.4 Reliability of SOA protocols

There is clearly a need for web service messages to be delivered reliably as well as securely, and there are
many examples of reliable messaging systems that can provide such guarantees. However, web services
cannot depend on the semantics of the underlying transport protocols, and thus, reliable messaging must be

RESIST D12 arch p 8

Part Arch 1 — Service Oriented Architectures

implemented at the SOAP level to ensure end-to-end reliability guarantees and interoperability across a
range of different transport protocols.

A reliable messaging protocol for web services essentially defines an abstraction of a reliable message-
processing layer that hides the details of the underlying mechanism used to ensure reliable delivery, which is
typically some form of message-oriented middleware. The basic reliability guarantee provided is “best
effort” delivery, perhaps within a specified time limit, or else a failure indication.

Unfortunately, for historical and perhaps political reasons, there are two rival standards for reliable
messaging for web services, namely WS-Reliability [SUN 2003] and WS-ReliableMessaging [Microsoft
2004]. Although the two specifications offer very similar capabilities with respect to reliable messaging, they
seem to have a very different approach to specifying the policy associated with a reliable messaging channel.
WS-ReliableMessaging appears to take a rather static view in which the policy is negotiated as part of setting
up the channel, and then the agreed parameters apply to the whole sequence of messages. This means that it
is not necessary to specify the parameters as part of each message, but it also means that it is not possible for
the policy to be adapted dynamically except by shutting down the channel and starting again. In contrast,
WS-Reliability seems to allow much more flexibility, but at the cost of some overhead associated with each
message. Ultimately, the performance of a reliable messaging system depends on the underlying
implementation rather than the protocol, but it would seem that the WS-Reliability proposal allows the
implementer more flexibility.

1.1.5 Transaction, composition and orchestration

In addition to BTP (Business Transport Protocol) [Ceponkus et al. 2002], an older technology,
WS-AtomicTransaction [Cabrera et al. 2005b], WS-BusinessActivity [Cabrera et al. 2005c¢] and WS-
Coordination [Cabrera et al. 2005a] are three complementary specifications supported by IBM, Microsoft
and BEA that should support the implementation of synchronous short duration and ACID transactions
(WS-AtomicTransaction) as well as asynchronous long-running business transactions (WS-BusinessActivity).

Transaction management provides a basic infrastructure for coordinating the execution of web services.
However, a service-oriented application can be composed of several web services, which requires some sort
9

of language for “composition”, “orchestration” or “choreography” of services. The web services included in
the composition are coordinated by a workflow that constitutes the business process of the composition.

Several initiatives specify such business processes using XML documents. Three similar specifications have
been proposed for the workflow oriented applications: XLANG [Thatte 2001] by Microsoft, WSFL (Web
Services Flow Language) [Leymann 2001] by IBM, and WSCL (Web Services Language Conversation)
[Banerji et al. 2002] by Hewlett-Packard. BPEL4WS (Business Process Execution Language for Web
Services) [Andrews et al. 2003], which is a fusion of WSFL and XLang, is the most mature version and an
implementation is already provided by IBM and Microsoft. This integrates the notion of web services
transactional specifications to manage the composition and to perform compensatory transactions (a kind of
undo operation) when necessary. In web services technology, a transactional service must propose
compensatory transactions, which are the only practical way to maintain consistency in case of blocking or
failure situations.

Recovery aspects at service level have been investigated in WSCAL (Web Service Composition Action
Language) [Tartanoglu et al. 2003a, Tartanoglu et al. 2003b], a language for service composition based on
XML developed to address fault tolerance of web services, in particular by using forward error recovery

RESIST D12 archp 9

Part Arch 1 — Service Oriented Architectures

strategies. The principle of forward error recovery is clearly more suitable for web services because it does
not impose the handling of state management issue to the web service provider. The WSCAL language
creates a coordinator seen as a proxy between the client and all web services in the composite application.
The main role of the coordinator is to handle exceptions returned by web services, based on an exception tree
for all web services belonging to a composite application. When an exception is raised by a service, the
proxy is able to check whether this exception as an impact on other services or not, thanks to the exception
tree. When necessary, the proxy triggers the compensating transaction or any other recovery action on target
services. The implementation of the language is still in progress.

Finally, BPEL4WS has been used to manage the upgrade of individual component web services into
composite web services based applications [Gorbenko et al. 2004]. The idea consists of switching the
composite web service from using the old release of the component web service to using its newer release,
only when confidence in the new version is high enough, so that the composite service dependability will
not deteriorate as a result of the switch.

1.1.6 Quality of service requirements

Quality of service issues in the broader sense have been addressed in [Menascé 2002]. In this respect, except
for some security and transaction aspects, there is no formalism today to express properly the expected QoS
of a web service, i.e., the core parameters (e.g., delays, resources requirements, etc.) that could be exploited
by developers and application designers. In a recent work, IBM proposed a language WSEL (Web Services
EndPoint Language) whose aim is to precisely define certain QoS characteristics of a Web Service Endpoint.
Its development is still in progress. In addition, huge efforts are spent to define Service Level Agreements
(SLAs) corresponding to some QoS agreement between client and provider, including expected QoS
objective criteria (e.g., delay of service restart in case of failure) and penalties when the provider does not
fulfil them.

WS-Agreement [Andrieux et al. 2004] is an XML language that describes a service-level agreement for Grid
Computing and that is supported by the GRAAP working group (Grid Resource Allocation and Agreement
Protocol). Service-level agreements distinguish between negotiation of QoS requirements and monitoring of
the provided QoS in operation. Hence, quality of service and other guarantees that depend on actual resource
usage cannot simply be advertised as an invariant property of a service and then bound to by a service
consumer. Instead, the service consumer must request state-dependent guarantees to the provider, resulting in
an agreement on the service and the associated guarantees. Additionally, the guarantees on service quality
must be monitored and failure to meet these guarantees must be notified to consumers.

The objective of the WS-Agreement specification is to define a language and a protocol for advertising the
capabilities of providers and creating agreements based on creational offers, and for monitoring agreement
compliance at runtime. Currently, WS-Agreement is just a draft, but this is the most promising and advanced
work with respect to other research work like WSOL [Tosic et al. 2005], WS-QDL [Yoon et al. 2004], [Yu-jie
et al. 2005], [Hasan and Char 2004], etc.

1.2 Recent research work in RESIST

In this section we summarize the work targeting Service Oriented Architectures done by the partners of the
network in the relevant period of RESIST, included as contributions in this deliverable. These contributions
relate to the topics proposed in the previous sections.

RESIST D12 archp 10

Part Arch 1 — Service Oriented Architectures

1.2.1 A Fault Tolerance Support Infrastructure for Web Services based Applications

In this paper, researchers from LAAS propose a support infrastructure that enables both clients and providers
to add dependability mechanisms to web services used in large-scale applications [Salatge and Fabre 2006].
To this aim, it is introduced the notion of so-called Specific Fault Tolerance Connectors. The connectors are
software components able to capture web service interactions between clients and providers. They
implement filtering and error detection techniques (e.g. runtime assertions) together with recovery
mechanisms to improve the robustness of web services. The same web service can be used in several service-
oriented applications with different dependability constraints and thus taking advantage of different
connectors. To implement recovery strategies, connectors can use the natural redundancy of web services.
Similar services can also be found to provide an acceptable service instead the original one, a sort of
degraded service. As this approach provides separation of concerns, such dependability mechanisms can
easily be adapted to the needs. A central contribution of this work is a dedicated language (a DSL, Domain
Specific Language) that has been developed to build reliable connectors. A platform has been developed
(services and tools), used to implement dependable web services based applications and tested with various
web services available on the Internet.

1.2.2 Secure and Provable Service Support for Human-Intensive Real-Estate Processes

In this paper, researchers from Newcastle introduce SOAR, a service-oriented architecture for the real-estate
industry that embeds trust and security, allows for formal correctness proofs of service interactions, and
systematically addresses human interaction capabilities through web-based user access to services [Mello et
al. 2006]. The paper demonstrates the features of SOAR through a Deal-Maker service that helps buyers and
sellers semi-automate the various steps in a real-estate transaction. This service is a composed service, with
message-based interactions specified in SSDL, the SOAP service description language. The implemented
embedded trust and security solution deals with the usual privacy and authorization issues, but also
establishes trust in ownership and other claims of participants. We also demonstrate how formal techniques
can prove correctness of the service interaction protocol specified in SSDL. From an implementation
perspective, a main new contribution is a protocol engine for SSDL. A proof-of-concept demonstration is
accessible for try-out.

1.2.3 Service-oriented Assurance - Comprehensive Security by Explicit Assurances

Flexibility to adapt to changing business needs is a core requirement of today’s enterprises. This is addressed
by decomposing business processes into services that can be provided by scalable service-oriented
architectures. Service-oriented architectures enable requesters to dynamically discover and use sub-services.
Today, service selection does not consider security. In this paper, researchers from IBM introduce the
concept of Service-Oriented Assurance (SOAS), in which services articulate their offered security assurances
as well as assess the security of their sub-services [Karjoth et al. 2006]. Products and services with well-
specified and verifiable assurances provide guarantees about their security properties. Consequently, SOAS
enables discovery of sub-services with the “right” level of security. Applied to business installations, it
enables enterprises to perform a well-founded security/price trade-off for the services used in their business
processes.

RESIST D12 archp 11

Part Arch 1 — Service Oriented Architectures

1.2.4 Modelling of Reliable Messaging in Service-Oriented Architectures

Due to the increasing need of highly dependable services in Service-Oriented Architectures, service-level
agreements include more and more frequently such traditional aspects as security, safety, availability,
reliability, etc. Whenever a service can no longer be provided with the required QoS, the service requester
needs to switch dynamically to a new service having adequate service parameters. In the current paper,
researchers from the University of Budapest propose a meta-model to capture such parameters required for
reliable messaging in services in a semi-formal way [Gonczy and Varro 2006]. Furthermore, they
incorporate fault-tolerant algorithms into appropriate reconfiguration mechanisms for modelling reliable
message delivery by graph transformation rules.

Currently these researchers are working on the formal verification of the correctness of the proposed
reconfiguration mechanisms using existing verification tools for graph transformation systems. As the next
step in the future, they plan to implement the automatic generation of runtime implementation in existing
middleware and to create test cases for reliable messaging.

RESIST D12 archp 12

2 — Mobile Services and their Infrastructures

Introduction

Mobile phones offer perhaps the most well known example of a mobile service - users are free to receive and
make phone calls while moving. The mobile phone service is built around a rather complex infrastructure
composed of a huge number of base stations, which extend the fixed Telco physical infrastructure!. The
complexity of such a cellular-based system remains confined in the managed infrastructure and allows the
construction of relatively simple mobile devices.

Nowadays, the availability of mature wireless transmission technologies, such as Bluetooth, WiFi, WiMax,
as well as of powerful small-sized computational elements (e.g., PDA, smart phone), allows new forms of
mobile networks, whose mobility support does not rely on any infrastructure. Examples of such
infrastructure-less network architectures include Mobile Ad Hoc Networks (MANET) and Spontaneous
Networks (SN). They enlarge the spectrum of wireless networks, dominated by voice-oriented cellular
infrastructure-based network architectures, and provide users with new types of services.

The lack of a physical infrastructure is one key element of this new family of networks, and it is motivated
by the much shorter lifetimes (e.g., just a couple of minutes as in SN) or a priori objective of the network.
For example, a MANET can be set up for a specific (ad hoc) purpose (e.g., first aid operation) and can last
for days [Gerla et al. 2005], while a SN appears spontaneously when two or more users can opportunistically
exchange information for a couple of minutes. Figure 2.1 helps positioning some of the ReSIST partner’s
studies concerning mobile networks.

To offer a mobile service in infrastructure-less networks is particularly challenging for two main reasons:
firstly the effects of mobility are in general visible at any layer of the network architecture, from the physical
layer to the application one. At the physical/link layers mobility produces wireless communication links with
time-variant QoS properties (e.g., delay and bandwidth) so that end-to-end application level channels are in
general themselves variable in properties, with the extreme case of many short-term intermittent interactions
between end points. The second point is that infrastructure-less networks are by definition open, self-
organizing adapting systems.

1 A similar architectural solution, even if it is extremely smaller in size, is used by wireless LAN, whose connectivity service is offered inside a
specific area via wireless access points.

RESIST D12 archp 13

Part Arch 2 — Mobile Services and their Infrastructures

Infrastructure FT
—

Phisycal,fixed Cellular

Qtems

Logical
(e.g.,backbone,| Mobil

i obile . .
rmg)NOne Spontaneous\ Ad Hoc (MANET), Lifetime

networks
Very short - short (min -Yirs) Middle (days) \ Very long (years)
opportunistic

IRISA Roma

Figure 2.1: Some examples of ReSIST partner studies concerning mobile networks.

2.1 Fundamental research lines

The following sections outline the main lines of researches that ReSIST partners are addressing, and which
are related to mobile services and the challenges introduced by ubiquitous systems.

2.1.1 Dependability in cellular systems

Since the early years of mobile networks growth in the late 90's, concerns about the dependability of cellular
networks have been raised. Basic studies have adapted to the wireless environment the successful reliability
methods used in fixed networks, such as architecture comparison during design phase, thanks to reliability
estimates with the use of system decomposition and computation [Varshney and Malloy 2001].

Basic elements, either in the hardware and software, of a mobile infrastructure may fail. The design of
reliable networks is thus based on a priori computations of their dependability metrics (e.g., availability).
Numerical characteristics of network elements (MTBF, MTTR, ...) are then needed: these values are usually
extracted from the analysis of field failure data [Matz et al. 2002, Lac 2006] which are, ideally, collected
automatically, as in a Bluetooth case [Cinque et al. 2005].

2.1.2 Basic communication services for MANETS

Due to the lack of an infrastructure, mobile devices forming a MANET have to cooperate even to provide the
basic forms of communications among applications [Martin-Guillerez et al. 2006]. Since the diameter of a
MANET is usually much higher than the transmission range of single mobile device, data packet
transportation is multi-hop in nature. Moreover, as a consequence of mobility the topology rising at network
layer is time-variant [Snow et al. 2000].

RESIST D12 archp 14

Part Arch 2 — Mobile Services and their Infrastructures

Routing protocols represent the main algorithmic tool for implementing a communication service [Beraldi
and Baldoni 2002]. Although routing protocols are well understood for fixed data network (e.g. Internet),
their applicability to dynamic topologies raised several new issues, e.g. new metrics that take route stability
and energy efficiency into account [Jiang et al. 2005, Park et al. 2006]. Things are even more challenging
when a Service Level Agreement (SLA) becomes part of the requirements and QoS routing is mandatory
[Porcarelli el al. 2003, Zhang and Mouftah 2005, Al-Karaki and Kamal 2004].

As surveyed in [Liu and Kaiser 2005], a large number of routing protocols have been already proposed (e.g.,
AODV [Perkins el al. 2000], DYMO [Chakeres et al. 2005], and SHARP [Ramasubramanian et al. 2003]).
New studies are however still required to full understand the implication of mobility on routing protocols
and to investigate new promising directions, like probabilistic algorithms [Beraldi el. al. 2006] and network
coding [Lee at al. 2006].

2.1.3 Middleware service support for mobile applications

This research theme starts from the assumption that some basic forms of communication facility are already
available and faces the problem of how to build more powerful abstractions that facilitate the design of
mobile applications.

A usual approach is grouping a set of recurrent “low level” services as a middleware that application
developers can exploit and tune [He 2004, Lac and Ramanathan 2006]. For example, middleware is more
powerful to support interactions than simple point-to-point communication, e.g. the publish/subscribe one
[Baldoni at al. 2005], or it can provide developers with suitable inter-process coordination primitives
[Gadiraju and Kumar 2004], e.g. put/get operations in a generic tuple space [Arief et al. 2006, Damasceno
et al. 2006].

2.1.4 Service discovery for MANETS

In order to adapt to different contexts, applications designed for mobile networks need to be flexible and
open [Zhu et al. 2005]. In general terms it could be convenient to cast the application context as services that
the application could exploit, a central paradigm in Service Oriented Architectures (SOA).

Discovering services available at a given time as well as selecting the most convenient one is a crucial aspect
for successfully applying SOA to mobile networks [Cho and Lee 2005]. Mobile devices in fact have
inherently few and limited number of resources as compared to fixed ones. It then becomes important to
utilize the resources and services available in other devices to accomplish tasks that cannot be done alone.
This research line aims at studying how to discover, select and invocate services available at a given time in
a network [Mian et al. 2006].

2.1.5 Spontaneous networks

This form of mobile systems is gaining increased attention due to their potential applications. In this case,
the interaction between devices is one hop in scope, and limited to the lifetime of the spontaneous
communication link, established occasionally between two devices. Spontaneous communications enable to
create new services that are synchronized on the meetings of two, or more, physical entities. More generally,
these communications enable to synchronize services on spatial conditions, such as the presence, or absence,
of an object in an area, or the meeting of several objects.

RESIST D12 archp 15

Part Arch 2 — Mobile Services and their Infrastructures

Applications for this kind of networks often require atomic commitment between two mobile devices, i.e., in
situations where there are simultaneous state changes on multiple devices. This hard problem, since the
available communication time is limited, may be solved by the use of dynamic adaptation protocols [Pauty et
al. 2005].

2.2 Recent research work in RESIST

This section summarizes four recent contributions by ReSIST partners, which were included in this
deliverable.

2.2.1 On Using the CAMA Framework for Developing Open Mobile Fault Tolerant Agent Systems

Newcastle developed the CAMA (Context-Aware Mobile Agents) framework intended for constructing
large-scale mobile applications using the agent paradigm [Arief et al. 2006]. CAMA provides a powerful set
of abstractions, a supporting middleware and an adaptation layer allowing developers to address the main
characteristics of the mobile applications: openness, asynchronous and anonymous communication, fault
tolerance, device mobility. It ensures recursive system structuring using location, scope, agent and role
abstractions. CAMA supports system fault tolerance through exception handling and structured agent
coordination. The applicability of the framework is demonstrated using an ambient lecture scenario - the first
part of an ongoing work on a series of ambient campus applications.

2.2.2 Context-Aware Exception Handling in Mobile Agent Systems: The MoCA Case

Handling erroneous conditions in context-aware mobile agent systems is challenging due to their intrinsic
characteristics: openness, lack of structuring, mobility, asynchrony and increased unpredictability. Even
though several context-aware middleware systems support now the development of mobile agent-based
applications, they rarely provide explicit and adequate features for context-aware exception handling.

This paper reports the experience of Newcastle in implementing error handling strategies in some prototype
context-aware collaborative applications built with the MoCA (Mobile Collaboration Architecture) system
[Domasceno 2006 et al.]. MoCA is a publish-subscribe middleware supporting the development of
collaborative mobile applications by incorporating explicit services to empower software agents with
context-awareness. We propose a novel context-aware exception handling mechanism and discuss some
lessons learned during its integration in the MoCA infrastructure.

2.2.3 A Survey on Communication Paradigms for Wireless Mobile Appliances

During the design of wireless services, one must have in mind problems linked to the mobility of the
devices. Indeed, when a device moves, it can lose the network, acquire it, or the performances of the network
can change. To handle those issues, wireless services must be designed with the knowledge of what can
happen in the network. This paper by IRISA surveys existing paradigms to deal with mobility in wireless
networks [Martin-Guillerez et al. 2006].

2.2.4 Survey of Service Discovery Protocols in Mobile Ad Hoc Networks

Mobile devices are inherently scarce in resources, having to cooperate among them for performing tasks that
cannot be done alone. This cooperation is in the form of services that are offered by other devices in the

RESIST D12 archp 16

Part Arch 2 — Mobile Services and their Infrastructures

network. To get the benefits from the services offered by other devices, these services have to be discovered.
Service Discovery Protocols (SDPs) used for this purpose constitute an important area of research in mobile
computing and ubiquitous computing.

In this report produced by Roma, twelve SDPs for multihop mobile ad hoc networks are analyzed with
respect to six criteria: service discovery architectures, management of service information, search methods,
service selection, methods for supporting mobility and service description techniques [Mian et al. 2006].
Among these, the most important aspect is the service discovery architecture as it affects other aspects of the
service discovery.

We have categorized the service discovery architectures in four groups namely directory-based with overlay
support architecture, directory-based without overlay support architecture, directory-less with overlay
support architecture and directory-less without overlay support architecture. The management of service
information and search methods mainly depends on the type of service discovery architecture.

It was found that mobility support and service selection methods, as well as service descriptions, are
independent of the SDP architecture. Mostly the services are described using XML or extensions. Open
issues are discussed at the end of the report.

RESIST D12 archp 17

3 — Building Resilient Architectures with Off-the-shelf
Components

Introduction

The societal impact of the [un]dependability of off-the-shelf (OTS) information and telecommunication
components can hardly be overstated. As the “information society” takes shape, people increasingly depend
on the proper functioning of a loose, open computing/communication infrastructure whose building blocks
(e.g., proprietary or open-source operating systems and web servers) have either established records of poor
dependability, or little evidence of good development practices and acceptable dependability. There has now
been for several years a trend towards increasing reliance on OTS components: both from developing
custom-built components for each new system towards using existing components, and from using
components developed for niche markets with high dependability requirements to buying alternatives that
offer lower costs thanks to a larger market. These trends have been accompanied by increasing concerns,
perhaps mostly about complex OTS software, with design faults leading to more frequent failures and
security problems, but also about OTS hardware for the mass market, containing design faults and also
becoming increasingly susceptible to transient faults. In embedded computing, increased reliance on OTS
components has already created serious challenges for designers. Apart from headline-making events like the
disabling of a U.S. Navy warship by a Windows NT crash [Slabodkin 1998], industries dealing with
hazardous processes face the inevitability of replacing, for instance, safety-qualified hardware sensors, now
unavailable, with ubiquitous “smart” sensors containing software, that offer many advantages except
comparable evidence of dependability.

Using OTS components is commonly believed to reduce at least the initial cost of deploying complex IT
systems. But their actual advantages in terms of Total Cost of Ownership (TCO) are uncertain, and
inadequate dependability and security contribute heavily to this cost. For instance, a recent analysis
[Patterson et al. 2002] suggests that out of TCO values for OTS systems that vary between 3.6 and
18.5 times the purchase cost of systems, "a third to half of TCO is recovering from or preparing
against failures". To such visible costs, one must add the cost of failures that are never detected
(e.g., data corruption that causes sub-optimal business decisions and other waste); and of
catastrophic failures that are too rare to be part of such surveys.

In many of the applications that depend on commercial OTS (COTS) components, the risk from design faults
has not yet been addressed adequately. While awareness of these costs and risks slowly grows among users,
large vendors of OTS components are slow in improving, due to contrasting market pressures and the sheer
difficulty of improving the huge base of installed systems. The supply of many OTS components will be

RESIST D12 archp 18

Part Arch 3 — Building Resilient Architectures with Off-the-shelf Components

driven by the dependability requirements that satisfy the majority of their mass markets, but are insufficient
for specific business and government sectors of the Information Society; this may well remain true in the
long run. This view is supported by the recent history of the industries of safety-critical computer
applications. As special product lines of high-dependability components became extinct due to competitive
pressures these industries have increasingly had to adapt to using general-purpose tools and OTS
components, often with insufficient or unknown dependability. The necessary solution is to use fault
tolerance against the failures of these components. Side by side with industrial applications of known
schemes, the last decade has thus seen a steady growth of the research on the application of fault tolerance
specifically to systems built with OTS components.

The fault-tolerant architectures that can be used to preserve system dependability in the presence of
(demonstrated or suspected) insufficient dependability of components vary along several dimensions, which
it is useful to recall in order to characterise the different lines of currently active research.

First, regarding the form of error detection, confinement and recovery, both architectures using additional
components dedicated to monitoring and recovery from failures of OTS components, and ones based on
modular (diverse) redundancy appear promising. The former have always been preferred for applications
where the cost of failure did not justify the high cost of developing multiple versions of a component. For
OTS components, it often takes the form of wrapping, in which a custom-made component filters
communications between the OTS component and the rest of the system. But modular redundancy with
diversity (i.e., fault-tolerant architectures using diverse, functionally equivalent components) becomes an
affordable competitor, since for many functions of OTS components (from chips to complete software
packages and hardware-plus-software systems), the market offers alternative, diverse OTS products.
Diversification at the level of whole software packages or servers has also been widely advocated for
protection of large-scale infrastructures, given the current situation of widespread vulnerabilities, whereby an
attacker, having once discovered a single software bug that opens a security vulnerability, can exploit this
knowledge at minimal cost to attack myriads of hosts.

Fault-tolerant architectural solutions also differ in the level (in the decomposition or functional hierarchies in
a system) at which fault tolerance is applied. Some research focuses on application-level, end-to-end fault
tolerance, to deal with the well-known problems of mass-marketed operating systems and applications.
Generic, application-level fault tolerance (e.g. multiple-version software) will to some extent also protect
against failures and vulnerabilities in the lower level (e.g., operating systems, processors). However, other
research also considers means that are specialised at lower level of granularity (e.g., wrapping is applied at
all levels from complete applications to individual units in libraries) or in the software-hardware hierarchy
(e.g. specialised to tolerate processor failures).

A related area of interest concerns developing essential building blocks that make fault-tolerant architectures
easier to build out of undependable, mass-market OTS components, by guaranteeing properties of low-level
mechanisms (e.g., communication or voting). In an attractive scenario, these building blocks would lead to
economically viable OTS product lines of standardised, comparatively simple, highly dependable products,
possibly shared among various high-dependability applications. Notable example include the Time-
Triggered Architecture (TTA) [Kopetz et al. 2003], increasingly adopted in the automotive industry, safety-
critical railway applications and avionics, and the proposal by Avizienis [Avizienis 2000], described further
down.

RESIST D12 archp 19

Part Arch 3 — Building Resilient Architectures with Off-the-shelf Components

The rest of this chapter outlines important current lines of research on achieving system resilience with OTS
components, and then, in more detail, some more recent contributions [Avizienis 2006], [Becker et al. 2006]
and [Gashi et al. 2006b], included in appendices to this deliverable.

3.1 Lines of research on resilience with OTS components

3.1.1 Identifying vulnerabilities of OTS software, and wrapping against them.

Groups at LAAS, led by J.C. Fabre, J. Arlat and K. Kanoun and at CMU, led by P. Koopman and centred on
the BALLISTA project, have worked on two related areas evaluating via fault injection the vulnerabilities of
COTS items (POSIX-compliant operating systems, the Chorus microkernel and the CORBA notification
service), and specifying wrappers to “cover” such vulnerabilities [Albinet et al. 2004, Arlat et al. 2002,
DeVale et al. 2002, Kropp et al. 1998, Marsden et al. 2002, Pan et al. 2001].

The related HEALERS project at AT&T (C. Fetzer’s group) aimed to protect library components by
automatically generated wrappers (C macros) that intercept calls and check the validity of call parameters
and results,[Fetzer et al. 2003].

M. Swift’s group at Univ. of Washington developed Nooks, a subsystem that wraps the Linux kernel and
detects improper system calls and predefined exceptions [Swift et al. 2004].

In these early, influential studies the emphasis was on ad hoc development of wrappers rather than on
defining explicit general goals and assessment criteria. For instance, some of this literature does not
acknowledge the potential for the wrappers themselves failing, and thus the need to assess at which point
increasing the amount of scrutiny performed by wrappers on communications between components becomes
pointless or even counterproductive.

With respect to this last deficiency, the recently completed U.K. project DOTS (a collaboration between the
ReSIST members Newcastle and City), produced advances in providing a framework for dealing rigorously
with the deficiencies of COTS software. A methodical approach was developed in which protective
wrapping was seen as a way of structuring fault tolerance with OTS components [van der Meulen et al.
2005], to address explicitly the mismatch between what is required from OTS items in a specific system
context and what is known about the available candidate OTS items. The approach was demonstrated on a
set of case studies (http://www.csr.ncl.ac.uk/dots/bibliog.html).

While the early studies mentioned above are mainly concerned with wrapping at the level of the operating
systems, wrapping at other levels is also used, e.g. at the level of application software, as discussed in the
next sub-section.

Other approaches dealing with vulnerabilities detected at various levels have also been used. The SWIFT
technique, [Reis et al. 2005], is a recent extension to the long standing line of research about programmer
transparent software solutions for dealing with transient hardware faults. It is a compiler-based software
transformation, effective in detecting transient hardware faults, and recently extended, [Chang et al. 2006] to
recovery from the detected failures. Software solutions like this offer the users of the OTS hardware, e.g.
CPU and memory, a means of reducing the negative effects of transient faults beyond the levels provided by
the OTS hardware.

RESIST D12 arch p 20

Part Arch 3 — Building Resilient Architectures with Off-the-shelf Components

The ‘Immune System Paradigm’ proposed recently by Avizienis [Avizienis 2000, Avizienis 2006] is an

example of compensating in the system architecture for the lack in modern microprocessors of adequate

support for fault tolerance.

3.1.2 Recent work on diversity in replication-based fault-tolerant systems

Diverse redundancy has played a major part in the effort to meet high resilience requirements using existing

(including legacy) OTS components, especially when custom-built solutions are either impracticable (due to

interconnecting previously existing legacy systems, i.e., systems of systems) or not economically viable due

to the limited market needs.

Accepting that fault tolerance with OTS components requires diversity, several groups looked at various
aspects of using diverse redundancy:

B. Liskov’s group at MIT developed the BASE approach [Castro et al. 2003], extending the “state
machine” approach to fault tolerance to allow diverse replicas of a component. A “conformance
wrapper” guarantees that the states of the diverse replicas remain consistent with an abstract
common state, translates between representations of these states, and enables states to be saved and
restored. This approach must cope with both faults and permitted behaviour variations between the
diverse components; it aims at tolerating Byzantine faults. A prototype demonstrator was developed
at MIT for an NFS file system.

In the abovementioned DOTS Project the City team, undertook an empirical study with complex
OTS products, such as several popular database servers to assess the viability of design diversity
with these products and to evaluate, via measurement, the potential benefits in terms of both
dependability [Gashi et al. 2004] and performance [Stankovic et al. 2006] gains from deploying
diversity. The results are summarised further down in this section.

The ‘Immune System Paradigm’ by Avizienis, mentioned above, provides support for both identical
and diverse multichannel computation.

Further insight into design decisions about which fault-tolerant architectures are appropriate came from
studies targeted at measuring the actual prevalence of various failure modes in OTS software with the
following important contributions:

At the Univ. of Michigan, Chen and colleagues, used several open-source products to study the
appropriateness of general purpose recovery schemes [Chandra and Chen 2000]. They recorded
empirical evidence of serious limitation of these schemes and evidence that a significant proportion
of reported faults for the products studied lead to non-crash failures, which reinforces the need for
diversity;

At the University of Urbana Champaign, Ravi Iyer and colleagues, recorded empirical evidence of a
strong indication of error dependency or error propagation across a network of NT servers [Xu et al.
1999];

The City team [Gashi et al. 2004, Gashi et al. 2006b] provided direct empirical evidence of fault-
diversity with OTS database servers.

RESIST D12 arch p 21

Part Arch 3 — Building Resilient Architectures with Off-the-shelf Components

3.1.3 Diversity for security

This topic is covered in more detail in the chapter on Intrusion Tolerance. The text here is limited to aspects
related to the use of diversity with OTS components to improve security.

The security research community directly embraces the notion of protective wrapping, and has also
developed a considerable interest in fault tolerance via diversity to compensate for the (security) deficiencies
of OTS components. Three important research strands have been:

e the DARPA sponsored OASIS project in the USA (which developed prototype architectures, e.g.
[Fraser et al. 2003], for web sites made attack-resistant via multiple diverse copies of a web server),

e the European MAFTIA project, coordinated by Newcastle and including other ReSIST members
(University of Lisboa, IBM Zurich, LAAS), which delivered a reference architecture, a rationalised
terminology framework, and supporting mechanisms,

e the DIT project, in which LAAS-CNRS was involved (associated to SRI International). The project
developed a prototype architecture and implementation of an adaptive intrusion tolerant web server
using diversity - http://www.csl.sri.com/projects/dit.

While significant advances have been made in design and verification of fault tolerance for improved
security, progress in the area of quantitative evaluation remains limited [Littlewood et al. 2004]. The
difficulties and advance in this area are outlined in the Evaluation part of this deliverable.

3.1.4 Adaptive Fault Tolerance

An important aspect of achieving resilience of computer-based systems, including those developed with OTS
components, is managing the evolution of the system configuration or environment during the systems’
lifetime. A special case of evolution is the change of the deployed fault tolerance mechanisms. Traditionally,
such changes would be implemented statically, i.e., changing the system configuration off-line. Changing the
deployed mechanism at runtime, however, has also been explored. The main technical problems with such an
approach were outlined and discussed in [Kim et al. 1990]:

o the difficulty to adapt the mechanisms by means of architectural and/or algorithmic solutions;

o the adaptation efficiency, i.e., the ability to monitor the operational conditions and to react to
configuration/environment changes.

Projects such as ROAFTS [Kim et al. 1998], MEAD [Narasimhan et al. 2005] and AQuA [Sabnis et al.
1999] propose solutions based on middleware, which allows for transparent switching from one mechanism
variant to another at the expense of some performance penalty, i.e., by temporarily freezing the service
delivered to the user. Chameleon [Kalbarczyk et al. 1999] follows the same approach. The adaptation
executed by a Fault Tolerance Manager responsible for collecting the user requirements and other pertinent
information and then deciding which of the available fault tolerance mechanism will be used. In such
systems, adaptation is often driven by thresholds, e.g., as in MEAD [Dumitras et al. 2005] and ROAFTS. In
AQuA, instead, the adaptation is driven by the QoS criteria defined by the clients of the services (e.g., in
terms of crash and/or value failures). For instance, the requested availability can be obtained by increasing
the number of replicas. Another interesting study [Goldberg et al. 1995] advocates an ‘Adaptive Fault
Resistant System’; it can be seen as a survey of some possible approaches to address the problem of

RESIST D12 arch p 22

Part Arch 3 — Building Resilient Architectures with Off-the-shelf Components

adaptation (e.g., adaptive recovery blocks) and open issues (e.g., reflection as in FRIENDS [Fabre et al.
1998, Taiani et al. 2005]).

In ReSIST, work carried out at LAAS relies on the notion of multi-level reflective architectures [Taiani et al.
2005] to perform the on-line adaptation. The objective is to limit the impact of the modifications on the
service delivered to the user, i.e., without freezing the system but by introducing degraded modes of
operation at the non-functional level. This work tackles both the architectural and algorithmic issues to
simplify the design and the implementation of on-line adaptive mechanisms.

3.1.5 Infrastructure management

An important aspect of achieving resilience of systems built with OTS components is the so called
infrastructure management, a collective label for a multitude of administration tasks and processes and the
tools enabling them. Adopting standards of infrastructure management promotes interoperability and best
practices and thus reduces the likelihood of misconfiguration of complex systems of OTS components and as
a result — poor system performance.

The most widespread infrastructure management standards today are Simple Network Management Protocol
(SNMP), Web Based Enterprise management (WBEM) and Java Management Extensions (JMX), which are
described briefly below:

e SNMP [IETF 1991] is widely spread both in terms of usage and industry support. SNMP is best
suited for the management of networks and network elements. It is also adapted for computational
platform management, but the lack of real object-oriented information representation and security
issues makes it inferior compared with the other two solutions.

e WBEM [DMTF 2004] was developed by the Distributed Management Task Force (DMTF), a
subsidiary of the Object Management Group (OMG) [DMTF 2004]. WBEM is a truly object
oriented and model based management standard with a UML-compatible information model — the
Common Information Model (CIM). However, although the standards comprising WBEM are
available for years now and being supported by the major software vendors its industrial penetration
has been limited except for Microsoft Windows NT operating systems. The Windows Management
Instrumentation (WMI) is partly a CIM compliant implementation.

e JMX [Sun 2004] is an extension of the Java runtime platform with management and manageability
capabilities. While .NET utilises WMI, for Java a standard defines the Java Management Extensions
framework (JMX). The standard is heavily used by the major Java-based application servers, e.g.,
WebSphere, Apache Tomcat etc.

3.2 Recent Research Work in ReSIST

3.2.1 An Immune System Paradigm for the Assurance of Dependability of Collaborative Self-
Organizing Systems

This contribution by the VMU team addresses an important problem of enhancing the limited support for
fault tolerance built-in the modern microprocessors and other hardware OTS components.

RESIST D12 arch p 23

Part Arch 3 — Building Resilient Architectures with Off-the-shelf Components

Most currently available microprocessors and other hardware OTS components have very limited fault
tolerance (i.e., error detection and recovery) functions. They also do not possess built-in support for
redundant multi-channel (duplex, triplex, etc.) computation either with identical, or with diverse hardware
and software in the channels. Recently Avizienis has proposed [Avizienis 2000] a network of four types of
Application-Specific Integrated Circuits (ASIC) components called the fault tolerance infrastructure (FTT)
that can be used to embed OTS hardware residing in one package (board, blade, etc.) and provide it with a
means to receive error signals from and to issue recovery commands to the OTS components. Furthermore
the FTI provides support for both identical and diverse multichannel computation. The FTI employs no
software and is fault-tolerant itself. The design principle of the FTI is called the immune system paradigm
because the FTI can be considered to be analogous to the immune system of the human body “hardware”.

The most recent work presented here [Avizienis, 2006] applies the FTI concept to the protection of
collaborative self-organizing systems composed of relatively simple autonomous agents that act without
central control. Because of the changing structure of such systems the application of consensus algorithms
for fault tolerance becomes impractical, while the FTI provides fault tolerance individually for every agent,
and consensus algorithms are not needed to protect the entire self-organizing system.

3.2.2 Towards an Engineering Approach to Component Adaptation

This report by the Newcastle team addresses an important problem in building dependable systems by
integrating ready-made components: how to deal with various mismatches between components [Becker et
al. 2006]. These mismatches are unavoidable because the components are not built directly for the context in
which they are used and because developers of various components typically make a number of assumptions
about the context which are not consistent or even conflicting. The well-known solution to these problems is
introducing adaptors mediating component interactions. Component adaptation needs to be taken into
account when developing trustworthy systems, where the properties of component assemblies have to be
reliably obtained from the properties of its constituent components. The adaptor development is still an ad-
hoc activity, so a more systematic approach to component adaptation is required when building trustworthy
systems. In this paper, the authors show how various design and architectural patterns can be used to achieve
component adaptation and thus serve as the basis for such an approach. The paper proposes an adaptation
model, which is built upon a classification of component mismatches and identifies a number of specific
patterns to be used for eliminating them. It concludes by outlining an engineering approach to component
adaptation that relies on the use of patterns and provides an additional support for the development of
trustworthy component-based systems.

3.3.3 Fault tolerance via diversity for off-the-shelf products: a study with SQL database servers

This report by the City team is a recent update of previous work on fault diversity [Gashi et al. 2004], which
presented empirical evidence that design diversity could offer significant dependability gains for OTS
relational database management systems (SQL servers) [Gashi et al. 2006b]. The report presents results
from a second study with more recent faults reported for two open source SQL servers, PostgreSQL and
Firebird, the two most advanced and widely used open-source SQL-servers, which have been reproduced on
SQL servers from other vendors. The results observed are consistent with the results reported earlier in
[Gashi et al. 2004]:

e very few faults cause simultaneous failure in more than one server.

o the failure detection rate in this study is 100% with only 2 diverse server being used.

RESIST D12 arch p 24

Part Arch 3 — Building Resilient Architectures with Off-the-shelf Components

e The proportion of crash failures is <50%, consistent with the first study and contrary to the common
belief that crash failures are the main concern. Such a high proportion of non-crash failures sheds a
serious doubt as to how effective protection is provided by the known database replication solution,
developed to tolerate crash failures only.

Ways of diagnosing the failed server were also studied, in the cases this is not evident (e.g., non-crash
failures). A variant of data diversity [Ammann et al. 1988] was found to be a promising way of building an
efficient rule-based diagnosing system, which only requires a handful of rules to diagnose successfully the
failed servers for all faults included in the study [Gashi and Popov 2006].

RESIST D12 arch p 25

4 — Intrusion Tolerant Architectures

Introduction

Over the last decades, a significant amount of research and technology has been developed in the fields of
dependable computing and computer security. This includes dependable distributed computing architectures,
methodologies for building reliable communication, and security mechanisms. These are utilized in our
everyday life activities, in a wide spectrum of applications, including: network and information
infrastructures, web-based commerce and entertainment, banking and payment systems. Classical solutions
for dependable computing have often used the tolerance paradigm at their core, where component failures
can be masked and tolerated. Most classical work in security, on the other hand, has focused on preventing
security faults from occurring in the first place by equipping systems with defense mechanisms that
safeguard the systems against attacks. Other security works have tried to identify vulnerabilities in
components either by rigorous testing before deployment or by examination of successful attacks after
deployment. However, whilst both fields have taken separate paths until recently, the problems to be solved
are of a similar nature: systems have to be kept working correctly, despite the occurrence of faults, which
can be either of an accidental nature or caused by malicious actions.

Intrusion tolerance is a new approach that has gained momentum during the past decade [Verissimo 2002,
Lala 2003, Verissimo et al 2003, Deswarte and Powell 2006]. Although traditional security approaches have
been effective in handling many attacks, practical experience shows that most systems remain vulnerable, at
least to some extent. This is particularly true for distributed systems whose correct functioning can depend
on the possibly complex interactions of software running on many nodes. The concept of intrusion tolerance
acknowledges the existence of vulnerabilities in the system, and assumes that over the course of time, a
subset of these vulnerabilities will be successfully exploited by intruders. Its objective is to cope with a wide
set of faults, ranging from random defects and communication failures to malicious, directed attacks,
vulnerabilities, and successful intrusions by an attacker. Thus, the focus of intrusion tolerance is on ensuring
that systems will remain operational (possibly in a degraded mode) and continue to provide core services
despite faults due to intrusions. In other words, instead of trying to prevent intrusions completely, intrusions
are allowed and tolerated to some extent, because the system contains mechanisms that prevent an intrusion
from generating a security failure (i.e., a violation of the security policy). Traditional security and intrusion
tolerance can be combined to provide an effective “defense-in-depth” strategy for achieving dependability in
the face of attacks, failures, or accidents.

In the rest of this section, we discuss the main strategies and mechanisms for architecting intrusion-tolerant
systems, and report on recent advances by ReSIST partners on distributed intrusion-tolerant system
architectures.

RESIST D12 arch p 26

Part Arch 4 — Intrusion Tolerant Architectures

4.1 Intrusion-tolerance in computing systems

The idea that intrusions might be considered as a class of tolerable faults finds its roots in early work on
dependable computing concepts [Laprie 1985], where intrusions were referred to as deliberate interaction
faults. The term “intrusion tolerance” appeared for the first time in a paper where a scheme for
fragmentation-redundancy-scattering was proposed [Fraga and Powell 1985]. Later, this scheme was used in
the DELTA-4 project to develop an intrusion-tolerant distributed server composed by a set of insecure sites
[Deswarte et al. 1991]. In the following years, a number of intrusion-tolerant protocols and systems emerged,
aiming at a few classes of applications.

An intrusion tolerant system is one that is able to continue providing a correct service, despite the presence
of malicious faults, i.e., deliberate attacks on the security of the system by both insiders and outsiders. Such
faults are perpetrated by attackers who make unauthorised attempts to access, modify, or destroy information
in a system, and/or to render the system unreliable or unusable. Attacks are facilitated by vulnerabilities and
a successful attack results in an intrusion upon the system.

In general, an intrusion can result whenever an attacker is successful in exploiting a vulnerability with
respect to any mechanism of a system. If that intrusion is not tolerated, then this can lead to a failure of the
mechanism, which could in turn introduce a vulnerability in other parts of the system that depend on the
mechanism, allowing the original attack that caused the intrusion to propagate further into the system. An
intrusion-tolerant system must be able to continue to deliver a correct service, despite the presence of
intrusions, and thus, a “defence in depth” strategy is needed to avoid depending on any particular component
of the system that could become a single point of failure.

In the following sections, we discuss intrusion-tolerance mechanisms that have an impact on the architecture
of the system in relation to three domains, namely networks and communication, software and programs, and
computer hardware.

4.1.1 Intrusion-tolerant communication

This section is concerned with techniques that ensure intrusion-tolerant communication. The relevant
mechanisms essentially realize the abstractions of secure reliable channels and secure envelopes, and can be
coupled with classic fault-tolerant communication techniques. A secure channel provides the abstraction of a
private communication link between two endpoints, which lasts a certain amount of time. An implementation
of secure channels may use a combination of physical and virtual encryption and data authentication. Secure
channels provide per-session security and normally use symmetric cryptosystems like block ciphers for bulk
data encryption and message-authentication codes for bulk data authentication. Public-key encryption and
signatures are used during an initial handshake phase for establishing a session key. Secure envelopes are
used mainly for sporadic transmissions, such as email. They provide per-message security and use a
combination of symmetric and asymmetric cryptosystems for protecting a message. Many techniques are
known for implementing fault-tolerant communication protocols, and their choice is related to the nature of
the communication and to the kind of failures that are expected. Reliable transmission protocols and secure
channels can be seen on a continuous spectrum of intrusion-tolerant communication protocols, which
address faults ranging from benign crashes and message omissions to arbitrary and adversarial behaviour of
a network.

Many approaches to building intrusion-tolerant systems are based on replication, and thus intrusion-tolerant
protocols that support communication amongst groups of replicated processes have been a particular focus of

RESIST D12 arch p 27

Part Arch 4 — Intrusion Tolerant Architectures

research. State machine replication involves distributing a service through a number of nodes, where each
node runs a replica of the server [Schneider 1990]. This kind of solution ensures the availability and integrity
of the service despite a number of intrusions in a subset of the replicas. Managing service or state machine
replication in the presence of faults requires that the non-faulty replicas be enabled to determine an identical
order on client requests [Schneider and Toueg 1993]. Assumptions about synchrony can be exploited by an
attacker (e.g., by attacking the failure detectors), but using Byzantine-agreement protocols to build intrusion-
tolerant systems over an asynchronous network requires finding a way of circumventing the famous FLP
impossibility result [Fischer et al. 1985], which states that the ordering requirement cannot be met
deterministically if the network is asynchronous and if replicas fail even merely by crashing, i.e. stopping to
function in a quiescent manner.

For example, Castro and Liskov propose a practical approach to Byzantine fault tolerance that sacrifices
liveness for safety [Castro and Liskov 1999], whereas SINTRA developed by IBM uses a non-deterministic
asynchronous atomic-broadcast protocol that is able to maintain safety and liveness at the same time. Inayat
and Ezhilchelvan from Newcastle address the ordering requirement by constructing an abstract process with
signal-on-fail semantics [Inayat and Ezhilchelvan 2006]. In contrast, COCA [Zhou et al. 2002] is an
intrusion-tolerant certification authority built using Byzantine quorums [Malkhi and Reiter 1998], a weaker
form of agreement.

4.1.2 Intrusion-tolerant software

Fault tolerance methods implemented in software were primarily developed in order to tolerate hardware
faults in the underlying execution platform. It has long been known that software-based fault tolerance by
replication is extremely effective at handling transient and intermittent software faults [Verissimo and
Rodrigues 2001], but in order to tolerate software design faults, a systematic approach must involve design
diversity. Furthermore, Byzantine protocols allow for arbitrary failures, but can only tolerate a certain
number of simultaneous failures. By using diversity, it is possible to reduce the likelihood of an attacker
being able to exploit a common vulnerability. Thus, software-based mechanisms are also useful in achieving
intrusion tolerance.

For example, in the case of design or configuration faults, simple replication would apparently provide little
help: errors would systematically occur in all replicas. This is true from a vulnerability viewpoint since such
errors are bound to exist in all replicas. However, the common-mode syndrome for intrusion tolerance
concerns intrusions, or attack-vulnerability pairs, rather than vulnerabilities alone. This gives the architect
some chances. Consider the problem of common-mode vulnerabilities, and of common-mode attacks, i.e.,
attacks that can be cloned and directed automatically and simultaneously to all (identical) replicas. Design
diversity can be applied, for example, by using different operating systems, both to reduce the probability of
common-mode vulnerabilities (the classic way), and to reduce the probability of common-mode attacks (by
obliging the attacker to master attacks to more than one platform) [Canetti et al. 1997]. Automated methods
for adding diversity at compile-time or even at load-time have recently been developed as well [Forrest et al.
1997]. These methods reduce the occurrence of common-mode intrusions, as desired.

However, unless the system can adapt its behaviour in response to previously unknown attacks, a determined
attacker will eventually be able to bring the whole system down by exhausting the amount of diversity
available. Thus, diversity must be coupled with adaptive learning strategies. The ITUA project [Cukier et al.
2001] investigated the use of unpredictability and adaptation to increase intrusion tolerance, and there is a

RESIST D12 arch p 28

Part Arch 4 — Intrusion Tolerant Architectures

DARPA-sponsored programme on Self-Regenerative Systems that is calling for research into areas such as
biologically-inspired diversity and cognitive immunity and self-healing.

4.1.3 Hardware-based intrusion-tolerance

Software-based and hardware-based design frameworks for fault tolerance are not incompatible. In fact, a
combination of hardware and software based approaches may hold the key to building resilient yet high-
performing systems [Saggese et al. 2004]. In a modular and distributed systems context, hardware fault
tolerance today should rather be seen as a means of constructing fail-controlled components, in other words,
components that are prevented from producing certain classes of failures. This contributes to establishing
improved levels of trustworthiness, and the corresponding improved trust can be used to achieve more
efficient fault-tolerant systems.

Physical enclosure of a processor in tamper-resistant or tamper-proof hardware is an established design
option for security systems. For example, many enterprise and banking security systems rely on hardware
security modules to safeguard cryptographic keys. The secure hardware perimeter guarantees the
confidentiality of the secret keys despite successful (logical or physical) penetration of the host computer.
The recently introduced trusted platform module chips found in commodity PCs today play a similar role.
Their mission is broader than safeguarding communication keys, however, and addresses the integrity and
trustworthiness of the operating system of the host computer.

Distributed algorithms that tolerate arbitrary faults are expensive in both resources and time. For efficiency
reasons, the use of hardware components with enforced controlled failure modes is often advisable, as a
means for providing an infrastructure where protocols resilient to more benign failures can be used, without
that implying a degradation in the resilience of the system to arbitrary faults [Powell et al. 1988]. The
performance overhead of computationally intensive cryptographic operations can be mitigated by
implementing them in hardware [Saggese et al. 2004].

4.2 Intrusion-tolerance mechanisms

After reviewing intrusion-tolerance mechanisms in a computing system according to their application
domain, we review, in this section, four mechanisms that can be applied to multiple components of a
computer system: auditing, intrusion detection, error processing, and fault forecasting.

4.2.1 Auditing

Logging system actions and events is a good management procedure, and is routinely done in many
operating systems. For technical as well as for accountability reasons, it is very important to be able to trace
back the events and actions associated with a given time interval, subject, object, service, or resource.
Furthermore, it is crucial that all activity be audited, instead of just a few resources. Finally, the granularity
with which auditing is done should be related to the granularity of possible attacks on the system. Since logs
may be tampered with by intruders in order to delete their own traces, logs should be tamperproof. For these
reasons, audit trails are a crucial framework for building secure systems.

RESIST D12 arch p 29

Part Arch 4 — Intrusion Tolerant Architectures

4.2.2 Intrusion detection

Intrusion detection is also a classical security technology, which has encompassed all kinds of attempts to
detect the presence or the likelihood of an intrusion. Intrusion detection can be performed in real-time or oft-
line. In consequence, an intrusion detection system is a supervision system that follows and logs system
activity, in order to detect and react (preferably in real-time) against attacks (e.g., port scan detection) and
intrusions (e.g. through correlation engines).

An aspect deserving mention under an intrusion tolerance viewpoint is the dichotomy between error
detection and fault diagnosis, normally concealed in current intrusion detection systems [Powell and Stroud.
2003]. What does it mean and why is it important? Basically, intrusion detection systems are primarily
aimed at complementing prevention and only triggering events that must be followed by manual recovery.
When automatic recovery (i.e., fault tolerance) of systems is desired, there is the need to clearly separate
errors

(i.e., incorrect system states that could lead to violations of the security policy) from faults (i.e., potential
causes that lead to an intrusion). Faults (e.g., attacks, vulnerabilities, intrusions) are to be diagnosed, in order
that they can be treated (e.g., removed by applying a security patch to the software, eliminated by tracing
back the source of an attack and taking retaliation measures). Errors are to be detected, in order that they can
be automatically processed in real-time (e.g., system recovery by rebooting from a clean device, elimination
of the compromised system).

Intrusion detection as error detection discovers erroneous states in a system computation deriving from
malicious action, e.g., modified files or messages. Intrusion detection as fault diagnosis seeks other
purposes, and as such, both activities should not be mixed. Regardless of the error processing mechanism
(recovery or masking), administration subsystems are of paramount importance for fault diagnosis. This
facet of classical intrusion detection fits into fault treatment [Powell and Stroud 2003]. It can serve to give
early warning that errors may occur (vulnerability diagnosis, attack forecasting), to assess the degree of
success of the intruder in terms of corruption of components and subsystems (intrusion diagnosis), or to find
out who/what performed an attack or introduced a vulnerability (attack diagnosis).

4.2.3 Error processing

Typical error processing mechanisms used in fault tolerance can also be employed under an intrusion
tolerance perspective, namely: error detection, error recovery, and error masking. Error detection is
concerned with detecting the error after an intrusion is activated. It aims at: confining it to avoid
propagation, triggering error recovery mechanisms, and triggering fault treatment mechanisms. Examples of
typical errors are: forged or inconsistent (Byzantine) messages, modified files or memory variables, or
sniffers, worms, viruses, in operation.

Error recovery is concerned with recovering from the error once it is detected. It aims at providing correct
service despite the error, and recovering from effects of intrusions. Error recovery includes intrusion
response mechanisms or countermeasures such as deletion of virus-infected files, de-activation of certain
user accounts, disabling of ports, removal of corrupted components from the system, placement of partially
corrupted components in quarantine, and restarting of corrupted components from a safe state. Generally,
there are two types of recovery — backward recovery and forward recovery. Examples of backward recovery
are: (1) the system goes back to a previous state known to be correct and resumes, and (2) the system having
suffered DoS (denial of service) attack, re-executes the affected operation. Forward recovery can also be
used: the system proceeds forward to a state that ensures correct provision of service, or the system detects

RESIST D12 arch p 30

Part Arch 4 — Intrusion Tolerant Architectures

the intrusion, considers the corrupted operations lost and increases level of security (threshold/quorums
increase, key renewal). Combining intrusion detection with automated recovery mechanisms is an important
topic that needs further research in the future [Powell and Stroud 2003, Connelly and Chien 2002, Cukier et
al. 2001, Knight et al. 2001].

Unfortunately, when dealing with malicious faults and intrusions, error masking is often the only viable
method of error processing, because error detection is not reliable enough or can have large latency. Under
appropriate failure assumptions, redundancy and error masking can be used systematically in order to
provide correct service without a noticeable glitch. As examples: systematic voting of operations, Byzantine
agreement and interactive consistency, fragmentation-redundancy-scattering, or sensor correlation
(agreement on imprecise values) [Castro and Liskov 2002, Cachin and Poritz 2002, Correia et al. 2006,
Deswarte et al. 1991, Cachin and Tessaro 2006]. However, it is still necessary to use diversity techniques,
since an attacker might otherwise be able to exploit a common vulnerability and intrude upon a set of
replicas with reduced effort.

4.2.4 Fault forecasting

Fault forecasting evaluates the fault occurrence and activation history of the system. For example, attack
prediction can be done by analyzing system logs and audits that show increased port scan activity [Panjwani
et al. 2005]. Fault forecasting can be probabilistic or non-probabilistic. An example of probabilistic
forecasting is determining the probability that the system will satisfy its dependability properties given that
certain components have been successfully compromised by the attacker. An example of non-probabilistic
forecasting is predicting the set of possible attacks based on the current state of the system with respect to the
system attack tree [Stroud et al. 2004]. Forecasting may be necessary to warn about impending attacks, to
predict the attacker’s next course of action given that he/she has intruded into some parts of the system, and
to provide useful information about how to respond to the attacks.

4.3 Examples of intrusion-tolerant systems and architectures

BFT is an efficient state-machine replication scheme that has been used to implement an intrusion tolerant
NEFS server [Castro and Liskov 2002]. The Rampart system provides tools for building intrusion tolerant
distributed services by offering a number of group communication primitives and a membership service
[Reiter 1994, Reiter 1995]. A failure detector is utilized to determine which nodes are behaving badly and to
remove them from the group. ITUA is an improved implementation of Rampart’s protocols and architecture
that was developed in the OASIS program [Ramasamy et al. 2002]. Other intrusion tolerant group
communication systems used different architectures and mechanisms to manage the groups and ensure
system progress. SINTRA developed by IBM assumes a static number of replicas and utilizes randomization
and threshold cryptography in its implementation [Cachin and Poritz 2002]. Another solution that is based
on randomization was developed by Lisboa, but in this case, it managed to avoid any costly cryptographic
primitives [Correia et al. 2006, Moniz et al. 2006]. A solution mainly devised for small networks is
SecureRing because it organizes the nodes in a logical ring [Kihlstrom et al. 2001]. SecureGroup is another
system that resorts to randomization techniques [Moser et al. 2000]. Worm-IT was developed by Lisboa to
take advantage of an architecture with an wormhole subsystem [Correia et al. 2006]. The wormhole is
constructed in order to be secure and to offer a limited number of distributed operations [Verissimo 2003,
Verissimo 2006]. Another Byzantine-tolerant group communication system, called JazzEnsemble, was
recently proposed based on the Ensemble group communication system [Drabkin et al. 2006]. CoBFIT (A
Component-Based Framework for Intrusion Tolerance) [Ramasamy et al. 2004] is a platform for building

RESIST D12 arch p 31

Part Arch 4 — Intrusion Tolerant Architectures

and testing intrusion-tolerant distributed systems without having to re-implement the common support for
each of those systems. Parsimonious asynchronous protocols for state machine replication and protocols for
dynamically changing the composition of the replication group have been implemented in CoBFIT
[Ramasamy and Cachin 2005, Ramasamy et al. 2005].

Quorum systems also implement a service using a number of replicas distributed through a set of nodes.
However, in these systems, the servers are subdivided in several subgroups of a given size (which depends
on the implemented scheme), where different data objects can be replicated, possibly with distinct semantics
(e.g., mutual exclusion objects, shared variables). Quorums are usually utilized to create intrusion-tolerant
data repositories. Recently, a number of proposals for this kind of systems have been presented in the
literature [Malkhi and Reiter 2000, Martin and Alvisi 2004].

Fragmentation and scattering schemes divide an object in several parts and store each one in a distinct server
(one of the first solutions was proposed by LAAS [Deswarte et al. 1991]). In order to ensure the availability
of the object in case of failure, every part is replicated in some servers. The main motivations for employing
these schemes, besides improving the dependability, is to increase the confidentiality of the data and
potentially to reduce the overall storage size because each part of the objects is only saved in a subset of
servers. One way to implement these schemes is through erasure codes [Rabin 1989]. The idea here is to
divide a file in N fragments is such a way that it is sufficient to get K fragments to re-construct the file
[Krawczyk 1993, Garay et al. 2000, Alon et al. 2000]. In project PASIS, a system based on this concept was
developed [Goodson et al. 2004]. An extension to these erasure-coding protocols that improves the system
resilience and prevents actions by faulty clients was recently proposed by IBM [Cachin and Tessaro 2006].

4.4 Recent Research Work in ReSIST

4.4.1 MAFTIA project

MAFTIA (Malicious and Accidental Fault Tolerance for Internet Applications) was a three-year European
research project funded as part of the IST programme (IST-1999-11583) that ran from Jan 2000 to Feb 2003
and brought together experts in the fields of dependability, fault tolerance, computer security, distributed
systems, intrusion-detection systems, cryptography, and formal methods, including several partners in
ReSIST (IBM, LAAS, Lisboa, Newcastle). MAFTIA investigated the ‘tolerance paradigm’ for security
systematically, with the aim of proposing an integrated architecture built on this paradigm, and realising a
concrete design that can be used to support the dependability of many applications. The project’s major
innovation was a comprehensive approach for tolerating both accidental faults and malicious attacks in
large-scale distributed systems, including attacks by external hackers and by corrupt insiders. There were
three main areas of work:

e the definition of an architecture and conceptual model that provides a framework for ensuring the
dependability of distributed applications in the face of a wide class of faults and attacks;

e the design of mechanisms and protocols that provide building blocks for implementing large-scale
dependable applications.

o the development of formal assessment techniques that provide rigorous definitions of the basic concepts
developed by MAFTIA and enable the verification of selected mechanisms and protocols.

RESIST D12 arch p 32

Part Arch 4 — Intrusion Tolerant Architectures

The first area of work aimed to develop a coherent set of concepts for an architecture that could tolerate
malicious faults [Powell and Stroud 2003]. Work was done on the definition of a core set of intrusion
tolerance concepts, clearly mapped into the classical dependability concepts. Other relevant work included
the definition of synchrony and topological models, the establishment of concepts for intrusion detection and
the definition of a MAFTIA node architecture. This architecture includes components such as trusted and
untrusted hardware, local and distributed trusted components, operating system and runtime environment,
software, etc.

Work on the design of intrusion-tolerant mechanisms and protocols included the definition of the MAFTIA
middleware: architecture and protocols [Verissimo and Neves 2001, Verissimo et al. 2006]. An
asynchronous suite of protocols, including reliable, atomic and causal multicast was defined, providing
Byzantine resilience by resorting to efficient solutions based on probabilistic execution [Cachin et al 2000].
Work was also done on protocols based on a timed model that relies on the concept of wormholes, enhanced
subsystems that provide components with a means to obtain a few simple privileged functions and/or
channels to other components, with “good” properties otherwise not guaranteed by the “normal" weak
environment [Verissimo 2003]. For example, the Trusted Timely Computing Base (TTCB) developed in
MAFTIA is based on a wormhole providing timely and secure functions on environments that are
asynchronous and Byzantine-on-failure. Architectural hybridisation is used to implement the TTCB. In the
context of the MAFTIA middleware, an intrusion tolerant transaction service with support for multiparty
transactions was also designed and implemented.

Intrusion detection is assumed as a mechanism for intrusion tolerance but also as a service that has to be
made intrusion-tolerant. MAFTIA developed an architecture for a large-scale distributed intrusion-tolerant
intrusion-detection system [Debar and Wespi 2001]. Problems like handling high rates of false alarms and
combining the outputs from several different intrusion detection systems were also explored.

Trusted Third Parties (TTPs) such as certification authorities are important building blocks in today's
Internet. MAFTIA designed a generic distributed certification authority that uses threshold cryptography and
intrusion tolerant protocols in order to be intrusion-tolerant. Another TTP, the distributed optimistic fair
exchange service, was also developed.

MAFTIA defined an authorization service based on fine grain protection, i.e., on protection at the level of
the object method call [Nicomette and Deswarte 1996]. The authorization service is a distributed TTP which
can be used to grant or deny authorization for complex operations combining several method calls. The
service relies on a local security kernel.

Finally, with respect to the work on formal assessment techniques, MAFTIA developed a model for reactive
cryptographic systems that allows for the formal specification and automatic verification of security
properties under a standard cryptographic semantics, and selected components of the MAFTIA middleware
were formally verified [Adelsbach and Creese 2003].

4.4.2 DIT project

The DIT (Dependable Intrusion Tolerance) architecture was proposed by SRI International in cooperation
with LAAS to build Web servers that continue to provide correct service in the presence of attacks [Valdes
et al. 2004]. For this type of application, confidentiality is not essential, but integrity and availability must be
ensured, even if the system is under attack from competent attackers. It is thus essential that a successful

RESIST D12 arch p 33

Part Arch 4 — Intrusion Tolerant Architectures

attack on one component of the system should not facilitate attacks on other components. The architecture
design is thus centered on a diversification approach.

The architecture is composed of a pool of ordinary Web servers, using as much diversification as possible at
the hardware level (Sparc, Pentium, PowerPC, etc.), the operating system level (Solaris, Microsoft Windows,
Linux, MacOS, etc.) and Web application software level (Apache, IIS, Enterprise Server, Openview Server,
etc.). Only the content of the Web pages is identical on each server. There are sufficient application servers
at a given redundancy level (see below) to ensure an adequate response time for the nominal request rate.
The servers are isolated from the Internet by proxies, which are implemented by purpose-built software
executed on diversified hardware. Requests from the Internet, filtered by a firewall, are taken into account by
one of the proxies acting as a leader. The leader distributes the requests to multiple Web servers and checks
the corresponding responses before returning them to the request initiator. The back-up proxies monitor the
behavior of the leader by observing the firewall/proxy and proxy/server networks. If they detect a failure of
the leader, they elect a new leader from among themselves. The proxies also process alarms from intrusion
detection sensors placed on the Web servers and on both networks.

Depending on the current level of alert, the leader sends each request to one server (simplex mode), two
servers (duplex mode), three servers (triplex mode) or to all available servers. Each server prepares its
response, then computes an MDS5 cryptographic checksum of this response and sends it to the leader. In
simplex mode, the server also sends its response to the leader, which recomputes the checksum and
compares it to the one sent by the server. In duplex mode, the leader compares the two checksums from the
servers and, if they concur, requests one the responses, which is verified by recomputing the checksum. In
triplex or all-available modes, the checksums are subjected to a majority vote, and the response is requested
from one of the majority servers.

The alert level is defined as either a function of recent alarms triggered by the intrusion detection
mechanisms or other error detection mechanisms (result cross-checking, integrity tests, etc.), or by
information sent by external sources (CERTS, other trusted centers, etc.). The redundancy level is raised
towards a more severe mode as soon as alarms are received, but is lowered to a less severe mode when failed
components have been diagnosed and repaired, and when the alarm rate has decreased. This adaptation of
the redundancy level is thus tightly related to the detection, diagnosis, reconfiguration and repair
mechanisms. In the case of read-only data servers, such as passive Web servers, repair involves just a simple
re-initialization of the server from a back-up (an authenticated copy on read-only storage).

Diversification renders the task of the attacker as difficult as possible: when an attacker sends a Web page
request (the only means for him to access the application servers), he does not know towards which servers
his request will be forwarded and thus which hardware or software will process it. Even if he were able to
design an attack that would be effective on all server types (except maybe for denial-of-service attacks,
which are easy to detect), it would be very difficult to cause redundant servers (in duplex mode and above)
to reply in exactly the same incorrect way.

4.4.3 Using the Signal-On-Fail Approach to Impose Order in the Streets of Byzantium

Managing service or state machine replication in the presence of faults requires that the non-faulty replicas
be enabled to determine an identical order on client requests [Schneider and Toueg 1993]. Work done by
Newcastle [Inayat and Ezhilchelvan 2006] addresses this ordering requirement when nodes hosting replicas
can fail in a malicious, Byzantine manner and are connected by an asynchronous network, e.g., the Internet,
wherein the message transfer delays cannot be bounded with certainty by a known constant. In particular, a

RESIST D12 arch p 34

Part Arch 4 — Intrusion Tolerant Architectures

novel approach is proposed, and is evaluated for its effectiveness towards circumventing the well-known
FLP impossibility [Fischer et al. 1985].

The approach followed in this project dynamically constructs an abstract process with signal-on-crash
semantics: it fails only by crash and additionally fail-signals its own imminent crash. Such an abstract
process is constructed by pairing up a subset of processes in the system. When failures are signalled, the
impossibility result ceases to apply and when they do not involve producing incorrect outputs, a simplified
protocol structure, smaller latencies and lower message overhead ensue. This construction of an abstract
process however requires an additional assumption, namely that the paired processes cannot fail at the same
time. This assumption requires implementation of measures that assure failure-independence and it is argued
that such a realisation is practical.

The set of protocols developed here, like BFT [Castro and Liskov 2002], is coordinator-based and
deterministic. The paired-up processes, when called upon to act as the co-ordinator, construct an abstract,
signal-on-crash process similar to the way in which the component processes of the abstract fail-stop process
[Schlichting and Schneider 1983] maintain the signal-on-crash property. They operate in parallel and
endorse each other’s outputs if the latter are found to be consistent with their own outputs. The endorsed
outputs are treated as the outputs of the signal-on-crash process and the endorsement is indicated through
digital signatures that are assumed to be non-forgeable. If a process within a pair suspects a failure of its
counter-part, it stops all activities related to implementing the signal-on-crash process abstraction and
indicates this stopping by outputting a fail-signal message. Thus, the signal-on-crash process either outputs
verifiably-endorsed messages of correct contents or stops functioning after signalling its stopping. That is, it
can only crash and when it does, it fail-signals prior to doing so. It is easy to see that the paired processes
operate together as a single non-faulty coordinator (except for the doubly-signed output format), so long as
no non-faulty process in the pair observes a failure on its counter-part.

On-going work is concerned with comparing the performance of this suite of optimistic Byzantine fault-
tolerant order protocols with that of BFT, a protocol best known for its practicability. The initial results show
that the proposed approach works better than BFT in failure-free scenarios.

RESIST D12 arch p 35

Conclusions

This part surveys a number of issues related to the architecture and implementation of future resilient
ubiquitous systems. These issues were aggregated in four main chapters, each one presenting the current
state of knowledge and ongoing investigations by ReSIST partners in a key research area. The first chapter
addresses the development of service oriented architectures, which are particularly relevant when dealing
with problems of scale, heterogeneity, and evolution of the infrastructures. The chapter on mobile services
and their infrastructures covers resilience aspects of mobile architectures. An understanding of these aspects
is needed in order to devise solutions for more dynamic and diverse systems. The cost pressures that are felt
in most sectors of the economy forces the use of OTS components in most current and future computing
systems. Since many of these components are arguably less trustworthy, it is necessary to devise
mechanisms to reduce their impact on the overall dependability and security of the systems. These topics are
discussed in detail in the chapter on building resilient architectures with OTS components. The chapter on
intrusion tolerant architectures explains how a wide set of accidental and malicious faults can be tolerated,
ensuring correct service behavior even when attacks are successful. These problems have to be considered in
pervasive infrastructures since they provide a fertile ground where malicious actions can be carried out both
by hackers and criminals.

The analysis of these areas, however, has shown that there are still some significant obstacles that have to be
overcome in order to support scalable ubiquitous systems. There are also extra topics that have to be
considered in order to address the challenge of scaling resilience. The identification of this type of gaps is
one of the main subjects of the next deliverable, D13. Two concrete examples of these problems are: it is not
clear how more dynamic and mobile systems can be made intrusion tolerant, since most existing approaches
require a majority of correct participants; it is challenge to make reliable and secure applications out of
current web services, since these are based on unreliable and insecure architectures and protocols.

RESIST D12 arch p 36

References

[Adelsbach and Creese 2003] A. Adelsbach and S. Creese (editors), “Final Report on Verification and
Assessment”, Project MAFTIA IST-1999-11583, Deliverable D22, January 2003.

[Albinet et al. 2004] A. Albinet, J. Arlat and J.-C. Fabre, "Characterisation of the Impact of Faulty Drivers
on the Robustness of the Linux Kernel", Proceedings of the International Conference on Dependable
Systems and Networks, pp. 867-876, 2004.

[Alon et al. 2000] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. Stern, “Scalable Secure Storage
when Half the System is Faulty”, In Montanari, U., Rolim, J., and Welzl, R., editors, Proceedings of the 27th
International Colloquium on Automata, Languages and Programming, Vol. 1853 of LNCS, pp. 576587,
2000.

[Alwagait and Ghandeharizadeh 2004] E. Alwagait and S. Ghandeharizadeh, “DeW: A Dependable Web
Services Framework™, Proceedings of the 14th International Workshop on Research Issues on Data
Engineering: Web Services for E-Commerce and E-Government Applications, March 2004.

[Ammann et al. 1988] P. E. Ammann and J. C. Knight, "Data Diversity: An Approach to Software Fault
Tolerance", IEEE Transactions on Computers, Vol. C-37, No. 4, pp.418-425, 1988.

[Arief et al. 2006] B. Arief, A. lliasov, and A. Romanovsky, "On Using the CAMA Framework for
Developing Open Mobile Fault Tolerant Agent Systems', Workshop on Software Engineering for
Large-Scale Multi-Agent Systems, pp. 29-35, May 2006.

[Al-Karaki and Kamal 2004] J. N. Al-Karaki and A. E. Kamal, "Stability Helps Quality of Service Routing
in Wireless Ad Hoc Networks", Proceedings of the IEEE International Conference on Performance,
Computing, and Communications, pp. 329-336, 2004.

[Anderson et al. 2004] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della-Libera, B. Dixon, P. Garg,
E. Gravengaard, M. Gudgin, S. Hada, P. Hallam-Baker, M. Hondo, C. Kaler, H. Lockhart, R. Martherus, H.
Maruyama, P. Mishra, A. Nadalin, N. Nagaratnam, A. Nash, R. Philpott, D. Platt, H. Prafullchandra, M.
Sahu, J. Shewchuk, D. Simon, D. Srinivas, E. Waingold, D. Waite and R. Zolfonoon, “Web Services Secure
Conversation Language (WS-SecureConversation)”, Version 1.1,
http://specs.xmlsoap.org/ws/2004/04/sc/ws-secureconversation.pdf, 2004,

[Anderson et al. 2005] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della-Libera, B. Dixon, P. Garg,
M. Gudgin, P. Hallam-Baker, M. Hondo, C. Kaler, H. Lockhart, R. Martherus, H. Maruyama, A. Nadalin, N.
Nagaratnam, A. Nash, R. Philpott, D. Platt, H. Prafullchandra, M. Sahu, J. Shewchuk, D. Simon, D. Srinivas,

RESIST D12 arch p 37

Part Arch References

E. Waingold, D. Waite, D. Walter and R. Zolfonoon, “Web Services Trust Language (WS-Trust)”,
ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf, 2005.

[Andrews et al. 2003] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.
Roller, D. Smith, S. T. (Editor), I. Trickovic and S. Weerawarana., “Business Process Execution Language
for Web Services, Version 1.17, 2003.

[Andrieux et al. 2004] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke and M. Xu, “Web Services Agreement Specification (WS-Agreement)”, Draft 18 Version 1.1,
2004.

[Arlat et al. 2002] J. Arlat, J.-C. Fabre, M. Rodriguez and F. Salles, “Dependability of COTS Microkernel-
based Systems”, IEEE Transactions on computer Systems, Vol. 51, No. 2, pp.138-163, 2002.

[Avizienis 2000] A. Avizienis. "A Fault Tolerance Infrastructure for Dependable Computing with High-
Performance COTS Components", Proceedings of the 2000 International Conference on Dependable
Systems and Networks, pp. 492-500, June 2000.

[Avizienis 2006] A. Avizienis. ""An Immune System Paradigm for the Assurance of Dependability of
Collaborative Self-Organizing Systems™, Proceedings of the IFIP 19th World Computer Congress, 1st
IFIP International Conference on Biologically Inspired Computing, pp. 1-6., 2006.

[Bajaj et al. 2006] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo, C.
Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam, H. Prafullchandra, C. v. Riegen, D. Roth, J. Schlimmer,
C. Sharp, J. Shewchuk, A. Vedamuthu, U. Yalg nalp and D. Orchard, “Web Services Policy Framework
(WSPolicy)”, Version 1.2, http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-
policy-2006-03-01.pdf, 2006.

[Bajaj et al. 2003] S. Bajaj, G. Della-Libera, B. Dixon, M. Dusche, M. Hondo, M. Hur, C. Kaler, H.
Lockhart, H. Maruyama, A. Nadalin, N. Nagaratnam, A. Nash, H. Prafullchandra and J. Shewchuk, “Web
Services Federation Language (WSFederation)”, Version 1.0,
ftp://wwwo6.software.ibm.com/software/developer/library/ws-fed.pdf, 2003.

[Baldoni el al. 2005] R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca, and L. Querzoni, “Structure-less
Content-Based Routing in Mobile Ad Hoc Networks”, Proceedings of the IEEE International Conference on
Pervasive Service, 2005.

[Banerji et al. 2002] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp, H. Kuno,
M. Lemon, G. Pogossiants, S. Sharma and S. Williams, “Web Services Conversation Language (WSCL)
1.0”, W3C Note, http://www.w3.org/TR/wscl10/, 2002.

[Bartel et al. 2002] M. Bartel, J. Boyer, B. Fox, B. LaMacchia and E. Simon, “XML-Signature Syntax and
Processing ”’, W3C Recommendation, http://www.w3.org/TR/xmldsig-core/, 2002 .

[Becker et al. 2006] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky and M. Tivoli,
"Towards an Engineering Approach to Component Adaptation™, R. H. Reussner, J. A. Stafford and
C. A. Szyperski, editors, Architecting Systems with Trustworthy Components, Vol. 3938 of LNCS, pp.
193-215, 2006.

RESIST D12 arch p 38

Part Arch References

[Beraldi and Baldoni 2002] R. Beraldi and R. Baldoni, “Unicast Routing Techniques for Mobile Ad Hoc
Networks”, The Handbook of Mobile Ad Hoc Networks, Chapter 7, CRC press, December 2002.

[Beraldi et. al. 2006] R. Beraldi, L. Querzoni, R. Baldoni, “A Hint Based Probabilistic Protocol for Unicast
Communications in MANETSs”, Elsevier Ad Hoc Networks, 2006.

[Beraldi 2006] R. Beraldi, "A Directional Gossip Protocol for Path Discovery in MANETSs", Workshop on
Wireless Ad hoc and Sensor Networks, July 2006.

[Cabrera et al. 2005a] L. F. Cabrera, G. Copeland, M. Feingold, R. W. Freund, T. Freund, J. Johnson, S.
Joyce, C. Kaler, J. Klein, D. Langworthy, M. Little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson, J.
Shewchuk and T. Storey, “Web Services Coordination (WSCoordination)”, Version 1.0, http://www-
128.ibm.com/developerworks/library/specification/ws-tx/#atom, 2005a.

[Cabrera et al. 2005b] L. F. Cabrera, G. Copeland, M. Feingold, R. W. Freund, T. Freund, J. Johnson, S.
Joyce, C. Kaler, J. Klein, D. Langworthy, M. Little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson, T.
Storey and S. Thatte, “Web Services Atomic Transaction (WSAtomicTransaction)”, Version 1.0,
http://www-128.ibm.com/developerworks/library/specification/ws-tx/#atom, 2005b.

[Cabrera et al. 2005¢] L. F. Cabrera, G. Copeland, M. Feingold, R. W. Freund, T. Freund, S. Joyce, J. Klein,
D. Langworthy, M. Little, F. Leymann, E. Newcomer, D. Orchard, I. Robinson, T. Storey and S. Thatte,
“Web Services Business Activity = Framework (WS-BusinessActivity)”, Version 1.0,
ftp://wwwo6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf, 2005c.

[Cachin et al 2000] C. Cachin, K. Kursawe, and V. Shoup, “Random Oracles in Constantinople: Practical
Asynchronous Byzantine agreement using cryptography”, Proceedings of the 19" ACM Symposium on
Principles of Distributed Computing, pp.123-132, 2000.

[Cachin and Poritz 2002] C. Cachin, and J. Poritz, “Secure Intrusion-Tolerant Replication on the Internet”,
Proceedings of the International Conference on Dependable Systems and Networks, pp. 167-176, June 2002.

[Cachin and Tessaro 2006] C. Cachin, and S. Tessaro, “Optimal Resilience for Erasure Coded Byzantine
Distributed Storage”, Proceedings of the International Conference on Dependable Systems and Networks,
pp- 115-124, June 2006.

[Canetti et al. 1997] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor, “Proactive Security: Long-term
Protection against Break-ins”, RSA CryptoBytes, No. 3, 1997.

[Castro and Liskov 2002] M. Castro, and B. Liskov, “Practical Byzantine Fault Tolerance and Proactive
Recovery”, ACM Transactions on Computer Systems, Vol. 20, No. 4, pp. 398461, 2002.

[Castro et al. 2003] M. Castro, R. Rodrigues and B. Liskov, "BASE: Using Abstraction to Improve Fault
Tolerance", ACM Transactions on Computer Systems, Vol. 21, No. 3, pp.236-269, 2003.

[Ceponkus et al. 2002] A. Ceponkus, S. Dalal, T. Fletcher, P. Furniss, A. Green and B. Pope, “Business
Transaction Protocol”, An OASIS Committee Specification, Version 1.0, http://www.oasis-
open.org/committees/download.php/1184/2002-06-03.BTP_cttee spec 1.0.pdf, 2002.

[Chakeres et al. 2005] I. D. Chakeres, E. M. Royer and C.E. Perkins, "Dynamic MANET On-Demand
Routing Protocol", IETF Internet Draft, draft-ietf-manet-dymo- 02.txt, June 2005.

RESIST D12 arch p 39

Part Arch References

[Chandra and Chen 2000] S. Chandra, P. M. Chen "Whither Generic Recovery from Application Faults? A
Fault Study using Open-Source Software", Proceedings of the International Conference on Dependable
Systems and Networks, June 2000.

[Chang et al. 2006] J. Chang, G. A. Reis and D. I. August. "Atomic Instruction-Level Software-Only
Recovery", Proceedings of the International Conference on Dependable Systems and Networks, pp. 83-92,
June 2006.

[Cho and Lee 2005] C. Cho and D. Lee, "Survey of Service Discovery Architectures for Mobile Ad Hoc
Networks", Computer and Information Sciences and Engineering Department, University of Florida,
Gainesville, 2005. http://folk.uio.no/paalee/referencing_publications/ref-sd-cho-cice05.pdf

[Cinque et al. 2005] M. Cinque, F. Cornevilli, D. Cotroneo and S. Russo, "An Automated Distributed
Infrastructure for Collecting Bluetooth Field Failure Data", Proceedings of the 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, pp. 329-336, May 2005.

[Connelly and Chien 2002] K. Connelly, and A. Chien, “Breaking the Barriers: High Performance Security
for High Performance Computing”, Proceedings of the New Security Paradigms Workshop, 2002.

[Cotroneo et al. 2003] D. Cotroneo, C.Di Flora and S. Russo, “Improving Dependability of Service Oriented
Architectures for Pervasive Computing”, The Eighth IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems, 2003.

[Correia et al. 2006] M. Correia, N. Neves, L. Lung, and P. Verissimo, “Worm-IT - A Wormhole-based
Intrusion-Tolerant Group Communication System”, Journal of Systems & Software, accepted for publication
in 2006.

[Correia et al. 2006] M. Correia, N. Neves, and P. Verissimo, “From Consensus to Atomic Broadcast: Time-
Free Byzantine-Resistant Protocols without Signatures”, The Computer Journal, Vol. 49, No. 1, pp. 82-96,
January 2006.

[Courtés et al. 2003] L. Courtes, M.-O. Killijian, D. Powell and M. Roy, "Sauvegarde Coopérative Entre
Pairs Pour Dispositifs Mobiles", The 2nd French-Speaking Conference on Mobility and Ubiquity Computing
(ACM International Conference Proceeding Series, Vol. 120), pp. 97-104, 2005.

[Cukier et al. 2001] M. Cukier, J. Lyons, P. Pandey, H. Ramasamy, W. Sanders, P. Pal, F. Webber, R.
Schantz, J. Loyall, R. Watro, M. Atighetchi, and J. Gossett, “Intrusion Tolerance Approaches in ITUA”,
Supplement of the 2001 International Conference on Dependable Systems and Networks, June 2001.

[Debar and Wespi 2001] H. Debar, and A. Wespi, “Aggregation and Correlation of Intrusion Detection
Alerts”, The 4th Workshop on Recent Advances in Intrusion Detection, Vol. 2212 of LNCS, 2001.

[Defago et al. 2000] X. Defago, A. Schiper and P. Urban, “Totally Ordered Broadcast and Multicast
Algorithms: A Comprehensive Survey”, Technical Report DSC/2000/036, Dept. of Communication
Systems, EPFL, 2000.

[Deswarte et al. 1991] Y. Deswarte, L. Blain, and J. Fabre, “Intrusion Tolerance in Distributed Computing
Systems”, Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy, 1991.

[Deswarte and Powell 2006] Y. Deswarte, and D. Powell, “Internet Security: An Intrusion-Tolerance
Approach”, Proceedings of the IEEE, Vol. 94, No. 2, pp. 432-441, February 2006.

RESIST D12 arch p 40

Part Arch References

[DeVale et al. 2002] J. DeVale and P. Koopman. "Robust Software - No More Excuses", Proceedings of the
International Conference on Dependable Systems and Networks, pp. 145-154, June 2002.

[Dialani et al. 2002] V. Dialani, S. Miles, L. Moreau, D. D. Roure and M. Luck, “Transparent Fault
Tolerance for Web Services base Architectures”, Proceedings of 8th International Europar Conference, pp.
889-898, 2002.

[DMTF 2004] DMTF, "Web-Based Enterprise Management (WBEM)", 2004.

[Damasceno et al. 2006] K. Damasceno, N. Cacho, A. Garcia, A. Romanovsky, and C. Lucena,
"Context-Aware Exception Handling in Mobile Agent Systems: The MoCA Case", Workshop on
Software Engineering for Large-Scale Multi-Agent Systems, May 2006.

[Drabkin et al. 2006] V. Drabkin, R. Friedman, and A. Kama, “Practical Byzantine Group Communication”,
Proceedings of the 26th International Conference on Distributed Computing Systems, July 2006.

[Dumitras et al. 2005] T.A. Dumitras, D. Srivastava and P. Narasimhan. "Architecting and Implementing
Versatile Dependability", R. de Lemos, C. Gacek and A. Romanovsky, editors, Architecting Dependable
Systems III, Vol. 3549 of LNCS, pp. 212-231, 2005.

[Fabre et al. 1998] J.-C. Fabre and T. Perennou, "A Metaobject Architecture for Fault-Tolerant Distributed
Systems: The FRIENDS Approach”, IEEE Transactions on Computers, Vol. 47, No. 1, pp.78-95, 1998.

[Fetzer et al. 2003] C. Fetzer and Z. Xiao, "HEALERS: A Toolkit for Enhancing the Robustness and
Security of Existing Applications", Proceedings of the International Conference on Dependable Systems and
Networks, pp. 317-322, June 2003.

[Forrest et al. 1997] S. Forrest, A.. Somayaji, and D. Ackley, "Building Diverse Computer Systems",
Proceedings of the Sixth Workshop on Hot Topics in Operating Systems, pp. 67-72, 1997.

[Fraga and Powell 1985] J. Fraga, and D. Powell, “A Fault- and Intrusion-Tolerant File System”,
Proceedings of the 3rd International Conference on Computer Security, 1985.

[Fraser et al. 2003] T. Fraser, L. Badger and M. Feldman. "Hardening COTS Software with Generic
Software Wrappers", J. H. Lala, editor, Foundation of Intrusion Tolerant Systems - Organically Assured and
Survivable Information Systems (OASIS), pp. 399-413, 2003.

[Gadiraju and Kumar 2004] S. Gadiraju and V. Kumar, "Recovery in the Mobile Wireless Environment
Using Mobile Agents", IEEE Transactions on Mobile Computing, Vol. 3, No. 2, pp. 180-191, April-June
2004.

[Garay et al. 2000] J. Garay, R.. Gennaro, C. Jutla, and T. Rabin, “Secure Distributed Storage and
Retrieval”, Theoretical Computer Science, Vol. 243, No. 1-2, pp. 363-389, 2000.

[Gashi and Popov 2006] 1. Gashi and P. Popov. ""Rephrasing Rules for Off-The-Shelf SQL Database
Servers", Proceedings of the 6th European Dependable Computing Conference, October 2006.

[Gashi et al. 2004] 1. Gashi, P. Popov and L. Strigini. "Fault Diversity Among Off-the-shelf SQL Database
Servers", Proceedings of the International Conference Dependable Systems and Networks, pp. 389-398, June
2004.

RESIST D12 arch p 41

Part Arch References

[Gashi et al. 2006b] I. Gashi, P. Popov and L. Strigini ""Fault Tolerance via Diversity for Off-the-shelf
Products: A Study with SQL Database Servers™, manuscript, 2006.

[Gerla et al. 2005] M. Gerla, L.-J. Chen, Y.-Z. Lee, B. Zhou, J. Chen, G. Yang, and S. Das, "Dealing with
Node Mobility in Ad Hoc Wireless Network", Vol. 3465 of LNCS, 2005.

[Goldberg et al. 1995] J. Goldberg, 1. Greenberg, R. Clark, E. D. Jensen, K. Kim and D. M. Wells, "Adaptive
Fault-Resistant Systems", SRI-CSL-95-02, SRI International Computer Science Laboratory, 1995.

[Gonczy and Varro 2006] L. Gonczy and D. Varro ""Modeling of Reliable Messaging in Service
Oriented Architectures™, Andrea Polini, editor, Proceedings of the International Workshop on Web
Services Modeling and Testing, pp. 35-49, 2006.

[Goodson et al. 2004] G. Goodson, J. Wylie, G. Ganger, and M. Reiter, “Efficient Byzantine-Tolerant
Erasure-Coded Storage”, Proceedings of the International Conference on Dependable Systems and
Networks, June 2004.

[Gorbenko et al. 2004] A. Gorbenko, V. Kharchenko, P. Popov, A. Romanovsky and A. Boyarchuk,
“Development of Dependable Web Services out of Undependable Web Components”, School of Computing
Science, University of Newcastle upon Tyne, Technical Report Series CS-TR-863, 2004.

[Hasan and Char 2004] O. Hasan and B. Char, “A deployment-ready solution for adding quality-of-service
features to web services”, The 2004 International Research Conference on Innovations in Information
Technology, 2004.

[He et al. 2004] J. He, M. A. Hiltunen and R. D. Schlichting, "Customizing Dependability Attributes for
Mobile Service Platforms", Proceedings of the International Conference on Dependable Systems and
Networks, pp. 617-626, June 2004.

[IBM and Microsoft 2002] IBM and Microsoft, “Security in a Web Services World: A Proposed
Architecture and Roadmap”, Joint White Paper from IBM Corporation and Microsoft Corporation,
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/, 2002.

[IBM and Microsoft 2003] IBM and Microsoft, “Secure, Reliable, Transacted Web Services: Architecture
and Composition”, Joint White Paper from IBM Corporation and Microsoft Corporation,
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/wsoverview.asp, 2003.

[IETF 1991] IETF, "Simple Network Management Protocol", RFC 3411, 1991.

[Imamura et al. 2002] T. Imamura, B. Dillaway and E. Simon, “XML Encryption Syntax and Processing”,
W3C Recommendation, http://www.w3.org/TR/xmlenc-core/, 2002.

[Inayat and Ezhilchelvan 2006] Q. Inayat and P. Ezhilchelvan, “A Performance Study on the Signal-On-Fail
Approach to Imposing Total Order in the Streets of Byzantium”, Proceedings of the International Conference
on Dependable Systems and Networks, pp. 578-587, June 2006.

[Ingham et al. 2000] D. B. Ingham, S. K. Shrivastava and A. F. Panzieri, “Constructing Dependable Web
Services 7, IEEE Internet Computing, Vol. 4, No. 1, pp.25-33, 2000.

[Jeckle and Zengler 2003] M. Jeckle and B. Zengler, “Active UDDI - an Extension to UDDI for Dynamic
and Fault-Tolerant Service Invocation”, Web, Web-Services, and Database Systems 2002, pp.91-99, 2003.

RESIST D12 arch p 42

Part Arch References

[Jiang et al. 2005] S. Jiang, D. He and J. Rao, "A Prediction-Based Link Availability Estimation for Routing
Metrics in MANETSs", IEEE/ACM Transactions on Networking, Vol. 13, No. 6, pp. 1302-1312, December
2005.

[Kalbarczyk et al. 1999] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi and K. Whisnant, "Chameleon: A Software
Infrastructure for Adaptive Fault Tolerance", IEEE Transactions on Parallel and Distributed Systems, Vol.
10, No. 6, pp.560-579, 1999.

[Karjoth et al. 2006] G. Karjoth, B. Pfitzmann, M. Schunter, and M. Waidner "'Service-oriented
Assurance-Comprehensive Security by Explicit Assurances', Proceedings of the 1st Workshop on
Quality of Protection, LNCS, to appear in 2006.

[Kihlstrom et al. 2001] K. Kihlstrom, L. Moser, and P. Melliar-Smith, “The SecureRing Group
Communication System”, ACM Transactions on Information and System Security, Vol. 4, No. 4, pp. 371-
406, 2001.

[Kim et al. 1990] K. Kim and T. Lawrence, "Adaptive Fault Tolerance: Issues and Approaches", Proceedings
of the Second IEEE Workshop on Future Trends of Distributed Computing Systems, pp. 38-46, 1990.

[Kim et al. 1998] K. H. Kim and C. Subburaman, "ROAFTS: A Middleware Architecture for Real-Time
Object-Oriented Adaptive Fault Tolerance Support", Proceedings of the IEEE High Assurance Systems
Engineering, pp. 50-57, 1998.

[Knight et al. 2001] J. Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, and P. Devanbu, “The Willow
Survivability Architecture”, Proceedings of the 4th Information Survivability Workshop. 2001.

[Koopman and DeVale 1999] P. Koopman and J. DeVale, “Comparing the Robustness of POSIX Operating
Systems”, Proceedings of the 29th Annual International Symposium on Fault-Tolerant Computing 1999.

[Kopetz et al. 2003] H. Kopetz and G. Bauer, "The Time-Triggered Architecture", Proceedings of the IEEE,
Vol. 91, No. 1, pp.112-126, 2003.

[Krawczyk 1993] H. Krawczyk, “Distributed Fingerprints and Secure Information Dispersal”, Proceedings
of the 12th ACM Symposiu on Principles of Distributed Computing, pp. 207-218, 1993.

[Kropp et al. 1998] N. P. Kropp, P. Koopman and D. P. Siewiorek, "Automated Robustness Testing of Off-
the-Shelf Software Components", Proceedings of the 28th International Symposium on Fault-Tolerant
Computing, pp. 230-239, June 1998.

[Lac 2006] C. Lac, "Software Availability Improvement with the Use of Failure Analysis", Lambda Mu 15,
October 2006.

[Lac and Ramanathan 2006] C. Lac and S. Ramanathan, "A Resilient Telco Grid Middleware", IEEE
Symposium on Computers and Communications, pp. 306-311, June 2006.

[Lala 2003] J. Lala (editor), “OASIS: Foundations of Intrusion Tolerant Systems”, IEEE Computer Society
Press, 2003

[Laprie 1985] J.-C. Laprie, “Dependable Computing and Fault Tolerance: Concepts and Terminology”,
Proceedings of the 15th International Symposium on Fault Tolerant Computing, pp.2-11, June 1985.

RESIST D12 arch p 43

Part Arch References

[Lee at al. 2006] U. Lee, J-S Park, J. Yeh, G. Pau, and M. Gerla, “CodeTorrent: Content Distribution using
Network Coding in VANETs”, ACM Mobishare: 1st International Workshop on Decentralized
Resource Sharing in Mobile Computing and Networking, 2006.

[Leymann 2001] F. Leymann, “Web Services Flow Language (WSFL 1.0)”, IBM Software Group,
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, 2001.

[Liang et al. 2003] D. Liang, C.-L. Fang and C. Chen, “FT-SOAP: A Fault-Tolerant Web Service”, Tenth
Asia-Pacific Software Engineering Conference, December 2003.

[Liu and Kaiser 2005] C. Liu and J. Kaiser, "A Survey of Mobile Ad Hoc Network Routing Protocols",
http://www.minema.di.fc.ul.pt/reports/report_routing-protocols-survey-final.pdf, October 2005.

[Littlewood et al. 2004] B. Littlewood and L. Strigini, "Redundancy and diversity in security", Proceedings
of the 9th European Symposium on Research in Computer Security, pp. 423-438, 2004.

[Looker et al. 2005] N. Looker, L. Burd, S. Drummond, J. Xu and M. Munro, “Pedagogic Data as a Basis for
Web Service Fault Models”, IEEE International Workshop on Service-Oriented System Engineering, 2005.

[Looker and Munro 2005] N. Looker and M. Munro, “WS-FTM: A Fault Tolerance Mechanism for Web
Services”, Technical Report 02/05, University of Durham, 2005.

[Looker et al. 2004] N. Looker, M. Munro and J. Xu, “WS-FIT: A Tool for Dependability Analysis of Web
Services”, The 1st Workshop on Quality Assurance and Testing of Web-Based Applications, 2004.

[Looker and Xu 2003] N. Looker and J. Xu, “Assessing the Dependability of OGSA Middleware by Fault
Injection”, Proceedings of the 22nd International Symposium on Reliable Distributed Systems, pp.293-302,
2003.

[Malkhi and Reiter 1998] D. Malkhi, and M. Reiter, “Byzantine Quorum Systems”, Distributed Computing,
Vol. 11, pp. 203-213, 1998.

[Malkhi and Reiter 2000] D. Malkhi, and M. Reiter, “An Architecture for Survivable Coordination in Large
Distributed Systems”, IEEE Transactions on Knowledge and Data Engineering, Vol. 12, No. 2, pp. 187-202,
2000.

[Marsden 2004] E. Marsden, "Caractérisation de la Sireté de Fonctionnement de Systemes a base
d'intergiciel", LAAS-CNRS, 2004.

[Marsden et al. 2002] E. Marsden, J.-C. Fabre and J. Arlat, “Dependability of CORBA Systems: Service
Characterization by Fault Injection”, Proceedings of the 21st IEEE Symposium on Reliable Distributed
Systems, pp.276-285, October 2002.

[Martin and Alvisi 2004] J. Martin, and L. Alvisi, “A Framework for Dynamic Byzantine Storage”,
Proceedings of the IEEE International Conference on Dependable Systems and Networks, pp. 325-334, June
2004.

[Martin-Guillerez et al. 2006] D. Martin-Guillerez, M. Banéatre and P. Couderc, “A Survey on
Communication Paradigms for Wireless Mobile Appliances”, INRIA Report, May 2006.

RESIST D12 arch p 44

Part Arch References

[Mello et al. 2006] E. Ribeiro de Mello, S. Parastatidis, P. Reinecke, C. Smith, A. van Moorsel, and J.
Webber *Secure and Provable Service Support for Human-Intensive Real-Estate Processes™,
Proceedings of 2006 IEEE International Conference on Services Computing,
Chicago, lllinois, September 2006, p495-502. [This work won FIRST PRIZE in the IEEE International
Services Computing Contest, September 2006].

[Mian et al. 2006] A. Mian, R. Beraldi, and R. Baldoni, "*Survey of Service Discovery Protocols in
Mobile Ad Hoc Networks', Technical Report - Midlab 7/06, Dip. Informatica e Sistemistica ""Antonio
Ruberti'', Universita di Roma ""La Sapienza', 2006.

[Narasimhan et al. 2005] P. Narasimhan, T. A. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte, J. G.
Slember and D. Shrivastava, "MEAD: Support for Real-Time Fault-Tolerant CORBA", Concurrency and
Computation: Practice and Experience, Vol. 17, pp.1527-1545, 2005.

[Menascé 2002] D. A. Menascé, “QoS Issues in Web Services”, IEEE Internet Computing, Vol. 6, No. 6,
pp.72-75, 2002.

[Merideth 2005] M. Merideth, T. Tai, S. Rouvellou, I. Narasimhan, “Thema: Byzantine-fault-tolerant
Middleware for Web-service Applications”, Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems, pp. 131-140, October 2005.

[Microsoft 2004] Microsoft, “Web Services Reliable Messaging Protocol (WS-ReliableMessaging)”,
http://www-106.ibm.com/developerworks/webservices/library/ws-rm/, 2004.

[Moniz et al. 2006] H. Moniz, N. Neves, M. Correia, and P. Verissimo, “Randomized Intrusion-Tolerant
Asynchronous Services”, Proceedings of the International Conference on Dependable Systems and
Networks, pp. 568-577, June 2006

[Moser et al. 2000] L. Moser, P. Melliar-Smith, and N. Narasimhan, “The SecureGroup Communication
System”, Proceedings of the IEEE Information Survivability Conference, pp. 507-516, 2000.

[Murty 2004] R. Murty, “JULIET: A Distributed Fault Tolerant Load Balancer for NET Web Services”,
Proceedings of the IEEE International Conference on Web Services, pp. 778-781, 2004.

[Nicomette and Deswarte 1996] V. Nicomette, and Y. Deswarte, “An Authorization Scheme for Distributed
Object Systems”, IEEE Symposium on Research in Privacy and Security. 1996.

[Pan et al. 2001] J. Pan, P. Koopman, D. P. Siewiorek, Y. Huang, R. Gruber and M. L. Jiang, "Robustness
Testing and Hardening of CORBA ORB Implementations", Proceedings of the International Conference on
Dependable Systems and Networks, 2001.

[Panjwani et al. 2005] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, “An Experimental Evaluation to
Determine if Port Scans are Precursors to an Attack”, Proceedings of the Internatinal Conference on
Dependable Systems and Networks, pp. 602-611, June 2005.

[Park et al. 2006] S. Park, J. Song and B. Kim, "A Survivability Strategy in Mobile Networks", [EEE
Transactions on Vehicular Technology, Vol. 55, No. 1, pp. 328-340, January 2006.

[Patterson et al. 2002] D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,
A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman and N. Treuhaft,

RESIST D12 arch p 45

Part Arch References

"Recovery-Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies", Technical
Report UCB//CSD-02-1175, UC Berkeley Computer Science, 2002.

[Pauty et al. 2005] J. Pauty, P. Couderc and M. Banitre, “Atomic Token Passing in the Context of
Spontaneous Communication”, INRIA Report 1679, January 2005.

[Perkins et al. 2000] C. E. Perkins, E. M. Royer and S. R. Das, "Ad-hoc On Demand Distance Vector
(AODV) Routing", IETF Internet Draft, draft-ietfmanet-aodv-06.txt, July 2000.

[Porcarelli et al. 2003] S. Porcarelli, F. Di Giandomenico, A. Bondavalli, M. Barbera and I. Mura, "Service-
Level Availability Estimation of GPRS", IEEE Transactions on Mobile Computing, Vol. 2, No. 3, pp. 233-
247, July-September 2003.

[Powell et al. 1988] D. Powell, G. Bonn, D. Seaton, P. Verissimo and F. Waeselynck, “The Delta-4
Approach to Dependability in Open Distributed Computing Systems”, Proceedings of 18th IEEE Int. Symp.
on Fault-Tolerant Computing Systems, pp. 246-51, June 1988.

[Powell and Stroud 2003] D. Powell and R. J. Stroud (editors), “Conceptual Model and Architecture of
MAFTIA”. Project MAFTIA IST-1999-11583, Deliverable D21, January 2003.

[OASIS 2004] OASIS, “Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)”, OASIS
Standard 200401, http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-soap-message-security-1.0.pdf,
2004.

[Rabin 1989] M. Rabin, O. “Efficient Dispersal of Information for Security, Load Balancing, and Fault
Tolerance”, Journal of the ACM, Vol. 36, No. 2, No. 335-348, 1989.

[Ramasamy et al. 2002] H. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. Sanders, “Quantifying the
Cost of Providing Intrusion Tolerance in Group Communication Systems”, Proceedings of the International
Conference on Dependable Systems and Networks, pp. 229-238, June 2002.

[Ramasamy et al. 2004] H. V. Ramasamy, A. Agbaria, and W. H. Sanders, "CoBFIT: A Component-Based
Framework for Intrusion Tolerance”, Proceedings of the 30th EUROMICRO Conference, pp. 591-600,
2004.

[Ramasamy and Cachin 2005] H. V. Ramasamy, and C. Cachin, ‘“Parsimonious Asychronous Byzantine-
Fault-Tolerant Atomic Broadcast”, Proceedings of the 9th International Conference on Principles of
Distributed Systems, 2005.

[Ramasamy et al. 2005] H. V. Ramasamy, A. Agbaria, and W. H. Sanders, ‘“Parsimony-Based Approach for
Obtaining Resource-Efficient and Trustworthy Execution”, Proceedings of the 2nd Latin-American
Symposium on Dependable Computing, Vol. 3747 of LNCS, pp. 206-225, October 2005.

[Ramasubramanian et al. 2003] V. Ramasubramanian, Z. J. Haas and E. Sirer, "SHARP: a Hybrid Adaptive
Routing Protocol for Mobile Ad Hoc Networks", MobiHoc, pp. 303-314, June 2003.

[Reis et al. 2005] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan and D. I. August, "SWIFT: Software
Implemented Fault Tolerance", Proceedings of the 3rd International Symposium on Code Generation and
Optimization, 2005.

RESIST D12 arch p 46

Part Arch References

[Reiter 1994] M. Reiter, “Secure Agreement Protocols: Reliable and Atomic Group Multicast in Rampart”,
Proceedings of the 2nd ACM Conference on Computer and Communications Security, pp. 68—80, 1994.

[Reiter 1995] M. Reiter, “The Rampart Toolkit for Building High-Integrity Services”, Theory and Practice in
Distributed Systems, Vol. 938 of LNCS, pp. 99—110. 1995.

[Rodrigues et al. 2001] R. Rodrigues, M. Castro and B. Liskov, “BASE: Using Abstraction to Improve Fault
Tolerance”, Proceedings of the 18th ACM Symposium on Operating System Principles, pp.15-28, 2001.

[Sabnis et al. 1999] C. Sabnis, M. Cukier, J. Ren, P. Rubel, W. H. Sanders, D. E. Bakken and D. A. Karr,
"Proteus: A Flexible Infrastructure to Implement Adaptive Fault Tolerance in AQuA", Proceedings of the
7th IFIP International Working Conference on Dependable Computing for Critical Applications, pp. 137-
156., 1999.

[Saggese et al. 2004] G. P. Saggese, C. Basile, L. Romano, Z. Kalbarczyk, and R. K. Iyer, “Hardware
Support for High Performance, Intrusion- and Fault-Tolerant Systems”, Proceedings of the 23rd IEEE
International Symposium on Reliable Distributed Systems, pp. 195-204, October 2004.

[Salatge and Fabre 2006] N. Salatge and J.-C. Fabre, ""A Fault Tolerance Support Infrastructure for
Web Services based Applications', LAAS Research Report No. 06365, May 2006.

[Santos et al. 2005] G. T. Santos, L. C. Lung and C. Montez, “FTWeb: A Fault Tolerant Infrastructure for
Web Services”, Proceedings of the Ninth IEEE International EDOC Enterprise Computing Conference,
2005.

[Schlichting and Schneider 1983] R. Schlichting and F. Schneider, “Fail-Stop Processors: An Approach to
Designing Fault-Tolerant Computing Systems”, ACM Transactions on Computer Systems, Vol. 1(3), pp.
222-238, August 1983.

[Schneider 1990] F. Schneider, “Implementing Fault-Tolerant Services using the State Machine Approach:
A Tutorial”, ACM Computing Surveys, Vol. 22, No. 4, pp. 299-319, 1990.

[Schneider and Toueg 1993] F. Schneider and S. Toueg, “Replication Management Using the State-Machine
Approach”, S. Mullender, editor, Distributed Systems, Second Edition, Addison-Wesley, pp. 169-195, 1993.

[Silva et al. 2006] L. Silva, H. Madeira and J. G. Silva, “Software Aging and Rejuvenation in a SOAP-based
Server”, Proceedings of IEEE Network Computing and Applications, 2006.

[Slabodkin 1998] G. Slabodkin, "Software Glitches Leave Navy Smart Ship Dead in the Water", 1998.

[Snow et al. 2000] A. P. Snow, U. Varshney, A. D. Malloy, "Reliability and Survivability of Wireless and
Mobile Networks", IEEE Computer, Vol. 33, No. 7, pp. 49-55, July 2000.

[Stankovic and Popov 2006] V. Stankovic and P. Popov, "Improving DBMS Performance through
Diverse Redundancy", Proceedings of the 25" International Symposium on Reliable Distributed
Systems, October 2006.

[Stroud et al. 2004] R. J. Stroud, 1. S. Welch, J. Warne, P. Ryan, “A Qualitative Analysis of the Intrusion
Tolerance Capabilities of the MAFTIA Architecture”, Proceedings of the 2004 International Conference on
Dependable Systems and Networks, pp. 453-464, June 2004.

RESIST D12 arch p 47

Part Arch References

[SUN 2003] SUN, “Web Services Reliable Messaging TC WS-Reliability”, http://www.oasis-
open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf, 2003.

[SUN 2004] SUN, "Java Management Extensions", 2004.

[Swift et al. 2004] M. M. Swift, M. Annamalai, B. N. Bershad and H. M. Levy, "Recovering Device
Drivers", Proceedings of the 6th ACM/USENIX Symposium on Operating Systems Design and
Implementation, 2004.

[Taiani et al. 2005] F. Taiani, J.-C. Fabre and M.-O. Kilijan, "A Multi-level Meta-object Protocol for Fault-
Tolerance in Complex Architectures", Proceedings of the International Conference on Dependable Systems
and Networks, June 2005.

[Tartanoglu et al. 2003a] F. Tartanoglu, V. Issarny, A. Romanovsky and N. Levy, “Coordinated Forward
Error Recovery for Composite Web Services”, Proceedings of the 22nd Symposium on Reliable Distributed
Systems, 2003.

[Tartanoglu et al. 2003b] F. Tartanoglu, V. Issarny, A. Romanovsky and N. Levy, “Dependability in the
Web Services Architecture”, Architecting Dependable Systems. Vol. 2677 of LNCS, 2003.

[Thatte 2001] S. Thatte, “XLANG (Web Services for Business Process Design)”’, Microsoft,
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm, 2001.

[Tosic et al. 2005] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari and W. Ma, “Management Applications of
the Web Service Offerings Language (WSOL)”, Information Systems, pp. 564-586, 2005.

[Valdes et al. 2004] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saidi, V.
Stavridou, and T. E. Uribe, "An Architecture for an Adaptive Intrusion-Tolerant Server", Proceedings of the
10th International Workshop on Security Protocols, Vol. 2845 of LNCS, pp. 158-178, 2004.

[van der Meulen et al. 2005] M. van der Meulen, S. Riddle, L. Strigini and N. Jefferson, "Protective
Wrapping of Off-the-Shelf Components", Proceedings of the 4th International Conference on COTS-Based
Software Systems, pp. 168-177, 2005.

[Varshney and Malloy 2001] U. Varshney and A. D. Malloy, "Improving the Dependability of Wireless
Networks Using Design Techniques", Proceedings pf the 26th Annual IEEE Conference on Local Computer
Networks, pp. 122-131, November 2001.

[Verissimo and Neves 2001] P. Verissimo and N. Neves (editors), “Service and Protocol Architecture for the
MAFTIA Middleware”, Project MAFTIA IST-1999-11583, Deliverable D23, 2001.

[Verissimo and Rodrigues 2001] P. Verissimo and L. Rodrigues, “Distributed Systems for System
Architects”, Kluwer Academic Publishers, 2001.

[Verissimo 2002] P. Verissimo, “Intrusion Tolerance: Concepts and Design Principles. A Tutorial”,
Technical Report DI/FCUL TR-02-6, Department of Computer Science, University of Lisbon. July 2002.

[Verissimo 2003] P. Verissimo, “Uncertainty and Predictability: Can they be Reconciled?”, Future
Directions in Distributed Computing, Vol. 2584 of LNCS, 2003.

RESIST D12 arch p 48

Part Arch References

[Verissimo et al. 2003] P. Verissimo, N. Neves, and M. Correia, “Intrusion-Tolerant Architectures: Concepts
and Design”, Technical Report DI/FCUL TR-03-5, Department of Computer Science, University of Lisbon.
April 2003.

[Verissimo 2006] P. Verissimo, “Travelling Through Wormholes: A New Look at Distributed Systems
Models”, SIGACTN: SIGACT News (ACM Special Interest Group on Automata and Computability
Theory), Vol. 37, No. 138, 2006.

[Verissimo et al. 2006] P. Verissimo, N. Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte, R. Stroud,
and I. Welch, “Intrusion-Tolerant Middleware: The Road to Automatic Security”, IEEE Security &
Privacy, Vol. 4, No. 4, pp. 54-62, July/August 2006.

[Wikipedia 2006] Wikipedia, “Service-Oriented Architecture”, http://en.wikipedia.org/wiki/Service-
oriented_architecture, last accessed Sep 19™ 2006.

[Xu et al. 1995] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, and Z. Wu, “Fault Tolerance in
Concurrent Object-Oriented Software Through Coordinated Error Recovery”, Proceedings of the 25th IEEE
International Symposium on Fault-Tolerant Computing. June 1995.

[Xu et al. 1999] J. Xu, Z. Kalbarczyk and R. K. Iyer, " Networked Windows NT System Field Failure Data
Analysis", Proceedings of the 1999 Pacific Rim International Symposium on Dependable Computing, 1999.

[Yoon et al. 2004] S. Yoon, D. Kim and S. Han, “WS-QDL Containing Static, Dynamic, and Statistical
Factors of Web Services Quality”, Proceedings of the IEEE International Conference on Web Services, pp.
808 - 809, 2004.

[Yu-jie et al. 2005] M. Yu-jie, C. Jian, Z. Shen-sheng and Z. Jian-hong, “Interactive Web Service Choice-
making based on Extended QoS Model”, Proceedings of the Fifth International Conference on Computer and
Information Technology, pp.1130-1134, 2005.

[Zhang and Mouftah 2005] B. Zhang and H. T. Mouftah, “QoS Routing for Wireless Ad Hoc Networks:
Problems, Algorithms and Protocols”, IEEE Communications Magazine, October 2005.

[Zhou et al. 2002] L. Zhou, F. B. Schneider, and R. v. Renesse, “COCA: A Secure Distributed On-line
Certification Authority”, ACM Transactions on Computer Systems, Vol. 20, No. 4, pp. 329-368, 2002.

[Zhu et al. 2005] F. Zhu, M. W. Mutka and L. M. Ni, "Service Discovery in Pervasive Computing
Environments", IEEE Pervasive Computing, Vol. 4, No. 4, October 2005.

RESIST D12 arch p 49

Part Algo — Resilience Algorithms and Mechanisms

Co-ordinator: Michel Raynal

Contributors: Roberto Baldoni®, Miguel P. Correia®, Ludovic Courtes®, Felicita Di Giandomenico’,
Fabrizio Grandoni’, Marc-Olivier Killijian®, Nuno Ferreira Neves®, Nouha Oualha®, Thea Peacock®,
David Powell®, Adriano Rippa®, Yves Roudier!, Michel Raynal?, Peter Ryan®, Marco Serafini*,
Neeraj Suri®, Sara Tucci Piergiovannig, Paulo Verissimo®

1Eurecom, 2 IRISA, 3LAAS—CNRS, 4Technische Universitat Darmstadt, 5Universidade de Lisboa,
6University of Newcastle upon Tyne, 7University of Pisa, 8University of Roma

Chapter co-ordinators:
1 - Byzantine Consensus in Asynchronous Message-Passing Systems: Miguel Correia
2 - On-Line Diagnosis of Transients in Distributed Systems: Felicita Di Giandomenico
3 - A Survey of Cooperative Backup Mechanisms: Marc-Olivier Killijian
4 - Wait-free objects: an introduction for the sophomore: Michel Raynal
5 - Cooperation Incentive Schemes: Nouha Oualha &Yves Roudier
6 - Connectivity in Unstructured Overlay Networks: Roberto Baldoni

7 - High assurance voting systems: Peter Ryan

Introduction

Background
What is our research domain

Informaticscan be defined as the meeting point between mathematics and technology [Lamport and Raynal 2004]. Roughly
speaking, its two componentsomputer sciencandcomputer engineeringan be seen as complementary facets: com-

puter science is to understand, computer engineering is to build. Said in another way, we are concerned with a science
of abstraction namely, creating the right model for a problem and devising the appropriate mechanizable techniques to
solve it [Aho and Uliman 1992]. This is particularly true in (fault-tolerant/dynamic/large-scale/etc.) distributed comput-
ing where finding models that are realistic while remaining abstract enough to be tractable, was, is and still remains a real
challenge [Schneider 1993].

Distributed computing was born in the late seventies when people started taking into account the intrinsic characteristics
of physically distributed systems. The field then emerged as a specialized research area distinct from networks, operating
systems and parallelism. Its birth certificate is usually considered as the publication in 1978 of Lamport’s most celebrated
paper Time, clocks and the ordering of events in a distributed sysfeamport 1978] (that paper was awarded the
Dijkstra Prize in 2000). Since then, several high level journals and (mainly ACM and IEEE) conferences are devoted to
distributed computing.

Distributed computingarises when one has to solve a problem in terms of entities (usually called processes, agents,
Sensors, peers, actors, processors, nodes, etc.) such that each entity has only a partial knowledge of the many parameters
involved in the problem that has to be solved. While parallelism and real-time can be characterized by tleffiemnasy
andon-time computingrespectively, distributed computing can be characterized by the wamekrtainty Mastering one

form or another of uncertainty is pervasive in all distributed computing problems. Finally, as the aim of a theory is to
codify knowledge so that it can be transmitted [Fischer and Merritt 2003] (to students, engineers, etc), more research to
discover and clearly state basic principles underlying resilient and scalable dynamic distributed systems is necessary.

The ReSIST Working Group on Resilience Algorithms

The ReSIST partners are investigating algorithms and mechanisms that enable the implementation of resilience. A major
issue is the design of algorithms for fault-tolerant asynchronous computing. Other areas concern advanced diagnosis,
backup mechanisms, fault-tolerant paradigms for large-scale services, cooperation schemes, wait-free computing, and
overlay connectivity in dynamic peer-to-peer systems. Last, some ReSIST partners are working on algorithms supporting

resilince in specific large scale socio-technical systems.

This aim of this short introduction is to present the main contributions made in these areas by members of the ReSIST

RESIST D12 algop 200

Part Algo Introduction

Algorithms working group. The following chapters briefly introduce the current state of knowledge on these hot topics.
Each has been addressed by a ReSIST partner. It is worth noting that, in one way or another, all these topics are concerned
by scalability(a ReSIST central issue). The ReSIST student seminar held in San Miniato (5-8 September 2006) has shown
that the PhD students involved in ReSIST have already established strong links for future contributions on these topics.

The following sentences are from an interview of Fred Schneider that appeared in the IEEE mBgsringed Systems
Online They can be seen as a statement of a part of the philosophy that guides the ReSIST group on Algorithms.

“We need to develop qualitatively different approaches. | would make an analogy with macro-scale physical
phenomena like fluid, flows and heat. Understanding the behavior of individual atoms or molecules does not
explain things such as turbulence or temperature. And we don't derive those properties from first principles
-instead we have additional sets of laws for the different levels of abstraction. | believe that when we start
looking at large distributed systems as “networks”, as opposed to as interconnected hosts, there will be new
abstractions and new laws that let us predict behavior and do so in a way that is not directly related to first
principles. We need laws for the various levels of abstractions, and we don't yet have tho&e laws.

Agreement in presence of Byzantine failures

Nowadays, distributed algorithms are being used as important building blocks for the construction of secure applications
based on a recent approach: Intrusion Tolerance. The idea is to make distributed systems advance to a new level of
resilience by combining classical Security techniques with Fault Tolerance mechanisms. The link between the two areas
are the Security concepts of attack and intrusion, which can be encompassed in the Fault Tolerance concept of arbitrary (or
Byzantine) fault. Therefore, fault-tolerant mechanisms can be used to tolerate the occurrence of these malicious events.

Consensus is a classical distributed systems problem with both theoretical and practical interest. The problem can be
stated informally as: how to make a set of distributed processes achieve agreement on a value despite a number of faulty
processes. The importance of this problem derives from several other distributed systems problems being reducible or
equivalent to it. Examples are atomic broadcast, non-blocking atomic commit, group membership, and state machine

replication. These reducibilities and equivalences have two important consequences. The first is that these problems are
usually simple to solve using a consensus algorithm as building block. The second is that several theoretical results stated
for consensus automatically apply to these other problems.

For these two reasons, the study of consensus algorithms that tolerate arbitrary/Byzantine faults — often called Byzantine
Agreement — has an important role in Intrusion Tolerance. One of the survey chapters that follow presents recent work
in this area. The survey, titledyzantine consensus in asynchronous message-passing SystevhsCorreia, N. Neves

and P. Vefssimo [Lisbon, Portugal]), starts by presenting several definitions of the problem, since several variations have
been studied in the literature.

The second part of the survey discusses several solutions to solve consensus. Consensus has been shown to be impossible
to solve deterministically if even a single process is allowed to crash, a result often called the FLP impossibility. Solutions

for consensus are classified in terms of the way the FLP impossibility is circumvented: sacrificing determinism, adding
time to the model, augmenting the system model with an oracle, or modifying the problem.

The third part of this survey chapter deals with scalability issues, which are central to ReSIST. The above-mentioned

relations between consensus and other distributed problems imply that many results stated for consensus automatically
apply to these other problems. Among these results, several have to do with how many faulty processes can be tolerated
and how efficiently the problem can be solved, i.e., about the performance of algorithms that solve consensus (and related
problems). Important metrics of efficiency are the minimum number of asynchronous steps and messages needed to solve
consensus. These metrics are important to assess the scalability of the algorithms, although recent work has shown also

RESIST D12 algop 30

Part Algo Introduction

their limitations.

Issues on On-Line Diagnosis of Transients in Distributed Systems

The research on on-line diagnosis of transient faults focuses on distributed fault tolerant systems, which are designed to
provide sustained delivery of services despite encountered perturbations. In such context, two primary objectives are (a)
to consistently identify a faulty node so as to restrict its effect on the system operations, and (b) to support the process of
recovery viaisolation and reconfiguration of the system resources to continue system operations. If these operations can be
performed as on-line procedures, this can help provide a prompt reaction to faults and an effective capability of dynamic
resource management, thus mitigating the system’s susceptibility to subsequent fault occurrences. Physical faults are
distinguished by their nature and duration of impact as being permanent or temporary (these latter being further divided
into intermittent and transient). While permanent/intermittent faults are caused by some internal part deviating from its
specified behavior and the only way to handle such faults is to remove the affected component, transient faults cannot
be easily traced to a defect in a particular part of the system and, normally, their adverse effects tend to disappear after
some time. Considering that most perturbations encountered are transient, “proper” diagnosis of transients is a significant
issue of interest. Actually, good discrimination between transient and intermittent/permanent faults solves two important
problems: i) prevents the undue removal of nodes affected by transient faults, thus avoiding unnecessary depletion of
system resources; and ii) helps to maintain the correct coverage of the system fault hypotheses (i.e., the assumption on the
number of faults tolerated by the core system protocols within a given time window) by keeping in operation nodes not
permanently faulty.

In ReSIST, the above mentioned issues are addressed by the development of a Fault Detection - Isolation - Recovery
diagnostic process (FDIR) to cope specifically with transients. The knowledge on diagnosis of transient faults mainly
embraces two directions: i) distributed diagnostic algorithms for synchronous systems, and ii) “count-and-threshold”
schemes and architectural framework for handling multiple classes of faults in off-the-shelf (COTS) components and
legacy-based applications. Details are in the survey on this topic, included here, leding diagnosis of transients in
distributed systenfigby M. Serafini, F. di Giandomenico, F. Grandoni and N. Suri [Pisa, Italy and Darmstadt, Germanyy]).

Current research interests are going in several directions, including: i) definition of a generic on-line FDIR framework,
able to generalize the previously proposed distributed diagnosis protocols and to enhance them with count-and-threshold
techniques in order to effectively handle transient faults; ii) a formalization of the diagnosis process, addressing the whole
chain constituted by the monitored component, the deviation detector and the state diagnosis; iii) diagnosis in mobile
distributed environments. The proposed research addresses to a good extent the resilience scalability issues addressed
by ReSIST. Since the basic count-and-threshold mechanism ideally applies to identifiable subsystems, it naturally suits
the evolution of the system at large. Practically all design methodologies go through hierarchical subsystem composition
to nurture complexity-controlled system growth; then, as higher levels of the hierarchy are constructed, properly imple-
mented mechanisms of this kind can be introduced in subsystems there defined. Being the diagnosis mechanisms applied
on-line, the reaction to the discovery of faulty modules/components can be tailored to the real system and environment
conditions. On the assessability front, it is easy to recall that the main goal of these mechanisms is exactly to be able to
obtain specific performance figures from a device, for which mostly qualitative measures of merit were available.

New paradigms for large-scale services

Over the past decade, the ever-improving performance of Internet access has made it possible to deploy online services.
These distributed services are becoming larger and span a wide range of applications. Scalability issues arose as a
result of the centralized client-server model that has been used when designing such services. At the same time, servers
implementing online services are increasingly relied on, thereby becoming single points of failure.

RESIST D12 algo p 400

Part Algo Introduction

New distributed programming paradigms emerged recently as an improvement over centralized client-server models for
large-scale services. These new paradigms, referred to as “peer-to-peer” or “grid computing” (depending on the context
in which they are used), have been designed to address scalability issues at a large scale by distributing service provision
among a large, dynamically-changing set of nodes connected to the network. A natural side-effect is that none of the
service-providing nodes in this model is a single point of failure. In particular, peer-to-peer systems are explicitly designed
to adapt dynamically to the changing execution context, such as arrival or departure of nodes.

Additionally, since the peer-to-peer approach relies on cooperation among participating nodes, it requires that a number of
security aspects be addressed, especially when the nodes are mutually suspicious. These concerns yielded a large amount
of research work aimed at making open peer-to-peer systems resilient against attacks.

The peer-to-peer approach has been successfully used to implement a variety of services where resources are shared
among participating nodes. The most famous and widely deployed peer-to-peer applications are information sharing
and bandwidth aggregation. Both applications achieve high resilience thanks to their highly distributed and dynamic
nature. Emerging applications include large-scale sharing of computing resources. With the advent of appropriate security
primitives, operating system and programming language research are both evolving in a way that would allow for pervasive
resource sharing over the network.

The cooperative service approach has been taken in a variety of research areas: file sharing, censorship-resistant publica-
tion, packet-forwarding for mobile ad-hoc networks, distributed computations, web crawling and indexing, data backup.

A survey of cooperative approaches to backup is given here in the ch&pservey of cooperative backup mechanisms

(by M. Killijian, L. Courtés and D. Powell [LAAS, Toulouse, France]).

The cooperative approach to backup illustrates how the diversity and dynamism inherent to the peer-to-peer paradigm can
be leveraged to implement resilience-enhancing services. In particular, the survey shows that data backup is becoming a
successful application on local-area and wide-area networks. Recent work promoted the idea that cooperative and peer-
to-peer approaches could be applied as well to the context of mobile ad-hoc networks (MANETS) in applications such as
file sharing and data backup.

Wait-free asynchronous computing

The notion ofwait-freecomputing appeared a long time ago (in the late seventies). It simultaneously addresses notions
such as scalability, fault-tolerance, resilience, and liveness in systems where processes can fail (only) by crashing. Let us
consider an object that can be concurrently accessed by several processes. That object provides its users with operations,
each one implemented by an appropriate algorithm. The implementation of the object is saidad-free if any

operation executed by a process that is fault-free terminates in a finite number of its own processing steps. This means
that the operation terminates whatever the number of operations executed concurrently, whatever the speed of the other
processes, whether processes crash or not.

As we can see, a wait-free implementation of an object is naturally deadlock-free and copes naturally with the crash of
any number of processes. As a consequence, wait-free algorithms are good candidates for solving problems where the
system can dynamically evolve and the number of processes is not always known. The introductory survey to wait-free
computing constitutes a “lesson number 1" in this domain. This survey is t#\é&dt-free objects: an introduction for the
sophomoré(by M. Raynal [IRISA, Rennes, France)).

More specialized results are described in the research papers in the appendix to this part of the deliverable.

RESIST D12 algop 500

Part Algo Introduction

Cooperation schemes

Decentralized system algorithms and protocols have recently received a lot of interest in mobile ad-hoc networks as well
as in peer-to-peer (P2P) systems. The development of such techniques is a necessity to be able to attain cost-effective and
reliable applications in this setting, yet it brings up far-reaching issues that have to be dealt with. In decentralized systems,
decision-making may not be located at a specific and central group of devices (repeaters, bridges, routers, gateways,
servers) but can be distributed to end-user devices. Decisions and actions may use the computing power, bandwidth,
and disk storage space of all the participants (peers) in the network rather than being concentrated in a relatively low
number of special devices. The decentralized structure makes it possible to achieve minimal administrative and operational
costs. Peers in this type of system normally have equivalent responsibilities and privileges. The intricate notions of self-
organization and self-management require that each peer provide its own contribution for the correct operation of the
system.

The idea of handing basic mechanisms of the system over to autonomous peers raises new concerns, in particular with
respect to the establishment of trust between peers, to the stimulation of their cooperation, and to the fairness of their
respective contributions. Self-organization opens up new security breaches because a peer must be able to defend against
others perpetrating new forms of denial of service. Selfishness, as illustrated by the so-called free-riding attack, is a first
type of such a threat in which the attacker (called free-rider) benefits from the system without contributing its fair share.
Systems vulnerable to free-riding either run at reduced capacity or collapse entirely because the costs of the system weigh
more and more heavily on the remaining honest peers encouraging them to either quit or free ride themselves. Flooding
is a second type of denial of service: the attack can be launched by sending a large number of query messages asking for
resources to a victim peer in order to slow it until it is unusable or crashes. For example, an attacker can attempt to make
a lot of read and write operations in a distributed storage application. Cheating (or retention) is a third form of denial of
service in which the attacker retains data required for the system to work or does not comply with the normal course of
action in order to obtain an unfair advantage over other peers. So-called “cooperation enforcement” mechanisms (which
should more properly be called cooperation incentive schemes) provide ways of managing and organizing resources and
aim at dealing with the security challenges that traditional security approaches (e.g., authentication, access control) cannot
cope with.

The survey titled A survey of cooperation incentive schefngy N. Oualha and Y. Roudier [Eurecom, Nice, France])
introduces applications for cooperation incentives, then details how incentive schemes work, and finally discusses how
these schemes may be validated.

Overlay network connectivity

Overlay maintenance protocols have been introduced to guarantee overlay netwoedctivityin dynamic large scale
peer-to-peer (P2P) systems. These algorithms have been specifically designed to avoid the partitioning of the overlay in
clusters (network breakage) despite node dynamism (join/leave). However, their design until now had the main goal of
arranging the overlay network in a graph able to remain connected after a massive leave occurrence. Unfortunately, this
widely-used approach does not explicitly address the problem of the continual arrival/departure othad®swhich

in turn heavily affects P2P systems.

The chapter titled Overlay Network Connectivity in Unstructured Overlay Netwb(ky R. Baldoni, A. Rippa and Sara
Tucci-Piergiovanni [Roma, Italy]) surveys current overlay maintenance protocols with the precise goal of highlighting
how they work in several scenarios characterized by different levels of dynamism affecting P2P systems. These protocols
are presented by dividing them in two main categories according to the way they refresh network links at each node,
namelyreactiveprotocols, angroactiveprotocols. In a reactive protocol, a node A changes its links when A is joining

the network, or a node B joins the network using A as “introducer”, or A has a link to a node B leaving the network.

RESIST D12 algop 607

Part Algo Introduction

In a proactive protocol, in addition to the previous cases, a node A also changes its links periodically by starting a link
exchange session with another node.

Then, the survey presents how these overlay maintenance protocols behave under different levels of dynamism. In partic-
ular, the levels of dynamism that are investigated include: semi-static, dynamic with constant churn, and fully dynamic.
The first level considers a network obtained by a serialized sequence of joins, then several network properties are evalu-
ated either without considering any other join/leave or after some number of leaves. The second level represents a more
realistic characterization of the environment: the network is affected by churn but the size of the network is constant along
the time. The third level considers a network affected by churn and the size of the network may vary with time arbitrarily.

The parameters of interest for protocol evaluation are reachability (information about how many nodes a peer is able
to reach with a multicast message in the network), link distribution (how the links are distributed among nodes of the

network), diameter (longest path in the network), overlay clustering (information about how many clusters are in the

network and their size).

This survey points out that current protocols, created to be used in dynamic environments, are not able to maintain
declared performance in realistic dynamic environments but only in partially dynamic situations. ¢From these results it

appears clear that the overlay maintenance problem needs further study in more realistic environments and possibly in
fully dynamic networks to give a more practical contribution to the research.

Dependable voting systems

The last chapter in this Part discusses algorithms to ensure resilience in a specific critical application, “E-voting”. De-
pendable voting systems provide the bedrock on which democracy rests. It is essential not only that voting systems be
trustworthy, they must also be seen by the electorate at large to be dependable. The importance of this has been graphi-
cally highlighted recently by the debacles in the US 2000 and 2004 presidential elections. This has spurred a significant
amount of research into voter- verifiable, cryptographically based schemes over the last few years.

The study of voting schemes is highly interdisciplinary. The information and communication technology is intertwined
with human organisations; even for what concerns the technology alone, voting schemes are required to satisfy a number
of very subtle and often conflicting technical security requirements: accuracy, privacy, coercion-resistance, universal
verifiability, etc. Typically, cryptographic schemes aim to achieve all of these goals with minimal trust requirements, i.e.,
avoiding any need to trust hardware, software, election officials, suppliers etc. This is in stark contrast to the touch screen
style machines widely used in the US in 2000 and 2004. Here, the voter must place complete faith in the voting device to
ensure the integrity and secrecy of their vote.

They must also meet a number of social requirements: usability, cost-effectiveness, understandability, accessibility, public
trust.

The starting point for the ReSIST work in this area was the analysis performed at Newcastle of a voter-verifiable scheme
due to Chaum. This analysis led Ryan (Newcastle) to propose an alternative approach to the creation of the encrypted
receipt. This scheme, dubbed &pa Voter”, is significantly simpler both technologically and conceptually whilst retaining

the technical properties of the original. Since the publication of the original scheme, humerous enhancements have been
developed, for example, the use of randomising encryption primitives such as EIGamal and Paillier to enable re-encryption
mixes in place of the original decryption mixes, supervised casting of encrypted ballots along with Verified Encrypted
Paper Audit Trails (VEPAT) etc. Besides advances on the technical front, various studies have been conducted on the
socio-technical aspects of such schemes: understandability and public trust, socio-technical vulnerabilities and counter-
measures.

RESIST D12 algop 700

Part Algo Introduction

The most significant advances in this field, with special emphasis on the contributions within ReSIST, are surveyed in the
chapter entitled Migh Assurance Voting Systeinisy P.Y. A. Ryan and T. Peacock).

RESIST D12 algo p 80J

1- Byzantine Consensus in Asynchronous Message-Passing Systems: a
Survey

Introduction

This chapter presents a short survey on Byzantine consensus — or Byzantine agreement — in asynchronous message-
passing distributed systems. Consensus is a classical distributed systems problem, first introduced in [Pease et al., 1980],
with both theoretical and practical interest [Lynch, 1996, Guerraoui et al., 2000]. The problem can be stated informally
as: how to ensure that a set of distributed processes achieve agreement on a value despite a number of faulty processes.
The importance of this problem derives from several other distributed systems problems being reducible or equivalent to
it. Examples are atomic broadcast [Hadzilacos and Toueg, 1994, Chandra and Toueg, 1996, Correia et al., 2006¢], non-
blocking atomic commit [Guerraoui and Schiper, 2001], group membership [Guerraoui and Schiper, 2001], and state ma-
chine replication [Schneider, 1990].

These relations between consensus and other distributed problems are important because many results stated for con-
sensus automatically apply to these other problems. Among these results, the most relevant is probably the im-
possibility of solving consensus deterministically in an asynchronous system if a single process can crash, often
called the FLP result [Fischer et al., 1985]. This result lead to a large number of works that try to circumvent it,
i.e., to slightly modify the system model in such a way that consensus becomes solvable. Examples include ran-
domization [Rabin, 1983, Ben-Or, 1983], failure detectors [Chandra and Toueg, 1996, Malkhi and Reiter, 1997], partial-
synchrony [Dwork et al., 1988, Dolev et al., 1987], and wormholes [Correia et al., 2005, Neves et al., 2005].

There is another set of results that have to do with how many faulty processes can be tolerated and how efficiently the
problem can be solved, i.e., about the performance of algorithms that solve consensus. Important metrics of efficiency are
the minimum number of asynchronous steps and messages needed to solve consensus (a survey of early results is given in
[Lynch, 1989]). These metrics are important to assess the scalability of the algorithms, although recent work has shown
that they can hide as much as they show [Keidar, 2002, Moniz et al., 2006].

Algorithms that solve consensus vary heavily depending on the system model, like algorithms that solve any other dis-
tributed systems problem. This chapter considers only message-passing algorithms that tolerate Byzantine (i.e., arbitrary)
faults in asynchronous systems (i.e., without time assumptions).

The reason for choosing this system model is not merely its theoretical interest. Today, algorithms based on this model
are being used as important building blocks for the construction of secure applications based on a recent approach: intru-
sion tolerance [Fraga and Powell, 1985, Adelsbach et al., 2002, Lala, 2003, Verissimo et al., 2003, Avizienis et al., 2004].
This approach can be considered to be part of the ongoing effort to make computing systems, Internet included, more se-
cure vis-a-vis the large number of security incidents constantly reported by entities like the CERT/CC'.

"http://www.cert.org/stats

RESIST D12 algo p 90J

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

Some brief comments are due on the three main aspects of the system model we consider: message-passing, Byzantine
faults and asynchrony.

The message-passing model is the natural choice for algorithms supposed to be executed not in parallel machines but
generic distributed systems, like those built on top of the Internet. An alternative system model is shared-memory
[Attie, 2002, Friedman et al., 2002, Malkhi et al., 2003, Alon et al., 2005, Bessani et al., 2006], but in the kind of system
we are considering the shared memory itself has to be implemented using message passing algorithms.

Arbitrary faults, usually called Byzantine after the paper by Lamport et al. [Lamport et al., 1982], do not put any constraint
on how processes fail. This sort of assumption or, better said, of non-assumption about how processes fail, is specially
adequate for systems where malicious attacks and intrusions can occur. For instance, a process might be executed by an
attacker that modifies the behavior of its implementation of the algorithm arbitrarily. Interestingly, assuming Byzantine
faults, instead of the more typical assumption of crash faults, leads to more complex and challenging algorithms.

Asynchrony might also be better described as a non-assumption about time properties. This (non-) assumption is im-
portant because attackers can often violate some time properties by launching denial-of-service attacks against processes
or communications. For instance, the attacker might delay the communication of a process indefinitely, breaking any
assumptions about process timeliness.

This system model — assuming Byzantine faults and asynchrony — is very generic. Algorithms in this model have to deal
with two independent degrees of uncertainty: in terms of faults and time. This leads to algorithms that besides being
able to deal with malicious behavior, have the virtue of also running correctly in more benign environments, like those in
which only crash faults occur or in which delay bounds are attained.

The consensus problem is defined for a set of n known processes. Currently there is a trend of research on large dynamic
systems in which the number of involved processes is unknown [Mostefaoui et al., 2005, Aguilera, 2004]. Consensus,
however, is still not defined in this context.

1.1. Byzantine Consensus Definitions

This section defines the consensus problem and several of the variations considered in the literature. We say that a process
is correct if it follows its algorithm until completion, otherwise it is said to be faulty.

A binary consensus algorithm aims to achieve consensus on a binary value v € {0,1}. Each process proposes its initial
value (binary) and decides on a value v. The problem can be formally defined in terms of three properties:

o Validity: If all correct processes propose the same value v, then any correct process that decides, decides v.
o Agreement: No two correct processes decide differently.
o Termination: Every correct process eventually decides.

The first 2 properties are safety properties, i.e., properties that say that some bad thing cannot happen, while the last is a
liveness property, i.e., a property that states good things that must happen.

Multi-valued consensus is apparently similar to binary consensus, except that the set of values has arbitrary size, i.e., v €
V and |V| > 2. Multi-valued consensus algorithms have been studied in the literature using several Validity properties,
while the Agreement and Termination properties remained essentially the same (with minor exceptions for Termination
that we will see later). Some papers use the following Validity property [Dwork et al., 1988, Malkhi and Reiter, 1997,
Kihlstrom et al., 2003]:

o Validity 1: If all correct processes propose the same value v, then any correct process that decides, decides v.

RESIST D12 algop 100

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

Others use the following [Doudou and Schiper, 1997, Doudou et al., 2002, Baldoni et al., 2003]:

o Validity 2: 1If a correct process decides v, then v was proposed by some process.

Both properties are somewhat weak. Validity 1 does not say anything about what is decided when the correct processes
do not propose all the same v, while Validity 2 does not say anything about what is the value decided (e.g., is it the value
proposed by the correct processes if all of them propose the same?). Recently, a definition that gives more detail about
what is decided has been proposed [Correia et al., 2006c]. The definition has three Validity properties:

o Validity 1: If all correct processes propose the same value v, then any correct process that decides, decides v.
o Validity 2’: If a correct process decides v, then v was proposed by some process or v = L.
o Validity 3: If a value v is proposed only by corrupt processes, then no correct process decides v.

The first two are essentially the Validity properties already introduced, except that Validity 2’ allows the decision of a value
L ¢ V. The third property is inspired by the original definition in the context of the “Byzantine Generals” metaphor used
in the classical paper by Lamport et al. [Lamport et al., 1982]. The definition was “(1) All loyal generals decide upon
the same plan of action; (2) A small number of traitors cannot cause the loyal generals to adopt a bad plan.”. That paper
however, considered a synchronous system, i.e., a system in which there are known delay bounds for processing and
communication.

This concern about the practical interest of multi-valued consensus defined in terms of Validity 1 or Validity 2 lead also to
the definition of vector consensus [Doudou and Schiper, 1997]. The difference in relation to the previous versions of the
problem is once again the Validity property. The decision is no longer a single value but a vector with some of the initial
values of the processes, at least f + 1 of which are from correct processes. The validity property is now stated as:

o Vector validity: Every correct process that decides, decides on a vector V' of size n:
— V1 if p; is correct, then either V/i] is the value proposed by p; or L;
— atleast (f + 1) elements of V' were proposed by correct processes.

Vector consensus is a variation for asynchronous systems of the classical interactive consistency prob-
lem [Pease et al., 1980]. Interactive consistency is a consensus on a vector with values from all correct processes. How-
ever, in asynchronous systems a correct process can be very slow so it is not possible to guarantee that values from all cor-
rect processes are obtained and still ensure Termination. Therefore, vector consensus ensures only that f + 1 of the values
in the vector are from correct processes. This is clearly more interesting than multi-valued consensus since it tells much
more about the initial values of the correct processes. Interestingly, vector consensus has been proved to be equivalent to
multi-valued consensus defined with the validity properties Validity 1, Validity 2’ and Validity 3 [Correia et al., 2006c].

Some other variations of consensus have been studied in the literature. For instance, the k-set consensus problem in which
the correct processes can decide at most k different values [Chaudhuri, 1993, de Prisco et al., 1999].

A somewhat different kind of definition is the one used in the Paxos algorithms [Lamport, 1998, Lamport, 2001,
Lampson, 2001, Zielinski, 2004, Martin and Alvisi, 2005]. The idea is that processes play one or more of the follow-
ing roles: proposers (propose values), acceptors (choose the value to be decided) and learners (learn the chosen value).
The problem can be defined in terms of five properties [Lamport, 2001, Martin and Alvisi, 2005]:

o Only a value that has been proposed may be chosen.

Only a single value may be chosen.

Only a chosen value may be learned by a correct learner.
Some proposed value is eventually chosen.

« Once a value is chosen, correct learners eventually learn it.

RESIST D12 algop 1100

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

The first three properties are safety properties, while the last two are liveness properties. This definition is interesting
because it allows a simple implementation of state machine replication in the crash failure model [Schneider, 1990,
Lamport, 2001]. However, in the Byzantine failure model this is not so simple [Castro and Liskov, 2002,
Martin and Alvisi, 2005].

1.2. FLP Impossibility

The most cited paper about consensus is probably the one that proves the impossibility of solving consensus determinis-
tically in an asynchronous system if a single process can crash [Fischer et al., 1985]. This result is often called the FLP
impossibility result, after its authors’ names, Fischer, Lynch and Paterson. The consensus definition used to prove the
result is even weaker than the first definition in Section 1.1.: validity is more relaxed and termination is required for a
single process.

The idea is that the uncertainty in terms of timeliness (asynchrony) combined with the uncertainty in terms of failure
(even if failures are only crashes and only one process can fail) does not allow any deterministic algorithm to guarantee
the binary consensus definition given in the previous section. More precisely, the reason for the impossibility is that in an
asynchronous system it is impossible to differentiate a crashed process from another that is simply slow (or connected by
a slow network link). In the years that followed the statement and proof of this result, a few alternative proofs have been
given (a discussion of these proofs can be found in [Lynch, 1989]).

The FLP result says when consensus is not solvable. However, from a practical point of view it is more important to
know when it can be solved. A first detailed study of this issue was presented by Dolev, Dwork and Stockmeyer for crash
faults [Dolev et al., 1987]. The paper identified five relevant parameters that affect solvability: synchrony/asynchrony
of the processes; synchrony/asynchrony of the communication; ordered/unordered message delivery; broadcast/point-to-
point communication; and atomic/not-atomic receive and send. This lead to 32 different models. The paper showed that
different degrees of synchronism allow deterministic algorithms to tolerate different numbers of crash faults (there was
no study for Byzantine faults).

To solve consensus, an algorithm has to circumvent the FLP impossibility result. This word, circumvent, is quite unprecise
so it is important to discuss its meaning. The idea is to slightly modify either the system model or the problem definition
considered in [Fischer et al., 1985] to allow the problem to be solvable. These modifications change the conditions in
which FLP was proven so, to be precise, the result simply no longer applies. However, researchers in the area prefer to
call it “circumventing” the result, to pass the idea that the conditions are close to those in which the result applies.

An observation about FLP with interesting practical consequences is that if we discard one of the properties that define
consensus, we can enforce the two others. This observation lead researchers to design consensus algorithms in the
following way:

« the algorithm solves consensus if the technique used to circumvent FLP works as it is assumed to;
« the algorithm satisfies the safety properties even if the technique used to circumvent FLP does not work as it
assumed to [Guerraoui, 2000, Guerraoui and Raynal, 2004].

The idea is that if something bad happens, like an additional time assumption not being satisfied, the algorithm may not ter-
minate, but Validity and Agreement properties will always be satisfied. This notion has been recently called indulgence in
the context of system models augmented with eventual failure detectors [Guerraoui, 2000, Guerraoui and Raynal, 2004],
but almost all consensus algorithms satisfy it. The only exception that we are aware of is the randomized algorithm in
[Canetti and Rabin, 1993], which always terminates but only satisfies Agreement with a certain probability.

There are several ways to look into the techniques to circumvent FLP. We use a classification in four types of techniques,

RESIST D12 algop 120

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

which we present in more detail in the following section:

« techniques that sacrifice determinism, leading to probabilistic algorithms;
« techniques that add time to the model;

« techniques that enrich the system model with an oracle;

techniques that enrich the problem definition.

1.3. Circumventing FLP

The following sections introduce the techniques to circumvent FLP and algorithms that use them.

1.3.1. Sacrificing Determinism

The FLP impossibility result applies to deterministic algorithms so a solution to circumvent it is by using randomization to
design probabilistic algorithms. More specifically, the idea is to substitute one of the properties that define consensus by
a similar property that is satisfied only with a certain probability. For the reasons mentioned above, almost all algorithms
choose to modify the Termination property, which becomes:

e P-Termination: Every correct process eventually decides with probability 1.

The single exception that we are aware of, already mentioned above, does not modify Termination but Agreement, so
agreement on the value decided is reached with a certain probability [Canetti and Rabin, 1993].

Randomized Byzantine consensus algorithms have been around since Ben-Or’s and Rabin’s seminal pa-
pers [Ben-Or, 1983, Rabin, 1983]. Virtually all randomized consensus algorithms are based on a random operation,
tossing a coin, which returns values 0 or 1 with equal probability.

These algorithms can be divided in two classes depending on how the tossing operation is performed: there are those that
use a local coin mechanism in each process (starting with Ben-Or’s work [Ben-Or, 1983]), and those based on a shared
coin that gives the same values to all processes (initiated with Rabin’s work [Rabin, 1983]).

Typically, local coin algorithms are simpler but terminate in an expected exponential number of communication
steps [Ben-Or, 1983, Bracha, 1984], while shared coin algorithms require an additional coin sharing scheme but can
terminate in an expected constant number of steps [Rabin, 1983, Toueg, 1984, Ben-Or, 1985, Canetti and Rabin, 1993,
Cachin et al., 2000, Friedman et al., 2005]. The original Rabin algorithm required a trusted dealer to distribute key shares
before the execution of the algorithm [Rabin, 1983]. This unpractical operation is no longer needed in more recent algo-
rithms [Canetti and Rabin, 1993, Cachin et al., 2000] (the latter from IBM).

Randomized consensus algorithms have often been assumed to be inefficient due to their high expected message and time
complexities, so they have remained largely overlooked as a valid solution for the deployment of fault-tolerant distributed
systems. Nevertheless, two important points have been chronically ignored. First, consensus algorithms are not usually
executed in oblivion, they are run in the context of a higher-level problem (e.g., atomic broadcast) that can provide a
friendly environment for the “lucky” event needed for faster termination (e.g., many processes proposing the same value
can lead to a quick termination). Second, for the sake of theoretical interest, the proposed adversary models usually
assume a strong adversary that completely controls the scheduling of the network and decides which processes receive
which messages and in what order. In practice, a real adversary usually does not possess this ability, but if it does,
it will probably perform simpler attacks like blocking the communication entirely. Therefore, in practice, the network
scheduling can be “nice” and lead to a speedy termination. A recent paper from Lisbon shows that this is true and that
these algorithms can be practical [Moniz et al., 2006].

RESIST D12 algop 130

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

1.3.2. Adding Time to the Model

The notion of partial synchrony was introduced by Dwork, Lynch and Stockmeyer in [Dwork et al., 1988]. A partial
synchrony model captures the intuition that systems can behave asynchronously (i.e., with variable/unkown process-
ing/communication delays) for some time, but that they eventually stabilize and start to behave (more) synchronously.
Therefore, the idea is to let the system be mostly asynchronous but to make assumptions about time properties that are
eventually satisfied. Algorithms based on this model are typically guaranteed to terminate only when these time properties
are satisfied.

Dwork et al. introduced two partial synchrony models, each one extending the asynchronous model with a time property:

e MI: For each execution, there is an unknown bound on the message delivery time A, which is always satisfied.
e M?2: For each execution, there is an unknown global stabilization time GST, such that a known bound on the
message delivery time A is always satisfied from GST onward.

Chandra and Toueg proposed a third model, which is similar but weaker [Chandra and Toueg, 1996]:

e M3: For each execution, there is an unknown global stabilization time GST, such that an unknown bound on the
message delivery time A is always satisfied from GST onward.

Two Byzantine consensus algorithms, one based on M1 and the other on M2, are presented in the original paper by Dwork
et al. [Dwork et al., 1988]. The algorithms are based on a rotating coordinator. Each phase has a coordinator that locks a
value and tries to decide on it. The algorithms manage to progress and terminate when the system becomes stable, i.e.,
when it starts to behave synchronously. There is still no algorithm or proof that M1 allows Byzantine consensus to be
solved, although it has been shown to be enough to solve crash-tolerant consensus [Chandra and Toueg, 1996].

The timed asynchronous model enriches the asynchronous system model with hardware clocks that can be used to detect
the violation of time bounds [Cristian and Fetzer, 1998]. Cristian and Fetzer have shown that it is possible to solve
consensus in this model, although the problem of Byzantine consensus has not been studied [Fetzer and Cristian, 1995].

1.3.3. Augmenting the System Model with an Oracle

The section describes how FLP can be circumvented using oracles. The original idea of circumventing FLP using oracles
was introduced by Chandra and Toueg [Chandra and Toueg, 1996]. The oracle in that case is a failure detector, i.e., a com-
ponent that gives hints about which processes are failed or not failed. Remember that FLP derives from the impossibility
of distinguishing if a process is faulty or simply very slow. Therefore, intuitively, having a hint about the failure/crash of
a process may be enough to circumvent FLP. Notice however that augmenting the system model with a failure detector is
equivalent to modifying the time model since (useful) failure detectors cannot be implemented in asynchronous systems.
In fact, time assumptions, like those made in partial synchrony models, are usually necessary. The single exception that
we are aware of is the requirement for some order pattern in the messages exchanged by the failure models in the solution
presented in [Mostefaoui et al., 2003a] (from IRISA).

The following section presents failure detectors and the next one wormholes, which are a more generic concept. Other
types of oracles have been presented in the literature, but they have not been used with Byzantine faults. Examples include
the €2 detector, which provides hints about who is the leader process [Chandra et al., 1996], and ordering oracles, which
provide hints about the order of messages broadcasted [Pedone et al., 2002].

RESIST D12 algo p 140

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

1.3.3.1. Failure Detectors

The original idea of failure detectors was to detect or, more precisely, to suspect the crash of a process. Each process has
attached a failure detector module and the set of all these modules formed the failure detector.

Recently, several works applied the idea of Byzantine failure detectors to solve consensus [Malkhi and Reiter, 1997,
Kihlstrom et al., 2003, Doudou and Schiper, 1997, Baldoni et al., 2003, Doudou et al., 2002, Friedman et al., 2005]. The
main differences in relation to crash failure detectors is that (1) Byzantine failure detectors can neither be made completely
independent of the algorithm in which they are used [Doudou et al., 2002], nor (2) detect all Byzantine faults, only certain
subsets [Kihlstrom et al., 2003].

Malkhi and Reiter presented a binary consensus algorithm in which the leader waits for a number of propos-
als from the others, chooses a value to be broadcasted and then waits for enough acknowledgments to de-
cide [Malkhi and Reiter, 1997]. If the leader is suspected by the failure detector, a new one is chosen and the same
procedure is applied. The same paper also described a hybrid algorithm combining randomization and an unreliable
failure detector. The algorithm by Kihlstrom et al. also solves the same type of consensus but requires weaker com-
munication primitives and uses a failure detector that detects more Byzantine failures, such as invalid and inconsistent
messages [Kihlstrom et al., 2003].

Doudou and Schiper presented an algorithm for vector consensus based on a muteness failure detector, which detects if
a process stops sending messages to another one [Doudou and Schiper, 1997]. This algorithm is also based on a rotating
coordinator that proposes an estimate that the others broadcast and accept, if the coordinator is not suspected. This
muteness failure detector was used to solve multi-value consensus [Doudou et al., 2002]. Another efficient algorithm
based on a muteness failure detector was presented by Friedman et al. [Friedman et al., 2005].

Baldoni et al., from Roma, described a vector consensus algorithm based on two failure detectors [Baldoni et al., 2003].
One failure detector detects if a process stops sending messages (muteness) while the other detects other Byzantine
failures. This latter detector is implemented using an interesting solution based on a finite-state automaton that monitors
the behavior of the algorithm.

All algorithms based on failure detectors that we are aware of are indulgent, i.e., they satisfy the safety properties of
consensus (Validity and Agreement) even if the failure detector does not behave “nicely”. Examples of undesirable
behavior of a failure detector are not detecting a subset of Byzantine behavior or the muteness of a process.

1.3.3.2. Wormholes

Wormholes are an extension to a system model with stronger properties than the rest of the system, introduced by Lis-
bon. Wormholes are materialized as enhanced components that provide processes with a means to obtain a few sim-
ple privileged functions with “good” properties otherwise not guaranteed by the normal environment [Verissimo, 2003,
Verissimo, 2006]. For example, a wormhole can provide timely or secure functions in, respectively, asynchronous or
Byzantine systems. This contrasts with work on failure detectors, which tries to abstract the minimum requirements on
hints about failures to solve consensus. The idea is more generic and has to do with what are the distributed system models
that allow to have desirable levels of predictability in systems that are mostly uncertain in terms of properties like time
and security [Verissimo, 2006].

Wormbholes are closely related to the notion of architectural hybridization, a well-founded way to substantiate the provi-
sioning of those “good” properties on “weak’ environments. In the case that we are interested in here, we assume that our
system is essentially asynchronous and Byzantine, so when implementing the model we should not simply postulate that
parts of it behave in a timely or secure fashion, or these assumptions might naturally fail. Instead, those parts should be

RESIST D12 algop 150

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

built in a way that our claim is guaranteed with high confidence.

The first paper that presented a consensus algorithm based on a wormhole [Correia et al., 2005] used a specific wormhole,
adevice called Trusted Timely Computing Base (TTCB) [Correia et al., 2002]. Technically, the TTCB is a secure real-time
and fail-silent distributed component. Applications implementing the consensus algorithm run in the normal system, i.e.,
in the asynchronous Byzantine system. However, the TTCB is locally accessible to any process, and at certain points of
the algorithm the processes can use it to execute correctly (small) crucial steps. The consensus algorithm relies mostly on
a TTCB service called Trusted Block Agreement Service, which essentially makes an agreement on small values proposed
by a set of processes. The idea is to use this service to make agreement on the hash of the value proposed by the majority
of the processes. Later, a simpler multi-valued consensus algorithm and a vector consensus based on wormholes were
also proposed [Neves et al., 2004, Neves et al., 2005]. In this report it is possible to read a recent work on a comparison
of randomized consensus protocols with consensus protocols based on wormholes that also use randomized internal
protocols [Correia et al., 2006a].

1.3.4. Modifying the Problem

This section describes how FLP can be circumvented by weakening the definition of consensus. Currently, we are aware
of a single type of algorithm that fits in this category: algorithms based on the condition based approach, introduced by
IRISA. These algorithms terminate if the initial values of the processes satisfy certain conditions, but satisfy the safety
properties — Validity and Agreement — even if the conditions are not satisfied.

Let us define the input vector for an execution of a consensus algorithm as the vector I in which each I[i] is the initial value
of process p;. The condition based approach identifies sets of input vectors for which the consensus algorithm terminates
(besides satisfying Validity and Agreement) [Mostefaoui et al., 2003b, Mostefaoui et al., 2004, Friedman et al., 2002].
Conditions on input vectors have been shown to be directly related to error correcting codes. In fact, crash failures
correspond to erasure errors in the context of error correcting codes, while Byzantine failures correspond to corruption
errors [Friedman et al., 2002].

An argument in favor of this sort of trade-off between Termination and conditions on input vectors is made in
[Friedman et al., 2002]. A first reason is that it makes sense to use the approach to efficiently solve consensus prob-
lems in which the initial values really satisfy the conditions, but to guarantee safety even if this assumption does not hold.
A second reason is that the conditions can serve as a guideline that allows the designer to augment the system (modifying
the system model) with the minimum synchrony needed to ensure the solvability of the problem.

The single paper about the condition based approach that we are aware of that deals with Byzantine failures is
[Friedman et al., 2002]. This paper presents simple algorithms to solve multi-valued and k-set consensus.

1.4. Performance and Scalability

Byzantine distributed algorithms have been evaluated using several different metrics. Ultimately, the objectives are to
understand how an algorithm works and how it behaves in practice:

o How will it perform? Or, more precisely, what will be its latency (time needed to run) and throughput (number of
executions per unit of time)?

« How will it scale, i.e., what is the relation between its performance and the number of processes executing it?

o What will be its resilience, i.e., how many faulty processes will it tolerate?

The first two parameters are usually evaluated theoretically in terms of time, message and communication complexi-
ties. In asynchronous systems, time complexity is usually measured in terms of the maximum number of asynchronous

RESIST D12 algop 160

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

steps. An asynchronous step involves a process sending a message and receiving one or more messages sent by the
other processes. The message complexity is measured by the number of messages sent and the communication com-
plexity by the number of bits sent. Cryptographic operations often have some impact in the processing time, especially
public-key cryptography operations, so the evaluation should also take into account, e.g., the number of signatures made
and evaluated. Recently it has been shown that the minimum number of asynchronous steps for Paxos consensus is 2
[Dutta et al., 2005, Martin and Alvisi, 2005].

These metrics are not so simple to assess as it may seem, since they usually depend on the occurrence of faults. Therefore,
the evaluations should consider at least two cases: failure-free executions and executions in which the maximum number
of processes (| (n — 1)/3]) is faulty (Byzantine). Other aspects, like the correct processes having the same initial value,
can influence the performance evaluation and should also be taken into account.

For probabilistic algorithms, these parameters can only be stated probabilistically so usually the metrics considered are
the expected number of asynchronous steps, messages sent, bits sent. The literature usually assesses these values in the
worst case, i.e., most unfavorable combination of initial values, failures and network scheduling of the messages.

Despite the importance of these theoretical metrics, it has been argued that they may not reflect correctly the behavior of
the algorithms in practice [Keidar, 2002]. A recent paper from Lisbon has shown that this is true and that, for instance,
randomized binary consensus algorithms that in theory run in high numbers of steps, in practice may execute in only a
few communication steps under realistic conditions [Moniz et al., 2006].

The third parameter above, resilience, is probably the simplest since it can be assessed precisely for an algorithm.
The optimal resilience for Byzantine consensus in all system models that we are aware of is n/3, i.e., less than n/3
out of n processes can fail for the algorithm to run correctly [Lamport et al., 1982, Bracha, 1984, Dwork et al., 1988,
Correia et al., 2006c].

In relation to resilience, it is important to note that there is no point in making assumptions about the maxi-
mum number of processes that can be faulty if there are common modes of failure [Powell, 1992]. For Byzan-
tine failure model, common modes of failure are caused by identical bugs or vulnerabilities in all (or several) pro-
cesses [Verissimo et al., 2003]. Independence of failure of processes can be enforced by using diversity of design
[Deswarte et al., 1998, Littlewood and Strigini, 2004] (work from LAAS and City).

1.5. Related and Equivalent Problems

In the introduction, we mentioned that there are several distributed systems problems equivalent to consensus. In this
section we give more details about this issue.

Given two distributed problems A and B, a transformation from A to B is an algorithm that converts any algorithm that
solves A into an algorithm that solves B [Hadzilacos and Toueg, 1994]. Problems A and B are said to be equivalent if
there is a transformation from A to B and a transformation from B to A. Sometimes the equivalence is not generic but
assumes some specificity of the system model, like the existence of signatures.

The first equivalences and transformations were established for the crash failure model. In this model, multi-
valued consensus has been proved to be equivalent to atomic (or total order) broadcast [Hadzilacos and Toueg, 1994,
Chandra and Toueg, 1996]. Transformations from consensus to several problems have been also presented: non-blocking
atomic commit [Guerraoui and Schiper, 2001], group membership [Guerraoui and Schiper, 2001], and state machine
replication [Schneider, 1990]. Only some of these equivalences/transformations extend to the Byzantine failure model.
For instance, non-blocking atomic commit commits a transaction if all resources say ‘commit’ and aborts it one or more
say ‘abort’. With Byzantine failure model, a faulty process can simply abort all transactions preventing the system from

RESIST D12 algop 170

Part Algo 1- Byzantine Consensus in Asynchronous Message-Passing Systems: a Survey

working as expected, so clearly there is no transformation from consensus to non-blocking atomic commit.

The equivalence of (Byzantine) atomic broadcast and consensus has been first proved for systems with signa-
tures in [Cachinetal., 2001]. A similar result but without the requirement of signatures has been proved in
[Correia et al., 2006¢c]. Both proofs are independent of the technique used to circumvent FLP. Atomic broadcast, or
total order broadcast, is the problem of delivering the same messages in the same order to all processes.

We are not aware of other transformations from Byzantine consensus to other distributed systems problems. How-
ever, there is probably a transformation from vector consensus, which has been shown to be equivalent to a varia-
tion of multi-valued consensus [Correia et al., 2006c], to group membership. A group membership algorithm makes
agreement about a sequence of views, which are numbered events with the identifiers of the members of a group
of processes (see, e.g., the survey in [Chockler et al., 2001]). The view can be modified by events like the addi-
tion of members to a group, the removal of failed members, and the removal of members by their own initiative.
The Byzantine-resilient membership algorithms available give this intuition that a transformation might be defined
[Reiter, 1996, Kihlstrom et al., 2001, Correia et al., 2006b].

Several transformations from a variation of (Byzantine) consensus to another have been presented in the litera-
ture. Turpin and Coan presented a transformation from binary to multi-valued consensus for synchronous sys-
tems [Turpin and Coan, 1984]. Toueg and Cachin et al. presented similar transformations for asynchronous systems,
both requiring signatures [Toueg, 1984, Cachin et al., 2001]. Transformations from binary to multi-valued consensus, and
from multi-valued to vector consensus, without signatures, were presented in [Correia et al., 2006c¢].

Conclusion

Consensus is an important problem in distributed systems since it can be considered to be the “greatest common subprob-
lem” of several other problems [Mostefaoui et al., 2000]. This chapter presents a short survey about research on consensus
in asynchronous message-passing systems prone to Byzantine faults. Algorithms that solve the several variations of this
problem and the equivalent problem of atomic broadcast are currently being used as fundamental building blocks in secure
and intrusion-tolerant applications. Therefore, the importance of the consensus problem is undeniable.

RESIST D12 algo p 180

2 — On-Line Diagnosis of Transients in Distributed Systems

Introduction

Distributed fault tolerant systems are designed to provide sustained delivery of services despite encountered
perturbations. Consequently, two primary objectives are (a) to consistently identify a faulty node so as to restrict
its effect on the system operations, and (b) to support the process of recovery via isolation and reconfiguration of
the system resources to sustain ongoing system operations. If these operations can be performed as on-line
procedures [Walter et al. 1994; Walter et al. 1997], this can help provide a prompt reaction to faults and an
effective capability of dynamic resource management, thus mitigating the system susceptibility to subsequent
fault occurrences.

Physical faults are distinguished by their nature and duration of impact as being permanent or temporary
[Avizienis et al. 2004]. Permanent faults may lead to error whenever the component is activated; the only way to
handle such faults is to remove the affected component. Temporary faults can be internal (usually known as
intermittent) or external (transient). The former are caused by some internal part deviating from its specified
behavior. After their first appearance, they usually exhibit a relatively high occurrence rate and, eventually, tend
to become permanent. On the other hand, transient faults, often manifesting the encountered interferences as
noise-pulses on the communication channels, cannot be easily traced to a defect in a particular part of the system
and, normally, their adverse effects tend to disappear.

In industries like transportation and telecommunications, where operating with permanently faulty modules
would carry high risks or costs, it is common that modules, disconnected because considered faulty, are later
proved to be free from permanent faults when tested in the repair shop. Therefore, treating transient faults as
permanent has a high cost for these industries.

A good discrimination between transient and intermittent/permanent faults solves two important problems: 1)
prevents the undue removal of nodes affected by transient faults, thus avoiding unnecessary depletion of system
resources; and ii) helps to maintain the correct coverage of the system fault hypotheses (i.e., the assumption on
the number of faults tolerated by the core system protocols within a given time window) by keeping in operation
nodes not permanently faulty. Considering that most perturbations encountered are transient [Siewiorek and
Swarz 1998], the issue of “proper” diagnosis of transients is a significant issue of interest.

A related issue is how to overcome the limited coverage of the locally implemented (self-checking) diagnostic
tests. In many distributed systems when an error is detected in a node, either through self-checks or by other

RESIST D12 algop 190

Part Algo 2 - On-Line Diagnosis of Transients in Distributed Systems

nodes, such a node is restarted. A built-in diagnostic test is executed to determine whether the fault is internal,
requiring substitution, or external. In the latter case, re-loading the current state from the other nodes is
considered sufficient to compensate the transient error. A problem arises as self-check tests generally provide
only limited coverage. Thus, permanently faulty nodes can potentially be left operative in the system resulting in
problems whose source cannot be easily identified by the system.

A further issue is how to utilize diagnostic information to identify the best recovery action after a fault is
detected. In case of transient faults, restarting a node can cause an outage that is longer than that caused by the
transient itself. Instead of restarting the node after the first error, it can be better to wait some time before
initiating recovery actions, and see if the node is able to locally recover.

This chapter summarizes the state of knowledge in ReSIST on the issue of on-line diagnosis of transients in
distributed systems. The above mentioned issues are addressed by the development of a Fault Detection —
Isolation — Recovery process (FDIR) to cope specifically with transients. Prior to detailing this state of
knowledge, it is first recalled major related approaches in the literature that constituted the background and
approaches to the general problem of diagnosis. Also, directions of ongoing and future research for the
development of a comprehensive FDIR diagnostic process are indicated at the end.

2.1 Background

A variety of approaches exist that address the FDIR process (or parts of it), and a complete survey is beyond the
scope of this document. Therefore, background on diagnosis is here limited to a brief overview of the main
existing work in the field. The theoretical problem of diagnosis was set up in the PMC model [Preparata et al.
1967]. The focus of this work, and of many related approaches, was on characterizing system configurations,
fault sets and assignments where N active components (units) are able to diagnose, in presence of up to t faulty
units, all the faulty units (one-step t- diagnosability) or at least one of them (sequential t-diagnosability). The
problem of assignment has been further developed from many viewpoints, trying to define sufficient and
necessary conditions when only some combinations of the elements are known.

Many extensions exist to the PMC assumptions; some that are of particular interest with respect to the work
done by partners in ReSIST are cited in the following. In [Mallela and Masson 1980] not only permanent but
also intermittent faults (i.e., not always detectable) are considered. In this case, the application of tests to faulty
units does not necessarily result in the detection of the fault. In some cases, the probability that a test will detect
the fault is explicitly taken into account [Blount 1977]. Instead of a PMC multi-processor system with a central
diagnostic unit, in [Kuhl and Reddy 1981] a distributed system is assumed, where nodes are connected by links
and try to globally assess the health of each other. The possible presence of Byzantine behavior in distributed
environment entails the use of agreement techniques [Shin and Ramanathan 1987]. For a discussion on the
strong similarities between diagnosis and consensus problems, an excellent survey can be found in [Barborak et
al. 1993].

An essential element for the feasibility of on-line diagnosis is the ability of executing diagnostic tests without
interrupting the system operation, i.e., without explicit testing capabilities. A well known solution is the
comparison approach, introduced in [Malek 1980] and characterized in [Sengupta and Dahbura 1992], where the
replication of tasks in the system is used for diagnostic purposes. Pairs of nodes execute the same task and the
outcomes are compared by other nodes. The model has been optimized and characterized for distributed systems

RESIST D12 algo p 2007

Part Algo 2 - On-Line Diagnosis of Transients in Distributed Systems

with broadcast capability in [Blough and Brown 1999]. In the PMC approach and its derivatives, the
diagnosability of the system is mainly characterized by the configuration of testing assignments, i.e., which
nodes apply testing stimuli to which other nodes. In the comparison approach, the diagnosability depends on
how tasks are redundantly allocated to nodes, such that the results produced by each node can be compared. If
nodes are assumed to be fail-silent, group membership protocols can be used to perform FDIR operations. This
ensures that all nodes have a consistent view of the distributed state of the system, i.e., all correct nodes have
received the same set of messages. The first definition of the group membership problem and a first solution of
the problem in asynchronous systems appeared in the ISIS project [3]. One of the first approaches to group
membership for synchronous systems was proposed in [Cristian 1991], while a membership protocol is
intertwined with clock synchronization in synchronous systems in the TTP protocol [Kopetz & Grunsteidl
1994].

The importance of distinguishing transient faults, so that they can be dealt with specifically, is testified by the
wide range of solutions proposed, although with reference to specific systems. One commonly used method, for
example, in several IBM mainframes [Spainhower 1992], is to count the number of error events: too many
events in a given time frame would signal that the component needs to be removed. In TMR MODIAC, the
architecture proposed in [Mongardi 1993], two failures experienced in two consecutive operating cycles by the
same hardware component that is part of a redundant structure make the other redundant components consider it
as definitively faulty. Another architecture using similar mechanisms, designed for distributed ultra-dependable
control systems, is described in [Lala and Alger 1988]. In this case, a combination of diversified design,
temporal redundancy and comparison schema is used to obtain a detailed determination of the nature of faults.
Counting mechanisms are also used to solve the so called 2-2 splits, i.e., to determine the correct value among
four proposals in a QMR system when there is a tie. In [Agrawal 1988], a list of “suspect” processors is
generated during the redundant executions; a few schemes are then suggested for processing this list, e.g.,
assigning weights to processors that participate in the execution of a job and fail to produce a matching result
and taking down for diagnostics those whose weight exceeds a certain threshold. Other approaches do, instead,
concentrate on off-line analysis of system error logs, and therefore are not applicable on-line. In [Lin and
Siewiorek 1990], some heuristics, collectively named Dispersion Frame Technique, for fault diagnosis and
failure prediction are developed and applied to system error logs taken from a large Unix-based file system. The
heuristics are based on the inter-arrival patterns of the failures (which may be time-varying). For example, there
is the 2-in-1 rule, which warns when the time of inter-arrival of two failures is less than one hour, and the 4-in-1
rule, which fires when four failures occur within a 24-hour period. In [Iyer et al 1990], an error rate is used to
build up error groups and simple probabilistic techniques are then recursively applied to discern similarities
(correlations) which may point to common causes (permanent faults) of a possibly large set of errors.

2.2 State of Knowledge in ReSIST

The knowledge on diagnosis of transient faults mainly embraces two directions: i) distributed diagnostic
algorithms for synchronous systems, and ii) “count-and-threshold” schemes and architectural framework for
handling multiple classes of faults in components of the shelf (COTS) and legacy-based applications.

Distributed diagnostic algorithms for synchronous systems. Previous work [Walter et al. 1997] introduced a
family of distributed diagnostic algorithms for synchronous systems based on the Customizable Fault/Error
Model [Walter et al. 1994], where the fault assumptions can be adapted to meet the fault hypothesis of the core
fault-tolerant protocols of the system (e.g., clock synchronization). One advantage of the approach is that

RESIST D12 algop 2107

Part Algo 2 - On-Line Diagnosis of Transients in Distributed Systems

diagnosis is not considered as an off-line and fault-free procedure, but as an on-line core fault-tolerant
mechanism fully integrated within the system fault tolerance strategy. Instead of executing dedicated,
performance-impacting tests like in the PMC model, or constraining the allocation of application-level tasks to
nodes like in the comparison approach, it uses error detection information derived by the execution of
fundamental system-level activities, like message delivery and clock synchronization, to diagnose the system. In
fact, this approach can be seen as complementary to the graph based, application-level approaches. Diagnosis is
seen as a special case of consensus under the Hybrid Fault Model. To reach consensus in presence of one
malicious asymmetric fault, a two round protocol has to be executed. In distributed diagnosis, nodes exchange
operational messages and, by examining them, produce a local syndrome assessing the health of the other nodes.
This is analogous to the first round of a consensus algorithm. The local syndromes are then exchanged during a
subsequent dissemination round. Consistent health vectors are computed using the same hybrid majority
function of the hybrid consensus protocol OMH [Lincoln and Rushby 1993]. The health vectors can then be
used to consistently isolate faulty nodes on-line. This reduces the diagnostic latency and bandwidth requirements
with respect to other approaches where a local syndrome is first built and then a separate consensus protocol is
invoked. The need of recording the duration and recurrence of faults and to assign different severity levels to
different syndromes has been pointed out. If transient faults are assumed to be instantaneous, the permanence of
the generated errors in a node is bounded and known a priori (e.g., if a periodic memory scrubbing task is
executed on the background) a penalty value will record the state of the nodes throughout multiple diagnostic
frames to assess the health of the node against such bounds. Most of the previous diagnostic services provide
snapshot level information about a single manifestation of faults. Without accumulating penalty information
over time, a diagnostic protocol can only declare faulty nodes as either always permanent or always transient
faulty. An evaluation of the effect on system reliability of these two different policies on the SPIDER system,
which runs a diagnostic algorithm derived from [Walter et al 1997], was conducted in [Latronico et al. 2004].
The intuitive result obtained was that optimal reliability is attained if one does not assume all detected faults to
be permanent or all to be transients.

“Count-and-threshold” schemes. In practice, nodes oscillate between faulty and correct behavior. To handle
this, a family of mechanisms collectively called “count-and-threshold” schemes has been established in
[Bondavalli et al. 1997; Bondavalli et al. 2000]. The idea is that components should be kept in the system until
the benefit of keeping the faulty component on-line is offset by the greater probability of multiple (hence,
catastrophic) faults. Apart from the class of permanent faults, when the component always fails every time it is
activated, a basic discrimination is done in the context of temporary faults spanning intermittent and transient
faults: the first are due to faults internal to the component, and show a high occurrence rate which eventually
might turn them to permanent faults; the second are due to reasons external to the component, generally have an
uncorrelated occurrence rate, and should not determine the exclusion of the component. Therefore, after
detecting a mis-behavior in the component under diagnosis, it is advocated to wait and see if the error reappears
before isolating the component. The goal was to develop mechanisms characterised above all by: a) tunability
through internal parameters, to warrant wide adaptability to a variety of system requirements; b) generality with
respect to the system in which they are intended to operate, to ensure wide applicability; c) simplicity of
operation to allow high analysability through analytical models and to be implementable as small, low-overhead
and low-cost modules, suitable especially for embedded, real-time, dependable systems.

A generic class of low-overhead count-and-threshold mechanisms, called a-count, has been defined in
[Bondavalli et al. 1997]. An error counter is associated to each component, which is incremented when the
component fails and decremented when it delivers a correct service. The behavior of a component is assumed

RESIST D12 algo p 2217

Part Algo 2 - On-Line Diagnosis of Transients in Distributed Systems

evaluated by an error detection subsystem, which periodically issues error detection signals. At period L, the

L
error detection signal B s filtered using the function a, which can be formulated in multiple ways, for
example as:

(L-1) 1 L _
o JamKif 3 =0
=y Ui 30 o 0<K<l1
al "+ i =
o =0
@ _
where Ti = O, means that no error has been detected (J (1) — | means that an error has been detected), and K
represents the ratio in which a is decreased after a time step without error signals, thus setting the time window

@®
where memory of previous errors is retained. When the value of i exceeds a given threshold aT, the

component is diagnosed as affected by a permanent or an intermittent fault. The choice of the tunable parameters
aT and K, so as to properly balance between the two conflicting requirements to signal as quickly as possible all
components affected by permanent or intermittent faults and at the same time to avoid signaling as faulty
components that are affected by transients, is based on extensively stochastic evaluation using SAN models
[Meyer et al. 1980].

This model was then extended in [Grandoni et al. 1998] to include double threshold mechanisms, where an
element is temporarily excluded after a first threshold is exceeded, but still given an opportunity to be
reintegrated. A thorough elaboration of the a-count mechanism including complex error distributions has been
presented in [Bondavalli et al. 2000].

With respect to other count-and-threshold schemes reviewed in the Background section, where the tuning of the
threshold has been typically performed by expertise and trial-and-error, the designer is provided with well-
defined tools, to exert such actions in a systematic, predictable and repeatable way. Also, when given suitable
parameters, their functionalities may easily be obtained by an a-count instance, e.g. the approach proposed in
[Mongardi 1993]. The function illustrated previously has been also implemented in the GUARDS architecture
[Powell and al. 1999] for distributed diagnosis: a binary accusation on the node health is shared, using
consensus, voted, and given as the input for the count-and-threshold. In [Grandoni et al. 2001], a comprehensive
analysis of a few integrated fault tolerance organizations obtained coupling the diagnostic mechanism o-count
with a variety of error processing techniques in a multiprocessor environment has been carried out. The goal was
to gain insights in the effects on the overall system dependability induced by such combined usage.

In [Romano et al. 2002] issues have been addressed, related to goals and constraints of a diagnostic subsystem
based on the concept of threshold, which must be able to: 1) understand the nature of errors occurring in the
system, 2) judge whether and when some action is necessary, and 3) trigger the recovery/reconfiguration/repair
mechanisms to perform the adequate actions. Further, in [Bondavalli et al. 2004] a methodology and an
architectural framework for handling multiple classes of faults (namely, hardware-induced software errors in the
application, process and/or host crashes or hangs, and errors in the persistent system stable storage) in a COTS
and legacy-based application have been defined. The framework includes a fault tolerance manager that collects
error reports based on which it chooses and performs a fault recovery strategy, depending upon the perceived
severity of the fault. The methodology and the framework have been applied to a case study system and a
thorough performability analysis has been conducted via combined use of direct measurements and analytical

RESIST D12 algo p 230

Part Algo 2 - On-Line Diagnosis of Transients in Distributed Systems

modeling. Fault injection on a real system prototype was used to derive realistic fault models (by tracking error
propagation through individual system layers), and to extract relevant system parameter values (which were used
to populate an analytical model of the system). Although heavily influenced by the specific requirements of the
considered target application, numerical results indicate that a reasonably configured threshold-based diagnostic
system associated with properly chosen recovery actions can improve the dependability of COTS and legacy-
based applications significantly.

Another direction of research has addressed a rigorous mathematical formulation of diagnosis based on Bayesian
inference [Pizza et al. 1998]. Bayesian inference provides a standard procedure for an observer who needs to
update the probability of a conjecture on the basis of new observations. Therefore, after a new observation is
provided by the error detection subsystem, the on-line diagnosis procedure produces an updated probability of
the module being affected by a permanent fault. This leads to an optimal diagnosis algorithm, in the sense that
fault treatment decisions based on its results would yield the best utility among all alternative decision
algorithms using the same information. This higher accuracy with respect to simple heuristics comes at the cost
of higher computational complexity.

2.3 On-going and Future Directions

A few indications on current and future research directions on diagnosis carried on and/or planned at the Univ.
of Darmstadt, ISTI-CNR in Pisa and Univ. of Florence are given in the following.

One direction of current research is to introduce and examine a generic on-line FDIR framework, able to
generalize the previously proposed distributed diagnosis protocols and to enhance them with count-and-
threshold techniques in order to effectively handle transient faults. Particularly, the aim is to (a) determine and
establish the effect of the duration and recurrence of faults on the effectiveness of the on-line diagnosis
protocols, and (b) ascertain the sensitivity and the tradeoffs of choices of some selected FDIR design parameters
in determining the correctness and completeness of the FDIR protocols and in improving system reliability.

The system parameters that can influence the effectiveness of the FDIR process are taken into consideration. For
example, in a synchronous distributed system, every node exchanges data at an epoch, also known as the
communication frame. As error detection also takes place over each frame, it can also be considered as a
diagnostic frame. Over each communication frame, the system health is “sampled” by the different nodes, which
compose their local syndrome accordingly and execute the diagnostic protocol. In this context, the assumption
that errors manifest only over a single frame, as characterized in previous analyses, is not adequate. The length
of the diagnostic frame is a parameter that, together with other count-and-threshold parameters, will influence
the likelihood by which a node is excluded from system operation. In fact if the frame is too short, a transient
fault may be perceived as permanent, and consequently lead to pessimistic resource isolation. This can be
particularly problematic for long-time missions. On the other hand, if the frame rate is too large, one would
expect large diagnostic latencies in the system. These might be undesirable for critical applications with short
mission times and requirements of rapid response to perturbations. Moreover, this increases the probability of
coincident errors within the same frame.

The intended contribution is to study the choice of the diagnostic frame rate and other system design parameters,
within an architectural context to highlight the correctness/completeness and reliability tradeoffs. Namely, the
following main design parameters are considered:

RESIST D12 algo p 2417

Part Algo 2 - On-Line Diagnosis of Transients in Distributed Systems

e Diagnostic frame rate: the rate at which nodes exchange diagnostic data, aggregate it, and

consequently update penalties and rewards accordingly,

e Penalty counter threshold values: number of temporally correlated diagnostic frames after which an

erroneous node gets isolated, and

e Reward counter threshold values: number of diagnostic frames after which a node (previously
suspected as erroneous) displaying correct behavior gets re-admitted into the system as a “good”
node.

Another direction focuses on a formalization of the diagnosis process, addressing the whole chain constituted by
the monitored component, the deviation detector and the state diagnosis. Hidden Markov Models appear well
suited to represent problems where the internal state of a certain entity is not known and can only be inferred
from external observations of what this entity emits. The goal is to develop high accuracy diagnosis processes
based on probabilistic information rather than on merely intuitive criteria-driven heuristics. Because of its high
generality and accuracy, the proposed approach is expected to be usefully employed: i) to evaluate the accuracy
of low-cost on-line processes to be adopted as appropriate and effective diagnostic means in real system
applications; ii) for those diagnostic mechanisms equipped with internal tunable parameters, to assist the choice
of the most appropriate parameter setting to enhance effectiveness of diagnosis; and iii) to allow direct
comparison of alternative solutions.

In addition, diagnosis in mobile distributed environments is planned to be investigated, to account for both
volunteer and/or accidental disconnections of system components.

Other uses of count-and-threshold mechanisms taken as a system building-block are also interesting to be
explored. For example, consider an N-modular redundant fault-tolerant structure, where instances of o-count
are employed in each module for its original goal. A higher level diagnosis layer could be added, which would
monitor the ai-count values of all modules by looking for correlated errors: a common pattern of rising counts on
several counters might, for instance, be an alarming symptom.

Finally, the applicability of threshold-based diagnostic techniques, originally tailored to physical faults, to wider
categories of malfunctions (like design faults, human faults and malicious attacks) appears to be another
interesting research area to explore.

RESIST D12 algo p 250

3— A Survey of Cooperative Backup Mechanisms

3.1. Introduction and Motivations

Storage capacity, like computing power, follows its Moore’s law and grows dramatically, for instance disk density grows
at an impressive annual rate of 100% [Growchowski, 1998]. At the same time, this new storage capacity is consumed
by the production of new data. Consequently, the need for backup capacity increases but so does the space available for
backup.

Our concern here is on cooperative backup services, in which resources belonging to multiple users are pooled as a
distributed storage system for backing-up each others’ data. Such a cooperative backup service must be distinguished
from other forms of distributed storage such as file sharing systems or general file systems.

A file system can be defined as a support for the storage of data on non-volatile medium, typically a hard disk. Data
is stored on files that encompass both the data and its associated metadata (name and other attributes such as date of
modification, etc.). Usually a file system also provides a directory service on top of a flat file service. The flat file service
maps the data with unique file identifiers and stores the data on the storage device. The organization of the data can have
several forms, either unstructured or structured as a sequence or hierarchy of records. The directory service maps the
metadata to the files” unique identifiers. Typically this mapping is stored on the storage device using the flat-file service
itself. There is a number of distributed file systems, the most famous being NFS (Network File System) that is used on
many UNIX networks.

File sharing® emerged relatively recently as an Internet application and greatly participated to the definition of a new type
of distributed system: peer-to-peer systems. The goal of a file sharing system is to enable multiple users to access files.
Classical and well-known file-sharing systems are Napster, eDonkey, Gnutella, Kazaa, MojoNation, BitTorrent, etc.

The role of a backup system is to tolerate faults affecting some storage device, be it local or distant, centralized or shared.
The type of faults considered here can be permanent failures of the storage devices (e.g., crashed disks), or even localized
catastrophes like a fire incident in an office when the backup media are taken off-site.

Given these definitions, one can see that there are quite some differences in the specification of these services even if there
are also some strong similarities (primary goal is storage, the concept of file, etc.). If one wants more specific differences,
one can consider the following properties: multiplicity of the data readers/writers and mutability of the content. The
following table presents these characteristics.

Among the afore-mentioned file-sharing systems, we can identify some features that are centralized, distributed or coop-

1\We differentiate here between peer-to-peer file sharing systems and distributed file systems that can also be seen as a way to share
files.

RESIST D12 algo p 2607

Part Algo

3- A Survey of Cooperative Backup Mechanisms

File type | Writer multiplicity | Reader multiplicity
File sharing systems Static Single Multiple
File backup systems Static Single Single
General file systems | Dynamic Multiple Multiple

Figure 3.1: Typical characteristics distinguishing various distributed storage

erative. Similarly to file systems, file-sharing systems have two main functions: first they have to manage the actual distri-
bution of the shared files, and second they have to organize the lookup, i.e. manage a global directory for users to search
for given files. The lookup service of Napster [Napster,] is centralized, the one of eDonkey [Heckmann and Bock, 2002]
is distributed among a set of servers and finally, the one of Kademlia [Maymounkov and Maziéres, 2002] is cooperatively
realized between the participating nodes.

It is clear that file-sharing systems are different from backup systems. These systems do not guarantee long-term sur-
vivability of files, especially those files that few users are interested in storing or accessing. Thus, they could hardly be
used for the purpose of backup. One could argue that regular file systems could easily be used for such a purpose since
long-term survivability and fault-tolerance are very important concerns for this type of service. For instance, a simple so-
lution to back-up on top of file systems would be to use Unix-like facilities, e.g., tar, CVS, etc. However, the specification
and the semantics of file systems being so much broader than those of backup systems (multi-writers vs. single-writers;
read-write vs. write-once/read-many), it would be unfair to compare these two types of system.

In this chapter we will survey only backup services that use a cooperative approach. We will be concerned both with
cooperation between resources pooled directly over a fixed infrastructure such as Internet and with mobile resources
that are pooled opportunistically according to locality. This latter class of cooperative backup service is motivated by
the observation that users of mobile devices (laptops, personal digital assistants, mobile phones, etc.) often perform a
backup of their data only when they have access to their main desktop machine, by synchronizing the two machines.
Typically, the first generation of personal digital assistants (PDAS) had only a short distance communication means,
generally a serial or infrared device. This meant that the user had to be physically close to the machine on which she
performed the synchronization. Nowadays, portable devices usually have several communication interfaces (for instance
WiFi, Bluetooth, etc.). When a network infrastructure is available in their vicinity, for instance WiFi access points, those
devices could connect to their main desktop machine in order to back-up their data. However, in practice, this is rarely
the case, for several reasons :

«» the desktop machine must be running, connected to the Internet and available;

» access to a network infrastructure using wireless communications is still rare and expensive, and it can take a while
before a device is able to connect to the Internet;

« finally, to our knowledge, the software able to perform such a backup on a remote desktop are still rare.

Another solution to mobile device backup is the use of a trusted third party that guarantees its backup servers’ availability.
Several commercial offerings enable their customers to back-up their data on a limited storage capacity for a yearly fee.

However, the growth rate of this kind of wireless communicating devices is such that a cooperative approach to back-
up is becoming feasible, based on peer-to-peer interactions. These wireless interactions are frequent but ephemeral.
Nevertheless, they could be leveraged: whenever two devices meet, a backup service can automatically initiate a request
for a partial data backup. As a counterpart, it has to offer the same service to the community, i.e. to form a cooperative
backup system.

In Section 2 of this survey, we discuss the features that characterize cooperative backup systems. Several existing systems
are then described and compared briefly in Section 3. In Section 4, a more in-depth analysis is given with respect to storage

RESIST D12 algo p 270

Part Algo 3- A Survey of Cooperative Backup Mechanisms

management issues. Then Section 5 focuses on the dependability techniques used in these systems. Finally, Section 6
concludes the survey by a summary and sketches some directions for future work.

3.2. Characterization of Cooperative Backup Systems

In [Chervenak et al., 1998], Chervenak et al. described a number of features for the characterization of backup systems:
full vs. incremental, file-based vs. device-based, on-line or not, snapshots and copy-on-write, concurrent backups, com-
pression, file restoration, tape management, and finally disaster recovery. On the one hand, most of these features remain
of interest in our context. However, on the other hand, some characteristics concerning dependability and the cooperative
nature of the considered systems were not addressed: privacy, denial-of-service resilience, trustworthiness management,
etc. In their survey, Chervenak et al. characterized backup systems using a set of properties. It must be noted that
their focus was on centralized or server-based, system-wide, backup systems, i.e., the target was large multi-user client
systems. The type of backup services we are interested in targets personal computers and thus, some of the properties
defined by Chervenak et al. are not relevant. We thus propose another characterization of backup systems based on a set
of functionalities and of dependability issues, as described in the following sections.

3.2.1. Functionalities of Backup Systems
3.2.1.1. Full vs. Incremental Backups

The simplest solution to back-up a file-system is to copy its entire content to a backup device. The resulting archive is
called a full backup or a snapshot of the source data. Both a full file-system and a single lost file can be easily restored
from such a full backup. However, this solution has usually two major drawbacks: since it concerns the entire content
of the file-system, it is slow and requires a large amount of backup storage space. We will come back onto this issue of
resource usage in the next subsection.

As a solution to this, incremental backup schemes can be used. They copy only the data that have been created (added)
or modified since a previous backup. To restore the latest revision of a given file, the first full backup along with all the
subsequent incremental backups must be read, which can be extremely slow. For this reason, typical incremental schemes
perform occasional full backups supplemented with frequent incremental backups. Several variations of incremental
backup techniques exist: incremental-only, full+incremental or even continuous incremental where newly created or
modified data is backed-up within a few minutes, as it is created or modified, instead of once a day, typically, with
traditional incremental backups.

3.2.1.2. Resource Usage

To reduce both storage requirements and network bandwidth usage, backup systems can use classic compression tech-
niques. This can be done at the client-side or at the server-side. Recently, other techniques emerged to reduce the storage
space required to back-up several file systems. An example is single-instance storage [Quinlan and Dorward, 2002] which
aims to store once every block of data even if it is present on the file systems of several users, or if there are multiple
instances in a single file-system.

3.2.1.3. Performance
Backup system performance is measured in terms of the backup time as well as the restoration time. The performance of

the backup process is impacted by factors such as incremental backups, compression, etc. Several parameters and features
have a dramatic effect on the actual efficiency of the restoration operations. For instance, restoration will be slower in an

RESIST D12 algo p 2807

Part Algo 3- A Survey of Cooperative Backup Mechanisms

incremental backup system, which must begin with the last full backup and apply changes from subsequent incremental
backups. An additional concern when restoring an entire file system is that files deleted since the previous backup will
reappear in the restored file system. More generally, the unbacked-up changes on the metadata, the structure and the
hierarchy of the file system cannot be restored.

It is important to note that scalability is a very important issue when dealing with cooperative systems. The number
of nodes participating in the cooperative system can be potentially very large and this raises a humber of issues and
problems to be dealt with. An important metric for cooperative backup system is thus the number of nodes that the system
can accomodate.

3.2.1.4. On-line Backups

While many backup systems require that the file system (or the files) remain quiescent during a backup operation, on-line
or active backup systems allow users to continue accessing files during backup. On-line backup systems offer higher
availability at the price of introducing consistency problems.

The most serious problems occur when directories are moved during a backup operation, changing the file system hier-
archy. Other problems include file transformations, deletions and modifications during backup. In essence, any type of
write operation on the files or on the file-system hierarchy during a backup is a potential source of problems. There are
several possible strategies to overcome these problems:

1. Locking limits the availability of the system by forbidding write accesses while backing-up.

2. Modification detection is used to reschedule a backup of the modified structures/files.

3. Snapshots, i.e., frozen, read-only copies of the current state of the file-system offer another alternative for online
backup. The contents of a snapshot may be backed-up without danger of the file system being modified from
subsequent accesses. The system can maintain a number of snapshots, providing access to earlier versions of files
and directories.

4. A copy-on-write scheme is often used along with snapshots. Once a snapshot has been created, any subsequent
modifications to files or directories are applied to newly created copies of the original data. Blocks or file segments
are copied only if they are modified, which conserves disk space.

3.2.2. Dependability and Other Orthogonal Issues of Cooperative Backup Systems

In the previous section we presented several functional aspects of backup systems. We now look at the orthogonal issues
raised by a cooperative approach to backup: integrity and consistency, confidentiality and privacy, availability, synergy
and trust.

3.2.2.1. Integrity and Consistency

A backup service has to guarantee the integrity and consistency of restored data.

Any corruption of the backed up data, be it intentional or not (for instance due to a software or hardware fault on the
system actually providing the storage), must be detected by its owner during restoration. Network protocols as well as
storage devices commonly use error-detecting or correcting codes to tolerate software and hardware faults. However, to
be resilient to intentional corruption, the data owner must be assured that the data restored is the same that which was
backed up.

Consistency is an issue when multiple items of data must ensure some common semantics. In such cases, special care
must be taken to manage dependencies.

RESIST D12 algo p 290

Part Algo 3- A Survey of Cooperative Backup Mechanisms

3.2.2.2. Confidentiality and Privacy

The entities participating in a cooperative backup service store some of their data on the resources of other participants
with whom they have no a priori trust relationship. The data backed up may be private and thus should not be readable
by any participating entity other than its owner, i.e., the service has to ensure the confidentiality of the data. Furthermore,
a cooperative backup service must protect the privacy of its users. For instance it should not deliver any information
concerning the past or present location of its users.

3.2.2.3. Availability

In a backup system, availability has several dimensions. First, the primary goal of a backup system is to guarantee the
long-term availability of the data being backed up. In some sense it is the functional objective of the system. Second, to
be useful, the backup system itself must be available, i.e., it must be resilient to failures (hardware, software, interaction,
etc.). In the context of a cooperative approach to backup, additional concerns arise, especially with respect to malicious
or selfish denial-of-service attacks.

3.2.2.4. Synergy

Synergy is the desired positive effect of cooperation, i.e., that the accrued benefits are greater than the sum of the benefits
that could be achieved without cooperation. However synergy can only be achieved if nodes do indeed cooperate rather
than pursuing some individual short-term strategy, i.e. being rationale.

Hardin introduced the tragedy of the commons concept in 1968 [Hardin, 1968] to formalize the fact that a shared resource
(a common) is prone to exhaustion if the resource consumers use short-term strategy to maximize their benefit out of the
resource. Consider the simple example of a grass field shared by 25 farmers. The field can normally accommodate 50
cattle. However, each rational farmer is tempted to maximize his outcome by having more than 2 cattle feeding from the
shared field. This short-sighted strategy eventually leads the field to exhaustion through over-consumption. A generalized
form of the problem is when a resource market has externalities, i.e., when the cost of using a resource is shared among
its consumers.

The tragedy of the commons has recently been extended to the digital world, or “Infosphere”, leading to the tragedy of
the digital commons [Greco and Floridi, 2003]. It is relatively intuitive, for instance, to regard the Internet as a shared
resource. Each user uses his connection without paying much attention to the presence of other users and to the fact that
they share a common bandwidth. Each user thus uses his available bandwidth up to its maximum, only being reminded
that other users also consume this resource when there is a network congestion.

One way to ensure synergy in a cooperative backup system is to enforce the “fair exchange” property: if one contributes
up to 5 MiB to the system, one wants to get serviced up to 5 MiB too. Reciprocally, it is desirable that a device getting
serviced for such an amount of resources offers an equivalent amount to the cooperative service.

3.2.2.5. Trust Management

An important aspect of many cooperative systems is that each node has to interact with unknown nodes with which it does
not have a pre-existing trust relationships. The implementation of a cooperative backup service between nodes with no
prior trust relationship is far from trivial since new threats must be considered:

1. selfish devices may refuse to cooperate;
2. backup repository devices may themselves fail or attack the confidentiality or integrity of the backup data;
3. rogue devices may seek to deny service to peer devices by flooding them with fake backup requests; etc.

RESIST D12 algo p 300

Part Algo 3- A Survey of Cooperative Backup Mechanisms

There is thus a need for trust management mechanisms to support cooperative services between mutually suspicious
devices.

3.3. Existing Cooperative Backup Systems

In this section, we first give a preliminary description and analysis of various systems devoted to cooperative backup.
Cooperative backup are inspired by both cooperative file systems and file sharing systems. Most are concerned with the
problem of cooperative backup for fixed nodes with a permanent Internet connection. To our knowledge, there are only two
projects looking at backup for portable devices with only intermittent access to the Internet: FlashBack [Loo et al., 2003]
and MoSAIC [Killijian et al., 2004].

3.3.1. Peer-to-peer Backup Systems for WANSs/LANs

The earliest work describing a backup system between peers is the one of Elnikety et al. [Elnikety et al., 2002], which
we will henceforth refer to as CBS. Regarding the functions of a backup system (resource localization, data redundancy;,
data restoration), this system is quite simple. First, a centralized server is used to find partners. Second, incremental
backup, resource preservation, performance optimization were not addressed. However, various types of attacks against
the system are described. We will come back to this later.

The Pastiche [Cox and Noble, 2002] system and its follow-up Samsara [Cox and Noble, 2003], are more complete. The
resource discovery, storage, data localization mechanisms that are proposed are totally decentralized. Each newcomer
chooses a set of partners based on various criteria, such as communication latency, and then deals directly with them.
There are mechanisms to minimize the amount of data exchange during subsequent backups. Samsara also tries to deal
with the fair exchange problem and to be resilient to denial-of-service attacks.

Other projects try to solve some limitations of the Pastiche/Samsara systems, or to propose some simpler alternatives. This
is the case for Venti-DHash [Sit et al., 2003] for instance, based on the Venti archival system [Quinlan and Dorward, 2002]
of the Plan 9 operating system. Whereas Pastiche selects at startup a limited set of partners, Venti-DHash uses a com-
pletely distributed storage among all the participants, as in a peer-to-peer file sharing system.

PeerStore [Landers et al., 2004] uses a hybrid approach to data localization and storage where each participant deals
in priority with a selection of partners (like Pastiche). Additionally, it is able to perform incremental backup for only
new or recently modified data. Finally, pStore [Batten et al., 2001] and ABS [Cooley et al., 2004], which are inspired by
versioning systems, propose a better resource usage.

Based on the observations that worms, viruses and the like can only attack machines running a given set of programs,
the Phoenix system [Junqueira et al., 2003] focuses on techniques favoring diversity among software installations when
backing up a machine (e.qg., trying to not backup a machine that runs a given vulnerable web server on a machine that runs
the same web server). The main added value is here in the partnership selection.

In [Cooper and Garcia-Molina, 2002], the authors focus on the specific issue of resource allocation in a cooperative
backup system through an auction mechanism called bid trading. A local site wishing to make a backup announces
how much remote space is needed, and accepts bids for how much of its own space the local site must “pay” to acquire
that remote space.

In [Hsu et al., 2004], the authors implement a distributed backup system, called DIBS, for local area networks where
nodes are assumed to be trusted: the system ensures only privacy of the backed up data but does not consider malicious
attacks against the service. Since DIBS targets LANS, all the participating nodes are known a priori, partnerships do not
evolve, and no trust management is needed.

RESIST D12 algop 310

Part Algo 3- A Survey of Cooperative Backup Mechanisms

3.3.2. Cooperative File Systems

As mentioned earlier, a backup system (static data files, single writer) can be implemented on top of any file system (muta-

ble data files, multi-writer). There exist a number of peer-to-peer general file systems such as lvy [Muthitacharoen et al., 2002],
OceanStore [Kubiatowicz et al., 2000], InterMemory [Goldberg and Yianilos, 1998], Us [Randriamaro et al., 2006], etc.

We briefly present here two of them for the sake of the comparison although they are outside the scope of this survey.

Us [Randriamaro et al., 2006] provides a virtual hard drive: using a peer-to-peer architecture, it offers a read-only data
block storage interface. On top of Us, UsFs builds a virtual file system interface able to provide a cooperative backup
service. However, as a full-blown filesystem, UsFs provides more facilities than a simple backup service. In particular, it
must manage concurrent write access, which is much more difficult to implement in an efficient way.

OceanStore [Kubiatowicz et al., 2000] is a large project where data is stored on a set of untrusted cooperative servers
which are supposed to have a long survival time and high speed connection. In this sense we consider it as a distributed
file system using a super-peers approach rather than a purely cooperative system. The notion of super-peers relates to the
fact that peers are specifically configured as file servers (with large amount of storage) that can cooperate to provide a
resilient service to non-peer clients.

3.3.3. Mobile Systems

The FlashBack [Loo et al., 2003] cooperative backup system targets the backup of mobile devices in a Personal Area
Network (PAN). The nature of a PAN simplifies several issues. First, the partnerships can be defined statically as the
membership in the network changes rarely: the devices taking part in the network are those that the users wear or carry.
Second, all the devices participating in the cooperative backup know each other. They can be initialized altogether at
configuration time so there is no problem of handling dynamic trust between them. For instance, they may share a
cryptographic key.

MoSAIC [Killijian et al., 2004] is a cooperative backup system for communicating mobile devices. Mobility introduces
a number of challenges to the cooperative backup problem. In the context of mobile devices interacting spontaneously,
connections are by definition short-lived, unpredictable, and very variable in bandwidth and reliability. Worse than that,
a pair of peers may spontaneously encounter and start exchanging data at one point in time and then never meet again.
Unlike FlashBack, the service has to be functional even in the presence of mutually suspicious device users.

3.4. Storage Management

In this section, we present two aspects that are specific to peer-to-peer data storage systems: mechanisms for storage
allocation, and techniques for efficient usage of resources.

3.4.1. Storage Allocation

Among the systems studied, one can identify three distinct approaches to the dissemination of the data blocks to be stored:

« the storage can be allocated to specific sets of participants or partners;

« the storage can be allocated across all participants using a distributed hash table (DHT), which has the property of
ensuring an homogeneous block distribution;

« the storage can be allocated opportunistically among neighbors met when storage of a block is needed.

In the first case, the relationships between the partners are relatively simple: each participant chooses a set of partners
at start-up. Then, for each backup, it directly sends the blocks to be saved to its partners. In Pastiche and in CBS, each

RESIST D12 algo p 320

Part Algo 3- A Survey of Cooperative Backup Mechanisms

participant chooses a set of partners that will remain almost static. Finally, the FlashBack devices, in a PAN, choose their
set of partners according to the amount of time spent in each other’s vicinity.

The second approach is based on a technique that is fundamental to peer-to-peer file sharing systems, virtual networks or
overlay networks [Lua et al., 2005], which use the notion of distributed hash tables (DHT) for allocating data blocks. Each
node of the network is responsible for the storage of the blocks whose identifier is close (numerically) to its own identifier.
The advantage of using a DHT is that the blocks are homogeneously distributed over the network if their identifiers are
numerically homogeneously distributed. Both Venti-DHash and pStore use DHTS to store backup data blocks. However,
there are two disadvantages to this approach:

« The cost of migration of the data blocks when a node enters or leaves the system can be high (bandwidth-wise)
[Landers et al., 2004]. Because of the mathematical mapping between data blocks and node identifiers, no excep-
tion is acceptable: when a node enters the virtual network, it must obtain and store all the blocks for which it is
mathematically responsible; respectively, when a node leaves the network, the various blocks it was responsible for
must be re-distributed using the DHT mechanism.

« A DHT automatically distributes the data blocks homogeneously among the participants, independently of how
much storage space each node consumes. Consequently, using a DHT makes it impossible for a system to ensure
fair exchange.

For these reasons, PeerStore proposes a hybrid approach where the data blocks are directly exchanged between partners
and where the blocks’ meta-information (the mapping between a block ID and the node that stores it) are stored using
a DHT. For optimization, the set of partners is sometimes extended at runtime to nodes that were not originally in the
partnership: when a node needs to store a block, it looks into the DHT to see if the block is already stored (single-instance
storage). When that is the case, the block is not stored twice. Instead, the node that already stores it becomes a new
partner for the node owning it.

The third approach is very different. The MoSAIC system targets mobile devices, so partnerships cannot be established a
priori?, but have to be defined during the backup itself, opportunistically. MoSAIC is an active backup system - whenever
some critical data is modified, the modified blocks need to be backed-up. This is done towards the devices that the user
will meet along its way. In this case, the partnership is determined at runtime and is a function of the mobility patterns of
the participating nodes.

3.4.2. Storage Optimization

The amount of storage necessary to store backed-up data can be optimized by applying compression techniques. Com-
pression is worthwhile even if data is ultimately backed-up in redundant copies (to ensure backup availability). Indeed,
the redundancy that is eliminated using compression techniques can be seen as “accidental”, e.g., due to overly prolix
data formats. Thus, compression can be thought of as a way to normalize data entropy before adding new redundancy. In
other words, going through the compression step before adding redundancy is a means to achieve controlled redundancy.
In particular, controlled redundancy means that the backup software is able to control the distribution of redundant data.

Backup systems often rely on “traditional” stream compression techniques, such as gzip and similar tools. Additionally,
most backup systems have focused on techniques allowing for storage and bandwidth savings when only part of the data
of interest has been modified, i.e., incremental backup techniques. Of course, similar techniques are used by revision
control systems [Lord, 2005] or network file systems [Muthitacharoen et al., 2001].

Incremental backup has the inherent property of reducing storage (and bandwidth) usage because only changes need to be

2There may be exceptions to this in some application scenarios where mobility patterns are known in advance. For instance, when
two mobile device users take the same train every single morning while commuting.

RESIST D12 algo p 330

Part Algo 3- A Survey of Cooperative Backup Mechanisms

sent to cooperating peers and stored. However, snapshot-based systems can be implemented such that they provide storage
and bandwidth efficiency comparable to that of incremental backup systems, while still allowing for constant-time restora-
tion. Namely, single-instance storage is a technique that has been used to provide these benefits to a number of backup
[Cox and Noble, 2002, Landers et al., 2004, Rubel, 2005], archival [Quinlan and Dorward, 2002, You et al., 2005] and re-
vision control systems [Lord, 2005], as well as distributed file systems [Muthitacharoen et al., 2001, Bolosky et al., 2000].

Single-instance storage consists in storing only once any given data unit. Thus, it can be thought of as a form of compres-
sion among several data units. In a file system, where the “data unit” is the file, this means that any given content, even
when available under several file names, will be stored only once. The single-instance property may also be provided at a
finer-grain level, thus allowing for improved compression.

The authors of Pastiche and PeerStore argue that single-instance storage can even be beneficial at the scale of the aggre-
gated store made of each contributor store. In essence, they assume that a lot of data is common to several participants,
and thus argue that enforcing single-instance of this data at a global scale can significantly improve storage efficiency.

While common data may easily be found among participants in the context of Pastiche and PeerStore, where each partici-
pant is expected to back up their whole disk (i.e., including application binaries and data), this is certainly not the general
case. For example, the mobile users of MoSAIC are expected to explicitly pay attention to their personal, critical data
which are unlikely to be shared among several participants. Consequently, single-instance storage may be beneficial to
mobile users only when used at a local scale, i.e., on each data owner’s local store [Courtés et al., 2006].

3.5. Dependability Techniques

We study, in this section, the various techniques found in the literature to address the dependability issues presented in
section 3.2.2..

3.5.1. Integrity and Consistency

Integrity and consistency are two properties that are usually obtained using some kind of data encoding. Apart from CBS,
every system studied here systematically fragments the backup files. This is necessary for load-balancing: with small
sized fragments, it is easier to adapt the placement to fairly balance the load imposed on the participants.

pStore uses simple data structures to encode the backup files. The files are fragmented in varying size blocks. Along with
the blocks themselves, each node also stores a list of blocks that contains, for each version of the considered file, the list
of the identifiers of its constituent blocks. Each block list is indexed with a structure containing a cryptographic hash of
the file path and the key of its owner. There is thus one namespace per user. In practice, for the restoration of a given file,
one needs to know the file path and the key of the owner. Without this metainformation, one cannot access the file’s block
list and consequently its blocks. The same technique is used in PeerStore, and a similar technique in Pastiche.

In ABS, each fragment is stored along with a block of meta-information about the file from which the block originates,
as well as the position of the fragment within the file. These data (fragment and metainformation) are indexed using
a cryptographic hash of the fragment to implement single instance storage of each fragment. The metainformation is
encrypted using the owner’s public key and the set (fragment and metainformation) with the owner’s private key. These
signatures are used to certify ownership and for ensuring integrity of the blocks.

In a similar manner, Venti-DHash encoding is based on Venti. As with a classical file system, the files are represented as
trees whose leaves are the file fragments. Here, all the blocks are indexed using their digest. They are fixed-sized and the
underlying storage middleware is not aware of their semantics (leaf nodes, intermediary nodes, data, metadata, etc.). To
be able to restore a file, only the knowledge of the identifier of the root node is necessary.

RESIST D12 algo p 340

Part Algo 3- A Survey of Cooperative Backup Mechanisms

All these techniques provide some guarantee of data block integrity since block addressing is realized using an identifier
that depends on the content of the block (using a digest). When a block is restored, one can then check whether or not
it is the requested block and if it is correct. If the metainformation concerning a file is stored using the same technique,
integrity is thus also guaranteed file-wise. However, from the user point of view, several files can have common semantics
and thus should form a consistency unit. Only Pastiche guarantees inter-file consistency. Since it is implemented as a file
system, Pastiche can create shadow copies of the blocks being backed-up, so that they can be modified during the backup
process without compromising their consistency.

3.5.2. Confidentiality and Privacy

Most of the systems studied here, like many file sharing systems, use convergent encryption [Bolosky et al., 2000] to
provide some confidentiality despite untrustworthy partner nodes. The objective is to have an encryption mechanism that
does not depend on the node performing the encryption, i.e., that is compatible with single-instance-storage. Convergent
encryption is a symmetric encryption technique whose key is a digest of the block to be ciphered. The ciphered block can
then be stored on the untrustworthy partner nodes. A digest of the ciphered block is commonly used as an identifier of that
block. The tuple of digests (ciphered/unciphered block digests) is called digest-key or CHK for “content hash key”. The
data owner needs the CHK to be able to locate and uncipher a block. The CHKSs are themselves backed up and ultimately
the data owner only has to “remember” one CHK. Generally this ultimate CHK is stored using a secret that the data owner
cannot forget, like his ID for instance. It is important to note that this technique can lead to some loss in privacy for the
data owner. Indeed, when several nodes own the same block, since the ciphering scheme depends on the content and not
on the nodes, they produce the same ciphered blocks, and the same CHKs. Thus they are each able to know that they
share a file.

It is important to note that when single-instance-storage is not considered, it is much simpler to use classic encryption
techniques, e.g., based on asymmetric ciphering.

3.5.3. Data Availability

In this section, we explore the techniques described in the literature for improving data availability despite failures while
optimizing the use of the system resources: data replication and garbage collection.

3.5.3.1. Data Replication

For the systems that distribute the data among a specific set of participants (Pastiche, PeerStore, CBS, Flashback), the
replication mechanism is quite simple. In Pastiche, each participant entering the system looks for 5 other participants
having a lot of data in common with itself. These 5 participants then become its backup partners. It can thus tolerate 4
node failures. With PeerStore, the choice of partners is done in a different manner. However, the authors say that there are
ideally as many partners as there are data replicas, which is similar to Pastiche. For the systems based on DHTSs, thanks
to (or because of) the properties of DHTS, the global set of data stored is homogeneously distributed among the nodes.
Consequently, to tolerate the departure or the failure of a participating node, the data has to be replicated. In practice,
the data blocks are generally replicated by the node that is responsible for it (with the closest ID) on a small number of
its neighbors in the identifier space. Additionally, the block can also be kept in cache on the nodes that are on the path
between the owner and the node responsible for it. ABS, among the systems based on DHTS, proposes an alternative. The
data owner can choose the key under which a block will be stored. When a new block is inserted in the DHT, an attempt
is made to insert it with a digest of the data as the key. A digest of the key itself (this is called rehashing) can also be used
to store the block on some other participant in order to move the data or to tolerate a departure or crash.

Coding techniques are also used to finely control the level of data redundancy. Many different error-correcting coding

RESIST D12 algo p 350

Part Algo 3- A Survey of Cooperative Backup Mechanisms

techniques can be used: erasure codes [Weatherspoon and Kubiatowicz, 2002] like Tornado [Byers et al., 1999], Fountain
codes (also called rateless erasure codes) [Byers et al., 1998] like Raptor [Shokrollahi, 2003], etc. The idea of erasure
codes is basically that each data block is fragmented into k fragments. From these k fragments, r other redundancy
fragments are computed. From these k + r fragments, any k fragments are sufficient to rebuild the original data block.

Blocks are thus used to produce fragments with a controlled level of redundancy. Venti-DHash uses this technique and
stores the fragments on the successors of the node responsible for the original data block. MoSAIC also uses erasure
codes for the production of redundant fragments but distributes them opportunistically to the nodes encountered.

3.5.3.2. Garbage Collection

Pastiche, pStore and ABS offer the possibility to delete the backed up data. Only the data owner can request this operation
- requests must be signed with the owner’s private key. Additionally, when single instance storage is used, as a block can
be stored for several owners, an owner list is associated to each data block to permit its deletion only when every owner
has requested it. In PeerStore, however, such an owner list does not exist (or is incomplete), i.e., other nodes can rely on a
block for their own backup without having notified the node actually storing this block. This is due to the way PeerStore
implements inter-node single-instance-storage. For this reason PeerStore does not allow delete operations. FlashBack
uses the notion of a “lease” whereby a data block is stored for a given duration. This duration is determined a priori and
exceeds the expected duration of unavailability of the data owner. Leases can be renegotiated when they are half-expired.

3.5.4. Service Availability

Failures of a cooperative backup system can lead to the loss of some of the stored data, as discussed in the previous
section, but can also lead to the unavailability of the entire backup system, which we address in this section. Resilience to
malicious denial-of-service attacks is a wide and active research field. The approaches used to mitigate the lack of trust
between the participating nodes and to tolerate these DoS attacks can be based either on the notion of reputation (a level
of the trust of the partners that can be acquired either locally or transitively) or on the use of micro-economy (exchange
of checks, tokens, etc.) [Grothoff, 2003, Lai et al., 2003, Oualha and Roudier, 2006].

We concentrate here on the attacks that are specific to cooperative backup in general and more specifically the ones we
found in the cooperative backup system we studied: selfishness and retention of backup data.

3.5.4.1. Selfishness

Selfishness is a problem for every resource sharing system, as we saw in Section 3.2.2.4.. Some mechanism is required to
enforce fairness amongst peers - that they contribute in proportion to what they consume. Many different solutions have
been proposed, most of them being based on the notion of micro-economy. We look here only at the solutions adapted to
storage systems.

It is worth noting that it is not possible for a system based on DHTSs to guarantee that the participants fairly contribute to
the system with respect to the amount of resources they consume (see Section 3.4.1.). Consequently, Venti-DHash and
pStore are not resilient to this type of attack. The ABS rehashing technigue (see Section 3.5.3.1.) can be used to balance
the loads on the DHT but it does not take the effective usage of each node into account.

PeerStore proposes a simple solution based on pair-wise symmetrical exchanges, i.e., each one of the two partners offers
(approximately) the same storage capacity that it uses. To find partners, newcomers broadcast an offer for a given storage
capacity and listen to other participant replies that offer some capacity in exchange that may be different. It is then up to
newcomers to decide whether or not to accept an offer. CBS also imposes symmetrical exchange relationships, restricting

RESIST D12 algo p 360

Part Algo 3- A Survey of Cooperative Backup Mechanisms

data placement.

Pastiche does not deal with this problem but Samsara does: it extends the notion of symmetrical exchanges with the use of
claims. The data owner issues a claim for the node that accepts to store its data, this exchange constitutes a contract. The
value of the claim represents the storage capacity of the stored data. These claims can be forwarded to another contributor
when the contributor needs to store some of its own data. Finally, each node periodically checks its co-contractors to
ensure that they are adhering to the contract, i.e., to verify that its claims are satisfied, by challenging its contributors. If a
node breaches a contract, its partner is free to drop its data. The use of challenges can be seen as a way to compute locally
a level of reputation for a contributor.

Another simple solution is proposed in CFS [Dabek et al., 2001]: each contributor limits any individual peer to a fixed
fraction of its space. These quotas are independent of the peer’s space contribution. CFS uses IP addresses to identify
peers, and requires peers to respond to a nonce message to confirm a request for storage, preventing simple forgery. This
does not defend against malicious parties who have the authority to assign multiple IP addresses within a block, and may
fail in the presence of network renumbering.

Several of these solutions were proposed to be extended with trusted third parties, either centralized or distributed among
trusted hardware devices. For instance, PAST [Rowstron and Druschel, 2001] provides quota enforcement that relies on a
smartcard at each peer. The smartcard is issued by a trusted third party, and contains a certified copy of the node’s public
key along with a storage quota. The quota could be determined based on the amount of storage the peer contributes,
as verified by the certification authority. The smartcard is involved in each storage and reclamation event, and so can
track the peer’s usage over time. Fileteller [loannidis et al., 2002] proposes the use of micro-payments to account for
storage contributed and consumed. Such micro-payments can provide the proper incentives for good behavior, but must
be provisioned and cleared by a third party and require secure identities.

It is worth noting that, as a side effect, solutions based on symmetrical exchanges have the advantage of being resilient
to flooding attacks, whereby a node tries to obtain many storage resources by flooding the network with requests. On the
contrary, DHT based systems are not resilient to this type of attack due to the very nature of DHTSs.

3.5.4.2. Retention of Backup Data

Data retention is the situation in which a contributor does not release backed up data when an owner issues a restoration
request. This can be non intentional, e.g., the contributor has crashed, or is disconnected, or intentional/malicious, e.g., the
contributor did not actually store the data or tries to blackmail the data owner. Generally speaking, unintentional retention
should be tolerated whereas malicious retention should be prevented, or even punished.

In CBS, there is a two-fold solution to these problems: first there are periodic challenges to verify that the partners really
do store the data for which they are responsible for, and second, there are rules to tolerate temporary node failures. The
periodic challenges are actually read requests for randomly chosen data blocks sent to the contributors by data owners.
Tolerance of temporary faults is based on a grace period during which a participant can be legitimately unavailable. After
expiration of the grace period, the data stored for the disconnected node can be erased (the data owner locally decides to
associate a bad reputation to the contributor). However, the grace period can be used to gain resources dishonestly without
contributing to the system. A countermeasure is to define a trial period, that is longer than the grace period, during which
backup and challenges are permitted but restoration is not.

This challenge technique is also used by the other studied systems, in an optimized form: a challenge concerns several
blocks at a time and the response is a signature of the set of blocks [Cox and Noble, 2003] [Landers et al., 2004].

Samsara and PeerStore also have a slightly different way of punishing unavailable nodes: their blocks are progressively

RESIST D12 algop 370

Part Algo 3- A Survey of Cooperative Backup Mechanisms

deleted. The probability of deletion of a block is chosen such that, given the number of block replicas, the probability of
all the replicas being deleted becomes significant only after a large number of unsatisfied challenges.

3.6. Conclusion

Peer-to-peer/cooperative systems constitute a new emerging approach for the design of heavily distributed systems. They
have very good properties regarding scalability and are thus particularly well-adapted to ubiquitous computing scenarios.
The application of peer-to-peer coopearation to backup has been rendered feasible by recent dramatic increases in storage
capacity and network bandwidth. In this chapter, we have surveyed the technical solutions to this problem.

We first observed that the field of cooperative backup for wide-area networks or local-area networks is very active. This
research field has been recently boosted by the peer-to-peer trend and reused many of the P2P techniques: distributed hash
tables, single-instance-storage, convergent encryption, etc. However, very little work has targeted mobile devices, even if
cooperative backup seems to be quite appropriate for them (new data is frequently produced on many types of devices,
even disconnected from the fixed infrastructure: digital cameras, phones, PDAs, laptops. However, mobile devices have
their specificities (ephemeral connections, reduced energy, etc.), so many of the techniques developed for WANs and
LANs cannot be applied. Much effort is still needed to alleviate the specific problems raised by frequent disconnections,
ephemeral connections, limited battery power, inability to access trusted third parties, etc.

From this situation, trails that can be followed to make some progress in this field include: adequate disconnected coop-
eration incitatives, proper erasure codes with varying parameters, realistic mobility models, and stochastic models of the
dependability of mobile devices implementing cooperative services.

RESIST D12 algo p 380

4 - Wait-free objects: an introduction for the sophomore

Introduction

Let us consider an object, defined by a sequential specification (e.g., a queue), that is used by concurrent
processes. One way to implement the operations enqueue() and dequeue() consists in using a mutual
exclusion mechanism (e.g., locks) to allow a single operation at a time to proceed. This works as long as
there are no failures. If a process p crashes after it has acquired the critical section and before releasing it, it
is impossible in an asynchronous system for the other processes to know if this process has crashed or is only
very slow, and consequently the whole set of processes can deadlock. Moreover, if pis very slow, it
momentarily slows down the processes that want to acquire the object.

This observation has motivated the notion of wait-free implementation. The implementation of an object is
wait-free if any invocation of an operation of that object, by a process that is not faulty, terminates in a finite
number of steps. As we can see, wait-free implementations provide starvation-free and (n — 1)-resilient
tolerant objects.

The wait-free notion originated a long time ago (1977) in a paper by Leslie Lamport [Lamport 1977]. It was
then investigated in [Peteron 1983] and formalized much later by Maurice Herlihy [Herlihy 1991] who
received the ACM Dijkstra award for that paper in 2004. That paper defines the notion of consensus number
that can be associated with any object that has a sequential specification. This notion allows objects to be
ranked with respect to their power to solve the consensus problem (an object has consensus number n if,
together with atomic registers', it allows a wait-free solution of consensus for a set of processes). It
appears that consensus numbers allows ranking the power of synchronization primitives such as Test&Set(),

A register provides the processes with a read operation and a write operation. It is atomic if each operation issued by a
processappears as if it has been executed instantaneously at some point between its beginning and its end. This definition generalizes

RESIST D12 algo p 390

Part Algo 4 - Wait-free objects: an introduction for the sophomore
Compare&Swap(), etc., in the presence of process crashes.

This report constitutes a short introduction to the notion of wait-free objects. Instead of presenting an
exhaustive survey (that would be very technical) of the domain, it considers three objects and shows how
they can be wait-free implemented. The first two objects (a counter and a splitter) are very simple. The
third one (a snapshot object) is a little bit more involved. This survey presents wait-free implementations
AND their proofs. Understanding the proofs is important to obtain a better insight into wait-free computing,
as in a lot of cases, the algorithms can be expressed in a few lines, but are far from being trivial (the third
algorithm presented here remains relatively simple compared to a lot of wait-free algorithms).

Among the application domains of wait-free computing, there are fault-tolerance [Attiya and Welch 1998,
Lamport 1996] and real-time systems [Raynal 2002].

4.1. Computation model

4.1.1. Processes

The systems we consider are static systems that consist of n sequential processes, denoted p1,... ,p,. The
processes cooperate by accessing concurrent objects. A process is a predefined flow of control that can be
perceived as a processor executing a sequence of operations defined by a local algorithm associated with it.
Such an algorithm can be described by an automaton (with a possibly unbounded number of states).

A process is said to be correct in a run when it executes an infinite number of steps in that run. Otherwise,
the process is said to be faulty in the considered run. Sometimes it is convenient to see a faulty processes as
one that crashes and prematurely halts its execution. A process is supposed not to deviate from the algorithm
assigned to it (until it possibly crashes). Being sequential, a process executes (at most) one operation at a
time. Unless explicitly stated otherwise, the processes are assumed to be asynchronous which means that
the execution speed of each process is arbitrary (but positive until it possibly crashes). It follows that there
is no assumption on the processing speed of one process with respect to another.

An invocation by a process of an operation on object X is denoted X.op(arg)(res) where arg designates
the input parameters associated with this invocation, and res designates the associated results returned to
the calling process. When the input parameter and the result parameter are not important, X.op(arg)(res)
is denoted X.op().

The execution of an operation op() on an object X by a process p; is modeled by two events, namely,
the event inv[X.op(arg) by p;] that occurs when p; invokes the operation (invocation event), and the event
resp[X.op(res) by p;] that occurs when the operation terminates (response event). Accordingly, a process
can be abstracted as the sequence of the events it generates. Given an operation X.op(arg)(res) invoked by
pi, inv[X.op(arg) by p;] and resp|[X.op(res) by p;] are said to be matching events.

Given an execution, denoted H, all the invocation and response event can be totally ordered. The
corresponding sequence of events is denoted < g.

4.1.2. Objects

As indicated, the processes cooperate through concurrent objects (also called shared objects). An object
has a name and a type. A type is defined by (1) the set of possible values for objects of that type; (2) a
finite set of specific operations that are the only way to access and manipulate the objects of that type; and

easily to atomic objects. An atomic object is also said to be linearizable [Herlihy and Wing 1990]. It follows from the definition of
atomicity that an atomic object can always be defined with a sequential specification.

RESIST D12 algo p 4001

Part Algo 4 - Wait-free objects: an introduction for the sophomore

(3) a specification giving the meaning of these operations. Figure 1 presents a structural view of a set of n
processes sharing m objects.

1 k ¢ 1
op;y op1 Ops ODp,

-

Object O, Object Oy Object Oy,

Figure 1: Structural view of a system

Sequential specification Objects are supposed to have a sequential specification. This depicts the se-
mantics of the object when accessed sequentially by a correct process. The specification is a set of traces
defining the allowed sequences of operations accessing the object (or equivalently, by the corresponding
allowed sequences of invocation and response events). Alternatively, this means that the behavior of each
operation can be described by a pre-assertion and a post-assertion. Assuming the pre-assertion is satisfied
before executing the operation, the post-assertion describes the new value of the object and the result of the
operation returned to the calling process.
An object operation is total if it is defined for every value of the object; otherwise it is partial.

Example 1: a read/write object To illustrate these definitions, let us consider consider the following
objects. The first is the classical register that models a shared file. It has two operations:

e The operation read() has no input parameter. It returns a value of the object.

e The operation write(v) has an input parameter, namely v, a new value of the object. The result of
that operation is a value ok indicating to the calling process that the operation has terminated.

The sequential specification of the object is defined by all the sequences of read and write operations in
which each read operation returns the value of the last preceding write operation. Clearly, the read and write
operations are always defined: they are total operations.

The problem of implementing a concurrent read/write object is a classical synchronization problem
known under the name reader/writer problem.

Example 2: a fifo queue with total operations Our second example is an unbounded queue. This object
has a sequential specification defined by all the traces of allowed sequences of enqueue and dequeue opera-
tions. As we can see, this definition never prevents an enqueue or a dequeue operation from being executed
(dequeuing an empty queue returns a predefined default value). Both operations are total. The problem
of implementing a concurrent queue object is a classical synchronization problem known under the name
producer/consumer problem.

RESIST D12 algop 410

Part Algo 4 - Wait-free objects: an introduction for the sophomore

4.2. A very simple wait-free object: a counter

4.2.1. Definition

A shared counter C' is a concurrent object that has an integer value (initially 0), and provides the processes
with two operations denoted increment() and get_count(). Informally, the increment() operation in-
creases the value of the counter by 1, while the get_count() operation returns its current value. In a more
precise way, the behavior of a counter can be specified by the three following properties.

e Liveness. Any invocation of increment() or get_count() by a correct process terminates.

e Monotonicity. Let g¢, and gto be two invocations of get_count() such that g¢; returns c;, gt, returns
c2, and gt terminates before gto starts (i.e., resplgti] <z inv[gts]). Then, ¢; < ca.

e Uptodateness. Let gt be an invocation of get_count() and c the value it returns. Let ¢, be the number
of invocations of increment() that terminate before gt starts (i.e., before the event inv|[gt()] occurs).
Let ¢, be the number of invocations of increment() that start before gt terminates (i.e., before the
event res[gt] occurs). Then, ¢, < ¢ < ¢.

The liveness property expresses that the object is wait-free. The monotonicity and uptodateness proper-
ties give its meaning to the object: they define the values that can be returned by a get _count() invocation.

It is easy to see that the behavior of a counter object defined by the previous specification can also be
described by a sequential specification. More specifically, a given counter execution (as defined by a total
order & on its invocation and response events) is correct if there is an equivalent sequence S such that 1)
the order of the operations in S respects their real-time occurrence order (as defined by <) and (2) each
get_count() returns the number of increment() operations that precede it in S. Item (1) follows from
the monotonicity and uptodateness properties, while item (2) follows from the uptodateness property. The
previous specification defines consequently an atomic object [Herlihy and Wing 1990].

4.2.2. A simple counter construction

A concurrent counter can easily be built as soon as the number of processes n is known, and the system
provides one base IWMR atomic register per process (1IWMR means single-writer/multi-reader). More pre-
cisely, let REG(1 : n] be an array of atomic registers initialized to 0, such that, for each ¢z, REG|[z] is written
only by p; and read by all the processes. The algorithms implementing the increment() and get_count()
operations are trivial (Figure 2). The invocation of increment() by p; consists in asynchronously adding 1
to REG[i]. The invocation of get_count() by any process consists in reading (in any order) and summing
up the values of all the entries of the array REG]|1 : n].

operation increment() invoked by p;:
aur < REG[i] +1;
REGYi] + auz;
return ()

operation get_count():
auz < 0;
for j € {1,...,n} doauz < auz + REG[j] end_do;
return (auzx)

Figure 2: A wait-free counter

RESIST D12 algo p 4201

Part Algo 4 - Wait-free objects: an introduction for the sophomore
Theorem 1 The algorithm described in Figure 2 is a wait-free implementation of a counter object.

Proof The fact that the operations are wait-free follows directly from their code. The proof that the construc-
tion provides an atomic counter is based on the atomicity of the underlying base registers. A linearization
point? is first associated with each operation, as follows:

e The linearization point associated with an increment() operation issued by a process p; is the lin-
earization point of the underlying write operation of the base atomic register REG/].

e Let ¢ be the value returned by a get_count() operation. The linearization point associated with that
operation is, while reading and summing up the underlying base registers, the point in the execution
when the value c is attained.

According to this linearization point definition, and the fact that the base registers never decrease, it is
easy to conclude that (1) if two get_count() operations are sequential, the second one returns a value not
smaller than the first one (monotonicity property), (2) a get_count() operation returns a value not smaller
than the number of increment() operations that terminated before it starts, and not greater than the number
of increment() operations that have started before it terminates (uptodateness property). O7heorem 1

4.3. Another simple wait-free object: a splitter

The splitter object was introduced by Lamport in [Lamport 1987] to solve the fast mutual exclusion problem.
This problem consists in allowing a process that wants to enter a critical section, to execute only a bounded
number of steps before entering when no other process wants to enter the critical section. This means
that when a single process wants the critical section, it has to pay a bounded price (counted in number of
base operations), while it pays a price that depends on the number of processes when several processes are
contending.
The splitter object has been used to design wait-free implementations of several objects. The most popu-
lar is the renaming object [Afek and Merritt 1999, Attiya et al. 1990, Attiya and Fouren 2000, Attiya and Fouren 2001,
Moir 1998, Moir and Anderson 1995]. We limit our presentation to the splitter. The reader interested in its
use can consult [Raynal 2004].

4.3.1. Splitter definition

A splitter is a wait-free concurrent object that provides the processes with a single operation, denoted
direction(), that returns one out of three possible values (stop, down or right) to the invoking process.
Assuming that each process invokes at most once the split() operation, a splitter is characterized by the
following global property: if = processes invoke direction(), then at most one obtains the value stop, at
most z — 1 obtain the value down, and at most = — 1 obtain the value right (Figure 3).

More precisely, assuming a process invokes at most once the direction() operation, a splitter is specified
by the following properties:

e Liveness. An invocation of direction() by a correct process always returns a value.
¢ Validity. The value returned by direction() is stop, right or down.

e Solo execution. If a single process accesses the splitter it obtains the value stop (or crashes).

2This is the point on the time line at which the operation appears to have instantaneously executed.

RESIST D12 algo p 4301

Part Algo 4 - Wait-free objects: an introduction for the sophomore

T processes

|

Stop | right

——= < x — 1 processes

< 1 process

idown

< z — 1 processes

Figure 3: A splitter

e Partitioning. At most one process obtains the value stop. When two or more processes access the
splitter, not all of them obtain the same value.

As we can see, a splitter is an object that allows an online partitioning of a set of contending processes
into smaller groups with certain properties. A process is assigned exactly one value, depending on the
current contention and the values already assigned. It is important to see that, when several processes access
a splitter, it is possible that none of them obtains the value stop.

4.3.2. Construction

A surprisingly simple wait-free implementation of a splitter is described in Figure 4. The internal state of
the splitter is represented by two atomic MWMR base registers (MWMR means multi-writer/multi-reader).

e The aim of the first atomic register, denoted LAST, is to contain the identity of the last process that
entered the splitter (we consider that i is the identity of p;).

e The second register, denoted DOOR, can take two values, namely, open and closed. Initially,
DOOR = open. The aim of that register is to route the processes towards the “right” exit as soon
as the door has been closed. Several processes can close the door (closing the door is an idempotent

operation).
procedure direction() invoked by p;:
(1) LAST «;
(2) if (DOOR = closed) then return (right)
3) else DOOR « closed,;
4) if (LAST = 1) then return (stop)
5) else return (down)
(6) end.if end._if

Figure 4: A wait-free construction of a splitter

When a process p; invokes the direction() operation, it first leaves a mark indicating it is the last pro-
cess that entered the splitter (line 1). Then, it outputs the value right if the door is closed (line 2). If the
door was not closed when it checked, it closes it (line 3). (Note that due to asynchrony, it is possible that, in
the meantime, the door has been closed by other processes.) Finally, if no other process entered the splitter
since the time it executed line 1, the process p; returns the value stop; otherwise, it returns the value down.

RESIST D12 algo p 4401

Part Algo 4 - Wait-free objects: an introduction for the sophomore

A process that returns right is actually a late process: it arrived late at the splitter and found the door
closed. Differently, a process that returns down is actually a slow process: it closed the door (DOOR <+
closed at line 3) but was not quick enough during the period starting when it wrote its identity in LAST at
line 1, and ending when it read that register at line 4. The management of the routing registers LAST and
DOOR ensures that at most one process can be neither late nor slow, such a process is on time, and obtains
stop. As already noticed, it is possible that no process be on time.

4.3.3. Proof of the construction

Theorem 2 The algorithm described in Figure 4 defines a wait-free implementation of a splitter object.

Proof As there is no loop, the direction() operation is trivially wait-free. Moreover, it follows from the
initialization of the atomic register DOOR that, if a single process invokes direction() it obtains the value
stop (if it does not crash before returning a value).

Assuming now that = > 1 processes access the splitter object, let us first observe that, due to the
initialization of DOOR, not all of them can obtain the value right; this is because for a process to obtain
right, another process has to previously close the door (statement DOOR < closed at line 3). It follows
that at most z — 1 processes can obtain the value right.

Let us now consider the last process that executes line 1. If it does not crash, according to the fact that it
finds the door closed or not (line 2), that process returns the value right or stop. Consequently, not all the
processes can obtain the value down.

line 1 line 3 line 4
LAST 1 DOOR « closed LAST =1
! ¥ I
N Y

No process p; has modified the atomic register LAST

Figure 5: Proof a the splitter construction

Finally, no two processes can obtain the value stop. If no process p; finds LAST = i when it executes
line 4, no process returns the value stop. So, let us consider the first process p; (if any) that finds LAST =i
at line 4 (see Figure 5 where the time line corresponds to the total order defined by the linearization of the
read and write operations of p; on the base atomic registers LAST and DOOR). That process returns the
value stop (if it does not crash). This means that no process p; has modified LAST while p; was executing
the lines 1-4. It follows that any p; # p; that will modify LAST (at line 1) will find the door closed (line
2). Consequently, p; cannot obtain the value stop. O T heorem 2

4.4. A lesstrivial wait-free object: a snapshot object

The concept of snapshot object was introduced in [Afek et al. 1993]. It has been used as a building block for
implementing a lot of wait-free objects [Attiya and Fouren 2001]. Moreover, from a design point of view, it
uses basic principles encountered in other wait-free algorithms. A snapshot object provides two operations,
denoted update() and snapshot(), whose meaning is defined by the following properties:

RESIST D12 algo p 4501

Part Algo 4 - Wait-free objects: an introduction for the sophomore

e An invocation of snapshot() returns n values (one per process) to the invoking process. The returned
value v; associated with the process p; is such that update(v;) is the last update() invoked by p;
before the snapshot(), or is an update() invoked by p; concurrent with the snapshot().

e Any update() or snapshot() operation invoked by a correct process terminates.

e The snapshot object is atomic. This means that it is possible to totally order the update() and
snapshot() operations in such a way that the order of non-concurrent operations is preserved, and
each snapshot() operation returns, for each i, the value v; such that update(v;) is the last update()
operation issued by p; preceding (in that total order) the snapshot() operation.

A snapshot object provides the processes with a high level cooperation abstraction that can greatly
simplify both the design and the proof of asynchronous concurrent programs. The update() operation
allows a process to inform the other processes on its progress (by writing the last relevant value it has
computed in the snapshot object). The snapshot() operation allows a process to obtain a global picture of
the system state (i.e., the last value deposited by each process) as it is was obtained instantaneously.

4.5. A snapshot construction

45.1. Afirst attempt based on sequence numbers

A simple representation of a snapshot object consists in an array REG|[1 : n], where each REG[i] is a
1IWMR atomic register that can be written only by p;.

A first idea that comes to mind to implement a snapshot object consists in associating a sequence num-
ber with each value written by a process. So, each atomic REG(i] register contains two fields, denoted
REG(i].sn and REG[i].val. The corresponding update() operation is as follows, where sn; is a local
variable that p; uses to generate sequence numbers):

operation update (v) invoked by p;:
sn; + sn; + 1; % local sequence number generator %
REGTi] < (v,sn;) % atomic write of a pair %.

Then, thanks to the sequence numbers, the idea is for a snapshot() operation to use a “double scan”
technique. The scan() function asynchronously reads the last (sequence number, data) pairs deposited by
each process (reg[1 : n] is an auxiliary array whose scope is the scan() function):

function scan(): for j € {1,... ,n} do reg[j] + REG]j] end_do; return (reg).

The double scan technique consists in repeatedly reading the whole array REG|1 : n], until there are two
consecutive scan() invocations such that, for each register REG(j], both read the same sequence number.
When this occurs, the double scan is said to be successful. The snapshot() algorithm based on this technique
is as follows. (Given an array aa, the notation aa.val denotes the array [aa[l].val, ... ,aa[n].val].)

operation snapshot():
aa; < scan();
while ¢rue do
bb; + scan();
if (Vj: aa;[j].sn = bb;[j].sn) then return (aa;.val) end_if;
aa; < bbi
end_while.

RESIST D12 algo p 4601

Part Algo 4 - Wait-free objects: an introduction for the sophomore

To simplify, we consider in the following theorem that no process crashes. This restriction will be
removed in the next section.

Theorem 3 The set of operations that terminate implements an atomic object.

Proof As the base registers are atomic, we can consider that their read and write operation occur instanta-
neously at some point in time. Let us define the linearization point of an update() operation issued by p; as
the time instant when p; writes REG/j].

Considering now a snapshot() operation that terminates, let sc1 and sc2 be its last two scan() in-
vocations. Moreover, let ¢ (resp., t5) be the time at which scl (resp., sc2) reads REG[i]. As both scl
and sc2 obtain the same sequence number from REG|[i], we can conclude that, for any 4, between ¢ and
t, no update() operation issued by p; has terminated and modified REG[i]. It follows that, between
max({# }1<i<n) and min({t5 }1<i<n), N0 atomic register REG|i], 1 < i < n, has been modified. It is con-
sequently possible to associate with the corresponding snapshot() operation, a linearization point ¢ of the
time line such that max({#} }1<i<n) < t < min({t}}1<i<n). Hence we can consider that the snapshot ()
occurred instantaneously at ¢ (see Figure 6) after all the update() operations whose it reads the values, and
before the update() operations that terminate after it.

It follows from the previous definition of the linearization points, that the operations that terminate define
an atomic snapshot object. O 7 heorem 3

REGI1] \ aaill].sn = a = REC}‘[I}.sn / bbi[l].sn = a

bb;[2].sn = b

/bbi[3].sn =c

REG[Z] \aai[2].sn =b

aa;3].sn =c

REG(3] ;
aa;[4].sn =d %)biél.sn—d—REGél.sn
REG[4] 4] : / 4] [4].
- = I - = A
first scan() } second scan() snapshot() operation
time line |
@

linearization point of the snapshot() operation

Figure 6: Linearization point of a snapshot() operation (Case 1)

Let us notice that an update() operation always terminates. This is an immediate consequence of
the code of the corresponding algorithm. Unfortunately, it is possible that, as implemented by the previ-
ous double scan algorithm, a snapshot() operation snap never terminates. This can occur when one or
several processes continuously execute update() operations in such a way that the termination predicate
(Vj : aai[j].sn = bb;[j].sn) is never satisfied when it is checked by snap. It is important to see that
this is not due to the fact that processes can crash, but to the fact that some processes continuously execute
update() operations. This is a typical starvation® situation that has to be prevented in order to obtain a
wait-free construction.

3A process starves when it is forever prevented from terminating the execution of its operation.

RESIST D12 algo p 4701

Part Algo 4 - Wait-free objects: an introduction for the sophomore

45.2. A bounded wait-free snapshot construction

A basic principle to obtain wait-free constructions (when possible) consists in using a helping mechanism.
Here, that principle can be translated as follows. If, continuously, there are update() operations that could
prevent a snapshot() operation from terminating, why not to try using these update() operations to help
the snapshot() to terminate. The solution we present relies on this nice and simple idea.

up1 up2
bj snap_int

Di

snap

Figure 7: Each update() operation includes a snapshot() operation

Analyzing the previous attempt, we can make the two following observations:

e The fact that a double scan is unsuccessful (i.e., does not allow the snapshot() operation to terminate)
can be attributed to one or more update() operations, namely the ones that have increased sequence
numbers, and consequently made false the test that controls the termination of the algorithm.

e If a snapshot() operation (say snap) issued by a process p; sees two distinct update() opera-
tions from the same process p; (these updates, say up; and wupo, write distinct sequence numbers
in REG|[j]), we can conclude that ups was entirely executed during snap (see Figure 7). This is
because the update by p; of the base atomic register REG(j] is the last operation executed in an
update() operation.

As the second update ups is entirely executed during snap (it starts after it and terminates before it), these
observations suggest that ups might help snap. This help can be realized as follows:

e Each update is required to include an “internal” snapshot() invocation (see Figure 7, where the
rectangle in the update() operation up, corresponds to the snapshot() operation -denoted snap_int-
invoked by that update). Let help be the array of values read by the internal snapshot snap int.

e As the execution of snap_int is entirely overlapped by the execution of snap, snap can borrow the
array help and return it as its own result. (Notice it is possible that the snapshot() invocation inside
up1 be also entirely overlapped by snap. But, there is no way to know it.) This overlapping is
important to satisfy the atomicity property, namely, the values returned have to be consistent with the
real-time occurrence order of the operations.

The proof will show that the addition of a snapshot() operation in each update() does not prevent the
wait-free property, and this helping technique is consistent in the sense that the resulting snapshot object is
atomic. The resulting update() and snapshot() algorithms are described in Figure 8. The function scan()
is the same as before.

A 1WMR atomic register REG[3] is now made up of three fields, REG|i].val and REG|i].sn as before,
plus the new field REG|i].help_array whose aim is to contain a helping array as previously discussed. The
final version of both update() and snapshot() algorithms is a straightforward extension of their previous
versions.

The main novelty lies is the local variable could_help; that is used by a process p; when it executes
snapshot(). The aim of this set, initialized to @, is to contain the identity of the processes that have ter-
minated an update() invocation since p; started its current snapshot() operation. Its use is described at

RESIST D12 algo p 48[

Part Algo 4 - Wait-free objects: an introduction for the sophomore

lines 11-15. More precisely, when a double scan is unsuccessful, p; does the following with respect to each
process p; that made the double scan unsuccessful (i.e., such that (aa;[j].sn # bb;[j].sn)):

o If j ¢ could_help; (line 14): p; discovers that p; has terminated an update() since it started its
snapshot() invocation. Consequently, p; could help p; if it executes a new update() while p; has not
yet terminated its snapshot().

e If j € could_help; (line 13): in that case, p; has entirely executed an update() operation while p; is
executing its snapshot() operation. As we have seen, p; can benefit from the help provided by p; by
returning the array that p; has stored in REG|j] at the end of that update() operation.

operation update(v) invoked by p;:
(1) help_array; < snapshot();

(2) sn; < sn; +1;

(3) REG]Ii] + (v, sn;, help_array;)

operation snapshot():

(4) could-help; < 0;

(5) aa; < scan();

(6) whiletrue do

@) bb; < scan();

@) if(vje{1,...,n}: aa;i[j].sn = bb;[j].sn)

9) then return (aa;.val)

(10) else for_each j € {1,... ,n} do

(11) if (aa;[j].sn # bb;[4].sn) then

(12) if (j € could_help;)

(13) then return (bb;[j].help-array)
(14) else could_help; < could_help; U {j}
(15) end_if end_if

(16) end_for

(17) end.if;

(18) aa; < bb;

(19) end-while

Figure 8: Atomic snapshot object construction

4.6. Proof of the construction

The proof of the construction described in Figure 8 consists in two parts: (1) showing that every operation
issued by a correct process terminates (wait-free property), and (2) showing that the object is atomic.
4.6.1. The snapshot object construction is bounded wait-free

This section shows that the previous construction not only is wait-free, but is bounded wait-free. This means
that any operation invoked by a correct process terminates in a bounded number of operations on base objects
(here the base IWMR atomic registers REG|j]).

Theorem 4 Each update() or snapshot() operation issued by a correct process returns after at most O(n?)
operations on base registers.

RESIST D12 algo p 4901

Part Algo 4 - Wait-free objects: an introduction for the sophomore

Proof Let us first observe that an update() by a correct process always terminates as soon as the snapshot()
operation it invokes returns. So, the proof consists in showing that any snapshot() issued by a correct
process p; terminates.

Let us consider that p; has not returned after having executed n times the while loop (lines 5-19). This
means that, each time it has executed that loop, it has found an identity j such that aa;[j].sn # bb;[j].sn
(line 11), which means that the corresponding process p; has executed a new update() operation between
the last two scan() operations of p;. Each time this occurs, the corresponding process identity j is a new
identity added to the set could_help; at line 14. (If 7 was already present in could_help;, p; would have
executed line 13 instead of line 14, and would have consequently terminated the snapshot() operation.)

As by assumption, p; executes n times the loop, it follows that we have could_help; = {1,2,... ,n},
i.e., this set contains all the process identities. It follows that, when it executes the loop for (n + 1)th
time and the test at line 8 is false, whatever the processes p; such that aa;[j].sn # bb;[j].sn at line 11,
we necessarily have j € could_help; at line 12, from which it follows that p; returns at line 13. The
construction is consequently wait-free as p; terminates after a finite number of operations on base registers
have been executed.

Let us now replace “finite” by “bounded”, i.e., let us determine a bound of the number of accesses to
base registers. A scan() costs O(n) accesses to base registers. The cost of each iteration of the for loop
(lines 11-15) is O(1), and there are n iteration steps, which means that the cost of that loop is O(n). Finally,
as the enclosing while loop is executed at most n + 1 times, it follows that a process issues at most O(n?)
accesses to base registers when it executes a snapshot() or update() operation. OTheorem 4

4.6.2. The snapshot object construction is atomic

Theorem5 The object built by the algorithms described in Figure 8 is atomic.

Proof The proof that the object is atomic consists in providing, for each execution, a total order S on
update() and snapshot() operations that: (1) S includes all the operations issued by the processes, ex-
cept possibly, for each process, its the last operation if that process crashes, (2) S respects the real-time
occurrence order on these operations (i.e., if opl terminates before op2 starts, opl appears before op2 in
§), and (3) S respects the semantics of each operation (i.e., a snapshot() operation has to return, for each
process p;, the value v, such that, in S, there is no update() operation by p; between update(v;) and that
snapshot() operation).

The definition of the sequence S relies on the fact that the scan invocations in a snapshot() are se-
quential, and on the atomicity of the base registers. This means that the read and write operations on these
registers can be considered as being executed instantaneously, each one at a point of the time line, and no
two of them at the same time.

The sequence S is built as follows. The linearization point of an update() operation is the time at
which it atomically executes the write in the corresponding IWMR register (line 3). The definition of the
linearization point of a snapshot() operation issued by a process depends on the line at which it returns.

e The linearization point of a snapshot() operation that terminates at line 9 (successful double scan())
is at any time between the end of the first scan() and the beginning of the second scan() (see Theorem
3 and Figure 6).

¢ The linearization point of a snapshot() operation that terminates at line 13 (i.e., p; terminates with the
help of another process p;) is defined inductively as follows. (See Figure 9 where a rectangle below
an update() operation represents the snapshot() invoked by that update(). The dotted help_array

RESIST D12 algo p 5001

Part Algo 4 - Wait-free objects: an introduction for the sophomore

arrow shows the way an array can be conveyed from a successful double collect by a process py, until
a snapshot() operation issued by a process p; in order to help that snapshot() operation).

snapshot()
Pi /1
(4
help arrayl’

update() update() I’

bi | snapshot() |
A
1 help_array
update() update() ,’\
Dk
snapshot()

successful double scan

Figure 9: Linearization point of a snapshot() operation (case 2)

The array (say help_array) returned by p; has been provided by an update() operation executed by
some process p;. As already seen, this update() has been entirely executed within the time interval of
pi’s current snapshot(). This array has been obtained by p; from a successful double scan, or from
another process py. If it has been obtained from a process py, let us consider the way help_array has
been obtained by py. As there are at most n concurrent snapshot() operations, it follows by induction
that there is a process p,, that has executed a snapshot() operation and has obtained help_array from
a successful double scan. Moreover, that snapshot() was inside an update() operation that was
entirely executed within the time interval of p;’s current snapshot().

The linearization point of the snapshot() operation issued by p; is defined as the internal snapshot()
whose double scan determined help_array. If several snapshot() operations are about to be lin-
earized at the same time, they are ordered according to the total order in which they have been in-
voked.

It follows directly from the previous definition of the linearization points associated with the update()
and snapshot() operations issued by the processes that S satisfies the items (1) and (2) stated at the begin-
ning of the proof. The fact that item (3) is also satisfied comes from the fact that the array returned by a
snapshot() has always been obtained from a successful double scan. OTheorem 5

4.7. Our (2006) contribution to wait-free computing

This report has surveyed the notion of wait-free objects (objects provided with a wait-free implementation).
It has visited three wait-free implementations that give a first flavor of wait-free computing. As soon as
fault-tolerance or real-time are concerned, wait-free computing becomes a first class notion. For more in-
formation on wait-free algorithms, the reader can consult the list of papers cited in the references.

Our current research at IRISA on wait-free computing is mainly oriented towards computability. Here
we summarize two of our main results. In addition to the results themselves, these works open research
directions that have not yet been investigated by the research community.

e The adaptive renaming problem consists in designing an algorithm that allows p processes (in a set of
n, processes) to obtain new names despite asynchrony and process crashes, in such a way that the size

RESIST D12 algop 5101

Part Algo 4 - Wait-free objects: an introduction for the sophomore

of the new renaming space M be as small as possible. It has been shown that M = 2p — 1 is a lower
bound for that problem in asynchronous atomic read/write register systems.

Our work described in [Mostefaoui et al. 2006] is an attempt to circumvent that lower bound. To that
end, considering first that the system is provided with a k-set object, the paper presents a surprisingly
simple adaptive M-renaming wait-free algorithm where M = 2p — [£7]. To attain this goal, the paper
visits what we call Gafni’s reduction land, namely, a set of reductions from one object to another object
as advocated and investigated by Gafni [Borowsky and Gafni 1993-1, Borowsky and Gafni 1993-2,
Gafni 2004, Gafni and Rajsbazum 2005, Gafni et al. 2006]. Then, the paper shows how a k-set object
can be implemented from a leader oracle (failure detector) of a class denoted Q. To our knowledge,
this is the first time that the failure detector approach is investigated to circumvent the M = 2p — 1
lower bound associated with the adaptive renaming problem. In that sense, the paper establishes a
connection between renaming and failure detectors.

e Asynchronous failure detector-based set agreement algorithms proposed so far assume that all the
processes participate in the algorithm. This means that (at least) the processes that do not crash
propose a value and consequently execute the algorithm. It follows that these algorithms can block
forever (preventing the correct processes from terminating) when there are correct processes that
do not participate in the algorithm. Our work described in [Raynal and Travers 2006] investigates the
wait-free set agreement problem, i.e., the case where the correct participating processes have to decide
a value whatever the behavior of the other processes (i.e., the processes that crash and the processes
that are correct but do not participate in the algorithm). The paper presents a wait-free set agreement
algorithm. This algorithm is based on a leader failure detector class that takes into account the notion
of participating processes. Interestingly, this algorithm enjoys a first class property, namely, design
simplicity.

4.8. Scalability issuesin wait-free computing

The scalability issue is very easy to state when one is interested in wait-free protocols: How to wait-free
implement a concurrent object (such as a counter or a snapshot object) in presence of process crashes when
we know neither the maximal number of participating processes nor an upper bound of it? Moreover, the
cost of such algorithms should be sub-linear with respect to the current number of processes.

This difficult problem has received attention only very recently [Aguilera 2004]. It requires the state-
ment of appropriate distributed models that deal with an a number of processes that can be a priori infinite
[Merritt and Taubenfeld 2000].

RESIST D12 algo p 52107

5 — Cooperation Incentive Schemes

Introduction

Decentralized system algorithms and protocols have recently received a lot of interest in mobile ad-hoc
networks as well as in peer-to-peer (P2P) systems. The development of such techniques is a necessity to be
able to implement cost-effective and reliable applications deployable on a large scale, yet it brings up far-
reaching issues that have to be dealt with. In decentralized systems, decision-making may not be located at a
specific and central group of devices (repeaters, bridges, routers, gateways, servers) but can be distributed to
end-user devices. Decisions and actions may use the computing power, bandwidth, and disk storage space of
all the participants in the network rather than being concentrated in a relatively low number of special
devices. The decentralized structure makes it possible to achieve minimal administrative and operational
costs. Participants in this type of system are "peers" in the sense that they normally have equivalent
responsibilities and privileges. The intricate notions of self-organization and self-management require that
each peer provide its own contribution towards the correct operation of the system.

The handing of basic mechanisms of the system over to autonomous peers raises new concerns, in particular
with respect to the establishment of trust between peers, to the stimulation of their cooperation, and to the
fairness of their respective contributions. Self-organization opens up new security breaches because a peer
must be able to defend against others perpetrating new forms of denial of service. Selfishness, as illustrated
by the so-called free-riding attack, is a first type of such threats in which the attacker (called free-rider)
benefits from the system without contributing its fair share. Systems vulnerable to free-riding either run at
reduced capacity or collapse entirely because the costs of the system weigh more and more heavily on the
remaining honest peers encouraging them to either quit or free ride themselves. Flooding is a second type of
denial of service: the attack can be launched by sending a large number of query messages asking for
resources to a victim peer in order to slow it until it is unusable or crashes. For example, an attacker can
attempt to make a lot of read and write operations in a distributed storage application. Cheating (or retention)
is a third form of denial of service in which the attacker retains data required for the system to work or does
not comply with the normal course of action in order to obtain an unfair advantage over other peers. So-
called "cooperation enforcement" mechanisms (which should more properly be called cooperation incentive
schemes) provide ways of managing and organizing resources, and aim at dealing with the security
challenges that traditional security approaches (e.g., authentication, access control) can not cope with.

The following sections introduce motivating applications for cooperation incentives, then detail how
incentive schemes work, and finally discuss how these schemes may be validated.

RESIST D12 algo p 530

Part Algo 5 — Cooperation Incentive Schemes

5.1 Applications

Cooperation incentive mechanisms are present in various application domains. It is generally suggested that
cooperation will help entities to succeed better than via competition. [Buttyan and Hubaux 2003]
demonstrated that the best performance in mobile ad-hoc routing is obtained when nodes are very
cooperative. In a cooperation incentive mechanism, cooperative behavior should be more beneficial than an
uncooperative behavior. The two main categories of incentives are reputation and remuneration. This section
describes several applications that benefit from cooperation enforcement.

5.1.1 Infrastructure based P2P applications

Infrastructure based P2P applications (sometimes termed P2P networks or even simply P2P) have become
famous in several domains: file sharing is the flagship of such applications, yet other applications exist like
the enabling of P2P file systems, or file backup systems.

5.1.1.1 File sharing

Peer-to-peer file sharing has become so widespread over the Internet that it now accounts for almost 80% of
total traffic [Bolton and Ockenfels 2000] .

The Napster! protocol was historically the first to provide this service. Napster is based on a hybrid peer-to-
peer infrastructure in which the index service is provided centrally by a coordinating entity, the Napster
server. The functionality of the server is to deliver to a requesting peer a peers’ list having the desired
requested MP3 files. Then, the peer can obtain the respective files directly from the peer offering them.

In contrast, Gnutella? functions without any central coordination authority. Search requests are flooded into
the network until the TTL (Time-To-Live hop counter) of the message has expired or the requested file has
been located. Positive search results are sent to the requesting peer who can then download the file directly
from the peer offering it. Both Napster and Gnutella focus more on information retrieval than on publishing.

Freenet [Cox and Noble 2002] provides anonymous publication and retrieval of data. Anonymity is provided
through several means encrypted search keys and source-node spoofing. In Freenet, when peer storage is
exhausted, files are deleted according to the least-recently-used principal so the system keeps only the most
requested documents. Another drawback is the complexity of file search process. In fact there is a significant
difference between Freenet and the systems presented so far which is that files are not stored on the hard disk
of the peers providing them, but they are intentionally stored at other locations in the network. They are
stored at peers having the numerically closest identification number to their IDs. The document lookup is a
routing model based on keys to locate data similarly to Distributed Hash Tables (DHT). Free riding has been
notably observed in such applications, and first attempts at using reputation incentives to counter it were
made in systems like NICE [Lee et al. 2003].

NICE is a platform for implementing cooperative distributed applications, in particular P2P applications. The
NICE system aims at identifying the existence of cooperative peers; it claims to efficiently locate the
minority of cooperating users, and to form a clique of users all of whom offer local services to the
community. The system is based on peer reputation which is stored in the form of cookies. These cookies

1 http://www.napster.com/
2 http://www.gnutella.com/

RESIST D12 algo p 540

Part Algo 5 — Cooperation Incentive Schemes

provide a signed acknowledgment that a peer did (or did not) correctly provide the resources it promised, and
are stored on that very peer. Whenever a server peer interacts with a client peer, the client will retrieve the
cookie he previously sent to the server; if no interaction happened before, he might obtain some information
out of the cookies stored by other client peers it may know.

5.1.1.2 Distributed file system

A generation of P2P applications uses the promising DHT-based overlay networks. DHTs such as CAN,
Chord, Pastry, and Tapestry allow a decentralized, scalable, and failure-tolerant storage. Well-known
approaches are PAST [Druschel and Rowstron 2000] based on Pastry and OceanStore [Kubiatowicz et al.
2000] based on Tapestry. Each PAST node can act as a storage node and a client access point. These
schemes have basic similarities in the way they are constructed. Participants receive a public/private key
pair. Keys are used to create an unambiguous identification number for each peer and for the stored files
with the aid of a hash function. To use the storage, a peer has to pay a fee or to make available its own
storage space. Key generation, distribution and monitoring are handled by “special” peers who have to be
highly capable and highly available. Both PAST and OceanStore aim at ensuring a high data availability
through means of file replication and random distribution of the identification numbers to peers. The
procedure guarantees geographically-separated replicas which increases the availability of a given file.

Compared with PAST and OceanStore, Free Haven [Dingledine 2000] is designed for more anonymity and
persistence of documents than for frequent querying. An author in Free Haven generates a public/private key
pair, signs his document fragments, and uploads them into the server. Each server hosts data from the other
servers in exchange for the opportunity to store data of its own into the community of servers, servnet.
Trading of document fragments adds to author anonymity. When a reader wishes to retrieve a document
from the servnet, he requests it from any server, including a location and key which can be used to deliver
the document in a private manner. This server broadcasts the request to all other servers, and those which are
holding shares for that document encrypt them and deliver them to the reader's location.

5.1.1.3 Data backup

The latest generation of peer-to-peer systems is a generation of storage systems having data backup as its
primary function. Pastiche [Cox and Noble 2002] is based on Pastry for locating nodes and exploits excess
disk capacity to perform peer-to-peer backup with no administrative costs. Each Pastiche node minimizes
storage overhead by selecting peers that share a significant amount of data. It replicates its archival data on
more than one peer. Most of these replicas are placed nearby to ease network overhead and minimize
restoration time. To address the problem of storing data on malicious nodes, Pastiche uses a probabilistic
mechanism to detect missing backup state by periodically querying peers for stored data. However it
sacrifices a fair amount of privacy because nodes can grab some information about the backup data. This
issue is less critical for the CIBS (Cooperative Internet Backup Scheme) [Lillibridge et al. 2003] scheme
where fragments of a file are stored at different geographical locations, and partners are tracked by a central
server. To ensure a high reliability, the scheme adds redundancy through Reed-Solomon erasure correcting
code.

5.1.2 Wireless networks

Collaboration does not only benefit infrastructure based applications, but also proves essential in several
areas of wireless networks. This section gives three examples of applications that critically depend on

RESIST D12 algo p 550

Part Algo 5 — Cooperation Incentive Schemes

cooperation incentives to be effectively enabled: mobile ad-hoc routing wireless ad-hoc backup, and wireless
data dissemination.

5.1.2.1 Mobile ad-hoc routing

Multi-hop ad-hoc networks, frequently referred to under the term MANETSs (Mobile Ad hoc NETworks), can
be set up rapidly and spontaneously. Connections are possible over multiple nodes. These nodes operate in a
decentralized and self-organizing manner and do not rely on a fixed network topology. Intermediate nodes in
a route have to act as routers to forward traffic towards its destination. To achieve this operation, incentives
for cooperation between nodes become a requirement, because rational users would rather preserve the
energy of their personal devices rather than spend it on cooperative routing. There has been a wealth of work
on cooperative network forwarding.

In the Watchdog/Pathrater [Marti et al. 2000] scheme, the watchdog detects non-forwarding nodes by
overhearing the transmission, and the pathrater keeps a rating of every node and updates it regularly. The
two components enable nodes to route messages avoiding misbehaving nodes in their route. Misbehaving
nodes are detected and avoided in the routing path but not punished.

In CONFIDANT (Cooperation Of Nodes, Fairness in Dynamic Ad-hoc NeTworks) [Buchegger and Le
Boudec 2002], the response to misbehaving nodes is more severe than just avoiding them for routing; it also
denies them cooperation. Similarly to Watchdog/Pathrater, in CONFIDANT reputation is self-carried by
nodes. Nodes monitor their immediate neighborhood and also gather second-hand information from others.
By Bayesian estimation, they classify other nodes as normal or misbehaving.

In CORE (COllaborative REputation) [Michiardi and Molva 2002], the information collected is classified
into subjective reputation (direct information), indirect reputation (positive reports from other nodes), and
functional reputation (task-specific information). The combined reputation value is used to make decisions
regarding a given node, that is, to either cooperate with it or gradually isolate it.

TermiNodes ([Buttyan and Hubaux 2001]) uses a different approach based on a tamper-proof security
module for each node maintaining a nuglet counter. When the node wants to send a packet, it decreases its
nuglet value by a number of credits proportional to the estimated number of intermediate nodes in the route.
When the node forwards a packet, its nuglet purse becomes bigger.

While TermiNodes uses a tamper-proof hardware placed at each node, Sprite [Zhong et al. 2003] does not
require any tamper-proof hardware at any node. Sprite is based on a central Credit Clearance Service (CCS).
Every node is supposed to have a digital ID obtained from a Certification Authority (CA). When a node
receives a message, the node keeps a receipt of the message. Sprite assumes that every source node knows
the entire path to the destination node through a secure ad hoc routing protocol based upon DSR. The
underlying ad hoc routing protocol only exists for packet delivery, not for routing decision making. When
the node has a fast connection to the CCS, which is reachable via an overlay network, it reports to the CCS
the messages that it has received/forwarded by uploading its receipts. Depending on the reported receipts of
a message, the CCS then determines the charge and credit to each node involved in the transmission of a
message. Zhong et al. introduce a formal model in order to prove the effectiveness of Sprite in restraining
selfish behavior at the network layer, however Sprite presents a weakness for it relies on the accessibility of
the CCS.

RESIST D12 algo p 5617

Part Algo 5 — Cooperation Incentive Schemes

5.1.2.2 Wireless ad-hoc backup

The Flashback [Loo et al. 2002] application is a first example of wireless ad-hoc backup system, which has
been proposed for Personal Area Networks (PAN). Flashback is a solution designed to provide peer-to-peer
power-aware backup for self-managing, mobile, impoverished devices. In Flashback, each device has an
identifier assigned out-of-band during the installation of the Flashback. To ensure that devices only
participate in the PAN to which they are assigned, a lightweight certificate-based authentication scheme is
used. In order to keep track of replicas, Flashback maintains a replica table in persistent storage. It uses an
opportunistic model to replicate local data according to the constraints imposed by the power and storage
resources.

The MoSAIC project? [Killijian et al. 2004] is another example of data backup system and recovery service
based on mutual cooperation between mobile devices. Such a service aims to ensure availability of critical
data managed by wireless mobile devices. Data availability is ensured by replicating data. To finely control
the level of data redundancy, MoSAIC uses an erasure coding technique for the production of redundant
fragments [Killijian et al. 2006]. In contrast with Flashback, which assumes a single authority — the user —
preinstalling identity certificates on every device to be backed up, MoSAIC targets ephemeral and self-
organizing networks that come into existence spontaneously by virtue of physical proximity of mobile
devices and where peers are mutually suspicious. A cooperation incentive scheme is critical in the MoSAIC
system.

5.1.2.3 Nomadic computing

Nomadic computing aims at offering end users access to data or information from any device and network
while they are mobile. There are two fundamental approaches to these applications: the first one, as proposed
by the DataMan project* or by the Ubibus prototype [Banatre et al. 2004], assumes the availability of
information servers (called info-stations), placed at fixed positions (e.g., traffic lights, building entrances,
and airport lounges), and that supply mobile users with contextual information; the second one assumes that
data are distributed among neighboring mobile users in a cooperative fashion. 7DS [Papadopouli and
Schulzrinne 2001] is an illustration of the latter approach: this system allows a peer to browse the content of
the cache of another peer in order to search for URLs or keywords. This operation can be performed either
on-demand or in a prefetching mode. When prefetching, 7DS anticipates the information needs of the peer,
while on-demand retrieval only searches for information when the peer requests it. Mobile devices therefore
do not need any base stations to gain access to the service in 7DS. However, while this system relies on the
cooperation of nodes, users are not encouraged to provide storage space for information caching, nor to
answer neighbor requests, nor even to provide accurate answers. History-based credentials used in context-
aware applications like [Bussard et al. 2004] for instance provide means to implement a self-carried
reputation scheme, thus aiming at ensuring such a cooperation of users or devices in nomadic computing
applications. One-time capabilities [Bussard and Molva 2004] also aim at discouraging non-cooperation but
using a remuneration based punishment scheme.

3 The MoSAIC Project, project partners: Institut Eurécom, IRISA, LAAS. http://www.laas.fr/mosaic/
4 DATAMAN, http://planchet.rutgers.edu/~badri/dataman/research-projects.html

RESIST D12 algop 570

Part Algo 5 — Cooperation Incentive Schemes

5.1.3 Web commerce

Cooperation incentives are often used in web commerce sites. This section presents some examples of such
incentives: auction sites, and review or recommendation sites. All schemes are reputation systems where the
reputation is computed either using a voting scheme or using the average of ratings.

5.1.3.1 Auction sites

Auction sites allow sellers to list items for sale, buyers to bid for these items, then the items to be sold to the
highest bidder. In general, the person who puts the item up for auction pays a fee to the auctioneer. In some
cases, there is a minimum or reserve price; if the bidding does not reach the minimum, the item is not sold.
Reputation systems are used in auctioning in order to help users making good choices when selecting
transacting partners. eBay?® is one popular online auction site. The feedback forum on eBay allows sellers
and buyers to rate each other as positive, negative, or neutral. Ratings of buyers and sellers are conducted
after the completion of a transaction, which is monitored by eBay. The reputation system relies on a
centralized repository that stores and manages ratings. The overall reputation of a participant is the sum of
ratings about him over the last 6 months. eBay also provides one month old and seven day old ratings to let
users know about recent behavior of the participant. The eBay system makes it possible to perform fake
transactions. Even though, this incurs a cost, since eBay charges a fee for listing items: this still opens up
opportunities to acquire undue ratings.

5.1.3.2 Review and recommendation sites

In review sites, individual reviewers, who are generally individuals, provide information to fellow
consumers. In these systems, a reputation rating is applied to both products and reviewers themselves, in
particular to discourage product bashing. One example of such a system is Amazon®, an online bookstore
that allows members to write book reviews. A user can become an Amazon member by simply signing up.
Reviewers’ reviews of a book are made of some text and a rating in the range of 1 to 5 stars. Members and
users rate reviews as being helpful or not. Amazon ranks reviewers based on their rating and other
parameters (which are not publicly revealed). Reviewers with a high ranking are given the status of top
reviewers. To reduce repetitive ratings from the same users, Amazon only allows one vote per registered
cookie for any given review. Epinions’, a similar review site charges product manufacturers and online
shops by the number of clicks that consumers generate as a result of reading about their products. This
makes it possible for top reviewers to get paid, while in contrast, Amazon does not give any financial
incentive for well-reputed reviewers.

5.2 Incentive Schemes

Cooperation is a central feature of decentralized systems, and even more so ad-hoc ones, to compensate for
the lack of a central and dedicated entity and still achieve some general function. However, cooperation to
achieve some functionality may be hampered by the fact that users have full authority on their devices and,
as proven by experience, will on average try to maximize the benefits they get from the network. In general,
the cooperative behavior of a device will indeed result in an increase in its resource consumption or missed

5 http://ebay.com/

6 http://www.amazon.com/
7 http://www.epinions.com/

RESIST D12 algo p 5817

Part Algo 5 — Cooperation Incentive Schemes

opportunities to take more than its fair share of a resource (e.g. network, CPU, storage space). In case of
mobile ad hoc forwarding for instance, the node forwarder is confronted with additional energy and
bandwidth usage for reception and transmission of packets, as well as with the increase of computational
resource consumption. Knowing that mobile devices have inherently scarce resources, each of these devices
should better not cooperate from its point of view. In case of file sharing applications, a node can take
advantage of the system by downloading files without contributing to it. To counterbalance this, and achieve
an overall better result, it is primordial to design incentive mechanisms for cooperation that discourage
uncooperative behaviour, be it passive or malicious. At the same time, these mechanisms can not prevent the
non cooperative behavior of devices due to valid and reasonable reasons (e.g., crashing, energy shortage,
route breaks), which should normally not be punished as if they were malicious non-cooperation.

As seen in section B, there are many cooperation incentive schemes which are diverse not only in terms of
the applications for which they are useful or critical, but also in terms of the features they implement, the
type of reward and punishment used, and their operation over time. [Obreiter and Nimis 2003] classifies
cooperation enforcement mechanisms into trust-based patterns and trade-based patterns. The authors make a
distinction between static trust, thereby referring to pre-established trust between peers, and dynamic trust,
by which they refer to reputation-based trust. Oreiter et al. analyze trade-based patterns as being based either
on immediate remuneration, which they term barter trade, or on deferred remuneration, which they term
bond-based. While this classification was the first to try to address so many different incentive schemes
together, other authors describe cooperation only in self-organized systems, in which case they classify
cooperation schemes into reputation based ("dynamic trust-based” for Obreiter et al.) and remuneration
based ("trade-based") approaches. Trust establishment, a further step in many protocols, easily maps to
reputation systems but may use remuneration systems as well. The following sections use the reputation
versus remuneration classification.

5.2.1 Reputation based mechanisms

In reputation-based mechanisms, the decision to interact with a peer is based on its reputation. Reputation
mechanisms need reputation management systems for which the architecture is either centralized, or
decentralized, or both.

5.2.1.1 Reputation based system architecture

The estimation of reputation can be performed either centrally or in a distributed fashion. In a centralized
reputation system, the central authority that collects information about peers typically derives a reputation
score for every participant and makes all scores available online. In a distributed reputation system, there is
no a central authority for submitting ratings or obtaining reputation scores of others. However, it might be
some kind of distributed storage where ratings can be submitted. One example of such architecture is
FastTrack [Liang et al. 2006] architecture which is used in P2P networks like KaZaAS8, Grokster?, and
iMesh!0, These networks have two-tier hierarchy consisting of ordinary nodes (ONs) in the lower tier and
supernodes (SNs) in the upper tier. SNs are generally more powerful in terms of connectivity, bandwidth,
processing and non-NATed (Network Address Translation) accessibility. SNs keep tracks of ONs and other
SNs and act as directory servers during the search phase. Such an architecture can be convenient to manage
peer reputations using supernodes as distributed storage; unfortunately this is not the case in the existing

8 http://www.kazaa.com/
9 http://www.grokster.com/

10 http://imesh.com

RESIST D12 algo p 590

Part Algo 5 — Cooperation Incentive Schemes

FastTrack-based P2P networks. In KaZaA for example, each node has a participation level based some QoS
(Quality of Service) parameters that is stored locally. The participation level score is used in prioritizing
peers during periods of high demand. Most of the time in a distributed architecture, ratings are estimated
autonomously by each peer. Each peer records ratings about its experiences with other peers and/or tries to
obtain ratings from other parties who have had experiences with a given target peer. A good example of a
decentralized reputation-based approach to trust management is NICE [Lee et al. 2003]. This system
searches the network at runtime and builds a trust graph where each edge represents how much the source
trusts the destination. A reputation value is calculated based on this trust graph. Then, the NICE algorithm
selects a trust path based on whether it is the strongest path or using a weighted sum of strongest disjoint
paths.

The centralized approach to reputation management is not fault-tolerant. In the decentralized approach, it is
often impossible or too costly to obtain cooperation evaluations resulting from all interactions with a given
peer. Instead reputation is based on a subset of such evaluations, usually obtained from the neighborhood.
The reputation mechanism should therefore be designed such as to avoid inconsistencies. Distributed
reputation management systems are most probably a more appropriate design than centralized ones to
achieve a scalable solution to cooperation incentives. A distributed algorithm will allow applications to scale
up to a large community of users by making it possible to have local standard of reputation. Some
applications or networks being typically decentralized, like wireless ad hoc networks, and especially
MANETSs, they require the use of a reputation management system itself decentralized.

5.2.1.2 Reputation system operations

A reputation-based mechanism is composed of three phases (Figure 5.1):

1. Collection of evidence: Peer reputation is constructed based on the observation of the peer, experience
with it, and/or recommendations from third parties. The semantics of the information collected can be
described in terms of a specificity-generality dimension and a subjectivity-objectivity dimension:

= Specific vs. general information: specific information about a given peer relates to the evaluation of
a specific functionality or aspect of this peer such as its ability to deliver a service on time. Whereas,
general information refers to all functionalities (e.g., measured as a weighted average).

= Objective vs. subjective information: a peer obtains objective information (also known as direct or
private information) about a given peer through his personal but concrete interactions with the
considered peer, and subjective information (also known as indirect or public information) by
listening to messages or negotiations that are intended to other peers, or by asking neighboring peers
their opinions about the actual peer.

2. Cooperation decision: Based on the collected information, a peer can make a decision whether he should
cooperate with another peer, based on the reputation of that other peer. There exist a variety of methods for
computing the reputation of an entity, some of which being described below:

= Voting scheme: the simplest method to compute reputation is to compute the sum of positive ratings
minus the sum of negative ratings. This is the principle used in eBay!!’s reputation forum.

1 http://ebay.com

RESIST D12 algo p 607

Part Algo 5 — Cooperation Incentive Schemes

Average of ratings: another simple scheme is to compute the reputation score as the average of all
ratings given by peers or users. The Amazon!? recommendation system uses such a scheme
(although it does not provide standard deviation and may therefore be less precise than eBay's
reputation system).

Bayesian based computation: reputation is computed based on the previous estimated reputation with
the new evaluation score. Reputation systems (like [Josang and Ismail 2002] and [Mui et al. 2001])
use the beta PDF (Probability Density Function) denoted by beta(p |o.,) using the gamma function
I.

beta(p | a, f) =%p“l(l—p)ﬁl;0§p <lL,a>0,>0

Where a and f represent the amount of positive and negative ratings respectively, and p represents
the probability variable. The PDF expresses the uncertain probability that future interactions will be
positive (cooperation).

Flow model: “systems that compute trust or reputation by transitive iteration through looped or
arbitrarily long chains can be called flow models” [Jgsang et al. 2005]. One example of such a
reputation computing function (although not a cooperation measurement) is PageRank [Page et al.
1998], Google!?’s algorithm to rank web pages!4 based on their "reputation" (number of its
referrals). The page rank of a web page u is defined as:

R(u)=cEu)+c z %
veN ™ (u)

where N (u) denotes the set of web pages pointing to u, N'(v) denotes the set of web pages that v
points to, and E corresponds to a source of rank. A hyperlink is a positive referral of the page it
points to, and negative referrals do not exist because it is impossible to blacklist a web page using
the above equation. EigenTrust [Kamvar et al. 2003] is another flow model that computes a global
trust value for a peer by multiplying iteratively normalized local matrices of trust scores of each peer
in the system. With a large number of matrices, the system will converge to stable trust values. In
this model, trust and reputation are evaluated similarly.

Other computation models are described in [Jesang et al. 2005]: (a) the discrete trust model, in
which the trustworthiness of the neighbor is taken into account before considering subjective
information; (b) the belief model, which relates to the probability theory, and in which the sum of
probabilities over all possible outcomes does not necessarily add up to 1, the remaining probability
being interpreted as uncertainty; (¢) fuzzy models finally, in which reputation and trust are
considered as fuzzy logic concepts.

3. Cooperation evaluation: The occurrence of interaction with a peer is conditional on the precedent phase.
After interaction, a node must provide an evaluation of the degree of cooperation of the peer involved in the

12

http://www.amazon.com/

13 http://www.google.com/

14 The public PageRank measure does not fully describe Google's page ranking algorithm, which takes into account
other parameters for the purpose of making it difficult or expensive to deliberately influence ranking results in
what can be seen as a form of "spamming".

RESIST D12

algop 6107

Part Algo 5 — Cooperation Incentive Schemes

interaction. Peers performing correct operations, that is, behaving cooperatively, are rewarded by increasing
their local reputation accordingly. A peer with a bad reputation will be isolated from the functionality offered
by the group of peers as a whole. The evaluation of the current interaction can convey extra information
about other past interactions (piggybacking) that can be collected by the neighboring peers.

5.2.1.3 Attacks and counter-measures

Cooperative mechanisms have to cope with several problems due to node misbehavior. Misbehavior ranges
from simple selfishness or lack of cooperation to active attacks aiming at denial of service (DoS), attacks to
functionality (e.g., subversion of traffic), and attacks to the reputation system (liars).

To guard against the impact of liars, the CORE mechanism [Michiardi and Molva 2002] for instance takes
into account only positive reputation from indirect information, together with reputation from direct
information (does the node hear the packet forwarded by its peer?): defamation is thus avoided, yet
unjustified praising is still possible. In a more restrictive manner, RPG (Reputation Participation Guarantee)
[Barreto et al. 2002] forbids the diffusion of reputation between peers. Only direct information is taken into
account; selfishness is detected by sending probe packets.

A different approach, relying on indirect information, is taken in Watchdog/Pathrater [Marti et al. 2000]. A
watchdog is in charge of identifying the misbehaving nodes, and a pathrater is in charge of defining the best
route avoiding these nodes. It is pretty much the same approach that is taken in CONFIDANT [Buchegger
and Le Boudec 2002]: a neighborhood monitor has the role of identifying misbehavior, which is rated.

A trust manager sends and receives alarm messages to and from other trust managers, while a path manager
maintains path ranking. As a result, nodes in the network will exclude misbehaving nodes by both avoiding
them for routing and by denying them cooperation. So, misbehaving nodes will be penalized by being
isolated. Contrary to many proposals, Watchdog/Pathrater evaluates cooperation but does not enforce it: non
cooperative nodes in Watchdog/Pathrater will not be punished like in CORE or CONFIDANT, their
messages are still forwarded while they are not forced to forward the messages of the other nodes.

RESIST D12 algo p 6217

Part Algo 5 — Cooperation Incentive Schemes

External
information

Peer's Control

Collection of
Evidences

s83USpIAg

Reputation
Computation

s88000d Bues

Nan cooperation
-« Decision

uoieladoon

Cooperation
Evaluation

Information to other peers >

Figure 5.1: Reputation-based Mechanism

The systems presented so far focus on network layer forwarding. In this type of application, cooperation
evaluation is immediate, yet other mechanisms may require the evaluation to take place on a longer
timescale. Reputation estimates then need to be preserved: this may mean that it is self-carried by the peer if
reputation is based on direct information; otherwise, reputation should not depend on the proximity of the
peer since nearby nodes are likely to move away over a long period of time. This is for instance the case for

distributed backup applications.

In the CIBS (Cooperative Internet Backup Scheme) scheme [Lillibridge et al. 2003], each computer has a set
of geographically-separated partner computers that collectively hold its backed up data. In return, the
computer backs up a part of its partner’s data. To thwart free riding attacks, a computer can periodically
challenge each of its partners by requesting him to send a block of the backed up datal!s. An attack can then

15 Some disruption attacks, i.e. attacks aiming at disrupting, impairing or destroying a system or a particular user, can
be avoided by limiting reads to mutually chosen random blocks.

RESIST D12 algo p 630

Part Algo 5 — Cooperation Incentive Schemes

be detected and the data blocks of the attacker that are stored in the attacked computer are consequently
dropped. In this scheme, each peer takes note of its direct experience with a partner, and if this partner does
not cooperate voluntarily or not beyond some threshold, the peer may decide to establish a backup contract
with a different partner.

Another example of reputation-based mechanisms for distributed storage is the Free Haven project
[Dingledine 2000]. The overall design of the project is based on a community of servers, called the servnet
where each server hosts data from other servers in exchange of the opportunity to store data of its own in the
servnet. The incentives for cooperation are based on a reputation mechanism. A trust module on each server
maintains a database of each other server, logging past direct experience as well as what other servers have
said.

5.2.2 Remuneration based mechanisms

In contrast to reputation-based mechanisms, remuneration based incentives are an explicit counterpart for
cooperation and provide a more immediate penalty to misconduct. Remuneration brings up requirements
regarding the fair exchange of the service for some form of payment [Asokan et al. 1997]. This requirement
in general translates to a more complex and costly implementation than for reputation mechanisms. In
particular, remuneration based mechanisms require trusted third parties (TTP) such as banks to administer
remuneration of cooperative peers; these entities do not necessarily take part in the online service, but may
be contacted in case of necessity to evaluate cooperation. Tamper proof hardware (TPH) like secure
operating systems or smart cards have been suggested or used to enforce in a decentralized fashion the fair
exchange of the remuneration against a proof that the cooperative service was undertaken by a peer node.

5.2.2.1 Remuneration based system architecture

A remuneration based mechanism comprises four main operations (see Figure 5.2):

= Negotiation: The two peers may often negotiate the terms of the interaction. Negotiating the
remuneration in exchange for an enhanced service confers a substantial flexibility to the mechanism. The
negotiation can be performed either between the participating peers or between peers and the authority.

= Cooperation decision: The peer in a self-organizing network is always the decision maker. During
negotiation and based on its outcome, a peer can decide if it is better to cooperate or not.

= Cooperation evaluation: Cooperation has to be evaluated by the service requesting party, in terms of
adequacy of the service to the request, as well as by the service providing party, in terms of adequate
remuneration. Ensuring the fairness of both evaluations may ultimately require involving a trusted third
party. Depending on the service, this TTP will ensure a fair exchange for every interaction, or may only
be involved if arbitration is requested by one party (see below). The TTP, which may be centralized or
distributed itself, may for instance give access to information unavailable to a peer, or more generally
provide a neutral execution environment.

» Remuneration: The remuneration can consist in virtual currency units (a number of points stored in a
purse or counter) or real money (banking and micropayment), or bartering units (for instance quotas
defining how a certain amount of resources provided by the service may be exchanged between entities).
The latter can even be envisioned in the form of micropayments [Jakobsson et al. 2003]. Regarding real
money, this solution assumes that every entity possesses a bank account, and that banks are enrolled in
the cooperative system, directly or indirectly through some payment scheme. The collaborating peer is
remunerated by issuing a check or making a transfer of money. In the first case, remuneration implies a
number of points added to a counter connected with the collaborating peer. The remuneration can be
guaranteed at once or only after a certain number of steps (deposit, remuneration for data storage,
remuneration for data retrieval...).

RESIST D12 algo p 6407

Part Algo 5 — Cooperation Incentive Schemes

These operations can be used repeatedly to perform some cooperative service on a finer granularity basis,
which may ease cooperation enforcement. In particular, micropayment is often envisioned rather than an
actual (macro-)payment in remuneration based cooperation enforcement mechanisms.

5.2.2.2 Fair exchange

As mentioned in [Asokan et al. 1997], "many commercial transactions can be modeled as a sequence of
exchanges of electronic goods involving two or more parties. An exchange among several parties begins
with an understanding about what item each party will contribute to the exchange and what it expects to
receive at the end of it. A desirable requirement for exchange is fairness. A fair exchange should guarantee
that at the end of the exchange, either each party has received what it expects to receive or no party has
received anything." Fair exchange protocols thus provide ways to ensure that items held by two or more
parties are exchanged without one party gaining an advantage. In remuneration systems, obtaining an
efficient cooperation incentive depends upon devising a protocol that enforces a fair exchange of the
remuneration (virtual or not) against some task. This property can only be attained by intricately integrating
the remuneration operation with the application functionality. Fair exchange protocols rely on the
availability of a trusted (and neutral) third party (TTP) caring for the correctness of the exchange. Two types
of protocols should be distinguished: online protocols, which mediate every interaction through the TTP,
which can lead to performance and reliability problems with the TTP constituting a bottleneck as well as a
single point of failure; offline ones, also called optimistic fair exchange protocols, which resort to the TTP
intermediation only if one of the parties wants to prove that the exchange was not fairly conducted.

The TermiNodes project ([Buttyan and Hubaux 2001]) addresses the security of the networking function of
packet forwarding through remuneration schemes. Each device possesses a security module that manages its
account by maintaining a counter called nuglet, interpreted as virtual money. The project proposes two
models for remuneration aiming at enforcing fair exchange for stimulating a cooperative behavior. In the
first one, called Packet Purse Model, each packet carries a given number of nuglets and intermediate nodes
get paid with some nuglets, which get removed from the packet purse when forwarded by the node. In the
second model, called Packet Trade Model, each intermediate node buys packets from the previous node on
the route then sells them to the next node for more nuglets, until the destination node, which finally pays the
total cost of forwarding packets.

RESIST D12 algo p 650

Part Algo 5 — Cooperation Incentive Schemes

(

s

‘@ Study of

@ | Negotiation

(a]

=

2

S

Non cooperation 8
4 z Decision
(@]
&
S
IS
g
TTP's 3| Negotiation
Arbitration \ -7 "“\\
// N
d
7/

N
/
/
7/ .
/) Cooperation
; Evaluation
1 \
1 \
] \
! $:
1 = 1
| 5] |
| (%) 1
] 1
\ 1
\ 1
\) 1
\ Remuneration K
\ 1
\ /
\ 7/
\\ \ /’
\ /
Ay 7/
N 4
N 4
N 4
\\ ’/

S~ -

Figure 5.2: Remuneration-based Mechanism

The architecture of Sprite [Zhong et al. 2003], a credit-based system for stimulating cooperation among
selfish nodes in mobile ad hoc networks, is not very different from TermiNodes except for the fact that it
does not use security modules. It consists of a Credit Clearance Service (CCS) and of mobile nodes. In
Sprite, a node transmitting its own messages loses some credits (i.e., virtual money paid by the node to the
CCS), which will be used to cover the costs for packet forwarding by intermediate nodes. In order to earn
credits, a node must transmit the CCS receipts of forwarded messages. The system does not guarantee
balanced payments, i.e., it does not require that the sender’s total debt equal the total credit received by
intermediate nodes for their forwarding activity. In fact, to prevent cheating behavior, the CCS debits the
sender with a higher amount than that due to intermediate nodes; only later does the CCS uniformly share the
exceeding credit among nodes, or give a fixed credit amount to each node. Sprite focuses on combating
cheating behavior and on promoting cooperation among network nodes; it does not prevent active attacks on
the system (e.g., Denial of Service attacks).

Akin to Sprite, Mojo Nation [McCoy 2001], a content distribution technology, is built on a micropayment
system. A common digital currency, the Mojo, is used to buy disk space, bandwidth, and processing cycles
contributed to the system. Peers who have contributed resources to the system are credit for their exact
participation. Interaction between peers across the network involves the exchange of Mojo currencies. A
TTP ensures honest transfers between agents within the network.

RESIST D12 algo p 6607

Part Algo 5 — Cooperation Incentive Schemes

In contrast, in OceanStore [Kubiatowicz et al. 2000], the remuneration of cooperative peers is monetary as
the service is envisioned to be provided by a confederation of companies. In exchange for economic
compensation, computers joining the system contribute with storage or provide access to local users. Each
user is supposed to pay a fee to one particular provider who buys storage space from and sells it to other
providers. Legal contracts and enforcement can be used to punish peers that do not keep their end of the
bargain, based on planned billing and auditing systems.

Networking context Application Incentives for cooperation No Incentive for
Reputation-based Remuneration- cooperation (or
. . . . closed system)
incentives based incentives
Napster!9,
File-sharing NICE Mojo Nation Gnutellal?,
Infrastructure- P2P Freenet
based network . PAST,
File system Free Haven
OceanStore
Backup CIBS Pastiche
Packet CORE, RPG, Ad hoc IEEE
acke .
Adhoc | forwardin Watchdog/pathrater, TermiNodes 802.11
network g CONFIDANT standards!$
Wireless Backup MoSAIC!? FlashBack
Nomadi Nomadi History-based One-ti .
omal .1c omal 1.c is olry ase ne .1.m.e Ubibus, 7DS
computing | computing certificates capabilities
Web Ebay?20, A 21 . .
Centralized network © » .. maz;) " Most review sites
commerce Epinions

RESIST D12

Table 5.1: Cooperation enforcement schemes in various applications

Smart cards (or similar forms of tamper-proof hardware like secure operating systems) have been proposed
for some time now as a means to implement an optimistic fair exchange protocol. The use of smart cards is
especially interesting since it provides both the convenient form factor of a personal token and ideally a
perfect implementation of a secure purse. Smart cards also offer a tamper-resistant area for a trusted third
party to store secrets, or implement critical security functions, in particular for revoking the user from the
system. [Vogt et al. 2001] for instance proposes the use of one card for all parties involved in a transaction
and focuses on providing a neutral platform for enforcing fair exchange. Another solution is to use one card
for each party [Terada et al. 2004], which aims at reducing the number of messages exchanged; this solution
may also be interesting, although this benefit is not mentioned by the authors, for gaining a better

16 http://www.napster.com/

17 http://www.gnutella.com/

18 http://grouper.ieee.org/groups/802/11/

19 The MoSAIC (http://www.laas.fr/mosaic/) project partners: Institut Eurécom, IRISA, LAAS are members of ReSIST

20 http://ebay.com/

21 http://www.amazon.com/
22 hitp://www.epinions.com/

algo p 670

Part Algo 5 — Cooperation Incentive Schemes

understanding of the liability of each party involved and thus ease the reconciliation of the data by the TTP
during the online phase of the protocol, in case of a problem in the offline phase. In addition, the latter
technique makes it possible to attach data like some credit to every user and let the smartcard manage this
"currency" as part of the fair exchange protocol. As discussed above, however, remuneration has to be
integrated with the application: this means that interactions with such hardware must be carefully thought out
in the application protocol in order to prevent its bypassing or abuse: with smart cards for instance, this
involves the mediation of terminals, which are distrusted with respect to remuneration handling.

A smart card based remuneration mechanism is for instance used in the peer-to-peer storage system PAST
[Druschel and Rowstron 2000]. PAST is based on the Pastry routing scheme that guarantees that peers
contributing to cooperative storage are geographically separated. The storage scheme relies on the use of
smart cards to ensure that clients cannot use more remote storage than they are providing locally, which is
optional in PAST. Smart cards are held by each PAST user and issued by a third party, and support a quota
system that balances supply and demand of storage space in the system. With fixed quotas and expiration
dates, users are only allowed to use as much storage as they contribute.

Table 5.1 summarizes the various approaches to cooperation and their respective features as discussed in the
last two sections.

5.1 Validation techniques

In the context of self-organizing networks like for instance wireless mobile ad hoc networks, cooperative
mechanisms have to be investigated in terms of performance, fairness, and resilience to attacks, as well as
cooperation enforcement. Experimentation is an obvious validation approach, yet it suffers from scalability
issues. Otherwise, cooperation incentives may be validated using either simulation or game theory.

5.1.1 Prototype-based evaluation

A cooperation mechanism can be validated by building a prototype, that is, a physical model of a proposed
product concept that allows demonstration, evaluation, or testing of the most representative attributes and
idiosyncrasies of a mechanism. Prototypes are especially important to fine tune parameterized schemes. The
literature offers a lot of examples of P2P or ad hoc cooperation mechanisms whose evaluation process was
based on prototypes. To validate their incentive system for ad hoc networking, a prototype was used for
Sprite [Zhong et al. 2003] to determine how much overhead was necessary for the incentive scheme and to
evaluate the packet routing performance of the system (percentage of packets successfully relayed from the
sender to the destination). Results show that the overhead of the Sprite system is insignificant, and that nodes
in the system cooperate and forward each other’s messages unless their resources are extremely low. The
Pastiche [Cox and Noble 2002] scheme was also evaluated using the prototyping approach. Pastiche's
prototype consists of two main components: the chunkstore file system, implemented in user space and
written in C, and a backup daemon. With the evaluation of the prototype, it was demonstrated that the
backup service does not penalize the file system performance unduly and also that node discovery was
effective. CIBS [Lillibridge et al. 2003] was also prototyped for the validation of the backup scheme. To
measure the performance of their Internet backup scheme, its authors used a number of personal computers
running instances of the prototype software. Each instance was partnered with the other instances located in
different PCs so that all communication between partners went through the network. Experiments on the
prototype have shown that the backup scheme performance is acceptable in practice and that the technique is
feasible and cheap. Validating cooperation incentive schemes using pure experimentation however proves
difficult because of scale for many applications that were considered in the previous sections. This

RESIST D12 algo p 681

Part Algo 5 — Cooperation Incentive Schemes

experimental approach has however proven quite successful with real-world evaluations in P2P file sharing
systems, especially so because of their widespread usage.

5.1.2 Simulation

An alternative validation technique for cooperative systems consists in taking advantage of existing network
simulators in order to obtain results for a virtual deployment on a large scale of distribution. These
simulators are tailored to fit the simulation context and match the objectives of a given application by the use
or development of patches and/or individual adjustments. According to [Brown and Kolberg 2006],
“simulation can be defined as the process of designing a model of a real system and conducting experiments
with this model for the purpose of understanding the behavior of the system and/or evaluating various
strategies for the operation of the system”. This means that simulating cooperation incentives with the
purpose of testing their efficiency would also require simulating non-cooperative behaviors (and not only an
ideal cooperative behavior).

Many applications considered beyond layer 3 require simulating overlay networks, which proves a bit
difficult. Firstly, most overlay networks need to be scalable (thousands of simultaneous users) which is
difficult to realize due to memory constraints even for most powerful machines. However, some tools allow
a simulation to be distributed over a set of machines (distributed simulation). Additionally, it is generally
desirable that a simulation behaves in accordance with real network parameters (packet delay, traffic and
network congestion, bandwidth limitations etc). These considerations increase the overhead on the host
machine. Packet-level network simulators such as ns-2, OMNET++23, GloMoSim?4/QualNet?>, and
OPNET?26 must be distinguished from overlay network simulators like PeerSim27.

Ns-2. There is no doubt that the most popular network simulator is ns (version 2)?8. Ns-2 is an object-
oriented, discrete event?? driven network simulator developed at UC Berkeley.. The simulator ns-2 is written
in C++ and OTecl. Ns-2's code source is split between C++ for its core engine and OTcl, an object oriented
version of Tcl for configuration and simulation scripts. The combination of the two languages offers an
interesting compromise between performance and ease of use. An ns-2 simulation scenario is a Tcl file that
defines the topology and the movement of each host that participates in an experiment. Implementing a new
protocol in ns-2 typically requires adding C++ code for the protocol's functionality, as well as updating key
ns-2 OTecl configuration files in order for ns-2 to recognize the new protocol and its default parameters. The
C++ code also describes which parameters and methods are to be made available for OTcl scripting.
Debugging is difficult in ns-2 due to the dual C++/OTcl nature of the simulator. For the moment, there is
only one P2P simulation available for ns-2 which is Gnutella. More troublesome limitations of ns-230 are its
large memory footprint and lack of scalability as soon as simulations of a few hundred to a few thousand of
nodes are undertaken. Ns-2 is well documented with active mailing lists.

23 The OMNeT++ Community Site, http://www.omnetpp.org/

24 Global Mobile Information Systems Simulation Library, GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

25 Scalable Network Technologies (SNT), http://www.scalable-networks.com/products/

26 OPNET, http://www.opnet.com/

27 Biology-Inspired techniques for Self-Organization in dynamic Networks, BISON Project,
http://www.cs.unibo.it/bison/

28 The network Simulator ns-2, http://www.isi.edu/nsnam/ns/index.html

29 A discrete-event simulator is a simulator where state variables change only at discrete points in time at which events
occur caused by activities and delays

30 The network Simulator ns-2, http://www.isi.edu/nsnam/ns/index.html

RESIST D12 algo p 690

Part Algo 5 — Cooperation Incentive Schemes

OMNET++. OMNET++3! is another discrete event simulator. It is an open-source, component-based
environment with a strong focus on supporting the user with a Graphical User Interface (GUI). The
simulator is very well structured and modular, modules being programmed in C++ and assembled into larger
components using a high level language (NED). It is possible to simulate peer-to-peer networks with
OMNET++ which can also run distributed simulations over a number of machines. OMNET=++ has a rapidly
increasing user base now, with lots of useful modules, an active mailing list and even workshops. Both ns-2
and OMNET++ are packet-level simulators; so scalability is also a major issue; just like ns-2, OMENT++ is
more suitable for small networks.

GloMoSim*/QualNet®. GloMoSim is built as a scalable simulation environment for wireless and wired
network systems. It is designed using the parallel discrete-event simulation capability provided by PARSEC
(C-based simulation language). PARSEC is designed to cleanly separate the description of a simulation
model from the underlying sequential or parallel simulation protocol, used to execute it. GloMoSim is built
using a layered approach. Standard APIs are used between the different layers. This allows the rapid
integration of models developed at different layers. To specify the network characteristics, the user has to
define specific scenarios in text configuration files: app.conf and Config.in. The first contains the description
of the traffic to generate (application type, bit rate, etc.) and the second contains the description of the
remaining parameters. The statistics collected can be either textual or graphical. With GloMoSim, it is
difficult to describe a simple application that bypasses most OSI layers. Bypassing the protocol stack is not
obvious to achieve as most applications usually lie on top of it which makes the architecture much less
flexible. The free GloMoSim version is for academic use only. The commercial GloMoSim-based product is
QualNet. The development framework is in C/C++ and mostly provided in source form. It includes a graphic
development tool for adding/revising protocols. The two simulators provide substantial support for
simulation of routing protocols over wired and wireless networks.

OPNET. OPNET Modeler3* is a commercial tool part of the many tools from the OPNET Technologies
suite (Optimized Network Engineering Tools). OPNET is an event-driven scheduled simulator integrating
analysis tools for interpreting and synthesizing output data, graphical specification of models and
hierarchical object-based modeling. It can simulate all kinds of wired networks, and an 802.11 compliant
MAC layer implementation is also provided. OPNET is a well established product used by large companies
to diagnose or reorganize their networks. It can simulate wired and wireless networks. Models built with
OPNET are hierarchically structured. At the lowest level, the process domain is structured as a finite state
machine (FSM). The FSM can be structured with the help of a graphical editor that allows the user to specify
the relation between the single states and their transitions. The single states and the transition conditions can
then be programmed with a C-like language called Proto-C. Basically, the deployment process goes through
the following phases. First, one has to choose and configure the node models required in the simulations, (for
example a wireless node, a workstation, a firewall, a router, a web server, etc.). Then the network is built and
organized by connecting the different entities. The last step consists in selecting the statistics to collect
during the simulations. Most of the deployment in OPNET is done through a hierarchical GUI. OPNET
scales quite well but not many data in the literature demonstrate its capabilities.

31 The OMNeT++ Community Site, http:/www.omnetpp.org/

32 Global Mobile Information Systems Simulation Library, GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/
33 Scalable Network Technologies (SNT), http://www.scalable-networks.com/products/

34 OPNET, http://www.opnet.com/

RESIST D12 algop 700

Part Algo 5 — Cooperation Incentive Schemes

PeerSim. In addition to these network simulators, there also exist simulators that only focus on overlay
networks. A good example is PeerSim33, which has been developed for large-scale overlay systems within
the BISON project. It makes it possible to simulate scalable and dynamic overlays. PeerSim is written in the
Java language. It is composed of two simulation engines: a cycle-based one and a more traditional event-
based engine. The cycle-based engine does not model the overhead of the transport layer and subsequently is
more scalable. The event-based engine is less efficient but more realistic. The simulation engines are
supported by many simple, extendable, and pluggable components, with a flexible configuration mechanism.

Other simulators may be found in the literature about peer-to-peer or overlay systems, e.g., 3LS [Ting and
Deters 2003], Query-Cycle Simulator [Schlosser and Kamvar 2002], Anthill [Babaoglu et al. 2002] and
NeuroGrid38. None of these simulators seems really satisfactory. 3LS, Anthill and NeuroGrid have
scalability limitations. Query-Cycle is limited to file-sharing. All seem to lack enough support for
dynamicity. In conclusion, ns-237, GloMoSim3%/QualNet3®, OMNET++40, OPNET#! and PeerSim are
potential candidates to build up a simulation environment for evaluating cooperation incentives in an ad hoc
or P2P system. OPNET and ns-2 possess an extensive set of models, protocols and algorithms already
produced, but less than OMNET++. The modular nature of OMNET++ makes it possible to carry out studies
over a wide range of situations in detail. Also, regarding the ease of use and extensibility, OMNET++
appears to be the best simulator. OPNET and QualNet are also more than satisfactory with respect to this
capability, however ns-2 scores poorly.

Some of the incentives schemes for cooperation listed above were investigated using a network simulator. In
7DS [Papadopouli and Schulzrinne 2001] simulation scenarios, hosts were modeled as ns-2 mobile nodes.
Mobile nodes move according to the random waypoint mobility model, which is commonly used to model
the movement of individual pedestrians. A waypoint model breaks the movement of a mobile node into
alternating motion and rest periods. A mobile node moves at a speed uniformly chosen from an interval to a
randomly chosen location where it stays for a fixed amount of time; then it chooses another random location
and moves towards it, and so on. An ns-2 simulation study was also carried out for the ORION project
[Klemm et al. 2003] where the performance of ORION was compared to off-the-shelf approaches based on a
P2P file-sharing system for Internet, TCP, and a MANET routing protocol. In the simulated scenarios, an
IEEE 802.11 standard MAC layer was used along with the standard physical layer, the two-ray ground
propagation model. Ns-2 was widely employed for simulation principally in wireless mobile networks more
than in P2P or ad-hoc networks where other simulators like QualNet*? 43 were mostly adopted. CORE was
evaluated with QualNet simulations [Michiardi 2004], and CONFIDANT [Buchegger and Le Boudec 2002]
with GloMoSim** ones.

35 Biology-Inspired techniques for Self-Organization in dynamic Networks, BISON Project,
http://www.cs.unibo.it/bison/

36 NeuroGrid, http://www.neurogrid.net

37 The network Simulator ns-2, http://www.isi.edu/nsnam/ns/index.html

38 Global Mobile Information Systems Simulation Library, GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

39 Scalable Network Technologies (SNT), http://www.scalable-networks.com/products/

40 The OMNeT++ Community Site, http://www.omnetpp.org/

41 OPNET, http://www.opnet.com/

42 Global Mobile Information Systems Simulation Library, GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

43 Scalable Network Technologies (SNT), http://www.scalable-networks.com/products/

44 Global Mobile Information Systems Simulation Library, GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

RESIST D12 algop 710

Part Algo 5 — Cooperation Incentive Schemes

Simulator P2P protocols Language Distributed | Conditions
simulation
ns-245 Gnutella C++/0OTcl | Yes Open source
Packet- OMNET++46 | None C++/NED | Yes Academic public license
level
eve GlomoSim#’/ | --- C/C++ Yes Free for universities /
network .
) QualNet48 commercial
simulator
OPNET# o= Proto-C Yes Commercial
PeerSim3° Collection of Java No Free
Overlay internally developed
P2P models
network
simulator 3LS Gnutella Java No ---
NeuroGrid3! | Gnutella, NeuroGrid, | Java No Free
Pastry, FreeNet

Table 5.2: Characteristics of discussed simulators

In addition to existent simulators, it is also possible to devise an ad-hoc simulation model to validate a
cooperative incentive scheme. The mobile P2P file-sharing simulation model from [Oberender et al. 2005]
contains a “network” component to model the network and devices’ particularities and restrictions. It also
includes a “source traffic” component to model the data transmitted and the behavior of peers in the network.
The mobile P2P architecture used in this model is based on the eDonkey P2P file-sharing protocol and is
enhanced by additional caching entities and a crawler. In the simulation, a mobile peer is described by an
ON/OFF-process to reflect the fluctuating connection status of a mobile peer. ON and OFF periods are
determined by exponential distributions, while the arrival of file requests is modeled by a Poisson process.
An abstract model using a subset of the parameters of the detailed simulation is proposed to reduce the
computing time. The abstract model is used to identify which cache replacement strategy fits the best for the
mobile P2P system. In order to do so, the request arrival process is simulated in detail while the used
transport mechanism and the upload queue mechanism are neglected.

5.1.3 Game theory

Results obtained through simulation studies give a proof-of-concept of the proposed cooperative mechanism.
The results do not demonstrate if the incentives for cooperation are crucial or work by chance for instance.
Game theory provides an alternative tool to decide if a cooperative mechanism is a cooperation strategy.
Game theory models strategic decision situations where self-interested users follow a strategy aiming at

45 The network Simulator ns-2, http://www.isi.edu/nsnam/ns/index.html

46 The OMNeT-++ Community Site, http:/www.omnetpp.org/

47 Global Mobile Information Systems Simulation Library, GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

48 Scalable Network Technologies (SNT), http://www.scalable-networks.com/products/

49 OPNET, http://www.opnet.com/

50 Biology-Inspired techniques for Self-Organization in dynamic Networks, BISON Project,
http://www.cs.unibo.it/bison/

51 NeuroGrid, http://www.neurogrid.net

RESIST D12 algop 720

Part Algo 5 — Cooperation Incentive Schemes

maximizing their benefits and minimizing their resource consumption. Game theory offers different methods
for study, e.g., non-cooperative game, cooperative game, and evolutionary game. Non-cooperative game
focuses on users’ strategies. It describes the strategy of a user that has to make a decision about whether to
cooperate or not with a randomly chosen user. Cooperative game focuses on mutually advantageous results
for the different parties. In this game, users are able to enforce contracts and make binding agreements.
Finally, evolutionary games address the evolution of various strategy profiles over time and space.

The decision making process that a peer will undertake when participating in a non-cooperative game is
often illustrated through the example of a classical game, the prisoner’s dilemma. In this well-known game,
two players are both faced with a decision to either cooperate (C) or defect (D). The two players’ decisions
are made simultaneously with no knowledge of the each other’s decision. If the two players cooperate they
receive a benefit R. If both defect they receive a punishment P. If one player defects and the other one
cooperates, the defecting player receives a given benefit T and the cooperator a punishment S. The canonical
form of the prisoner’s dilemma pay-off is shown in the table below:

Player 2

C D

CIRR)|G,T

Player 1

D| (T,S) | (P,P)

Table 5.3: Prisoner’s dilemma pay-off matrix

In order to have a dilemma, the following expressions must hold:
T>R>P>S and R>(S+T)/2

A player in this game has better to defect regardless of the decision of the other player because the strategy D
strictly dominates the strategy C (T>R and P>S). The solution to this game is called a Nash equilibrium, that
is, the set of strategies for which no player could improve his payoff (by changing his strategy) while the
other players keep their strategies unchanged. The analysis of the interaction between decision-makers
involved in the prisoner’s dilemma game can be extended to repeated (or iterated) games. There are several
strategies that a player can adopt to determine whether to cooperate or not at each of its moves in the
repeated game. The basic strategy known as tit-for-tat corresponds to a player that cooperates in the first
place and then copies his opponent’s last move for all subsequent periods. Another strategy called Spiteful is
to cooperate in the first period and for later periods cooperate if both players have always cooperated; if
either player defects then defect for the remainder of the game. A cooperation enforcement mechanism can
be translated into a strategy for a player and compared to these straightforward strategies.

Another important concept is the idea of evolutionary stable strategy. A set of strategies is at evolutionary
stable strategy equilibrium if (a) no individual playing one strategy could improve its payoff by switching to
one of the other strategies in the population and (b) no individual playing a different strategy (called a
mutant) could establish itself in (invade) the population, i.e., make other individuals in the population choose
his strategy. With these different concepts, one can give a good analysis of the cooperation enforcement
mechanism in terms of both promoting cooperation and the evolution of cooperation. Cooperation and
coalition formation can be explained using a two-period structure. Players first decide whether or not to join
a coalition and in the second step the coalition and non-cooperative peers choose their behavior non-
cooperatively. A coalition is defined as stable if no peer in the coalition has an incentive to leave. In this
sense, a preference structure was suggested by the ERC-theory [Bolton and Ockenfels 2000]. In this theory,

RESIST D12 algop 730

Part Algo 5 — Cooperation Incentive Schemes

the utility of a decision-maker is not solely based on the absolute payoff but also on the relative payoff
compared to the overall payoff to all peers. The model explains observations from games where equity,
reciprocity or competition plays a role.

The CORE mechanism [Michiardi 2004] was for instance validated following two methodologies. The first
approach was to use a simulation tool, GloMoSim>2, while the second validation used a game-theoretic
methodology. For the latter, two models, cooperative and non-cooperative game theory, were evaluated to
demonstrate the need for cooperation incentives in the network. The CORE mechanism was then translated
into a strategy model and its evolutionary stability was proven. Further, it was shown that in a more realistic
scenario (communication errors, failures, etc.), CORE outperforms other basic cooperation strategies. Sprite
[Zhong et al. 2003] also used a game-theoretic model to prove that the scheme proposed prevents cheating
behaviors. The main results are intended for packet forwarding in unicast communication. The most
important role of the game-theoretic validation of Sprite algorithms is in determining payments and charges
of nodes in the system to motivate each node to cooperate honestly and to report its behavior to the CCS
(Credit Clearance Service). Finally, remuneration fairness was studied from a game theoretic point of view in
[Buttyan and Hubaux 2000], in which the authors discuss different equilibrium concepts as a model for the
various types of fair exchange.

Conclusion

Different approaches can be taken for cooperation enforcement, yet cooperation evaluation is clearly the part
most dependent on application-specific requirements and constraints, in particular concerning deployment.
The choice of a particular technique for validating the effectiveness of cooperation, a critical step to ensuring
that the application will reach its objectives, depends heavily on the application chosen. This may in
particular hamper the use of one technique because of scalability issues or because of the properties that need
to be proven.

Trust, as one would like to evaluate it in the applications mentioned above, can be static (based on identity
for instance) or dynamic (self-organized). Static trust refers to a statement of trustworthiness that remains the
same until it is revoked, whereas dynamic trust exhibits self-learning and self-amplifying characteristics. The
latter arises from behaviors experienced in the system and continuously changes accordingly to them. An
entity trusts a peer more when it has information about that peer that shows its trustfulness. [Carbone et al.
2003] for instance introduces a trust model that does not only concentrate on the content of evidence but also
on the amount of such evidence.

Trust, although closely related with cooperation, may not be valuably accounted for by all cooperation
evaluation metrics of the mechanisms listed above. In particular, whereas reputation seems well adapted to
reason with the trustworthiness of a peer, remuneration may be much poorer semantically, especially if the
payment may be used to enforce cooperation for different self-organized services. This does not mean that
trust does not require cooperation as a prerequisite, but instead that trust establishment might not be as
reliable as expected if the evaluation of its cooperative component relies on an unsuitable incentive
mechanism.

52 Global Mobile Information Systems Simulation Library, GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

RESIST D12 algo p 740

6— Connectivity in Unstructured Overlay Networks

Introduction

Peer-to-peer (P2P) systems are at present a widespread technology supporting many different applications and services
that does not rely on any centralized control or on a unique administrative domain. Examples of such applications or
services are presented[Baldoni et al. 2006-10, Baldoni et al. 2006-11J]A P2P system is a highly dynamic distributed

system in which nodes perpetually join and leave (churn). For these characteristics, a P2P system can reach a potentially
infinitely wide scale with a transient population of nodes. Peer-to-peer systems induce a connected overlay network
across the Internet. The overlay should maintain an “ideal” structure in order to scale and to implement efficient lookup
operations.

Unstructured overlay networks have emerged as a viable solution to settle such issues in order to effectively support large
scale dissemination and flooding based content searching. In the case of unstructured overlay, lookups means flooding
the network and waiting for matches. To implement this operation efficiently and in a scalable way, one needs to keep an
overlay network showing nice global properties like connectivity (for reliability), low-diameter and constant-degree (for
scalability) without relying on a deterministic topology.

Unfortunately, the churn tends to move out the overlay network from its ideal topology and this turns out in reducing
the lookups efficiency. An overlay maintenance protocol (OMP) tries to move back the overlay to its ideal topology
despite churn. Therefore “overlay maintenance” is a fundamental problem in peer-to-peer (P2P) systems as it affects the
performances of all of the services offered by a P2P system.

In this chapter we survey most known overlay maintenance protocols (i.e., [Ganesh et al. 2003, Allavena et al. 2006,
Voulgaris et al. 2005, Pandurangan et al. 2001, Jelasity et al. 2003, Jelasity et al. 2004]) and provide a unifying vision of
the performance tests that have been carried out in the literature in different studies [Ganesh et al. 2003, Allavena et al. 2006,
Voulgaris et al. 2005, Pandurangan et al. 2001, Jelasity et al. 2003, Jelasity et al[B0dhi et al. 2006-07]

[Baldoni et al. 2005-12] We first propose a classification of these protocols according to the fact that they act in a proac-

tive or reactive manner. Secondly, we analyze their performance in semi-static environment (after an ideal overlay has
been built, a percentage of peers leave the systems) and then in a dynamic environment with constant and variable churn
rate. In case of constant churn the size of the network is constant along the time. In the case of variable churn, the size of
the network may vary along the time arbitrarily.

The parameters of interest for the protocols evaluation are:

« Reachability: information about how many nodes a peer is able to reach with a multicast message in the network.
« Links Distribution: it shows how links are distributed among nodes of the network.

« Diameter: indicates the longest path in the network.

« Overlay Clustering: the parameter gives information about how many clusters are in the network and their size.

RESIST D12 algop 750

Part Algo 6- Connectivity in Unstructured Overlay Networks

Reactive Proactive

Scamp Cyclon
PRU ADH
NewsCast

PeerSampling

Table 6.1: Families of Overlay Maintenance Protocols

The survey points out that the current protocols could fail to maintain declared performance in a continuously dynamic
environment while working well in environments where dynamic situations and static ones alternates. In particular:

1. All current solutions behave well under the semi-static level of dynamism (as tested by their authors);

2. proactive protocols show better behavior than reactive ones under network affected by constant churn rate
[Baldoni et al. 2006-07][Baldoni et al. 2005-12Rllavena et al. 2006] (second level of dynamism). However, both
heavily degrades along the time;

3. current solutions have never been tested under dynamic environments with variable churn.

The remainder of the chapter is structured as follows. Section 6.1 presents a taxonomy of overlay maintenance protocols
and section 6.2 details the description of the protocols with a table that briefly points out the major characteristic of the
protocols. Section 6.3 shows the evaluation of the protocols under churn and conclusions conclude the chapter.

6.1. Taxonomy of Overlay Maintenance Protocols

An overlay can be viewed as a directed graph in which vertices are calldesand edges are calldohks. Each node

has a set of out-going linkvigw) and a set of in-going linksr{_view). An out-going link(s, j) exists if and only if the

nodes i's view contain node j's identification (id). Two nodes can communicate only if there exists a link between them.
Communication between two nodeg is symmetric if there exists a link in both directions, e.g. an outgoing link from

to 7 and an outgoing link fron to 4. The latter is also an in-going link far

Every overlay maintenance protocol is able to properly change node’s views in order to adapt the overlay under the
occurrence of joins/leaves and failures. For the sake of presentation, all the protocols described here are divided in two
categories, looking at the way they refresh views at each node:

« Reactive Protocols a node; changes its view only when:
— 1 is joining the network;
— anodej joins the network using asintroducer,
— ¢ has alink to a nodg, andj is leaving the network.
« Proactive Protocols a nodei changes its view:
— when one of the previous events happen;
— when periodically, by starting a view exchange with another node.

In Table 6.1 the two main families of Overlay Maintenance Protocols are presented. For each family some representative
protocols are included. In the next section these protocols are described in details.

6.2. Protocols Description

In this section overlay maintenance protocols are presented and Table 6.1 summarizes this description.

RESIST D12 algop 760

Part Algo 6- Connectivity in Unstructured Overlay Networks

Each protocol differentiates from another by defining its own way to manage the following operations: join, leave, view
exchange (the latter only for proactive ones). In Table 6.2 the description of each protocol points out how these operations
are handled. Moreover, when some protocol uses some additional mechanism, its description is reported in the last
column.

SCAMP

SCAMP [Ganesh et al. 2003] is a reactive gossip-based protocol whose main innovative feature is that the size of the
view is adaptive w.r.t. a-priori unknown size of the whole system. More precisely, view size in SCAMP is logarithmic of
the whole system size.

Join

When a nodé joins the network it chooses one nodetsoduceramong those already present in the overlay and sends

a join request to it. The new joined node starts with a view consisting of just its introducer. When a node receives a new
join request, it forwards the join request to all members of its own view. It also creadditional copies of the new

join request ¢ is a design parameter that determines the proportion of failures tolerated) and forwards them to randomly
chosen nodes in its view. When a node receives a forwarded join request, proisdest already present in its view, it
integrates the new noden its view with a probability equal ta/(|view| + 1). If it decides not to keep the new node, it
forwards the join request to a node randomly chosen fromiite. If a nodej decides to keep the join request, it places
1initsview. It also sends a message to nodelling it to add; in its in — view.

Leave

When a node leaves, it orders the ids inuitsw asi(1),4(2), ..., (1) and the ids inn — view asj(1),5(2), ..., j(1). The
leaving node will inform nodeg(1), ..., 5(2), ..., j(I — ¢ — 1) to replace its id withi(1),(2), ..., i(l — ¢ — 1) respectively
(wrapping around if! — ¢ — 1)¢J). It will inform nodes;(l — ¢), ..., (1) to remove it from their lists without replacing it
by any id.

Other Mechanisms

Recovery from isolation A nodei becomes isolated when all nodes containing its identifier in their views (all nodes
contained in's in — view) have either failed or left. In order to reconnect such nodes, a heartbeat mechanism is used.
Each node periodically sends heartbeat messages to the nodesiiuitsA node that has not received any heartbeat
message in a long time re-joins through an arbitrary node inits.

Indirection It is used to select an introducer, with uniform probability among nodes in the overlay. The indirection
mechanism works as follows: when a nadeceives a join request, it associates a counter with the join request initialized

to a value proportional to the size 8§ view. It then forwards the request, along with the counter, to a meghbéits

view. The node receiving the forwarded request decrements the counter and continues forwarding it with probabilities
computed as above. When the counter is zero, the node receiving the request is the selected introducer.

Lease It is used to re-balance the graph during the time, considering that old nodes and new nodes may suffer from
clustering, i.e. resulting in two different clusters (new nodes have more probability to connect to fresh nodes and less
probability to connect to old nodes). The lease mechanism provides that a join request has a finite lifetime. When this
lifetime expires fori, every node in’s in-view removes and the nodé joins again without modifying its view.

RESIST D12 algop 770

Part Algo 6- Connectivity in Unstructured Overlay Networks
Join Leave View Exchange Others
The introducer forwards a join-request The leaving node informs some of its None Recovery from isola-
to its neighbors which keep or forward neighbors to replace its id with another tion, Lease and Indirec
SCAMP this request with a certain probability | that it sends them tion
First phase: a joining node links to If a neighbor; of a nodei leaves the| None None
d nodes randomly selected from the network and the connection is not p
PRU server's view and becomes @ — preferred connection; links another
node. node in the view of the server’s witl
Second phase: thé — node i estab- | a certain probability. If the connectio
lishes a preferred connection with | is a preferred connectionjinks a ran-
when it enters the cache by substitut- dom node in the view of the server’s
ingj. view and this connection becomes pre-
Third phase: when a node in the ferred itself.
server's view acquireg connections
from new joining nodes, it leaves the
server’s view and becomesg:anode.
The introducer starts several random Not managed View exchange called Shuffling. A None
walks. Reached nodes overwrite one nodei starts a view exchange sessign
Cyclon out-going link of theirs with an out- by picking up the oldest node from it
going link to the joining node. The| view. Then,i sends to the selecte
joining nodes inserts these nodes in its node,| entries (which will be replaced
view with new elements) randomly selected
from its view
The joining node copies the view of its Not managed View Exchange called Mixing + Rein{ None
introducer forcement
ADH The newi's view is selected from
views of its neighbors and views of
nodes that requestet view
Joining node initializes its view with aj Not managed A peer selects randomly another neigh- None
least one node member of the overla) bor and sends it all its view entries
NewsCast having back neighbor’s entries. Nodgs
rewrite oldest entries.
Not specified Not specified Random peer selection from the vieyw None
. and random selection df elements.
Peersamp“ng The node sends its selection to the se-
lected peer.
RandRand
Not specified Not specified Selection of the last node from the None
X view and selection of the firdt ele-
Peersamp“ng ments in the view. The node sends its
selection to the selected peer.
TailHead
Not specified Not specified Selection of the last node from the None
. view and random selection df ele-
Peersamp“ng ments. The node sends its selection to
the selected peer.
TailRand
Table 6.2: Protocol’s operations
RESIST D12 algo p 780

Part Algo 6- Connectivity in Unstructured Overlay Networks

PRU

PRU [Pandurangan et al. 2001] is a reactive protocol whose key element is a host server which maintainsfaik’
nodes of the graph. This server, obviously, is reachable from every node of the overlay and it is supposed not to fail.

Join

When a node joins, it contacts the host server and takes raddamonstant) number of nodes from the server’s view. At
this point the node is called@&node It remains a d-node until it subsequently leaves the network or enters the server’s
view. A nodei enters the server’s view when a noglén the server’s view leaves this view, ands a neighbor ofj
selected by a specific rule. The nodstays in the server’s view until it getS(a constant) connections from new joining
nodes; at this point it leaves the server’s view and is definedcasale a c-nodehas always a preferred connection to
the node that it replaced to enters the server’s view.

Leave

If a nodei has a neighboy that leaves the network there are two ways for its replacement:

« if 4 has a preferred connection wijithen: reconnects to a random node in the server’s view and makes the new
connection its preferred connection;
« otherwise connects to a random node in the server’s view with a certain probability depending on some parameters.

The preferred connection is useful to avoid little isolated clusters that appear in the network [Pandurangan et al. 2001].

Cyclon

Cyclon [Voulgaris et al. 2005] follows a proactive approach where nodes perform a continuous periodic view exchange
with their neighbors in the overlay. The view exchange (named in this stasiling aims at randomly mixing links
between neighbor nodes. Leaves are treated as failures (no leave algorithm is provided) and a simple failure detection
mechanism is integrated in the shuffling mechanism to clean views from failed nodes.

Each node maintains aview with fixed size. Each nodgin the view is associated to a local age, indicating the number
of shuffles during which the nodewas present in thés view.

Join

When a node joins the network it chooses one node as introducer among those already present in the overlay. The
protocol then starts a set of independent random walks from the introducer. When each random walk terminates, the last
visited node, say, addsi to its view by replacing one link to a node, seywhich is added t@’s view.

View Exchange

A shuffling cycle is composed of three phases. In the first phase ainatter increasing the age of all the nodes in its
view, chooses its shuffle target, as the node with higher age among those in its view. Theends tgj a shuffling
message containing— 1 nodes randomly chosen irs view, plusi itself. In the second phasg, once received the
shuffling message from replacesg — 1 nodes in its view (chosen at random) with theodes received fromand sends
them back ta. In the final phaséreplaces the nodes previously senj teith those received from it. The link previously
connecting to j is also reversed after the shuffle.

RESIST D12 algop 790

Part Algo 6- Connectivity in Unstructured Overlay Networks

ADH

ADH [Allavena et al. 2006] is a proactive protocol which employs a slightly different strategy to maintain views in com-
parison with Cyclon. Each node periodically substitutes its whole view with a new one, which is built basing on infor-
mation collected since the last view exchange. Even in this case joins are managed in a reactive manner, through a join
procedure, while voluntary departures of nodes are treated as failures. Failure detection techniques are not used because
crashed nodes are automatically discarded by view exchanges after some time.

ADH, as Cyclon, employs a single view for each node. The size of the kimnixed and can be set arbitrarily. Two
more parameters are used: the fanpand the weight of reinforcement, both detailed in the following.

Join
Nodes joining the overlay network fill their initially empty views with the view of the introducer.

View Echange

During a view exchange each node collects allistcomprising the local views of nodes chosen at random from its

view and a listL, comprising those nodes that concurrently requested its view. At the end of this exchange these two
lists are used to create the local view. The new view is built by chodsimgdes from both.; and L,. The weight of
reinforcementw is used to decide from which list a node must be pickeds i 0 then all nodes are selectedin, if

w = 1 nodes are selected with equal probabilityZinand L., and, finally, ifw = oo then all nodes are selectedin.

This mechanism is used to clean the overlay from failed nodes (that surely will not appedr imhile mixing views.

For these reasons the authors of [Allavena et al. 2006] with respect to the valyuswjgest “larger is better and will be
either 1 or 1 on a typical implementation”.

NewsCast

NewsCast[Jelasity et al. 2003] is a proactive based protocol which assumes loosely synchronization among nodes. In
particular, each node-id in a view is associated with a timestamp coming from the skew of two nodes, as detailed below.

Join

A joining node initializes its view with an introducer.

View Exchange

The view exchange is performed as follows: a nodelects a nodg to send it the request of new links and sends its
view (at most/ entries) along with the current local tinfé to j. The nodej sends its view ta along with the current
local timeT; and adds to the timestamp of each new entry the vAjueT;. Wheni receives the new view, it adds to the

timestamps of the new entries a value equal to the current local time MjnBoth nodes merge their views, obtaining
at most2/ + 1 entries. Then, they remove oldest entries to keep freshest entries.

RESIST D12 algo p 80T

Part Algo 6- Connectivity in Unstructured Overlay Networks

PeerSampling

In [Jelasity et al. 2004] different ways to exchange views are compared. We present here three different view exchanges,
calling the related protocols, respectiveBandRand, TailHead andTailRand.

« RandRand: a node; selects a random node from its view to begin view exchange. Then it sends a random selection
of [elements to the selected node.

« TailHead: a nodei selects the last node from its view to begin view exchange. Then it thé &itstnents in its
view sends to the selected node.

« TailRand: a nodes selects the last node from its view to begin view exchange. Then it sends a random selection of
[elements to the selected node.

6.3. Protocols Evaluation

In this Section we will show known results about the previous presented protocols under three different scenarios: semi-
static, constant churn, variable churn. All these scenarios evaluate different levels of churn where churn indicates the
situation of some nodes leaving the system and some others joining the system.

The effects of churn may heavily affect the overlay topology. In order to see these effects the following parameters are
considered:

Evaluated Parameters

« Reachability information about how many nodes a peer is able to reach with a multicast message in the network.
« Links Distribution it shows how links are distributed among the nodes of the network.

« Diameter indicates the longest path in the network.

« Overlay Clusteringthe parameter gives information about how many clusters are in the network and their size.

6.3.1. Semi-Static Environment

In Table 6.3 we can see known results in a semi-static environment. A semi-static environment considers an overlay
network obtained by a serialized sequence of join operations and than decreased by removing some percentage of nodes.
Typically, the evaluation of parameter is done before and after the removal.

SCAMP

SCAMP [Ganesh et al. 2003] In the semi-static environment SCAMP shows a good behaviour. As for reachability, in
a failulre-free scenario, i.e. before any removal, SCAMP offers a reachability of 100%. Then, after a massive removal
equals ta70% it still offers a reachability equals to 95%. Links distribution shows that the objective of the protocol is
reached: the view size of a node is always equabidn) wheren is the total number of nodes inside the network. In
condition of a fail free network, moreover, no clustering happens by the reachability data.

RESIST D12 algop 810

Part Algo 6- Connectivity in Unstructured Overlay Networks
Semi-Static Environment
Reachability Links Distribution Diameter Overlay Clustering
100% in a failure-freg The view size is No clustering in a
SCAMP network. 95% aften O(log(n)) wheren is failure-free network.
the removal of 70% of total number of nodes
nodes. in the overlay.
100% in a failure-free Size of the in-view No clustering in a
Cyclon network with a view| nearly equal to the size failure-free network.
size sublinear w.r.t the of the view.
total number of nodes.
100% in a failure free O(log(n)) First cluster (less thamn
NewsCast network. 1%) appears if 68% o

40% after the removal
of 95% of nodes. Thes
results hold with a view
size sublinear w.r.t the
total number of nodes.

11%

nodes are removed. If
95% of nodes are re
moved then the largeg
cluster has a size of 29
of the initial number of
nodes. These results
hold with a view size
sublinear w.r.t the tota
number of nodes equals
to 100.000

oY ~+

PeerSampling

100% in a failure-free
network. 20% after
the removal of 95% of
nodes.

Average node view siz¢
= O(log(n)).

> Average path length
O(log(n)).

Failure-free network|
average largest clus
ter for RandRand
and TailRand 96-
99% while 70% for
TailHead.

After removal of 95%
of nodes: average
largest cluster: 1% o
all initial nodes.

RESIST D12

Table 6.3: Known Results in semi-static environment

algo p 8217

Part Algo 6- Connectivity in Unstructured Overlay Networks

CYCLON

Cyclon [Voulgaris et al. 2005] has been tested in [Voulgaris et al. 2005] without considering removals but just after the
serialized sequence of joins. Then, in the fail free context considered in the paper the reachability is 100% when the view
size is set to a value equal26 as compared to 10,000 nodes, the in-degree distribution is on average with the same value
of the view size and there exists no cluster.

NEWSCAST

NewsCast[Jelasity et al. 2003] has been tested in [Jelasity et al. 2003] to evaluate reachability, diameter and clustering.
As for reachability, it offers a performance of 100% if the network is failure-free and equals to 20% if 95% of nodes are
removed. The second parameter shows a diameter 4.5 in a network of 100,000 nodes and an average view size 20. The
clustering study shows that if the view size is 20 then the first cluster appears after removal of 68% of nodes and that after
the removal of 95% of nodes the biggest cluster is composed by 2,000 nodes.

PEERSAMPLING

About the static environment we also have some results about protocols tested in PeerSampling [Jelasity et al. 2004] on
a network of 10,000 nodes. In this condition selected protocols are tested only on reachability showing an average result
of 0 nodes outside the largest cluster in a fail free network and of 20% after removal of 95% of nodes. The average
node degree is 55 and the average path length 3. The Overlay Clustering results have to be schematized because of big
differences among the three view exchange protocols used:

« RandRand:
— Average number of clusters 2.27
— Average largest cluster 9572.18

« TailHead:
— Average number of clusters 38.19
— Average largest cluster 7150.52

« TailRand:
— Average number of clusters 2.00
— Average largest cluster 9941

ADH and PRU

Have not been tested in semi-static conditions.

6.3.2. Dynamic Scenarios

In Tables 6.4 and 6.5 known results in dynamic environments are presented. The first Table 6.4 points at a network affected
by constant churn rate. This means that the dynamicity of nodes is modelled through a constant portion of nodes that join
and leave every time units. The second table shows known results in a network affected by a different model for churn

rate which consider a variable portion of nodes joining/leaving in different time units (see below for further details).

RESIST D12 algo p 830

Part Algo

6- Connectivity in Unstructured Overlay Networks

All protocols butADH-synch and PRU (see below) are evaluated in their asynchronous version: at each timé&unit,

joins andC' leaves are injected and their execution requires some time. Then, each node can update its view more than

once in a time unit or not at all.

Inthe Table 6.4 results are given by specifying the number of refreshments: the number of times the overlay has substituted

all the nodes.
Constant Churn Rate
Reachability Links Distribution Diameter Overlay Clustering
15% after 3 total re{ The view size idog(n) after 3 total refresh
SCAMP freshments and’'=2. wheren is the network ments:
5% after 3 total refresht size. c=2 MC=35%
ments and’'=4. SC=35%1N=30%.
1% after 3 total refresht C=8 MC=0%
ments and”'=8. SC=55%IN=45%.
95% after 3 total re{ as for the semi-stati¢ After 3 network total
Cyclon freshments and@’=2. case refreshments and som
75% after 3 total re- shuffling cycles:
freshments and’'=4. c=2 MC=99%
27% after 3 total re- SC=0%1N=1%.
freshments and’=8. C=8 MC=60%
SC=15%IN=25%.
93% after 3 total req Inanetworkof100.00Q After 3 total refresh-
ADH freshments and’'=2. nodes and view size 17 ments:
68% after 3 total re4{ in a loosely synchro- C=8 MC=50%
freshments and’=4. nized system the max LC=31%IN=19%.
28% after 3 total req{ imum in-degree is alq
freshments and’=8. ways below 4.5 times
that of a random graph.
With C=n/32 (1.6) and
ADH-synch view = loga(n), num-
ber of iterations until
partitioning are 1000 if
n=30 3000 if n=100
7000 ifn=1000.

Table 6.4: Results in constant churn rate environment

Parameters used in the tables are:

« Cisthe churn rate. It means that at every time unit C join operations and C leave operations happen.
« N is the size of the network.
« MC is the size of the main cluster: in a partitioned network it shows the percentagbeddbnging to the largest

cluster.

« SCit shows the percentage afspread in small clusters.
« IN it shows the percentage of isolated nodes.

RESIST D12

algo p 841

Part Algo 6- Connectivity in Unstructured Overlay Networks

Variable Churn Rate (arrival: Poisson distribution; duration of time a node connected to the network: exponential distribution)

Reachability Links Distribution Diameter Overlay Clustering
At all times each node O(log(n)).
PRU is connected to some

cache node. If u and
are 2 cache nodes, thefe
is a probability =1 —

(log2(n)/n) that there
is a path in the network
at time t connecting \
and u.
There is a Single Point
of Failure.

Table 6.5: Results in variable churn rate environment

The tables shows that:

SCAMP

Tested on a dynamic environmgBialdoni et al. 2006-07] SCAMPhighlights how the excellent performances on static
situations do not appear to be the same on dynamic networks. In example the reachability on a C=2 situation is 15% after
three network refresh in a network composed by 1000 nodes. Furthermore if we try to raise the churn rate on value of
C=4 and C=8 the reachability is reduced to 5% and 1% respectively.

About the clustering we tested SCAMP on a totally asynchronous environment and after three network refresh and the
execution of many runs, average values was: MC=35% LC=35% IN =30% if C=2 and MC=0% LC=55% IN =45% if C=8.

CYCLON

The situation ofCyclon is quite different: testing it in the same situations of SCA[@RIdoni et al. 2006-07]

[Baldoni et al. 2005-12]we have obtained better results; in fact Cyclon’s performances are 95% if C=2, 75% if C=4 and
27% if C=8. Similar improvements are showed on the other parameters too. The links distribution and the diameter, after
a little stability period, is almost the same of the static environment. The clustering is also interesting: using a churn of
C=2 Cyclon manage the network obtaining excellent results which we summarize in MC=99% LC=0% IN =1%. Finally

if C=8 then MC=60% LC=15% IN =25%.

ADH-synch

This version of the protocol has been tested by the authors in [Allavena et al. 2@d@}synch is loosely synchronous,
which means that nodes are updated sequentially in random order, each node being updated exaclty once per time unit.

RESIST D12 algo p 850

Part Algo 6- Connectivity in Unstructured Overlay Networks

Reachability: with C=n/32 (C=1.6) and vieusg, n authors calculated the number of iterations until partitioning obtain-
ing these results: 1000 if n=30, 3000 if n=100 and 7000 if n=1000. Links Distribution: in a network of 100,000 nodes
with a view size of 17, the maximum size of in-views is always below 4.5 times that of a random graph.

ADH

Reachability: in the same conditions of Cyclon and SCAMP we obtained respectively 93%, 68% and 28% Overlay Clus-
tering: with C=2 there are no particular differences with Cyclon but if C=8 then MC=50% LC=31% IN=19%.

PRU

PRU has been analytically evaluated (no simulation has been done) in a dynamic environment with a specific model for
churn. The authors assume a poisson arrival distribution and uptime following an exponential distribution. The parameters
evaluated are reachability and diameter.

Reachability results point out thatifind; are two nodes in the server’s view, there is a probability-=(logan /n) that
there exists a path in the network at time t connectiagd;. This protocol is designed to create networks with a little
diameter: results shows a diameteiflog(n)).

Conclusions

This chapter pointed out the importance of continuous churn as first class enemy that must be fought in order to maintain a
connected overlay network with a shape as close as possible to the ideal one. The chapter presented a comparison among
overlay maintenance protocols for unstructured overlay. The comparison has focussed on their ability to cope with churn
and to bring back an overlay topology to its ideal shape. While these protocols are effective in avoiding large network
breakages, we showed that they suffer from clustering under continuous fBaidoni et al. 2006].

Despite this, not all protocols suffer from churn in the same way. The comparison show that proactive protocols based on
view-shuffling resist better to the reactive counterpart. In other words they are able to remain connected against longer
period of continuous churn.

RESIST D12 algo p 861

7 — High assurance voting systems

Introduction

The trustworthiness and dependability of voting systems has received a great deal of media attention in
recent years, notably in the wake of the 2000 and 2004 US presidential elections. It is clear that ensuring
that the public has a high degree of confidence in the outcome of an election is of paramount importance. It
is essential that voting systems are not only trustworthy but also seen to be trustworthy.

For over a century, the US has been using quite sophisticated technologies: the earliest lever machines go
back to the end of the 19™ century, followed by punchcards, optical scanning and touch screens. The drive to
adopt such technologies may have arisen from the level of fraud witnessed with the pen and paper system. In
the recent presidential election in the US, approximately 30% of the electorate who voted did so using touch
screen machines.The excellent book by Gumbel, “Steal this Vote” [Gumbel 2005], documents an
extraordinary litany of instances of corruption and techniques to corrupt every voting system that has ever
been deployed in the US. Recent reports, like the Johns Hopkins report [Kohno 2004] and more recently the
Princeton report [Felton 2006] on the Diebold touch screen devices have demonstrated how vulnerable a
poorly designed electronic voting system can be to virtually undetectable corruption.

There is generally pressure from politicians etc for the adoption of electronic means for various stages in the
processing of votes. There appears to be a number of motivations for this: the convenience of remote, e.g.,
internet, phone voting etc. is thought to encourage higher participation. The use of touch screens to assist
vote capture helps with more complex choices presented to voters, as common in many US elections.
Electronic counting potentially could help with the speed and accuracy and efficiency. However, it is clear
that hasty adoption of poorly designed systems could seriously endanger the integrity of elections and public
confidence.

The challenge is to design systems that provide high assurance of the accuracy of the outcome, whilst at the
same time guaranteeing the secrecy of ballots. These two requirements are seemingly contradictory. In the
absence of the secrecy requirement, accuracy would be trivial to achieve: a simple show of hands would
suffice. However, if every voter’s choice is to be kept secret, such an approach does not work. Equally, if
accuracy is not required, then secrecy is trivial: a constant function achieves this. Similarly, if complete trust
is placed in the process or officials who collect and count the votes then again there is no real problem. The
real challenge is to provide accuracy and secrecy with minimal, ideally no, trust in the devices, processes and
officials that conduct the election. And, as if this were not challenging enough, the systems must be
transparent and simple enough to gain a reasonable degree of public understanding and trust. The problem is
thus highly socio-technical in nature.

It is important to draw a clear distinction between supervised and remote voting systems. In the former,
voting takes place in a controlled environment such as a polling station and the casting of the vote occurs in
the enforced isolation of a polling booth. In remote systems, voters are able to cast their vote over a suitable
channel, e.g., postal, internet, telephone, interactive TV etc. In such systems, the isolation of the voter whilst

RESIST D12 algo p 8701

Part Algo 7 - High assurance voting systems

casting their vote cannot be enforced and the threats of vote buying and coercion are consequently much
more serious.

A fundamental problem that distinguishes voting systems from conventional dependable systems is that there
is no extrinsic way to characterise the correctness of the outcome of a secret ballot. By definition, no party
has a god-like view of the intentions of voters that can determine if the result is correct or not. Thus, it is
possible for an election system to fail in a way that is not manifest. The cryptographic systems that we
outline below can be thought of as striving to make errors manifest, whilst preserving ballot secrecy.

Voting systems can be viewed as a special case of secure distributed computation, but with all the additional
socio-technical aspects. Besides the devices and processes that capture, transmit and count votes, there are
the surrounding systems that maintain the electoral register, authenticate voters, officials and scrutinisers
who supervise and observe the process, etc.

In the past few years, significant progress has been made towards systems that can provide high assurance of
accuracy and ballot secrecy whilst being sufficiently simple to gain the understanding and confidence of the
various stakeholders: the voters, election officials, politicians, etc. Significant contributions have been made
by ReSIST partners, in particular Newcastle University.

In this chapter we will outline the state-of-the-art in high assurance, cryptographically based voting systems.
The execution of the system should be as transparent as possible within the constraints of ballot secrecy.
These can be thought of as placing voting systems on a scientific, falsifiable basis, in contrast to having to
place faith in the high priests of the Diebold or Sequoia Corporations.

7.1. The Requirements

At the most abstract level, we are seeking to ensure “freeness and fairness” of the democratic process. This
rather vague statement has to be mapped down to more precise requirements on the various components of
the socio-technical system. Key properties, described informally, include:

7.1.1. Accuracy/integrity

All legitimately cast votes should be accurately included in the count.

Legitimate voters should be able to cast at most one vote.

Many of the crypto schemes described below provide unconditional integrity, that is, they provide guarantees
of integrity that do not depend on computational assumptions. Integrity is guaranteed even against an
adversary with unbounded computational power.

7.1.2. Ballot Privacy/secrecy
It should not be possible for a third party to establish which way a particular voter cast their vote.
7.1.3. Voter anonymity

It is sometimes required that the fact of having voted be kept secret. This requirement is sometimes termed
“voter-anonymity”. Clearly, where voting is obligatory, such a requirement is not applicable.

RESIST D12 algo p 880

Part Algo 7 - High assurance voting systems

7.1.4. Accessibility

All legitimate voters should be able to cast their votes without let or hindrance during the voting period.
7.1.5. Voter-verifiability

This is a rather novel requirement, not feasible in most conventional systems. Here voters are able to verify
that their vote in accurately included in the count and, in the event of their vote not being accurately
included, to prove this to a judge. At the same time, the voter is not able to prove to a third party which way
they voted. At first glance this seems impossible, but some new cryptographic schemes that we outline below
do realise this requirement.

7.1.6. Receipt-freeness

This is a refinement of the notion of voter privacy. Here the requirement is that it should not be possible for
the voter to construct any form of receipt, i.e. any proof to a third party of how they cast their vote. Thus, if
the protocol requires the voter to use certain keys or passwords, we assume that the voter is willing to reveal
these to the coercer. Thus, for the protocol to be receipt-free against this model, it is necessary that the voter
be able to lie to the coercer without fear of being detected. Note that most conventional pen and paper
systems are receipt-free in a rather trivial sense: the voter does not get any kind of record of how they voted.
Note further that the term “receipt-free” can be a little misleading: many of the schemes we describe below
do provide the voter with a form of receipt, but one that carried their vote in concealed form. Conversely, in
some schemes, for example FOO [Fujioka 1992], the voter does not obtain a receipt, and yet is able to later
construct a proof of her vote.

7.1.7. Coercion-resistance

This is an even stronger requirement that receipt-freeness, or more precisely, it is essentially the same
property but in the context of an even stronger adversary model (coercer). Here we assume that the coercer is
able to observe and influence certain steps of the vote casting protocol. If the protocol involves the voter
making certain choices we assume that these choices may be dictated by the coercer. Thus we are assuming a
more active attacker than for receipt-freeness, where the attacker was essentially passive, i.e., could only
observe but not influence steps of the protocol. For a scheme satisfying this property to be possible, it is
necessary to assume at least one step in the interaction that cannot be observed by the coercer, otherwise the
voter and coercer would be indistinguishable to the system.

7.1.8. Usability, public trust and acceptance

Besides all the above technical requirements, voting systems must also be easy for voters to use and capable
of gaining a sufficient degree of public understanding and trust.

7.2. Cryptographic schemes

In general, assurance of “correct” behaviour of a system can be derived in various ways. At one end of the
spectrum, it can be based on prior evaluation, verification and testing of the system. Such analysis seeks to
demonstrate all possible system executions will satisfy the requirements. At the other end of the spectrum,
assurance may be derived from close monitoring of the system as it executes. In this approach, we seek to
detect any departure from correct behaviour and take suitable corrective action in the event of any departure.

RESIST D12 algo p 8901

Part Algo 7 - High assurance voting systems

Both approaches have a useful role to play. Emphasis must be placed on the former approach for systems for
which failure may be hard to recover, e.g., an avionics system. The drawback with the approach is, firstly,
that complete and correct analysis is extremely difficult to achieve and, secondly, even if it could be
achieved, system degradation or upgrades, changes in the environment, etc. may all serve to invalidate the
basis of the analysis. Such assurance is thus very fragile.

Run-time monitoring by contrast, is less susceptible to the vagaries of the implementation, maintenance and
environment. Run-time monitoring is far more robust: as long as we have a precise definition of “correct”
behaviour and can implement a suitable execution monitor, we will be able to detect and, depending on the
property, recover from any erroneous behaviour. We are no longer prey to the problems of incomplete
analysis or testing, software updates etc.

In the case of voting systems, we argue that assurance of integrity should be based primarily on run-time
monitoring. In a suitably designed voting system, recovery from an erroneous state should be perfectly
feasible, if somewhat irritating. Of course, we will still want to verify and test the system in order to ensure
that it is reasonably dependable and so satisfies availability requirements, but our assurance of integrity will
not be conditioned on this analysis. To borrow Benaloh’s phrase: “we should verify the election, not the
system”.

We should note that secrecy or privacy properties are of quite a different nature to integrity properties. The
later are typically trace, also known as safety, properties, i.e., can be formalised as predicates over the system
traces (behaviours). Secrecy properties are usually defined in terms of the entire set of behaviours rather than
individual traces. As such, it is typically not possible to detect failures with respect to a secrecy property by
monitoring an individual execution. It also tends to be much harder to recover from secrecy failures.
Consequently, for secrecy, we do need to place more reliance on prior verification than for integrity.

Many cryptographic schemes that seek to provide high levels of assurance of accuracy and secrecy have
been proposed. Typically these strive to minimise the need to place trust in the implementations and they
seek assurance through maximal transparency. In accordance with the principle of “no security through
obscurity”, the details of these schemes are laid bare to universal scrutiny, so that any flaws in the design
may be detected before any deployment. Furthermore, the integrity of the election rests now on the validity
of the mathematics arguments rather than on mutable implementations. This is a key and very subtle point: if
the implementation malfunctions or is corrupted, this will be detected at run-time by the auditing procedures.
All the computations performed during the auditing phase are against publicly known functions and are
independently verifiable.

Notable examples are Chaum [Chaum 2004], VoteHere [Neff 2006] and Prét a Voter [Ryan 2004, Ryan
2005, Ryan 2006]]. These enable the voters to gain confidence and contribute to the dependability by
allowing them to perform certain checks that serve to detect any malfunction or corruption of the devices.

Cryptographic schemes open up novel and surprising possibilities, in particular the notion of voter-
verifiability. This enables voters to confirm that their vote is accurately recorded and counted whilst at the
same time avoiding any possibility of them proving which way they voted to a third party. The key idea in
achieving this is to provide voters with a receipt at the time casting that carries their vote in encrypted form.
Voters are later able to confirm, via a secure Web Bulletin Board (WBB), that their receipt has been
correctly entered into a robust, anonymising tabulation process. Mechanisms are provided to ensure that:

1. The voter’s intent is accurately encoded in the receipt.

2. The tabulation process accurately decrypts all receipts.

RESIST D12 algo p 900

Part Algo 7 - High assurance voting systems

Putting the pieces of the argument together, we can conclude that each voter can assure themselves that their
vote will be counted as intended.

We next sketch some of the crypto primitives utilised in cryptographic voting schemes. For more detailed
descriptions consult any good book on cryptography, e.g., Stinson [Stinson 2005]. We assume familiarity
with the basis notions of symmetric and asymmetric (public) cryptography.

7.3. Cryptographic primitives

7.3.1. Threshold cryptography

It is often important not to depend, either for secrecy or availability, on a single entity to perform
cryptographic operations, such as encryption, decryption, signing, etc. This prompted the development of
techniques and algorithms to distribute the knowledge of crypto variables amongst a set of entities in such a
way that only certain subsets of can perform the operation.

7.3.2. Cryptographic commitments

These can be thought of as the cryptographic analogue of Anne writing down a data item on a piece of paper,
locking this in a box and passing the box to Bob whilst retaining the key. She has now committed to the data
value but Bob does not yet have access to it. To reveal it she hands the key to Bob. Such schemes should
provide two properties: commitment, i.e., Anne should not be able to alter the committed value, and secrecy:
Bob should not be able to gain any knowledge of the value until Anne releases the key.

7.3.3. Robust anonymising mixes

In decryption mixes, a deterministic encryption algorithm such as RSA is used. The plaintexts are encrypted
in a number of layers under the public keys of the mix servers. The batch of receipts is put through a series
of robust anonymising mixes that progressively decrypt and shuffle them. At the end of these mixes, the raw,
decrypted votes pop out but with any link to the original receipts obliterated by the multiple shuffles. The
fact that all the terms passing through the mix go through a decryption at each stage ensures that they cannot
be simply traced through the mix by simple pattern matching.

For re-encryption mixes, a randomising algorithm such as ElGamal or Paillier is used. Instead of striping off
layers of encryption at each step of the mix, the mix servers re-randomise the encryption. The mix servers do
not hold any secret keys: re-randomisation can be done by any entity that knows the public key. A sequence
of such mixes can then be followed by a decryption stage by servers that hold the appropriate secret keys.

Various checks, such as randomised partial checking [Jakobsson 2002], can be deployed to ensure that any
attempt to corrupt votes by either incorrectly performing the encryption of the receipts or incorrectly
decrypting the receipts during the mixes will, with high probability, be detected.

Tabulation using mixes can thus be thought of as analogous to conventional counting of paper ballots.

RESIST D12 algop 9101

Part Algo 7 - High assurance voting systems

7.3.4. Homomorphic tabulation

In the homomorphic tabulation, suitable cryptographic primitives are employed that exhibit algebraic
homomorphic properties which enable the count to be performed without needing to decrypt individual
receipts. For example, the Paillier algorithm has the property that the product of the encryption of a set of
values equals the encryption of the sum of the values:

IT; El’lC(Xi) = El’lC(Zi Xi)

This can be exploited to extract the overall count without having to decrypt individual votes. For a simple
yes/no referendum it is clear how encode votes in order to extract the result: yes votes are represented are
encryption of +1, whilst no votes are 0. Thus, if the overall sum is >n/2, where n is the number of votes cast,
the ayes carry it, if the sum is <n/2, the nays. For elections with choices of more than 2 candidates or options,
more subtle encodings are required. Homomorphic tabulation can thus be thought of as roughly analogous to
the operation of lever machines.

7.3.5. Cut and choose

This is a common device to avoid the need to trust a device performing a cryptographic operation, typically
encryption. The device is required to commit to several independent encryptions of the given plaintext. It is
then challenged to reveal the keys or randomising factors for all but one, randomly chosen by the requestor.
If all of these challenged encryptions prove to be valid then it is a good bet that the unrevealed encryption is
valid too.

Many voting schemes which generate encrypted receipts employ a cut-and-choose element as a way to detect
malfunction or misbehaviour in the encryption devices. An example is the pre-election audit on a random
selection of ballot forms in Prét a Voter [Ryan, 2005]: the authority commits to the cryptographic primitives
used in the construction of the forms before it knows which will be selected for auditing.

7.3.6. Digital signatures

These are the digital analogue of conventional signatures. Typically, Anne would digitally sign a text M by
appending a crypto hash of the text encrypted under her private key. Anyone knowing Anne’s public key can
verify this by applying the public key to the encrypted hash and applying the hash to the plaintext. If these
two computations agree one can be confident that the text was indeed signed by Anne and has not been
altered. This assumes that Anne’s private key has not been compromised.

7.3.7. Blinded digital signatures

Blind digital signatures [Chaum 1992] can be used to authenticate a vote while ensuring secrecy. Suppose
that Anne wants Bob to sign some text but does not want to reveal the text to him. This can be achieved
using the notion of blinding: she constructs a term that is scrambled (blinded) by a random value she
generates. She passes this to Bob for him to sign and when she gets the signed term back she reverses the
blinding to yield the original text signed by Bob. For this to work crypto primitives must be used such that
the blinding operation commutes with the signing.

RESIST D12 algo p 9201

Part Algo 7 - High assurance voting systems

7.3.8. Zero-knowledge proofs

An interactive zero-knowledge proof (ZKP) [Goldreich 1991] is a protocol in which one party, the prover P,
demonstrates knowledge of a fact to another, the verifier V, without V learning anything other than the truth
of the statement. Such protocols typically involve a sequence of random challenges issued by the verifier to
the prover. The proof can be non-interactive if the two parties concerned share a pre-determined random
string [Blum 1991]. A well-known device, due to Fiat and Shamir, for converting an interactive ZKP into a
non-interactive one if for the challenges to be determined by some pre-agreed crypto-hash of the proof script
[Fiat 1986]. ZKPs have been used in mix-nets for proving ciphertext equivalence, and hence improving their
robustness [Jakobsson 1999].

7.3.9. The Benaloh-Tunistra device

An interactive proof is only convincing if it is clear that the prover could not predict the challenges. This
observation can be neatly turned around to allow the construction of “false proofs”. If the challenges are
known in advance, it is easy to construct a proof script of a false statement. Such a script will be
indistinguishable from a genuine proof to someone not involved in the proof interaction. Such constructions
can be useful in situations in which we want to provide genuine proofs to individual voters whilst
maintaining coercion-resistance.

We now outline the key developments in the field. Full details can be found in the references.

7.4. Voter-verifiable, cryptographic schemes

7.4.1. Benaloh Scheme

In his Yale thesis, Benaloh [Benaloh 1987], introduced the concept of voter-verifiability and proposed a
possible implementation. This involved a rather complex protocol between the voter and the device in the
booth in order to create the encrypted receipt and provide an ephemeral proof of correctness, existing only
within the booth during the process of creating the receipt.

7.4.2. FOO

Fujioka et al [Fujioka 1992] devised a remote voting scheme which makes use of blind signatures. Although
coercion-resistance is near impossible to ensure in the remote context, the protocol has other flaws which
leave the voter open to coercion [Peacock 2006].

7.4.3. Shoenmakers et al

This is a scheme allowing remote, e.g., internet, voting. It has the drawback of requiring the voters to place
trust in a personalised computing device to perform certain cryptographic operations.

7.4.4. Chaum’s Visual Crypto System

The next major step was a scheme proposed by Chaum [Chaum 2004], that made ingenious use of the notion
of visual cryptography [Naor 1995]. In the booth, the voter would provide their choice to the device. This

RESIST D12 algo p 9301

Part Algo 7 - High assurance voting systems

would create two layers of patterns of pixels and print these onto two overlaid layers of transparency.
Correctly overlaid, these transparent layers create a 2D image of the voter’s choice. Viewed separately, they
reveal only random array of pixels. Having confirmed that correct ballot image appeared, the voter, still in
the booth, would separate the layers and make an arbitrary choice as to which layer to retain as her receipt.

7.4.5. Neff’s VoteHere

Around the same time, and apparently independently of Chaum, Neff proposed an ingenious scheme
involving paper receipts but, rather like the original Benaloh scheme, involving a fairly complex interaction
between the voter and the booth device [Karlof 2005]. Note however, that this may no longer be true of the
current implementation of VoteHere [Neff 2006]. Neff also proposed a rather efficient scheme for robust
mixes of ElGamal encrypted terms.

7.4.6. Ryan’s Prét a Voter (and its variants)

Taking the Chaum scheme as the staring point, Ryan, of Newcastle [Ryan, 2004], proposed a far simpler
way of encoding voters’ choices in a receipt. The key innovation is, for each ballot, to create a randomised
frame of reference, for example, a randomised order of candidates. Voters indicate their choice in the usual
way, for example putting an X against their choice of candidate. The left hand column is now detached and
discarded, leaving the receipt.

Obelix

Asterix

Panoramix

Idefix

2h78Uj629kM

Figure 1: typical Prét a Voter ballot form

Obelix
Asterix X

Panoramix

Idefix

2h78Uj629kM

Figure 2: ballot form showing a vote for Asterix.

RESIST D12 algo p 940

Part Algo 7 - High assurance voting systems

2h78Uj629kM

Figure 3: with the left hand column removed to leave the receipt.

Information allowing the tellers to reconstruct the order and so extract the vote is buried in the onion printed
at the bottom of the right hand column.

The voter now leaves the booth with their receipt and registers with a polling station official. Their identity is
checked and their right to vote confirmed against the electoral role. The vote is now cast in the presence of
one or more officials: a digital copy of the information on the receipt is made: an index value indicating the
position of the X along with the cryptographic value (the onion) at the bottom. Additionally, a paper copy
could be created and verified by the voter and officials to create an encrypted paper audit trail. This has an
advantage over the Mercuri VVPAT [Mercuri 2005]. To protect voter privacy, it is usually required that
ballots be separated and shuffled.

An encrypted audit trail could, by contrast, be printed on a paper roll like a till receipt. This is easier to
implement and a record preserved on a single strip is much harder to manipulate than a batch of ballots. The
need for a publicly verifiable record of the votes cast in the case of touch screen devices has been recognised
[Dill 2006]. This is essential for auditing purposes and as a back-up should the record of receipts posted to
the WBB be contested. It can also serve as the basis for further checks of correspondence between the audit
record and what is posted to the WBB to be performed by independent auditors to supplement voter checks.

Clearly, this approach is conceptually and technologically far simpler than the Chaum original. It also has a
rather subtle but significant additional advantage: due to the way that votes are encoded, the voter need never
communicate their selection to any device. Other schemes involve the vote choice being communicated to a
device which produces one or more encryptions. This results in the possibility of hidden channels leaking
information about the voter’s choice.

Various enhancements to the basic scheme sketched above have been proposed. In [Ryan 2005], Ryan et al
propose concealing the onion with a scratch strip until the actual time of casting a vote as a way to counter
chain-voting. Clarkson et al [Clarkson 2005] have devised a remote implementation of Prét a Voter with
increased resistance to coercion. Voters are issued with capabilities, and can choose to vote with either a
valid capability or a random string, for example, if threatened by a coercer. Valid capabilities, and hence
associated votes, are only identified during the tabulation phase. The coercer has no way to distinguish
between valid and invalid capabilities.

More recently, Ryan et al have [Ryan 2006] have replaced the original RSA construction of the ballot forms
with randomising algorithms, specifically ElGamal and Paillier. This enables the replacement of decryption
mixes with re-encryption mixes. Although this introduces several advantages over the original scheme, the
key innovation is that ballot form creation is distributed among a number of entities. This mitigates the
danger of information leaks that could occur if the ballot form information is held by a single authority.

RESIST D12 algo p 9501

Part Algo 7 - High assurance voting systems

Furthermore, it allows ballot forms to be stored and distributed in encrypted form, so countering chain of
custody and chain voting threats.

In [Ryan 2005], [Peacock 2005], Peacock et al take initial steps towards a full threat analysis of
cryptographic election schemes, based on Prét a Voter, but using other voting schemes to provide a
comparison. The analysis described in [Ryan 2005] considers the system in its entirety, while [Peacock
2005] concentrates on and proposes a definition for coercion-resistance. Melding the two, and incorporating
other important requirements (see below) of voting systems, is the subject of current research.

In [Lundin 2006], Lundin et al propose re-introducing visual crypto into Prét a Voter in order to enforce the
destruction of the candidate order.

7.4.7. Chaum’s PunchScan

Following the introduction of Prét a Voter, Chaum proposed a new scheme [PunchScan 2006] that
incorporates two independent candidate order randomisations per ballot form. A ballot form comprises two
layers of paper. The upper layer has holes through which symbols printed on the lower layer show. Voters
indicate their choice using a “bingo dauber” that simultaneously marks symbols on the lower layer and the
surrounding paper of the upper layer.

7.4.8. Randell/Ryan scratch strip voting

Away from the purely technical aspects, Randell et al [Randell 2005] explore the issue of instilling voter
trust in a system: retaining simplicity and familiarity, at the same time maximising security. They propose a
variation of the original Prét a Voter that seeks to provide the same guarantees but without using
cryptography. In this scheme, a code relating to the candidate ordering (OCN) on a ballot form is covered
with a printed scratch strip. This strip is overprinted with a receipt identification number (RIN). The scratch
strips are only removed during vote counting, simultaneously revealing the OCN and destroying the RIN.
The process is roughly analogous to the anonymising mix/tabulation of Prét & Voter. The OCN is used to
interpret the value of a vote, while the RIN is used to check that the ballot has been accurately included in
the tabulation.

7.4.9. Adida/Rivest Scratch and Vote

In [Adida 2006] Adida et al propose a further enhancement to Prét a Voter and PunchScan, called Scratch
and Vote. Scratch and Vote has a significant advantage in that allows off-line auditing of ballot forms, i.e. all
the information needed for this task is contained on each ballot form, but concealed by a scratch strip.
Removing the strip reveals the information enabling audit but voiding the ballot form for voting. There is no
need to depend on the availability of the tellers to return the seed values to enable the verification of the
construction of ballot forms. They utilise homomorphic tabulation, in which election officials only cooperate
to decrypt a single tally per race.

7.4.10. Rivest’s ThreeBallot scheme

At the time of writing, a remarkable new scheme has been proposed by Rivest, [Rivest 2006]. This achieves
voter-verifiability and unconditional privacy without using any cryptography. In essence, voters cast three
ballots in such a way as to allocate two votes to their candidate of choice and exactly one vote to all other

RESIST D12 algo p 960

Part Algo 7 - High assurance voting systems

candidates. The votes should be randomly assigned to the three ballots and at the time of casting the voter
should randomly select one of the ballots to be copied and retained as a receipt. All three ballots are cast,
recorded and posted to a secure WBB. At the time of casting, each voter retains one out of their three ballots,
chosen arbitrarily. This chosen form they can check against the WBB. As a result, an attempt to corrupt a
ballot stands a 1/3 chance of being detected.

Asterix Asterix X Asterix

Idefix Idefix X Idefix X
Obelix X Obelix Obelix

Panoramix X Panoramix Panoramix

377209628 374811209 980344216

Figure 5: A ThreeBallot vote for Idefix.

Asterix

Idefix X

Obelix

Panoramix

980344216

Figure 6: possible receipt for the above vote.

The tabulation is easy to perform and universally verifiable. Suppose that there are n voters. Votes for each
candidate are totalled over all the 3n posted ballots. n is subtracted from the total for each candidate. The
remaining values represent the votes cast for each candidate!

7.5. Scalability and Interoperability

For most of the schemes described here, scalability seems not to be a major issue: most work factors scale
roughly linearly. Interoperability with surrounding systems, for example the electoral register, may be an
issue. This tends not to be addressed in the crypto literature but is addressed by various official standards
such as EML, the Election Mark-up language.

Conclusions and prospects

Significant strides have been made in the last few years towards trustworthy voting systems. Indeed, one
could argue that such system strive to be trust-free, i.e., they seek to avoid the need to place trust in devices,
processes or officials.

RESIST D12 algo p 9701

Part Algo 7 - High assurance voting systems

There is doubtless scope for further innovations and simplifications of these schemes. Clearly, far more
analysis of these schemes is required, and such analysis will have to be extended to a full systems based
approach taking full account of the surrounding socio-technical system.

Whilst such schemes appear to provide high levels of trustworthiness, at least in the eyes of experts, it is not
clear that the public at large would understand and appreciate the rather subtle arguments and so be prepared
to place as much trust in them as say the familiar pen and paper.

This leads us to some fascinating socio-technical questions:

e To what extent could the properties of such cryptographic systems be explained to the general
public?

e How easy would the electorate find such schemes to use.

e To what extent is it necessary for the general public to understand in order to have sufficient trust in
such systems?

o To what extent are the assurances of independent, impartial experts enough to engender sufficient
trust?

e To what extent might it be necessary to compromise on trustworthiness in order to achieve
understandability, by, for example, replacing cryptographic mechanisms with simpler technology or
processes?

These issues are important to consider along with future technological advancements of voting schemes.

Another area that has seen very little exploration to date is that of effective recovery strategies. Most of the
above schemes define precise procedures for detecting errors or corruption, but typically say little about how
to respond when errors are detected. Clearly we do not want to abort an election if only a smattering of errors
are detected, especially if these are negligible compared to the margin of the count. Where should the
threshold be placed at which recovery actions are be triggered?

In the view of the authors, voter-verifiable schemes are reaching a sufficient level of maturity for serious
consideration to be given to trails and eventual deployment in real elections and referenda. The low level of
public confidence in existing systems, particularly in the US, suggests that the time is ripe for truly high-
assurance voting systems.

RESIST D12 algo p 980

References

[Adelsbach et al., 2002] Adelsbach, A., Alessandri, D., Cachin, C., Creese, S., Deswarte, Y., Kursawe, K.,
Laprie, J. C., Powell, D., Randell, B., Riordan, J., Ryan, P., Simmonds, W., Stroud, R., Verissimo, P.,
Waidner, M., and Wespi, A. (2002). Conceptual Model and Architecture of MAFTIA. Project MAFTIA
deliverable D21.

[Adida 2006] B. Adida and R. L. Rivest, Scratch & Vote: Self-Contained Paper-Based Cryptographic
Voting, Proceedings of the Workshop on Privacy in the Electronic Society, October 2006.

[Afek and Merritt 1999] Afek Y. and Merritt M., Fast,Wait-Free (2k-1)-Renaming. Proc. 18th ACM
Symposium on Principles of Distributed Computing (PODC’99), ACM Press, pp. 105-112, Atlanta (GA),
1999.

[Afek et al. 1993] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic Snapshots of
Shared Memory. Journal of the ACM, 40(4):873-890, 1993.

[Agrawal 1988] P. Agrawal, “Fault Tolerance in Multiprocessor Systems without Dedicated Redundancy,”
IEEE Trans. on Computers, 37(3), pp. 358-362, Mar. 1988.

[Aguilera 2004] Aguilera M.K., A Pleasant Stroll Through the Land of Infinitely Many Creatures. ACM
SIGACT News, Distributed Computing Column, 35(2):36-59, 2004,

[Aguilera, 2004] Aguilera, M. (2004). A pleasant stroll through the land of infinitely many creatures. ACM
SIGACT News, 35(2):36-59.

[Aho and Ullman 1992] Aho A.V. and Ullman J.D., Foundations of Computer Science. Computer Science
press, 765 pages, 1992.

[Allavena et al. 2006] A. Allavena, A. Demers and J.E. Hopcroft, ”Correctness of a gossip based
membership protocol”, Annual ACM Symposium on Principles of Distributed Computing archive
Proceedings of the twenty-fourth annual ACM SIGACT-SIGOPS symposium on Principles of distributed
computing table of contents., 2006.

[Alon et al., 2005] Alon, N., Merrit, M., Reingold, O., Taubenfeld, G., and Wright, R. (2005). Tight bounds
for shared memory systems acessed by Byzantine processes. Distributed Computing, 18(2):99-109.

[Asokan et al. 1997] N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Exchange.
In Proceedings of the 4th ACM Conference on Computer and Communications Security, Zurich, April 1997.

RESIST D12 algo p 990

Part Algo References

[Attie, 2002] Attie, P. C. (2002). Wait-free Byzantine consensus. Information Processing Letters, 83(4):221—
2217.

[Attiya and Fouren 2000] Attiya H. and Fouren A., Polynomial and Adaptive Long-lived (2k-1)-Renaming.
Proc. Symposium on Distributed Computing (DISC’00), Springer-Verlag LNCS #1914, pp. 149-163,
Toledo (Spain), 2000.

[Attiya and Fouren 2001] Attiya H. and Fouren A., Adaptive and Efficient Algorithms for Lattice Agreement
and Renaming. SIAM Journal of Computing, 31(2):642-664, 2001.

[Attiya and Rachman 1998] Attiya H. and Rachman O., Atomic Snapshots in O(n log n) Operations. SIAM
Journal on Computing, 27(2):319-340, 1998.

[Attiya and Welch 1998] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and
Advanced Topics, McGraw-Hill, 451 pages, 1998.

[Attiya et al. 1990] Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R., Renaming in an
Asynchronous Environment. Journal of the ACM, 37(3):524-548, 1990.

[Avizienis et al. 2004] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic Concepts and
Taxonomy of Dependable and Secure Computing”, IEEE Trans. on Dependable and Secure Computing,
1(1), pp. 11-33, January-March 2004.

[Avizienis et al., 2004] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11-33.

[Babaoglu et al. 2002] O. Babaoglu, H. Meling, and A. Montresor, “Anthill: A framework for the
development of agent-based peer-to-peer systems”, In Proceedings of the 22th International Conference on
Distributed Computing Systems (ICDCS'02), Vienna, Austria, July 2002.

[Baldoni et al. 2005] R. Baldoni, C. Marchetti, A. Virgillito, R. Vitenberg, “Content-Based Publish-
Subscribe over Structured Overlay Networks”, 25th IEEE International Conference on Distributed
Computing Systems (ICDCS), 2005.

[Baldoni et al. 2005-12] R.Baldoni, A. Noor Mian, S. Scipioni and S. Tucci Piergiovanni, ”Churn Resilience
of Peer-to-Peer Group Membership: a Performance Analysis”, InternationalWorkshop on Distributed
Computing, Kharagpur, India, December 2005.

[Baldoni et al. 2006] R. Baldoni, S. Bonomi, L. Querzoni, A. Rippa, S. Tucci Piergiovanni, A. Virgillito,
”Fighting Erosion in Dynamic Large-Scale Overlay Networks”, Technical Report - Midlab 9/06 , Dip.
Informatica e Sistemistica ”Antonio Ruberti”, Universit di Roma ”La Sapienza”, 2006.

[Baldoni et al. 2006-07] R. Baldoni, S. Bonomi, L. Querzoni, A. Rippa, S. Tucci Piergiovanni and A.
Virgillito, ”Evaluation of Unstructured Overlay Maintenance Protocols under Churn”, IWDDS 2006
co-located with ICDCS2006.

[Baldoni et al. 2006-10] R. Baldoni, M. Malek, A. Milani, S. Tucci Piergiovanni, ”Weakly- Persistent
Causal Objects In Dynamic Distributed Systems”, To appear in proc. of SRDS 2006, october 2006,
Leeds (UK).

RESIST D12 algo p 1000]

Part Algo References

[Baldoni et al. 2006-11] R. Baldoni, R. Guerraoui, R. Levy, V. Quema, S. Tucci Piergiovanni,
”Unconscious Eventual Consistency with Gossips”, To appear in Proc. of SSS 2006, November 2006,
Dallas (USA).

[Baldoni et al., 2003] Baldoni, R., Helary, J., Raynal, M., and Tanguy, L. (2003). Consensus in Byzantine
asynchronous systems. Journal of Discrete Algorithms, 1(2):185-210.

[Banatre et al. 2004] M. Banétre, P. Couderc, J. Pauty, and M. Becus. Ubibus: Ubiquitous Computing to
Help Blind People in Public Transport. In proceedings of Mobile HCI 2004, pages 310-314, 2004.

[Barborak et al. 1993] M. Barborak, M. Malek and A. Dahbura, “The Consensus Problem in Fault Tolerant
Computing,” ACM Surveys, vol. 25, pp. 171-220, Jun. 1993.

[Barreto et al. 2002] D. Barreto, Y. Liu, J. Pan, and F. Wang, “Reputation-based participation
enforcement for ad hoc networks”, 2002.

[Batten et al., 2001] Batten, C., Barr, K., Saraf, A., and Treptin, S. (2001). pStore: a secure peer-to-peer
backup system. Technical Report MIT-LCS-TM-632, MIT Laboratory for Computer Science.

[Ben Azzouna and Guillemin 2004] N. Ben Azzouna and F. Guillemin, “Experimental analysis of the
impact of peer-to-peer applications on traffic in commercial IP networks”, European transactions on
Telecommunications: Special issue on P2P networking and P2P services, ETT 15(6), November-December
2004.

[Beneloh 1991] J. Beneloh, Verifiable Secret-Ballot, PhD thesis, Yale University, 1987.

[Ben-Or, 1983] Ben-Or, M. (1983). Another advantage of free choice: Completely asynchronous agreement
protocols. In Proceedings of the 2nd ACM Symposium on Principles of Distributed Computing, pages 27—
30.

[Ben-Or, 1985] Ben-Or, M. (1985). Fast asynchronous Byzantine agreement. In Proceedings of the 4th ACM
Symp. on Principles of Distributed Computing, pages 149—-151.

[Bessani et al., 2006] Bessani, A. N., Correia, M., Fraga, J. S., and Lung, L. C. (2006). Sharing memory
between Byzantine processes using policy-enforced tuple spaces. In Proceedings of the 26th International
Conference on Distributed Computing Systems.

[Blough and Brown 1999] D.M. Blough and H.W. Brown, “The Broadcast Comparison Model for On-Line
Fault Diagnosis in Multicomputer Systems: Theory and Implementation,” IEEE Trans. on Computers, 48(5),
pp- 470493, May 1999.

[Blount 1977] M. Blount, “Probabilistic treatment of diagnosis in digital systems,” Proc. of 7th Int’l IEEE
Symp. of Fault-Tolerant Computing (FTCS), pp. 72-77, 1977.

[Blum 1991] M. Blum, A. De Santis, S. Micali, and G. Persiano, Noninteractive Zero-knowledge, SIAM
Journal on Computing, 20(6):1084-1118, 1991.

[Bolosky et al., 2000] Bolosky, W. J., Douceur, J. R., Ely, D., and Theimer, M. (2000). Feasibility of a
serverless distributed file system deployed on an existing set of desktop pcs. In Proceedings of the
International Conference on Measurement and Modeling of Computer Systems, pages 34—43.

RESIST D12 algop 10100

Part Algo References

[Bolton and Ockenfels 2000] G. E Bolton and A. Ockenfels, “ERC: a theory of equity, reciprocity, and
competition”, American Economic Review 90(1): 166-193, 2000.

[Bondavalli et al. 1997] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico and F. Grandoni,
“Discriminating Fault Rate and Persistency to Improve Fault Treatment,” Proc. of FTCS-27, pp. 354-362,
1997.

[Bondavalli et al. 2000] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico and F. Grandoni, “Threshold-
Based Mechanisms to Discriminate Transient from Intermittent Faults,” IEEE Trans. on Computers, 49(3),
pp. 230-245, Mar. 2000.

[Bondavalli et al. 2004] A. Bondavalli, S. Chiaradonna, D. Cotroneo and L. Romano, “Effective Fault
Treatment for Improving the Dependability of COTS and Legacy-Based Applications” IEEE Trans. On
Dependable and Secure Computing, 1(4), pp. 223-237, Dec. 2004

[Borowsky and Gafni 1993-1] Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming.
Proc. 12th ACM Symposium on Principles of Distributed Computing (PODC’93), ACM Press, pp. 41-51,
Ithaca (NY), 1993.

[Borowsky and Gafni 1993-2] Borowsky E. and Gafni E., Generalized FLP Impossibility Results for . -
Resilient Asynchronous Computations. Proc. 25th ACM Symposium on Theory of Computation
(STOC’93), San Diego (CA), pp. 91-100, 1993.

[Bracha, 1984] Bracha, G. (1984). An asynchronous b(n—1)/3c-resilient consensus protocol. In Proceedings
of the 3rd ACM Symposium on Principles of Distributed Computing, pages 154-162.

[Brown and Kolberg 2006] A. Brown, M. Kolberg, “Tools for Peer-to-Peer Network Simulation”,
March 3rd, 2006, http://www.ietf.org/internet-drafts/draft-irtf-p2prg-core-simulators-00.txt

[Buchegger and Le Boudec 2002] S. Buchegger, and J. Y. Le Boudec, “Performance Analysis of the
CONFIDANT Protocol: Cooperation Of Nodes — Fairness In Distributed Ad-hoc NeTworks”, In
Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC),
Lausanne, CH, IEEE (2002) 226-236, 2002.

[Bussard and Molva 2004] L. Bussard, R. Molva. One-Time Capabilities for Authorizations without
Trust. In Proceedings of the second IEEE International Conference on Pervasive Computing and
Communications (PerCom 2004), Orlando, Florida, March 13-17, 2004, pages 351-355.

[Bussard et al. 2004] L. Bussard, Y. Roudier, R. Molva. Untraceable Secret Credentials: Trust
Establishment with Privacy. In Proceedings of the First IEEE International Workshop on Pervasive
Computing and Communication Security (PerSec 2004), Orlando, Florida, March 14, 2004.

[Buttyan and Hubaux 2000] L. Buttyan and J.-P. Hubaux, Toward a formal model of fair exchange -- a
game theoretic approach, 2000, http://citeseer.ist.psu.edu/article/buttyan0Otoward.html, updated version of
the SSC Technical Report No. SSC/1999/039

[Buttyan and Hubaux 2001] L. Buttyan and J. Hubaux, “Nuglets: a virtual currency to stimulate
cooperation in self-organized ad hoc networks”, Technical report, EPFL, 2001.

[Buttyan and Hubaux 2003] L. Buttyan and J.-P Hubaux, “Stimulating Cooperation in Self-Organizing
Mobile Ad Hoc Networks”, ACM/Kluwer Mobile Networks and Applications, 8(5), October 2003.

RESIST D12 algo p 10200

Part Algo References

[Byers et al., 1998] Byers, J. W., Luby, M., Mitzenmacher, M., and Rege, A. (1998). A digital fountain
approach to reliable distribution of bulk data. In SIGCOMM, pages 56—67.

[Byers et al., 1999] Byers, J. W., Luby, M., and Mitzenmacher, M. (1999). Accessing multiple mirror sites in
parallel: Using Tornado codes to speed up downloads. In INFOCOM (1), pages 275-283.

[Cachin et al., 2000] Cachin, C., Kursawe, K., and Shoup, V. (2000). Random oracles in Contanstinople:
Practical asynchronous Byzantine agreement using cryptography. In Proceedings of the 19th ACM
Symposium on Principles of Distributed Computing, pages 123—132.

[Cachin et al., 2001] Cachin, C., Kursawe, K., Petzold, F., and Shoup, V. (2001). Secure and efficient
asynchronous broadcast protocols (extended abstract). In Kilian, J., editor, Advances in Cryptology:
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 524—541. Springer-Verlag.

[Canetti and Rabin, 1993] Canetti, R. and Rabin, T. (1993). Fast asynchronous Byzantine agreement with
optimal resilience. In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pages 42—
51.

[Carbone et al. 2003] M. Carbone, M. Nielsen, and V. Sassone, “A Formal Model for Trust in Dynamic
Networks”, BRICS tech. report RS-03-4, Univ. Aarhus, 2003.

[Castro and Liskov, 2002] Castro, M. and Liskov, B. (2002). Practical Byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems, 20(4):398-461.

[Chandra and Toueg, 1996] Chandra, T. and Toueg, S. (1996). Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225-267.

[Chandra et al., 1996] Chandra, T., Hadzilacos, V., and Toueg, S. (1996). The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685-722.

[Chaudhuri, 1993] Chaudhuri, S. (1993). More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation, 105(1):132—158.

[Chaum 1992] D. Chaum, Blind Signature for Untraceable Payments, Advances in Cryptology: Crypto'82,
pp 199-203, 1992.

[Chaum 2004] D. Chaum, Secret-Ballot Receipts: True Voter-Verifiable Elections, IEE Security & Privacy,
Vol. 2, No. 1, pp. 38-47, January-February 2004.

[Chervenak et al., 1998] Chervenak, A., Vellanki, V., and Kurmas, Z. (1998). Protecting file systems: A
survey of backup techniques. In Proceedings Joint NASA and IEEE Mass Storage Conference.

[Chockler et al., 2001] Chockler, G., Keidar, 1., and Vitenberg, R. (2001). Group communication
specifications: A comprehensive study. ACM Computing Surveys, 33(4):427-469.

[Clarke et al. 2001] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed
anonymous information storage and retrieval system”, In Designing Privacy Enhancing Technologies:
International Workshop on Design Issues inAnonymity and Unobservability, LNCS 2009, New York, 2001.

[Clarkson 2005] M. Clarkson and A. Myers, Coercion-resistant Remote Voting using Decryption Mixes,
Workshop on Frontiers of Electronic Elections, 2005.

RESIST D12 algop 10307

Part Algo References

[Cooley et al., 2004] Cooley, J., Taylor, C., and Peacock, A. (2004). ABS: the apportioned backup system.
Technical report, MIT Laboratory for Computer Science.

[Cooper and Garcia-Molina, 2002] Cooper, B. F. and Garcia-Molina, H. (2002). Bidding for storage space in
a peer-topeer data preservation system. In ICDCS, pages 372—.

[Correia et al., 2002] Correia, M., Verissimo, P., and Neves, N. F. (2002). The design of a COTS real-time
distributed security kernel. In Proceedings of the Fourth European Dependable Computing Conference,
pages 234-252.

[Correia et al., 2005] Correia, M., Neves, N. F., Lung, L. C., and Verissimo, P. (2005). Low complexity
Byzantineresilient consensus. Distributed Computing, 17(3):237-249.

[Correia et al., 2006a] Correia, M., Bessani, A. N., Neves, N. F., Lung, L. C., and Verissimo, P. (2006a).
Improving byzantine protocols with secure computational components. In the report.

[Correia et al., 2006b] Correia, M., Neves, N. F., Lung, L. C., and Verissimo, P. (2006b). Worm-IT — a
wormhole-based intrusion-tolerant group communication system. Journal of Systems and Software. to
appear.

[Correia et al., 2006¢] Correia, M., Neves, N. F., and Verissimo, P. (2006¢). From consensus to atomic
broadcast: Timefree Byzantine-resistant protocols without signatures. Computer Journal, 41(1):82-96.

[Courtés et al., 2006] Courtés, L., Killijian, M.-O., and Powell, D. (2006). Storage tradeoffs in a
collaborative backup service for mobile devices. In Proceedings of the 6th European Dependable
Computing Conference (EDCC-6), number LAAS Report #05673, pages 129-138, Coimbra, Portugal.

[Cox and Noble 2002] L. P. Cox and B. D. Noble, “Pastiche: making backup cheap and easy”, in
Proceedings of the Fifth USENIX Symposium on Operating Systems Design and Implementation, Boston,
MA, December 2002.

[Cox and Noble, 2002] Cox, L. P. and Noble, B. D. (2002). Pastiche: making backup cheap and easy. In
Fifth USENIX Symposium on Operating Systems Design and Implementation, pages 285-298, Boston, MA,
USA.

[Cox and Noble, 2003] Cox, L. P. and Noble, B. D. (2003). Samsara: honor among thieves in peer-to-peer
storage. In Proceedings 19th ACM Symposium on Operating Systems Principles, pages 120-132, Bolton
Landing, NY, USA.

[Cristian 1991] F. Cristian, “Reaching agreement on processor-group membrship in synchronous distributed
systems,” Distributed Computing, 4(4), pp. 175-187, Dec. 1991.

[Cristian and Fetzer, 1998] Cristian, F. and Fetzer, C. (1998). The timed asynchronous system model. In
Proceedings of the 28th IEEE International Symposium on Fault-Tolerant Computing, pages 140—149.

[Dabek et al., 2001] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, 1. (2001). Wide-area
cooperative storage with CFS. In Proceedings 18th ACM Symposium on Operating Systems Principles,
pages 202-215.

[de Prisco et al., 1999] de Prisco, R., Malki, D., and Reiter, M. (1999). On k-set consensus problems in
asynchronous systems. In Proceedings of the 18th ACM Symposium on Principles of Distributed
Computing, pages 257-265.

RESIST D12 algo p 10400

Part Algo References

[Deswarte et al., 1998] Deswarte, Y., Kanoun, K., and Laprie, J. C. (1998). Diversity against accidental and
deliberate faults. In Computer Security, Dependability, & Assurance: From Needs to Solutions. IEEE Press.

[Dill 2006] D. Dill, http://www.verifiedvoting.org/

[Dingledine 2000] R. Dingledine, “The Free Haven project: Design and deployment of an anonymous
secure data haven”, Master’s thesis, MIT, June 2000.

[Dolev et al., 1987] Dolev, D., Dwork, C., and Stockmeyer, L. (1987). On the minimal synchronism needed
for distributed consensus. Journal of the ACM, 34(1):77-97.

[Doudou and Schiper, 1997] Doudou, A. and Schiper, A. (1997). Muteness detectors for consensus with
Byzantine processes. Technical Report 97/30, EPFL.

[Doudou et al., 2002] Doudou, A., Garbinato, B., and Guerraoui, R. (2002). Encapsulating failure detection:
From crashstop to Byzantine failures. In International Conference on Reliable Software Technologies, pages
24-50.

[Druschel and Rowstron 2000] P. Druschel and A. Rowstron, “PAST: A large-scale, persistent peer-to-peer
storage utility”, in Proceedings of HotOS VIII, May 2001.

[Dutta et al., 2005] Dutta, P., Guerraoui, R., and Vukolic, M. (2005). Best-case complexity of asynchronous
Byzantine consensus. Technical Report 200499, " Ecole Polytechnique F’ed’erale de Lausanne, Lausanne,
Switzerland.

[Dwork et al., 1988] Dwork, C., Lynch, N., and Stockmeyer, L. (1988). Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288-323.

[Elnikety et al., 2002] Elnikety, S., Lillibridge, M., and Burrows, M. (2002). Peer-to-peer cooperative
backup system. In The USENIX Conference on File and Storage Technologies, Monterey, California, USA.

[Felton 206] E. Felton et al, http://itpolicy.princeton.edu/voting/

[Fetzer and Cristian, 1995] Fetzer, C. and Cristian, F. (1995). On the possibility of consensus in
asynchronous systems. In Proceedings of the Pacific Rim International Symposium on Fault-Tolerant
Systems.

[Fiat 1986] A. Fiat, and A. Shamir, How to prove yourself", Proceedings of CRYPTO '86, Lecture Notes in
Computer Science, Vol. 263, pp 186-194, Springer-Verlag, 1986.

[Fischer et al., 1985] Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382.

[Fisher and Merritt 2003] Fischer M.J. and Merritt M., Appraising Two Decades of Distributed Computing
Results. Distributed Computing, 16(4):239-247, 2003.

[Fraga and Powell, 1985] Fraga, J. S. and Powell, D. (1985). A fault- and intrusion-tolerant file system. In
Proceedings of the 3rd International Conference on Computer Security, pages 203-218.

[Friedman et al., 2002] Friedman, R., Mostefaoui, A., Rajsbaum, S., and Raynal, M. (2002). Distributed
agreement and its relation with error-correcting codes. In Proceedings of the 16th International Conference
on Distributed Computing, pages 63—87.

RESIST D12 algo p 10507

Part Algo References

[Friedman et al., 2005] Friedman, R., Mostefaoui, A., and Raynal, M. (2005). Simple and efficient oracle-
based consensus protocols for asynchronous byzantine systems. IEEE Transactions on Dependable and
Secure Computing, 2(1):46-56.

[Fujioka 1992] A. Fujioka, T. Okamoto and K. Ohta, A Practical Secret Voting Scheme for Large Scale
Elections, Auscrypt '92, LNCS 718, pp 244-251, 1992

[Gafni 2004] Gafni E., Read/Write Reductions. DISC/GODEL presentation given as introduction to the 18th
Int’l Symposium on Distributed Computing (DISC’04), 2004. http://www.cs.ucla.edu/~ eli/eli/godel.ppt.

[Gafni and Rajsbazum 2005] Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th Int’l Symposium on
Distributed Computing (DISC’05), Springer Verlag LNCS #3724, pp. 63—77, 2005.

[Gafni et al. 2006] Gafni E., Rajsbaum R., Raynal M. and Travers C., The Committee Decision Problem.
Proc. 8th Latin-American Theoretical INformatics Symposium (LATIN’06), Springer Verlag LNCS #3887,
pp. 502-514, 2006.

[Ganesh et al. 2003] A.J. Ganesh, A.M. Kermarrec and L. Massouli'e, “Peer-to-Peer Membership
Management for Gossip-Based Protocols”, IEEE Trans. Computers 52(2): pp. 139-149, 2003

[Goldberg and Yianilos, 1998] Goldberg, A. V. and Yianilos, P. N. (1998). Towards an archival
intermemory. In Proceedings IEEE International Forum on Research and Technology Advances in Digital
Libraries (ADL’98), pages 147-156. IEEE Society.

[Goldreich 1991] O. Goldreich, S Micali, A. Wigderson, Proofs That Yield Nothing But Their Validity,
Journal of the ACM, volume 38, issue 3, pp 690-728. July 1991.

[Grandoni et al. 1998] F. Grandoni, S. Chiaradonna, and A. Bondavalli. A new heuristic to discriminate
transient from intermittent faults. In 3rd IEEE High Assurance System Engineering Symposium (HASE'98),
pages 224-231, Bethesda, MD, USA, 1998.

[Grandoni et al. 2001] F. Grandoni, S. Chiaradonna, F. Di Giandomenico and A. Bondavalli, “Evaluation of
Fault-Tolerant Multiprocessor Systems for High Assurance Applications”, The Computer Journal, Vol 44, N.
6, 2001, pp.544-556.

[Greco and Floridi, 2003] Greco, G. M. and Floridi, L. (2003). The tragedy of the digital commons. Ethics
and Information Technology, 6(2):73.

[Grothoff, 2003] Grothoff, C. (2003). An excess-based economic model for resource allocation in peer-to-
peer networks. Wirtschaftsinformatik.

[Growchowski, 1998] Growchowski, E. (1998). Emerging trends in data storage on magnetic hard disk
drives. In Datatech, pages 11-16. ICG Publishing.

[Guerraoui and Raynal, 2004] Guerraoui, R. and Raynal, M. (2004). The information structure of indulgent
consensus. IEEE Transactions on Computers, 53(4):453.

[Guerraoui and Schiper, 2001] Guerraoui, R. and Schiper, A. (2001). The generic consensus service. [IEEE
Transactions on Software Engineering, 27(1):29—41.

[Guerraoui et al., 2000] Guerraoui, R., Hurfin, M., Mostefaoui, A., Oliveira, R., Raynal, M., and Schiper, A.
(2000). Consensus in asynchronous distributed systems: A concise guided tour. In Krakowiak, S. and

RESIST D12 algo p 1060]

Part Algo References

Shrivastava, S., editors, Advances in Distributed Systems, number 1752 in Lecture Notes in Computer
Science, pages 33—47. Springer-Verlag.

[Guerraoui, 2000] Guerraoui, R. (2000). Indulgent algorithms. In Proceedings of the 19th ACMSymposium
on Principles of Distributed Computing, pages 289—298.

[Gumbel 2005] A. Gumbel, Steal This Vote, Nation Books, July 10, 2005

[Hadzilacos and Toueg, 1994] Hadzilacos, V. and Toueg, S. (1994). A modular approach to fault-tolerant
broadcasts and related problems. Technical Report TR94-1425, Cornell University, Department of Computer
Science.

[Hardin, 1968] Hardin, G. (1968). The tragedy of the commons. Science, 162:1243—-1248.

[Heckmann and Bock, 2002] Heckmann, O. and Bock, A. (2002). The eDonkey 2000 Protocol. Technical
Report KOMTR- 08-2002, Multimedia Communications Lab, Darmstadt University of Technology.

[Herlihy 1991] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124-149, 1991.

[Herlihy andWing 1990] Herlihy M.P. and Wing J.M, Linearizability: a Correctness Condition for
Concurrent Objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492, 1990.

[Hsu et al., 2004] Hsu, E., Mellen, J., and Naresh, P. (2004). DIBS: distributed backup for local area
networks. Technical report, Parallel & Distributed Operating Systems Group, MIT, USA.

[loannidis et al., 2002] loannidis, J., loannidis, S., Keromytis, A. D., and Prevelakis, V. (2002). Fileteller:
Paying and getting paid for file storage. In Sixth Annual Conference on Financial Cryptography, page
282299, Bermuda.

[Iyer et al. 1990] R. Iyer, L.T. Young and P.V K. Iyer “Automatic Recognition of Intermittent Failures: An
Experimental Study of Field Data,” IEEE Trans. on Computers, 39(3), pp. 525-537, Apr. 1990.

[Jakobsson 1999] M. Jakobsson and A. Juels, Millimix: Mixing in small batches. Technical Report 99-33,
DIMACS, 1999

[Jakobsson 2002] M. Jakobsson, A. Juels, and R. Rivest. Making Mix Nets Robust for Electronic Voting By
Randomized Partial Checking, Proceedings of USENIX Security Symposium 2002, pp 339-353, 2002

[Jakobsson et al. 2003] M. Jakobsson, J.-P. Hubaux, and L. Buttyan, “A Micro-Payment Scheme
Encouraging Collaboration in Multi-Hop Cellular Networks”, In Proceedings of Financial Crypto, La
Guadeloupe, Jan. 2003.

[Jelasity et al. 2003] M. Jelasity, W. Kowalczyk and M. van Steen, "Newscast computing”, Technical Report
IR-CS-006, Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, The Netherlands,
November 2003.

[Jelasity et al. 2004] M. Jelasity, R. Guerraoui, A.M. Kermarrec and M. van Steen, “The peer sampling
service: Experimental evaluation of unstructured gossip-based implementations”, In Hans-Arno Jacobsen,
editor, Middleware 2004, volume 3231 of Lecture Notes in Computer Science, pages 7998. Springer-Verlag,
2004.

RESIST D12 algop 10700

Part Algo References

[Josang and Ismail 2002] A. Josang and R. Ismail. The Beta Reputation System. In Proceedings of the
15th, Bled Electronic Commerce Conference, Bled, Slovenia, June 2002.

[Josang et al. 2005] A. Josang, R. Ismail, and C. Boyd, “A Survey of Trust and Reputation Systems for
Online Service Provision”, In Proceedings of Decision Support Systems, 2005.

[Junqueira et al., 2003] Junqueira, F., Bhagwan, R., Marzullo, K., Savage, S., and Voelker, G. M. (2003).
The Phoenix recovery system: rebuilding from the ashes of an internet catastrophe. In Ninth Workshop on
Hot Topics in Operating Systems (HotOS IX).

[Kamvar et al. 2003] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust Algorithm
for Reputation Management in P2P Networks”, In Proceedings of the Twelfth International World Wide
Web Conference, Budapest, May 2003.

[Karlof 2005] C. Karlof and N. Sastry and D. Wagner, Cryptographic Voting Protocols: A Systems
Perspective, USENIX Security Symposium, 2005.

[Keidar, 2002] Keidar, I. (2002). Challenges in evaluating distributed algorithms. In Proceedings of the
International Workshop on Future Directions in Distributed Computing.

[Kihlstrom et al., 2001] Kihlstrom, K. P., Moser, L. E., and Melliar-Smith, P. M. (2001). The SecureRing
group communication system. ACM Transactions on Information and System Security, 4(4):371-406.

[Kihlstrom et al., 2003] Kihlstrom, K. P., Moser, L. E., and Melliar-Smith, P. M. (2003). Byzantine fault
detectors for solving consensus. The Computer Journal, 46(1):16-35.

[Killijian et al. 2004] M.O. Killijian, D. Powell, M. Banatre, P. Couderc, Y. Roudier, Collaborative
Backup for Dependable Mobile Applications. In proceedings of the 2nd International Workshop on
Middleware for Pervasive and Ad-Hoc Computing, Middleware 2004, Toronto, Ontario, Canada, October
18th - 22nd, 2004, ACM.

[Killijian et al. 2006] M.-O. Killijian, M. Banatre, C. Bryce, L. Blain, P. Couderc, L. Courtes, Y.
Deswarte, D. Martin-Guillerez, R. Molva, N. Oualha, D. Powell, Y. Roudier, I. Sylvain, “MoSAIC: Mobile
System Availability Integrity and Confidentiality”, Progress Report, June 2006.

[Killijian et al., 2004] Killijian, M.-O., Powell, D., Ban"atre, M., Couderc, P., and Roudier, Y. (2004).
Collaborative backup for dependable mobile applications. In Proceedings of 2nd International Workshop on
Middleware for Pervasive and Ad-Hoc Computing (Middleware 2004), pages 146-149, Toronto, Ontario,
Canada. ACM.

[Klemm et al. 2003] A. Klemm, C. Lindemann, and O. Waldhorst, “A Special-Purpose Peer-to-Peer File
Sharing System for Mobile Ad Hoc Networks”, Proc. IEEE Semiannual Vehicular Technology Conference
(VTC2003-Fall), Orlando, FL, October 2003.

[Kohno 2004] T. Kohno, A. Stubblefield, A. D. Rubin and D. S. Wallach, Analysis of an Electronic Voting
System, Proceedings of the IEEE Symposium on Security and Privacy, May, 2004.

[Kopetz and Grunsteidl 1994] H. Kopetz and G. Grunsteidl, “TTP - A Protocol for Fault-Tolerant Real-Time
Systems,” IEEE Computer, 27(1), pp. 14-23, Jan. 1994,

[Kubiatowicz et al. 2000] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “ OceanStore: An architecture for

RESIST D12 algo p 1080

Part Algo References

globalscale persistent storage”, in Proceedings of the Ninth international Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2000), Nov. 2000.

[Kubiatowicz et al., 2000] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. (2000). OceanStore: an
architecture for global-scale persistent storage. In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS 2000), pages 190-201.

[Kuhl and Reddy 1981] J. Kuhl, S. Reddy, “Fault Diagnosis in Fully Distributed Systems,” Proc. of FTCS-
11, pp. 100-105, 1981.

[Lai et al., 2003] Lai, K., Feldman, M., Chuang, J., and Stoica, I. (2003). Incentives for cooperation in peer-
to-peer networks. In Workshop on Economics of Peer-to-Peer Systems.

[Lala and Alger 1988] J. Lala and L. Alger, “Hardware and Software Fault Tolerance: A Unified
Architectural Approach”, Proc. of FTCS-18, pp. 240-245, 1988.

[Lala, 2003] Lala, J. H., editor (2003). Foundations of Intrusion Tolerant Systems. IEEE Computer Society
Press.

[Lamport 1977] Lamport L., Concurrent Reading and Writing. Communications of the ACM, 20(11):806-
811, 1977.

[Lamport 1978] Lamport L., Time, Clocks, and the Ordering of Events in Distributed Systems,
Communications of the ACM, 21(7):558-565, 1978.

[Lamport 1987] Lamport L., A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems,
5(1):1- 11, 1987.

[Lamport 1996] Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872
pages, 1996.

[Lamport and Raynal 2004] Lamport L. and Raynal M., Private discussion, 2004.

[Lamport et al., 1982] Lamport, L., Shostak, R., and Pease, M. (1982). The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382—401.

[Lamport, 1998] Lamport, L. (1998). The part-time parliament. ACM Transactions Computer Systems,
16(2):133-169.

[Lamport, 2001] Lamport, L. (2001). Paxos made simple. SIGACT News, 32(4):51-58.

[Lampson, 2001] Lampson, B. (2001). The abcd’s of paxos. In Proceedings of the 20th annual ACM
Symposium on Principles of Distributed Computing, page 13.

[Landers et al., 2004] Landers, M., Zhang, H., and Tan, K.-L. (2004). PeerStore: better performance by
relaxing in peer-to-peer backup. In Proceedings of the Fourth International Conference on Peer-to-Peer
Computing, pages 72—79, Zurich, Switzerland.

[Latronico et al. 2004] E. Latronico, P. Miner and P. Koopman, “Quantifying the Reliability of Proven
SPIDER Group Membership Service Guarantees,” Proc. of DSN-04, pp. 275-284, 2004.

RESIST D12 algo p 10907

Part Algo References

[Lee et al. 2003] S. Lee, R. Sherwood, B. Bhattacharjee. "Cooperative peer groups in NICE". In
INFOCOM'03, April 2003.

[Liang et al. 2006] J. Liang, R. Kumar, and K.W. Ross, “The FastTrack overlay: A measurement
study”, Computer Networks, 50, 842-858, 2006.

[Lillibridge et al. 2003] M. Lillibridge, S. Elnikety, A. Birrell, M.Burrows, and M. Isard, “A Cooperative
Internet Backup Scheme”, In Proceedings of the 2003 Usenix Annual Technical Conference (General
Track), pp. 29-41, San Antonio, Texas, June 2003.

[Lin and Siewiorek 1990] T. Lin and D. Siewiorek, “Error Log Analysis: Statistical Modeling and Heuristic
Trend Analysis,” IEEE Trans. on Computers, 39(4), pp. 419-432, Oct. 1990.

[Lincoln and Rushby 1993] P. Lincoln and J. Rushby, “A Formally Verified Algorithm for Interactive
Consistency under a Hybrid Fault Model,” Proc. of FTCS-23, pp. 402—411, 1993.

[Littlewood and Strigini, 2004] Littlewood, B. and Strigini, L. (2004). Redundancy and diversity in security.
In Samarati, P., Rian, P., Gollmann, D., and Molva, R., editors, Computer Security — ESORICS 2004, 9th
European Symposium on Research Computer Security, LNCS 3193, pages 423—438. Springer.

[Loo et al. 2002] B. T. Loo, A. LaMarca, and G. Borriello, “Peer-To-Peer Backup for Personal Area
Networks”, Intel Research Technical Report IRS-TR-02-15, October 2002.

[Loo et al., 2003] Loo, B. T., LaMarca, A., and Borriello, G. (2003). Peer-to-peer backup for personal area
networks. Technical Report IRS-TR-02-015, UC Berkeley; Intel Seattle Research (USA).

[Lord, 2005] Lord, T. (2005). The GNU arch distributed revision control system.

[Lua et al., 2005] Lua, K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. (2005). A survey and comparison
of peer-topeer overlay network schemes. Communications Surveys & Tutorials, IEEE, pages 72-93.

[Lundin 2006] D. Lundin, H. Treharne, P. Y. A. Ryan, S. Schneider, J. Heather, Z. Xia, Tear and Destroy:
Chain voting and destruction problems shared by Pret "a Voter and Punchscan and a solution using Visual
Encryption, Workshop on Frontiers of Electronic Elections, 2005.

[Lynch, 1989] Lynch, N. (1989). A hundred impossiblility proofs for distributed computing. In Proceedings
of the Eighth Annual ACM Symposium on Principles of Distributed Computing.

[Lynch, 1996] Lynch, N. (1996). Distributed Algorithms. Morgan Kaufmann, San Mateo, CA.

[Malek 1980] M. Malek, “A Comparison Connection Assignment for Diagnosis of Multiprocessor Systems,”
Proc. of the 7th Annual Symp. on Computer Architecture, pp. 31-36, 1980.

[Malkhi and Reiter, 1997] Malkhi, D. and Reiter, M. (1997). Unreliable intrusion detection in distributed
computations. In Proceedings of the 10th Computer Security Foundations Workshop, pages 116—-124.

[Malkhi et al., 2003] Malkhi, D., Merrit, M., Reiter, M., and Taubenfeld, G. (2003). Objects shared by
Byzantine processes. Distributed Computing, 16(1):37—48.

[Mallela and Masson 1980] S. Mallela, G. Masson, “Diagnosis without Repair for Hybrid Fault Situations,”
IEEE Trans. On Computers, 29, pp. 461-470, Jun. 1980.

RESIST D12 algop 11000

Part Algo References

[Marti et al. 2000] S. Marti, T.J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in
mobile ad hoc networks”, Mobile Computing and Networking 255-265, 2000.

[Martin and Alvisi, 2005] Martin, J. P. and Alvisi, L. (2005). Fast Byzantine consensus. In Proceedings of
the IEEE International Conference on Dependable Systems and Networks, pages 402—411.

[Maymounkov and Mazi eres, 2002] Maymounkov, P. and Mazi'eres, D. (2002). Kademlia: A peer-to-peer
information system based on the XOR metric. Lecture Notes in Computer Science, 2429:53—2?

[McCoy 20017 J. McCoy. "Mojo Nation Responds". January 2001.
http://www.openp2p.com/pub/a/p2p/2001/01/11/mojo.html.

[Mercuri 2005] R. Mercuri, http://www.notablesoftware.com/evote.html

[Merritt and Taubenfeld 2000] Merritt M. and Taubenfeld G., Computing Using Infinitely Many Processes.
Proc. 14th Int’l Symposium on Distributed Computing (DISC’00), Springer-Verlag LNCS #1914, pp. 164-
178, 2000.

[Meyer et al. 1985] J.F. Meyer, A. Movaghar and W.H. Sanders, “Stochastic Activity Networks: Structure,
Behavior, and Application,” Int’l Workshop onTimed Petri Nets, pp. 106-115, 1985.

[Michiardi 2004] P. Michiardi, “Cooperation enforcement and network security mechanisms for
mobile ad hoc networks”, PhD Thesis, December 14th, 2004.

[Michiardi and Molva 2002] P. Michiardi, and R. Molva, “CORE: a collaborative reputation mechanism
to enforce node cooperation in mobile ad hoc networks”, CMS'2002, Communication and Multimedia
Security 2002 Conference, Portorosz, Slovenia, September 26-27, 2002.

[Moir 1998] Moir M., Fast, Long-Lived Renaming Improved and Simplified. Science of Computer
Programming, 30:287-308, 1998.

[Moir and Anderson 1995] Moir M. and Anderson J.H., Wait-Free Algorithms for Fast, Long-Lived
Renaming. Science of Computer Programming, 25:1-39, 1995.

[Mongardi 1993] G. Mongardi, “Dependable Computing for Railway Control Systems,” Proc. DCCA-3 -
Dependable Computing for Critical Applications, pp. 255-277, 1993.

[Moniz et al., 2006] Moniz, H., Correia, M., Neves, N. F., and Verssimo, P. (2006). Randomized intrusion-
tolerant asynchronous services. In Proceedings of the International Conference on Dependable Systems and
Networks.

[Montresor et al. 2004] A. Montresor, G. Di Caro, P. E. Heegaard, “Architecture of the Simulation
Environment”, BISON IST-2001-38923, January 29, 2004.

[Mostefaoui et al. 2006] Most efaoui A., Raynal M. and Travers C., Exploring Gafni’s reduction land:

from Q"to wait-free adaptive (2p - [E—‘)-renaming via k-set agreement. Proc. 20th Symposium on

Distributed Computing (DISC’06), Springer Verlag LNCS #4167, pp. 1-15, Stockholm (Sweden),
20086.

RESIST D12 algop 1110

Part Algo References

[Mostefaoui et al., 2000] Mostefaoui, A., Raynal, M., and Tronel, F. (2000). From binary consensus to
multivalued consensus in asynchronous message-passing systems. Information Processing Letters, (73):207—
212.

[Mostefaoui et al., 2003a] Mostefaoui, A., Mourgaya, E., and Raynal, M. (2003a). Asynchronous
implementation of failure detectors. In Proceedings of the IEEE International Conference on Dependable
Systems and Networks, pages 351-360.

[Mostefaoui et al., 2003b] Mostefaoui, A., Rajsbaum, S., and Raynal, M. (2003b). Conditions on input
vectors for consensus solvability in asynchronous distributed systems. Journal of the ACM, 50(6):922-954.

[Mostefaoui et al., 2004] Mostefaoui, A., Rajsbaum, S., Raynal, M., and Roy, M. (2004). Condition based
consensus solvability: A hierarchy of conditions and efficient protocols. Distributed Computing, 17:1-20.

[Mostefaoui et al., 2005] Mostefaoui, A., Raynal, M., Travers, C., Patterson, S., Agrawal, D., and Abbadi, A.
E. (2005). From static distributed systems to dynamic systems. In Proceedings of the 24th IEEE Symposium
on Reliable Distributed Systems, pages 109—118.

[Mui et al. 2001] L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt. Ratings in
Distributed Systems: A Bayesian Approach. In Proceedings of the Workshop on Information Technologies
and Systems (WITS), 2001.

[Muthitacharoen et al., 2001] Muthitacharoen, A., Chen, B., and Mazi'eres, D. (2001). A low-bandwidth
network file system. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, pages
174-187.

[Muthitacharoen et al., 2002] Muthitacharoen, A., Morris, R., Gil, T. M., and Chen, B. (2002). Ivy: a
read/write peer-topeer file system. SIGOPS Oper. Syst. Rev., 36(SI):31-44.

[Naor 1995] M. Naor and A. Shamir, Visual Cryptography, Lecture Notes in Computer Science, Vol. 951,
pp 1-12, Springer-Verlag, 1995.

[Napster,] Napster. Site internet napster : http://www.napster.com.
[Neff 2006] A. Neff, http://www.votehere.com

[Neves et al., 2004] Neves, N. F., Correia, M., and Verissimo, P. (2004). Wormhole-aware Byzantine
protocols. In 2nd Bertinoro Workshop on Future Directions in Distributed Computing: Survivability -
Obstacles and Solutions.

[Neves et al., 2005] Neves, N. F., Correia, M., and Verissimo, P. (2005). Solving vector consensus with a
wormhole. IEEE Transactions on Parallel and Distributed Systems, 16(12):1120-1131.

[Oberender et al. 2005] J. Oberender, F. —U. Andersen, H. de Meer, 1. Dedinski, T. HoBfeld, C. Kappler, A.
Maider, and K. Tutschku, “Enabling Mobile Peer-to-Peer Networking. Mobile and Wireless Systems”, In
Proceedings of Mobile and Wireless Systems, LNCS 3427, Dagstuhl, Germany, January 2005.

[Obreiter and Nimis 2003] P. Obreiter & J. Nimis, “A Taxonomy of Incentive Patterns - the Design
Space of Incentives for Cooperation”, Technical Report, Universitit Karlsruhe, Faculty of Informatics, 2003.

[Page et al. 1998] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web”, Technical report, Stanford Digital Library Technologies Project, 1998.

RESIST D12 algop 11200

Part Algo References

[Pandurangan et al. 2001] G. Pandurangan, P. Raghavan and E. Upfal. ”Building Low-Diameter P2P
Networks”, IEEE Symposium on Foundations of Computer Science pag. 492-499, 2001.

[Papadopouli and Schulzrinne 2001] M. Papadopouli and H. Schulzrinne, “A Performance Analysis of
7DS, A Peer-to-Peer Data Dissemination and Prefetching Tool for Mobile Users”, In Advances in wired and
wireless communications, IEEE Sarnoff Symposium Digest, March 2001.

[Peacock 2005] T. Peacock, P. Y. A. Ryan, Coercion-resistance as Opacity in Voting Systems, School of
Computing Science Technical Report CS-TR: 959, Newcastle University, Apr 2006

[Pease et al., 1980] Pease, M., Shostak, R., and Lamport, L. (1980). Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228-234.

[Pedone et al., 2002] Pedone, F., Schiper, A., Urb’an, P., and Cavin, D. (2002). Solving agreement problems
with weak ordering oracles. In Proceedings of the Fourth European Dependable Computing Conference,
pages 44-61.

[Peteron 1983] Peterson G.L., Concurrent Reading while Writing. ACM Transactions on Programming
Languages and Systems, 5(1):46-55, 1983.

[Pizza et al. 1988] M. Pizza, L. Strigini, A. Bondavalli, and F. Di Giandomenico. Optimal discrimination
between transient and permanent faults. In 3rd IEEE High Assurance System Engineering Symposium,
pages 214-223, Bethesda, MD, USA, 1998.

[Powell et al. 1999] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi, E. Jenn, C.
Rabjac and A. Wellings, “GUARDS: A Generic Upgradable Architecture for Real-Time Dependable
Systems,” IEEE Trans. on Parallel and Distributed Systems, 10(6), pp. 580-599, Jun. 1999.

[Powell, 1992] Powell, D. (1992). Fault assumptions and assumption coverage. In Proceedings of the 22nd
IEEE International Symposium of Fault-Tolerant Computing.

[Preparata et al. 1967] F.P. Preparata, G. Metze and R.T. Chien, “On the Connection Assignment Problem of
Diagnosable Systems,” IEEE Trans. on ElectronicComputers, 16(12), pp. 848-854, Dec. 1967.

[Punchscan 2006] Punchscan, http://punchscan.org/

[Quinlan and Dorward, 2002] Quinlan, S. and Dorward, S. (2002). Venti: a new approach to archival
storage. In Proceedings of the First USENIX Conference on File and Storage Technologies, pages 89-101,
Monterey,CA.

[Rabin, 1983] Rabin, M. O. (1983). Randomized Byzantine generals. In Proceedings of the 24th Annual
IEEE Symposium on Foundations of Computer Science, pages 403—409.

[Randell 2005] B. Randell and P.Y.A. Ryan, Voting Technologies and Trust, School of Computing Science,
Technical Report CS-TR: 911, Newcastle University, 2005.

[Randriamaro et al., 2006] Randriamaro, C., Soyez, O., Utard, G., and Wlazinski, F. (2006). Data
distribution in a peer to peer storage system. Journal of Grid Computing (JoGC), Special issue on Global and
Peer-to-Peer Computing, Springer,Lecture Notes in Computer Science.

[Raynal 2002] Raynal M., Wait-Free Objects for Real-Time Systems. Proc. 5th Int’l IEEE Symposium on
Object- Oriented Real-Time Distributed Computing (ISORC’02), pp. 413-420,Washington DC, 2002.

RESIST D12 algop 11300

Part Algo References

[Raynal 2004] Raynal M., The Renaming Problem as an Introduction to Structures forWait-free Computing.
Proc. 7th Int’l Conference on Parallel Computing Technologies (PaCT’03), Springer Verlag LNCS #2763,
pp. 151-164, 2003.

[Raynal and Travers 2006] Raynal M. and Travers C., In search of the holy grail: Looking for the
weakest failure detector for wait-free set agreement. Invited paper. Proc. 12th Int’l Conference on
Principles of Distributed Systems, (OPODIS’06), To appear in Springer Verlag LNCS, 2006.

[Reiter, 1996] Reiter, M. K. (1996). A secure group membership protocol. IEEE Transactions on Software
Engineering, 22(1):31-42.

[Rivest 2006] http://theory.csail.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf

[Romano et al. 2002] L. Romano, S. Chiaradonna, A. Bondavalli, and D. Cotroneo, “Implementation of
Threshold-Based Diagnostic Mechanisms for COTS-Based Applications,” Proc. 21st IEEE Symp. Reliable
Distributed Systems (SRDS 2002), 2002.

[Rowstron and Druschel, 2001] Rowstron, A. and Druschel, P. (2001). Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility.

[Rubel, 2005] Rubel, M. (2005). Rsnapshot: a remote filesystem snapshot utility based on rsync.

[Ryan 2005] P. Y. A. Ryan and T. Peacock, Prét a Voter: a Systems Perspective, School of Computing
Science Technical Report CS-TR:929, Newcastle University, 2005

[Ryan and Schneider 2006] P.Y.A. Ryan and S. A. Schneider, Prét a Voter with Re-encryption Mixes,
School of Computing Science Technical Report CS-TR: 956, Newcastle University, 2006.

[Ryan, to appear] P. Y A Ryan, The Prét a Voter Scheme for Voter-verifiable Elections, School of
Computing Science Technical Report, Newcastle University, to appear.

[Schlosser and Kamvar 2002] M. Schlosser and S. Kamvar, “Simulating a file-sharing p2p network”, In
Proceedings of the First Workshop on Semantics in P2P and Grid Computing, 2002.

[Schneider 1993] Schneider F.B., What Good are Models and what Models are Good? Chapter 2, Distributed
Systems (2nd edition), Addison-Wesley and ACM Press, pp. 15-26, 1993.

[Schneider, 1990] Schneider, F. B. (1990). Implementing faul-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299-319.

[Sengupta and Dahbura 1992] A. Sengupta, A. Dahbura, “On Self-Diagnosable Multiprocessor Systems:
Diagnosis by the Comparison Approach,” IEEE Trans. OnComputers, 41(11), pp. 1386—1396, Nov 1992.

[Shin and Ramanathan 1987] K. Shin, P. Ramanathan, “Diagnosis of Processors with Byzantine Faults in a
Distributed Computing System,” Proc. of FTCS-17, pp. 55-60, 1987.

[Shokrollahi, 2003] Shokrollahi, A. (2003). Raptor codes.

[Siewiorek and Swarz 1998] D. P. Siewiorek and R. S. Swarz, “Reliable Computer Systems — Design and
Evaluation”, A. K. Peters, Ltd.

[Sit et al., 2003] Sit, E., Cates, J., and Cox, R. (2003). A DHT-based backup system. Technical report, MIT
Laboratory for Computer Science.

RESIST D12 algo p 1140

Part Algo References

[Spainhower et al. 1992] L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding, *Design for Fault-
Tolerance in System ES/9000 Model 900,° Proc. 22nd IEEE FTCS - Int'l Symp. Fault-Tolerant Computing,
pp. 38-47, 1992.

[Stinson 2005] D. Stinson, Cryptography Theory and Practice, Chapman & Hall, 2005.

[Terada et al. 2004] M. Terada, M. Iguchi, M. Hanadate, and K. Fujimura. An Optimistic Fair Exchange
Protocol for Trading Electronic Rights. In 6th Smart Card Research and Advanced Application conference
(CARDIS'2004), 2004.

[Ting and Deters 2003] N. S. Ting, R. Deters, “3LS - A Peer-to-Peer Network Simulator”, IEEE
International Conference on Peer-to-Peer Computing, 2003.

[Toueg, 1984] Toueg, S. (1984). Randomized Byzantine agreements. In Proceedings of the 3rd ACM
Symposium on Principles of Distributed Computing, pages 163—178.

[Turpin and Coan, 1984] Turpin, R. and Coan, B. A. (1984). Extending binary Byzantine agreement to
multivalued Byzantine agreement. Information Processing Letters, 18(2):73-76.

[Verissimo et al., 2003] Verissimo, P., Neves, N. F., and Correia, M. (2003). Intrusion-tolerant architectures:
Concepts and design. In Lemos, R., Gacek, C., and Romanovsky, A., editors, Architecting Dependable
Systems, volume 2677 of Lecture Notes in Computer Science, pages 3—36. Springer-Verlag.

[Verissimo, 2003] Verissimo, P. (2003). Uncertainty and predictability: Can they be reconciled? In Future
Directions in Distributed Computing, volume 2584 of Lecture Notes in Computer Science, pages 108—113.
Springer-Verlag.

[Verissimo, 2006] Verissimo, P. (2006). Travelling through wormholes: A new look at distributed systems
models. SIGACT News, 37(1):66-81.

[Vogt et al. 2001] H. Vogt, H. Pagnia, and F. C. Gértner. Using Smart cards for Fair-Exchange.
WELCOM 2001, LNCS 2232, Springer, pp. 101-113, 2001. http://citeseer.ist.psu.edu/vogt0lusing.html

[Voulgaris et al. 2005] S. Voulgaris, D. Gavidia and M. van Steen, "CYCLON: Inexpensive Membership
Management for Unstructured P2P Overlays”, Journal of Network and Systems Management, Vol. 13, No. 2,
June 2005

[Walter et al. 1994] C. Walter, M.M. Hugue and N. Suri, “Continual On-line Diagnosis of Hybrid Faults,”
Proc. of DCCA-4, pp. 150-166, 1994.

[Walter et al. 1997] C. Walter, P. Lincoln, N. Suri, “Formally Verified On-line Diagnosis,” IEEE Trans. On
Software Engineering, 23(11), pp. 684—721, Nov. 1997.

[Weatherspoon and Kubiatowicz, 2002] Weatherspoon, H. and Kubiatowicz, J. (2002). Erasure coding vs.
replication: A quantitative comparison. In Proceedings of the First International Workshop on Peer-to-Peer
Systems.

[You et al., 2005] You, L. L., Pollack, K. T., , and Long, D. D. E. (2005). Deep Store: an archival storage
system architecture. In Proceedings of the 21st International Conference on Data Engineering (ICDE 2005),
pages 804-815, Tokyo, Japan. IEEE.

RESIST D12 algop 1150

Part Algo References

[Zhong et al. 2003] S. Zhong, J. Chen, Y. R. Yang, “Sprite: A Simple, Cheat-Proof, Credit-Based
System for Mobile Ad-Hoc Networks”, INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies.

[Zielinski, 2004] Zielinski, P. (2004). Paxos at war. Technical Report UCAM-CL-TR-593, University of
Cambridge Computer Laboratory, Cambridge, UK.

RESIST D12 algop 1160

Part Socio — Resilient Socio-Technical Systems

Co-ordinator: Michael Harrison

Contributors: Eugenio Alberdi®, Sandra Basnyat*, Roberto Bonato?, Remi Bastide®*, Giorgio
Faconti®, Jeremie Guiochet®, Michael Harrison’, Philippe Palanque”, Alberto Pasquini?, Birgit
Pfitzmann®, Lorenzo Strigini*, Mark Sujan’, Marco Winckler*

LCity University, London; 2Deep Blue; *IBM Zurich, “IRIT University Toulouse; *ISTI Pisa;
*LAAS Toulouse; 7University of Newcastle

Definition of a socio-technical system

A socio-technical system is a system comprising humans interacting with technology. The term is used in the
context of an approach to complex work design and assessment that accounts for the interaction between
people and technology: the design of the technical component of a system is informed by human/social
related characteristics that contribute to identify choices and that influence the technical development.
Devices are simply the technical components of the socio-technical system, for example, the flight
management systems or the medical advisory systems that are conventionally the subject of software or
hardware development. These devices must be designed to operate resiliently within the broader socio-
technical system and these systems typically consist of many and varied such devices. Within Part Socio, the
term "system" will be used to refer to socio-technical system.

Introduction

This section identifies general topics relevant to the modelling and analysis of resilience in systems. It
focuses specifically on topics that have been the concern of the ResIST network of excellence. We bring
these topics together here to emphasise some of the distinctive human and organisational issues that are at
stake here. The document discusses different phases of a putative process for the analysis, design and
implementation of systems. Inevitably there are omissions and biases in its content — our aim is to provide a
context for understanding the knowledge about the variety of techniques that are available within the
network of excellence rather than providing a general framework. Topics from human factors or ergonomics
such as display design and technical concerns such as the effectiveness of different kinds of pointing device
in different task contexts will be omitted from this discussion. The importance of these activities is
recognised, however focus is given to topics that are based on the expertise of ResIST and in some sense go
beyond these topics. Section 2 briefly discusses a number of techniques that have been and are being
developed for the study of systems, providing material that enables designers and implementers to establish
the requirements for a new system. It focuses on the techniques for representing the tasks, devices and
systems to make them tractable to analysis. Section 3 discusses systematic, structured but in some cases
informal techniques for the analysis of aspects of systems to enable the formation of more resilient designs.
This section then summarises quantitative techniques for the analysis of an installed system and for
assessment of the ongoing evolution of the design of the socio-technical system.

RESIST D12 socio p 2

1 — Understanding the structure and organisation of socio-technical
systems: representation and modelling

1.1. Elicitation and observation

Many architectural and organisational issues have an impact on the resilience of systems. This section
focuses on methods of elicitation techniques used to comprehend systems based on observation, techniques
that can be used to gain an understanding of the system prior to modelling it. An essential element during the
design, analysis and evaluation of systems is a clear understanding of the roles and tasks of the humans who
are embedded within it (users, operators, maintainers, etc.). Many techniques have been proposed to
understand these roles and tasks through the observation and analysis of humans at work [Jonassen et al.
1999]. Observation may be difficult when designing new systems. However, the most common case when
such techniques are used is when design is for up-grading and enhancing of an existing system. In this case
analysis will regard the tasks performed within the existing system. When the system must be designed from
scratch, this is done usually to automate the manual activity of an existing process. In this case the
observation is conducted on the "non-automated" tasks that still represent a valuable source of information.
A variety of techniques are available including those inspired by ethnographic techniques, see for example
"Contextual Inquiry" [Beyer and Holtzblatt 1998] as well as the use of techniques such as activity theory and
other holistic approaches [Pasquini et al. 2000]. Many of these techniques involve the analyst working
alongside or acting as an apprentice to someone involved in the work being observed, others involve
techniques using video data or interviewing people involved in their activities.

Once an understanding of the system has been gained it becomes possible to represent elements of the
system for the purposes of implementation and analysis.

Task analysis techniques also represent a systematic method for this observational and analysis work,
enabling a rigorous, structured characterization of user activity. Hierarchical Task Analysis (HTA) is the
most popular and flexible of the task analysis techniques [Diaper and Stanton 2003]. Here work is
represented in terms of the goals, sub-goals, actions and plans that are observed of the activity. These task
components are then graphically represented using a structure chart. HTA entails identifying tasks,
categorizing them, identifying the subtasks, and checking the overall accuracy of the model. [Vicente 1999]
contains an excellent critique of task analysis techniques. He proposes as a complement to task descriptions a
variety of techniques (Cognitive Work Analysis) for identifying the structure of the organisation in terms of
two hierarchies (a means-ends hierarchy and an object orientated hierarchy). These describe and analyse
what is to be achieved and the means by which it is achieved. He also proposes the identification of
strategies adopted by users and typical scenarios of use, and a less constrained and prescriptive approach to

RESIST D12 sociop 3

Part Socio 1 — Understanding the structure and organisation of socio-technical system

capturing the work that people do — instead of sequences of actions, the user’s activity is understood in terms
of a number of constraints that govern the way that the work is performed. Less complicated and more
practical techniques used in Human Computer Interaction include scenario analysis (see, for example,
[Rosson and Carroll 2002]). This technique captures activity in context as stories or narratives as gathered
from existing users of the device. Here narrative descriptions of typical or extreme system behaviours are
employed as a basis for analysis.

Cognitive techniques aim to overcome the overly restricted scope of HTA especially when tasks are more
intricate, knowledge-intensive, and subject to increasingly integrated forms of technological support, as in
modern, complex, socio technical systems [Chipman and Shalin 2000]. Cognitive techniques demand a
strong interaction with experts of the domain investigated, to understand the knowledge embedded in the
tasks that are carried out. They are supported by a range of techniques such as structured interviews
[Hoffman et al. 1995], naturalistic observation [Gordon and Gill 1997], and ethnography [Roth and Patterson
2000]. The scope of cognitive techniques is to define a coherent knowledge representation for the domain
being studied, expressing it in terms, for example, of a semantic network or a goal/method graph [Gordon
and Gill 1997]. Activity theory takes a more holistic view of the human work and models people as agents,
rather than as collections of cognitive attributes [Bannon 1991]. In contrast to traditional task analysis it uses
a higher level of analysis, considering "activity," rather than tasks.

From a different perspective, explorations of rules and procedures and their effect in organisations is a broad
topic of study. This is represented within the network by IBM Research [Giblin et al. 2005]. Recent years
have seen a number of high-profile incidents of corporate accounting fraud, security violations, terrorist acts,
and disruptions of major financial markets. This has led to a proliferation of new regulations that directly
impact businesses. As a result, businesses, in particular publicly traded companies, face the daunting task of
complying with an increasing number of intricate and constantly evolving regulations. Together with the
growing complexity of today's enterprises this requires a holistic compliance management approach with the
goal of continually increasing automation. IBM Research has introduced REALM (Regulations Expressed as
Logical Models), a meta-model and method for modelling regulations and managing them in a systematic
lifecycle within an enterprise [Giblin et al. 2005]. Regulatory requirements are formalized as sets of
compliance rules in a novel real-time temporal object logic over concept models in UML, together with
metadata for traceability. REALM provides the basis for subsequent model transformations, deployment, and
continuous monitoring and enforcement of compliance in real business processes and IT systems.

Formal notations and processes for software representation have been employed by members of ResIST to
capture some elements of systems and in some cases this has involved some extension to these techniques.

1.2. Modelling the task

ISTI have developed a notation, CTT (ConcurTaskTrees) [Paterno 1999], that has been used extensively by a
number of groups including IRIT. This notation, based on LOTOS (Language of Temporal Ordering
Specification), permits the representation of concurrent tasks and identification of agency with action.
[Navarre et al. 2001] have integrated CTT with their ICO (Interactive Cooperative Objects) formalism. These
techniques are useful for decomposing complex tasks, but have a narrow view of task. These representations
tend to focus on what people do, rather than why they do it, and are only useful when there is a clear, well
understood goal for the human activity.

RESIST D12 sociop 4

Part Socio 1 — Understanding the structure and organisation of socio-technical system

1.3. Modelling the device

The purpose here has been to produce models that have value from a usability point of view as elaborated in
the agendas established in [Harrison et al. 1989], [Harrison et al. 1993] and to check whether these device
models respect properties that ensure usability of the device. All of the approaches therefore make use of
existing formal techniques. The innovation in the context of socio-technical systems is the way in which the
specification or models are structured, the concepts that are modelled and the properties that are articulated
using the notational frameworks. The initial perspective was that, with the help of psychologists, it would be
possible to explore the role that these properties played as general characteristics of interactive systems. In
practice an understanding of context is an important prerequisite to identifying the particular characteristics
and purpose of the system in which the device is embedded. Both ISTI and Newcastle nodes have been
concerned with the specification of building “bricks” in devices (referred to as interactors). The aim of
interactors is to structure specifications to emphasise those aspects of the device of value from the point of
view of the whole system — how the device is used within the system. This work was initially done by
Faconti and Paterno using LOTOS. Duke and Harrison explored a variety of other specification techniques
(Z, MAL and VDM). The relationship between these different techniques is described in [Duke et al. 1994].
An alternative strand of research with similar goals has been the development of interactor like structures for
statechart based specifications [Degani 1996]. Alternative approaches to modelling devices have included
work within ISTI [Faconti and Massink 1998] in particular using LOTOS [Faconti and Massink 1997] and
Petri nets linked to objects [Bastide and Palanque 1990]. Further exploration of the scope of modelling
techniques has been carried out using a hybrid notation of Petri nets and a simple notation for describing
continuous flow to represent the hybrid aspects of interaction techniques within virtual environments
[Willans and Harrison 2001]. Other work has involved the modelling of time, beginning with [Bowman et al.
1998] and concerned with dynamic function scheduling in [Loer et al. 2004]. The latter activity has been
concerned with modelling the way that a system is automated deciding the design of the devices that are to
be used within the system. IRIT in particular has been concerned with resilience-explicit aspects of both
system and devices through explicit modelling of barriers against undesired events, to aid the safety
assessment of systems [Basnyat et al. Submitted]; [Schupp et al. 2006]; [Basnyat and Palanque 2006]
(see also section 3 on safety assessment).

Recent research has been concerned with supporting the requirements of a particular branch of the airspace
industry by adopting Statecharts. In this work a particular focus has been the development of a tool that eases
the formulation of usability requirements in Computational Tree Logic (CTL) [Loer and Harrison, 2006] in
the context of the development and analysis of the moding of a mobile device for process control as well as
specifications of interface standards for cockpit devices [Barboni et al. 2006a], [Campos and Harrison
2001].

RESIST D12 sociop 5

Part Socio 1 — Understanding the structure and organisation of socio-technical system

Application Domains

Air Traffic Control X

Military Cockpits X

Civil Cockpits X

Cockpits DCSC X X
Health/hospital

Built Environment X X X

Mining Case Study

Satellite Control Rooms X X

Requirements Tasks Modeling Devices Modeling User Modeling Location/context Modeling

Development Phases

Table 1. Knowledge gathered by Working Group Socio members related to the application domain

and development phases

Table 1 illustrates many of the phases of the development process (not evaluation and assessment) and some
of the domains of application that have been addressed by ResIST participants. A number of domains have
been covered at some level of detail. The table indicates that the work represented has been less concerned
with the whole process of development, identifying requirements and modelling system elements including
tasks and context that capture requirements before modelling the process than describing how different
stages of the process can be dealt with using different approaches and notations. Two projects involving
members of ResIST have explored reference frameworks designed to make it easier for implementers of
interactive systems to understand the properties and characteristics of their systems and thus deal with the
whole development process. The TACIT network produced a taxonomy concerned with identifying the
special properties of “continuous interaction” [Massink and Faconti 2002]. This taxonomy was concerned
with interaction that involves both discrete and continuous elements using mouse clicks and keystrokes but
also using haptic properties of the interaction and using characteristics and shapes of gestures. Systems have
also been modelled as layers, understanding interaction at a number of levels of detail, much like the
protocol layers familiar in other branches of computer science [Barnard et al. 2000]. The aim of structuring
the interaction in several layers of abstraction is to reduce analysis complexity.

Since the requirement for experiment and exploration of the device in use is so important ResIST members
have inevitably been concerned with prototyping device models. The integration of formal device modelling
(using ICOs) and implementation and rapid prototyping has been explored through a number of concrete
examples, for example [Winckler and Palanque 2003] in relation to web applications and [Bastide et al.
2002]. in relation to air traffic control en-route workstations. Such connection between prototyping and
modelling provides a way of addressing, within the same framework, both usability and reliability concerns
that are key design issues of safety critical socio technical systems [Navarre et al. 2002]. Similar techniques
have been used to model and prototype interaction techniques combining continuous and discrete
components [Willans and Harrison 2001].

RESIST D12 socio p 6

Part Socio 1 — Understanding the structure and organisation of socio-technical system

1.4. Modelling the user (syndetic modelling)

The term 'syndetic modelling' denotes an approach to reasoning about interaction developed within the
interdisciplinary project AMODEUS [Duke et al. 1998]. A cognitive model, using cognitive theory,
representing features of the user is combined with a device model. The models are described using a
common (formal) representation to allow description of and reasoning about the interaction between human
and computer agents. Syndetic modelling reconciles two different views by developing two complementary
models using the same specification technique, using a notation that is familiar to formal software engineers.
In [Duke et al. 1998] the cognitive theory is based on an approach called Integrated Cognitive Subsystems
(ICS). The device model focuses on user interactive properties. This representational framework can
accommodate both the information carried and presented by the system, and that perceived and understood
by the user. It makes the simplifying assumption that a system can be characterised simply as a dyad: a
device and a user.

The model is as correct as the theory that is captured by the user specification. Interaction techniques can be
exported across environments as long as one stays with the same theory. This is shown for example in [Duke
1995], [Faconti and Duke 1996], [Faconti 1996], and [Bowman and Faconti 1996].

In [Palanque and Bastide 1995] formal description techniques are used to check data and behavioural
compatibility between task models and device models. [Palanque et al. 1997] relate requirements models
expressed in temporal logics to tasks and device models.

1.5. Open issues

There are a number of open issues relating to resilience in socio-technical systems. These issues have an
impact on how we evaluate these systems and the kinds of models that are appropriate to their analysis and
implementation.

1. How do we identify, through observation, the “resilience” behaviour of the system to reflect these
characteristics through appropriate models. While there are many useful references to types of errors, see
for example individual errors [Reason 1990] and also organisational errors [Reason 1997], the propensities
towards these behaviours is more difficult to assess. This may be a process of understanding the
“disturbances” or “mismatches” that typically occur within human processes but are usually recovered from.
2. How do we understand the redundancy and diversity mechanisms that make systems “high reliability
organisations”, where is there potential for propagation of failure throughout the organisation and how can
these failures be recovered from and barriers used to prevent these failures from propagating? There is an
extensive literature about the advantages and limits of redundancy and diversity in social and socio-technical
systems. For example, much attention has been given by social scientists to “High Reliability
Organizations”, with descriptions that often emphasise the usefulness of checks and balances, the availability
of people to take on tasks when required to correct for failures, etc. However, this mostly descriptive
literature falls short of answering the important questions, such as how to decide before operation whether a
certain form of added redundancy will actually be effective or cost-effective in improving the overall
resilience and dependability of the socio-technical system. A more extensive critique with a short review of
such literature is in [Marais et al. 2004]. [Sagan 2004] lists reasons why adding redundancy to an
organisation may not improve its resilience, which he summarises in a non-exhaustive list as “common-mode

RESIST D12 sociop 7

Part Socio 1 — Understanding the structure and organisation of socio-technical system

failures”, “social shirking” (the fact that knowledge of sharing a responsibility with others makes people less
likely to take action to fulfil it) and “overcompensation” (the fact that if people attempt to exploit the
presence of risk reduction mechanisms to improve performance without decreasing risk, they may make
mistakes and actually increase risk compared to what they accepted without the risk reduction mechanisms).
But this paper, too, is a valuable invitation to caution against trusting intuition when dealing with subtle
design issues, not a technical contribution to methods for analysing these issues. Evaluation of diversity in
general is discussed in Part Eval of this document. It is worth recalling here some of the special difficulties
that affect it (and thus the rational design of redundancy and diversity) in socio-technical systems. These are
linked to the common problem of people exhibiting more variation of behaviour (between different people,
and different instances of behaviour of the same person) than many technical components, and to the specific
fact that the characteristics of their behaviour are affected by their perception of the system of which they are
parts.

3. How do we understand the difference between work as envisaged and work as practised. [Dekker 2006]
highlights the difference (which may be substantial) between operations as management imagines them and
how these operations are actually carried out. Often leadership may not be tuned in to the challenges and
risks encountered in real operations. Supervisors may be convinced that safety and success result from
workers following procedures. But workers may encounter problems for which the right tools are not at hand
and face severe time constraints. In such cases workers need to adapt, invent compromise and improvise to
get the job done in spite of resource limitations, organizational dilemmas, and pressures. From the outside
such informal work systems can be characterised as routine violations of procedures (perceived as ‘unsafe’);
but, from the inside such violations are a mark of expertise. Informal work systems thrive because
procedures are inadequate to cope with local challenges and surprises. However resilience thus built,
invisible to management, is vulnerable to unusual events that go beyond the knowledge and experience of
the workers, and make any organisational changes more difficult to accomplish and failure prone.

4. How do we monitor organisations in order to understand their ongoing performance? [Wreathall 2006]
notes that organisations constantly struggle to understand how they are performing with regard to safety and
try to measure their safety performance. Some of the most common approaches involve recording and
measuring trends associated with safety outcomes and using some kinds of performance models and data-
based evaluations of safety performance. But these are very limited sources of operational management
information. On the one hand, historic data will always be out of date as a measure of today’s performance
since data are from relatively rare events and almost always aggregated over long periods of time. On the
other hand the current practice of Probabilistic Safety Assessment and other current modelling techniques are
static interpretations of how accidents occur. They neglect the complexity and interactions seen in complex
accidents.

What are required are data that allow the organization’s management to know the current ‘state of play’ of
the safety performance within the organization. Work has started to develop indicators of organisational
performance that can be of value in this respect. This approach looks for data both at the working level and
in organizational behaviours that can have set them up to have vulnerabilities. This requires multidisciplinary
efforts to integrate activities such as:

e data analysis related to safety culture and climate and understanding how they relate to performance
e observations of how work is carried out in the real world
¢ the timing and extent of resources that are necessary for “harm absorption”

o how work processes and human behaviour act to make safety better through individual and small team
activities

RESIST D12 sociop 8

Part Socio 1 — Understanding the structure and organisation of socio-technical system

e improved understanding of decision making when it relates to sacrificing production goals to safety
goals

5. How do we understand the impact of a system’s evolution? There is little relevant research that concerns
the analysis and prediction of behaviour of socio-technical systems in the face of system evolution. This
issue is discussed by [Sujan et al. 2006a] in the context of healthcare systems. Here two examples are given,
one concerns the introduction of new technology, the other an organisational change. The ability to predict
the resilience of a system in the face of system evolution is an open issue that we see as a gap for further
exploration.

RESIST D12 sociop 9

2 — Evaluation and verification issues in resilience in socio-technical
systems

Introduction

Evaluating the resilience, dependability or quality of service of a system, including a socio-technical system,
implies:

o taking a whole-system viewpoint, i.e., evaluating not how well individual components or algorithms
inside the system work, but how well the whole system works as an effect of their co-operation,
interference, redundancy, etc. (this forms the basis for the discussion of this section).

e (giving a quantitative estimation; not necessarily precise numbers (“the expected reduction in the
number of lives saved by this medical tool because of failures is 2.5 per year per 1000 patients™), but
intervals or orderings (“introducing this medical tool can be trusted with high confidence to reduce
the number of deaths in the category of patients affected”).

This section focuses on systematic analyses, considering how a number of types of models can be used as a
basis for exploring a system ranging from descriptive models using a variety of levels of formality and
rigour to quantitative and probabilistic models. It discusses a variety of topics in the evaluation and analysis
of systems. The techniques described vary between the informal and structured approaches, function
allocation and human error identification and more systematic and mathematically based analyses of models
of interactive systems. Section 2.2 discusses function allocation techniques in the context of automation. We
discuss the problem of automation and methods that support decision about how a system should be
automated. In section 2.3 we give consideration to issues of system evaluation. Usability evaluation has
evolved in response to awareness of deficiencies in human computer interaction, i.e., of the possibility of
substantially reducing operator errors by more careful design of the user interface of automated components.
Additionally, improving performance and users’ comfort are also targets of this kind of evaluation.
Consequently usability evaluation has typically focused on identifying problems and possibilities of
improvement; it is thus a useful part of the modelling towards quantitative evaluation. A limitation from the
ReslIST viewpoint has been its focus on the device. The device model must be complemented with models of
aspects of the system, that enable an analysis or assessment of the effects of the user or the physical context.
Safety assessment (section 2.4) has been a required engineering activity in many industrial sectors for a long
time. Therefore, several different, well-established forms of process exist to accomplish it in different
industrial cultures, which deal in different ways (often unsatisfactory) with the difficulties presented by the
complexity of the task and specifically by the human factors involved. Section 2.5 focuses on issues with the

RESIST D12 socio p 10

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

formal verification of interactive systems, checking that device and system models of the proposed design
incorporate requirements relating to its use.

A further subsection (2.6) deals with issues in the quantitative evaluation of socio-technical systems. The
simplest case of evaluation is retrospective, how a system has behaved, e.g., counting service failures, or
measuring their cost, at the end of a period of operation of the socio-technical system. Such evaluation may
for instance resolve litigation as to how good a service a company has provided. But most often, useful
evaluation work is a matter of predicting the future, or hypothetical futures, to support decision making by
answering questions like:

¢ s this system good enough to deploy?

o if | deploy this system, what amount of loss, of preventive maintenance, of ... do | need to plan
for?

o of these two systems that | could deploy, which one will be better?

As for other systems, these prediction tasks generally require knowledge integration and analyses of
different kinds. Two structures of argument are common in reliability engineering in general:

o clear-box models combining descriptions of how the system components may fail, how each
component’s failure would affect the rest of the system, and what kind of redundancy exists to
tolerate them, together with estimates of the probabilities of the various combinations of such
events;

o Dblack-box models that consider retrospective evaluation of a system together with an assessment
of the extent to which its future behaviour may differ from the past, because of changes in either
the system or its environment (a special category of these is so called “reliability growth
modelling”: trend extrapolation). This latter form, even if not used at whole-system level, is
usually the basis for the component-level evaluations needed as inputs to the clear-box approach.

It is commonly acknowledged that both forms of evaluation present special difficulties for socio-technical
systems. The current ability to evaluate such systems is widely seen as unsatisfactory. It is difficult to turn
available evidence about a system into a cogent argument about foreseeable levels for measures of its
resilience, dependability or quality of service. In part, these deficiencies call for better ability to manage
complex “cases”, handling properly all the evidence pertinent to the problem (compare Part Eval of this
deliverable); in part, for better techniques, or more complete empirical knowledge to fit into them. The goal
is to describe the uncertainty about the future of a system in terms that are as clear and correct as feasible,
although this uncertainty cannot be eliminated and may well remain substantial.

Finally this section briefly discusses various general issues and difficulties with system evaluation.

2.1. Automation and function allocation

Function Allocation is driven by several, partly conflicting, motivations. Automation promises to extend or
support human performance, to compensate for human performance deficits, to relieve the human of routine
tasks, or to replace the human altogether. At the same time, it transforms the role of the human from a hands-
on controller to that of a strategic decision-maker and supervisory controller of an ever-increasing multitude
of functions. The operator may have to switch between functions, react to unforeseen events or demands, and
compensate for automation failures. To fulfil this role, the human needs to be kept informed of, and involved
in, the operation of the system. Consistent and transparent automation behaviour can help to maintain the
compatibility of the operation strategies of the human and the automation, whereas mismatches between
these strategies can lead to failure. The challenge for automation designers lies in providing automation that

RESIST D12 sociop 11

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

can act rapidly and dependably under hard deadlines, while allowing the human to control, configure or
intervene in the operation of the system.

Function allocation is about trade-offs between technology, the human performance of tasks in a system and
the assignment of functions to one or more generic system elements [Pressman 1992]. It takes place early
during the design phase of a system while the different design options are being synthesised and evaluated.
In many system engineering methods the allocation of function is glossed over, and when it is mentioned it
is primarily concerned with the allocation between software and hardware and not between humans and
machines. As a result of this, allocation decisions tend to be based solely upon engineering criteria (such as
‘Is this feasible?’” or ‘How much will it cost?”) and not on human factors issues (such as ‘What will be the
impact upon the operator’s ability to maintain situational awareness if this function is automated?’).

Inappropriate use of automation and inappropriate division of functionality between humans and machines
can result in undesirable system characteristics. It is now widely recognised that simply automating
everything possible results in systems that are difficult for their operators to use. Operators can find
themselves asking questions such as ‘What is it doing now?’ and ‘Why is it doing that?’ Inappropriate
automation can also lead to degradation of operators’ skills due to their lack of use, and it can even decrease
the ability of the operators to respond to an unexpected event. This happens because inappropriate
automation prevents the operators from actively participating in the running of the system, and therefore they
have little awareness of the current system state when the unexpected event occurs. Many accidents have
been documented where inappropriate use of automation has been a primary contributory factor. Even
though the allocation of functions is not an explicit step in most system engineering methods, there has to be
a point during the development of every system where the decision about the allocation of functions and the
various consequential trade-offs are made. The assumption most system engineering methods seem to make
is that the designers simply know what tasks are best performed by the machine and what are best performed
by the operator, but experience shows that for complex interactive systems this assumption is not a valid one.
The rapid advance in computer technology makes it possible for designers to provide levels of automation
that totally change the relationship between the operator and the machine, and they are under pressure to
ensure that they take full advantage of the benefits that this can bring. The development of a complex
interactive system requires the designer to carefully consider the possible implications of the proposed
automation. One approach to doing this is to use a function allocation method, designed to aid in the
production of systems with an appropriate use of automation.

Function allocation methods give the designer guidance, based upon a chosen set of decision criteria, as to
what level of automation should be used. The traditional question of function allocation is “To which agent,
human or machine, should we allocate this function?”. The early work of Fitts and allocation approaches
using MABA-MABA (Men are better at ... Machines are better at ...) lists are typically restricted to
considerations of performance [Fitts 1951]. It became apparent that many functions in a complex system
require the sharing of the function between the human and machine. Such sharing may take place in many
different ways. Billings identifies 5 different levels of automation between totally manually operated by the
human and fully autonomous operation by the machine [Billings 1996]. Sheridan & Verplanck offer a set of
8 intermediate levels that can occur in supervisory control systems [Sheridan and Verplanck 1978]. The
IDA-S framework offers a potential 43,046,721 levels of automation [Dearden et al. 2000]. Figure 1
presents the flow of the method behind such a framework. The process starts by listing system functions and
then exploits usage scenarios as a structuring means for identifying potential candidates to automation. Cost-
benefit trade-offs are used to assess the potential impact of such automation. One important aspect is the
identification of emergent tasks/scenarios that emerge rather than being designed as a result of the systems

RESIST D12 socio p 12

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

modification. Automation trade-offs can be understood by exploring the role and the user by investigating
user activity described in terms of scenarios that have been understood as activation of user tasks. System
allocation decisions may themselves influence user tasks. The method therefore concludes by requiring a
more global (at least over all the scenarios) assessment of the impact of the given function allocation
decisions.

There has been a steady increase in the number of criteria that may be applied in making function allocation
decisions, see [Johnson et al. 2001] for a review of current methods, and [Harrison et al. 2003] for
considerations about how to integrate function allocation into systems / software engineering techniques in
the context of a ship based navigation system. The process involves a decision procedure in which trade-offs
involve notions such as workload, situation awareness and human performance against cost of implementing
the technology required for the automation and how it should match to roles designed for the human
operators. Although this is not an explicit concern of these papers, it would make sense to consider further
issues such as issues of redundancy and diversity of alternative levels of automation.

| Identify System Function |

| Identify mandatory allocations |

| Define operator role |

| Construct scenarios |
A 4

Identify functions p» Select functions for total
required by the scenario automation

A 4

Identify possible allocations

For each for partial automation

scenario 4

Rate cost & benefits of
possible allocations for
partial automation

Identify emergent tasks v

Select functions for partial
automation

v L

Identify candidates for Refine existing - &
dynamic allocation construct additional -

scenarios
A 4 -

Review decisions and /

global trade-offs

Figure 1: Structure of the [Dearden et al. 2000] method.

Dynamic Function Allocation (DFA) addresses the problems of static allocation by providing multiple levels
of automation, and decision rules (potentially also automated) to switch between them at runtime. This
creates a workload balancing mechanism that makes the system more adaptive to a wide range of operational
parameters, as the agents — human(s) and automation — can supply mutual back-up in case of performance
degradation or changing demand characteristics. Changes in automation levels may occur as part of a
planned operation strategy (e.g., engage autopilot during cruise phase, disengage during take-off / landing),

RESIST D12 socio p 13

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

but most empirical studies in this area have been concerned with allocation switches as a reaction to
unforeseen events or workload changes, e.g., [Endsley and Kaber 1999]. It is important to notice that these
allocation decisions are dynamic in time, but in a form that is best described as “snapshot allocation”. At any
instant, the algorithm that chooses what automation is required (relying, for instance, on triggers from
critical-event monitoring, performance or physiological measurement) assesses the need for re-distribution of
functions and suggests or implements the required changes by moving up or down the automation scale.
Dynamic allocation for example recognises human operator workload to require the human operator to do
more or less work with the existing function. This relying on snapshot information helps to keep the
allocation decision computationally simple, but it also disconnects automation design considerations from
another important class of workload management strategies: for example the use of scheduling of activities.
These issues are discussed with examples in [Hildebrandt and Harrison 2002a]; [Hildebrandt and Harrison
2002b];[Hildebrandt and Harrison 2003];[Hildebrandt and Harrison 2004]. As the dynamic decision
algorithm implied in DFA becomes more complex it becomes more important that it also should be
considered to be a further candidate for automation. A careful analysis of the role of the operator is required
to support the most effective automation of the algorithm.

An important issue in the consideration of system automation is how the automation — the shifting of
functions from the user to the automation — may leads to unanticipated biases, i.e., systematic deviation of
the user’s behaviour from the desired behaviour. This topic is discussed in more detail in the review
[Alberdi et al. 2006].

2.2. Considering the user and usability evaluation

Usability problems might appear in different forms in the user interface, reducing the user performance with
the device, increasing the number of errors or having users being reluctant to use the device due to
uncomfortable/unpleasant interaction. In the last decades, the Human-Computer Interaction (HCI)
community has developed several methods to support sound and rigorous identification of usability
problems. Many approaches have been proposed to cope with the diversity of contexts in which evaluation
has to take place. Such methods may involve observation of users’ activity, inspection by a usability
specialist, simulation and/or prediction of usability problems based on models describing users’ expected
activity like, for instance, task models. One class of such methods, those that are model-based provide better
support for the design of interactive systems, for example by identifying usability problems in the early
phases of the development process thus reducing the time and development costs.

Quite often, usability evaluation methods must be adapted also to the idiosyncrasies of the system and the
device such as multimodal® user interfaces [Palanque et al. 2006], Web applications [Scapin et al. 2000],
[Winckler et al. 2004], information visualization techniques [Winckler et al. 2004], and so on.

In the context of ResIST, usability evaluation methods can be used to assess the resilience of socio-technical

systems. Indeed, generic expertise within the group of partners that can be fruitfully used includes:
e measurement of user performance while interacting with the system/components/devices,
e measurement of user cognitive load during task execution (which can have an impact on the
occurrence of human errors),
o gathering information as well as predicting user behaviour when confronted with a critical situation
(e.g., system error or malfunction)

! Multimodal interfaces require a combination of modalities, for example voice, gesture and keyboard interaction.

RESIST D12 socio p 14

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

e gathering information about the subjective perception of systems (for example, trust, comfort, ...).

Usability evaluation methods can be used for assessing many aspects of systems such as the user interaction
with devices (e.g., user performance with devices or combinations of devices, for example assessing the use
of modalities in such devices), with interaction components (for example pie menus, gesture interaction,
standard menus, and so on), and with the device itself (e.g., complex dialogue techniques used in 3D
environments).

The research conducted by IRIT is mainly focused on the development of model-based usability evaluation
methods with a particular emphasis on devices and has been applied to different application domains. A
recent study [Palanque et al. 2006] presented the use of a formal description technique for describing
multimodal interactive applications using the 1CO formal description technique for a “space ground segment
system” for satellite control. While these model-based techniques provide several benefits related to the
software engineering of such systems, they can also support the usability evaluation activities that are
usually considered external to the development process. This specific contribution provides a way of
integrating, within a single development framework, competing requirements like reliability and usability.

Connecting knowledge and practices in the field of human-computer interaction to the ones available in
software engineering is critical if usability and reliability aspects of the interactive systems design both have
to be addressed. Previous work [Palanque et al. 1999] proposed a way of integrating ergonomic rules with a
model-based development process. Other work, such as [Palanque and Paterno 2001], proposed a tool-
supported framework for integrating task models and device software models.

Another thread of work at IRIT includes methods that can be applied in the early phases of the development
process, thus reducing the costs of problems correction after the application has been implemented [Xiong et
al. 2006].

2.3. Safety assessment

In terms of a systematic approach to integrating human factors into system hazard analysis, there are a
number of techniques that can be applied (e.g., [Hollnagel 1998] [Kirwan 1994]). In doing so it is important
to address a number of dimensions which impact on usability, task performance and the behaviour of
complex heterogeneous systems. To assess the system safety it is first necessary to perform a background
analysis using the processes discussed in section 1, namely:

o Work and interface design—including user interfaces, procedural aspects, working materials. One
important aspect is whether the user’s mental model is supported by the device interface or whether
there are important divergences. Under stressful or unusual situations users will act according to how
the device might be expected to behave.

e Social aspects — including collaboration and communication models for operators and supervisors.
There have been cases, for example the redesign of control rooms, where the new system has failed
to address the social communication aspects of how the day-to-day work was done. The way people
communicate and act in a control room is often complex and subtle.

e Organisational context — including an assessment of the communication channels within an
organisation, safety culture, degree of interconnectivity between the different processes and
procedures, focus of safety management and, how tasks are delegated, initiated, interrupted and
terminated.

RESIST D12 socio p 15

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

e Impact of change — there is typically a gap between what is documented as official process and
actual process followed. The impact of change should address the actual work environment in
preference to the documented process.

Safety or dependability assessment is a process that involves the following steps:

e Hazard identification: in which the immediate causes of failure are identified through a process
involving a team systematically exploring the different elements of the domain.

e Cause-consequence analysis: in which a systematic analysis of the design is performed either using a
representation of the architecture of the system or a representation of the intended processes that the
system is expected to perform. Typically this process involves an “imaginative anticipation” of
possible errors associated with the design. Often the purpose of this design is to check that all
potential vulnerabilities in the design are “mitigated” against. This process involves providing an
argument why the system will prevent the specified hazard from occurring. In some cases, this is the
essence of one leg of a dependability argument. Cause consequence analysis may also be seen as
part of the design process. In this mode the method is iterative and should be performed as early as
possible in order that iterations and “barrier” designs may be produced at minimum cost to reduce
the system’s vulnerability to failure.

e As a result of the hazard analysis events or faults may be identified and through analysing these
events and faults vulnerabilities in the design of the system can be rectified. This identification may
be achieved either by performing a cause consequence analysis as described above or by identifying
scenarios that are particularly problematic because of the control mode or circumstances in which
the scenario occurs. Once these events have been identified probabilistic safety assessment may be
performed on these events or faults by considering the set of possible (logical, causal or temporal)
paths leading to them and thereby establishing the risk that they may occur. This will be discussed in
more detail in the next section.

Human error hazard identification

Hazard analysis and error identification are systematic processes applied to an emerging or completed design
to gather information about the design’s dependability. There are a number of such methods and they have
features in common. For example, in all cases some form of design representation is used as a starting point.
This representation could be a process architecture of the system or a procedural description of how the
system behaves for example. The second common feature is some kind of procedure for asking structured
guestions systematically about the designed system. These questions are used to identify significant parts of
the system where dependability is problematic. None of the methods involves quantification. They involve a
variety of possible techniques including for example HAZOP, Technique for Human Error Assessment
(THEA), TRACEr as examples. The HAZOP method is a structured process [ICI (Imperial Chemical
Industries Ltd.) 1974] systematically performed by a team on some representation of the system. There are a
number of human orientated versions of HAZOP that apply the analysis to task representations [Leathley
1997] and have been applied to a variety of safety critical human operator interfaces. Like human HAZOP,
THEA [Pocock et al. 2001] also begins with an explicit description of the work that is under analysis in this
case scenarios because they provide a richer cultural context for the analysis of the system. The identification
and explanation of human error is based on Norman’s cyclic model of human processing and a series of
guestions are asked based on this model. This model is presented in Figure 2. It shows that a user’s
behaviour while interacting with a system is iterative starting by the identification of a goal, then defining a

RESIST D12 socio p 16

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

plan for actions to be performed within the system and then performing these actions and thereby
considering the user interface of the system. The users then observe changes on the user interfaces and
evaluate whether those changes correspond to their initial goals. If not, a new plan is defined and the cycle
performed again. Using this model, errors can be regarded as failures in cognitive processing [Norman

1988].
ﬂ Goals R

Perception &
evaluation

Plan

] N|
Action | /] Effects

Figure 2 Norman'’s cyclic model of human information processing

TRACET [Shorrock and Kirwan 2002] is a method of human error identification that has been developed for
a particular domain - air traffic control. It involves several layers of analysis and is therefore relatively
difficult to apply. Whether these layers are justified in the sense that they lead to more accurate analyses
remains to be seen. The method is intended to deal with three issues: the context within which the error
occurred, the mechanisms that lead to the production of the error and the recovery mechanisms from
potential error. The method is intended to have a modular structure and therefore allows the analyst to
describe the error at a level for which there is information about the system and its use. TRACEr also
proposes retrospective analysis — analysing an incident using a similar technique. Analysis of an incident is
carried out in terms of error chains, using a technique akin to Why Because Analysis [Ladkin and Loer
1998].

Very little credible validation has been performed on these techniques. Shorrock as part of an MSc thesis in
1997 [Shorrock 1997] analysed inter-analyst reliability (that is consistency between analysts) on a prototype
version of TRACEr. Nine human factors specialists individually classified 23 different events highlighted in
four controller-reported Airprox reports. For each event on average 5 out of 9 analysts agreed on the same
error type category. Note that in this study the method was used retrospectively. A further study [Kirwan
1992] identified the analyst effort involved as the major weakness of the method. Newcastle has been
concerned with the nature of the argument, its structure and, in particular, the way in which barriers or
defences are used in mitigation [Sujan and Harrison 2006; Sujan et al. 2006b].

It is important to understand that all these aspects have to be taken into account in order to design and
produce more resilient systems. In [Basnyat and Palanque 2006] it has been shown how software barrier
modelling can be integrated into ICO device models (see comments about ICO above). In this work a
software barrier is an artefact of a software based design aimed at preventing or protecting against failure.
Hence a software interlock preventing an action from being carried out unless a prior action has occurred
would be such a barrier. In [Basnyat PhD] a generic framework for integrating barrier modelling with task
and device modelling is proposed. Additionally, [Basnyat et al. 2006] show how incident and accident
investigation and modelling techniques can be integrated.

RESIST D12 socio p 17

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

Probabilistic safety analysis and generic human reliability data

Probabilistic safety assessment of human error is usually based on databases of probabilities to estimate
probability of failure for action. There are a number of issues associated with the use of generic human
reliability data. Much of it has been collected in laboratory or simulator. Many of the techniques, for
example THERP [Swain and Guttman 1983] are “corrected for” nuclear power plants. There is therefore an
element of domain specificity and the translation to a new domain may not be obvious. There is wide
variability in the data, for example [Villemeur 1992] comments that the range of probability of failure for
action for automatic acts is 5 x 10 ® to 5 x 1073, while for rule based acts it is 5 x 10* to 5 x 10 and for
knowledge based acts 5 x 10 to 5 x 10™. It is clear that circumstances will affect these values enormously,
for example time pressure can have a significant effect on the probability of success. THERP addresses time
explicitly in their assessment of likelihood.

Analysis is applied to some unit which varies between an action (“unlock restraining latch”) in the case of an
approach like THERP and generic task (for example “Restore or shift a system to original or new state
following procedures, with some checking”) in the case of HEART (Human Error Reduction Technique)
[Kirwan 1992]. In the case of CREAM (Cognitive Reliability and Error Analysis Method) [Hollnagel 1998],
the unit of analysis is even smaller and is associated with a so-called cognitive function (e.g. “act”) which
appears as one of the stages in the Norman cognitive loop [Norman 1988]. It should be said that while the
CREAM technique is described to this level of detail, it is only proposed that it be used to provide broad
assessments of error likelihood based on combinations of performance shaping factors relating to the whole
organisation.

These units can either be part of a fault tree, where the actions of THERP might correspond to a fault in the
fault tree or may be a generic task characterised by a cut set in the fault tree. Alternatively, or additionally,
the part of the system that is subjected to analysis may have been uncovered through a process of error
identification as described above. These units are associated with a database of human failure probabilities
that are derived from data gathered through experience of some specific domain, either through experience
or through simulations. In the case of THERP and some other techniques, for example HCR [Kirwan 1992]
other more complex calculations are involved in assessing the probability including for example the time
available. In the case of THERP time is also used as a measure in deciding what the value should be. Expert
and therefore subjective judgement is involved in these calculations both at the level of deciding how the
action or task corresponds to those generic items described in the database and, in the case of the more
sophisticated techniques, deciding how time effects the action in the proposed situation.

The typical means by which context, though not domain, is corrected for is to take account of so-called
performance shaping factors (there are a variety of other terms, for example “error producing conditions”,
“common performance conditions” for example “little or no intrinsic meaning in a task™). These performance
shaping factors are used in a variety of ways to modify a nominal probability extracted from a database. The
performance shaping factors are combined based on the team of analysts’ assessment of the proportion
attached to a particular performance shaping factor. The weighted product is then used as the modification
factor. Expert judgement is again crucial, both in determining which performance shaping factors are
relevant and in deciding what weightings should be attached to these performance shaping factors. Typically,
performance shaping factors are assumed to be independent, though CREAM [Hollnagel 1998] bases
“control modes” on common performance conditions. These common performance conditions are considered
to be mutually interactive and a simple decision tree is proposed for ensuring that relevant mutual
dependencies are taken account of. One major distinction between these methods is whether the method only
provides the means to identify errors in a qualitative analysis or whether it also provides an estimate of

RESIST D12 sociop 18

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

probabilities of error. Because human performance is sensitive to numerous contextual factors as well as
individual differences, methods are often based on assumptions which are specific to a particular domain
such as nuclear power, air traffic control and so on. Where analysis stops at error identification, this is less of
a problem particularly if generic techniques such as human HAZOPS, THEA of CREAM are used. But it
becomes particularly problematic where the quantification of error probabilities is undertaken. Many
researchers have expressed serious doubts about the relatively common practice of using probabilities based
on the nuclear industry in other domains such as aviation and air traffic control. Where this is done, error
bounds on fixed point estimates are particularly important and should reflect the uncertainty introduced by
such a transfer across domains.

The essentially engineering techniques reflected in this section are widely criticised. While these techniques
depend on the ability to analyse and then combine components of a system, the complexity and non-linear
nature of these systems leads to the unpredictable emergence of resilience characteristics that were not
predicted. These issues are discussed comprehensively in [Hollnagel et al. 2006]. A problem is discussed and
agenda is hinted at in this book. There are clear opportunities for solutions.

2.4. Formal verification of interactive systems

Three ResIST nodes are concerned with verification issues in relation to interactive systems by which are
meant systematic techniques applied to models of interactive systems.

Although Harrison at Newcastle (formerly York) has done some work in the past using theorem provers, the
focus of all current ResIST activity is on the use of model checking techniques to analyse interactive
systems. While these techniques make it impractical to analyse representation type properties of a device, for
example that a display reflects the relevant content of the state, model checking techniques have value in
analysing an important class of properties of interactive systems that can be analysed using path type
properties. Newcastle [Loer and Harrison 2006] have explored a class of properties inspired by so called
usability heuristics [Nielsen 1992]. Their paper describes a front end to the Symbolic Model Verifier (SMV)
(for general introduction see [Clarke Jr et al. 1999]) that supports the development of statechart based
specification and the construction of properties using usability patterns similar to those discussed in [Dwyer
et al. 1999]. The example given is a system for controlling a process plant making a comparative analysis
between a control room interface and a hand held device that can be used in the plant to access and control
processes (for example valves, thermostats, pumps) that are close by and also has limited capacity to “save”
the controls for a particular process for future use even though the device is no longer in the neighbourhood
of the process. Most of this group’s work to date revolves around the use of SMV and is concerned with
making these tools accessible realistically to system designers. Further work is concerned with the use of
Modal Action Logic as an alternative notation to analyse a mode confusion problem relating to a flight
management system described in [Heymann and Degani 2007] and also analysed by [Rushby 2002]. In this
case the mode confusion arises because pilot action has an unexpected effected when the flight management
system is at the final stage of reaching a desire altitude when the aircraft is levelling out. The Newcastle
group has also been concerned with the analysis of timing issues in interactive systems using the Uppaal tool
to analyse appropriate scheduling decisions for systems involving human control [Loer et al. 2004]. In this
case the example was a control task involving the manipulation and painting of boxes arriving on a conveyor
belt. Current research at Newcastle involves the modelling of ambient and mobile systems, capturing the
properties of systems that combine public displays with hand held devices in a built environment. Of
particular interest here are properties of such models that capture the experience a traveller, visitor, etc.

RESIST D12 sociop 19

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

would have within the built environment [Harrison et al. 2006]; [Harrison and Loer 2006] and a particular
emphasis on the time properties of such systems. Here the motivating example is an airport system.

IRIT is also concerned with verification techniques rooted in the particular methods they use for the formal
specification of interactive systems. Verification has been addressed for the following classes of systems and
properties:
o Verification of functional properties expressed in temporal logic over an Interactive Cooperative
Object (Petri nets-based) specification of the behaviour of interactive systems [Palanque and Bastide
1997] as well as verification of ergonomic criteria [Palanque et al. 1999;Accot et al. 1997].
o Verification of behavioural compatibility between different models involved in the description of
interactive systems like a task model and a device model through scenarios [Palanque and Bastide
1995], [Palanque and Bastide 1997], verification of compatibilities between input devices,
transducers and system [Accot et al. 1997].
e ISTI have used PEPA [Gilmore and Hillston 2003] and Markov chains to analyse user performance
issues in a groupware system, namely thinkteam [Ter Beek et al. 2006].

This work should be seen in the more general context of the state of the art review provided by [Heymann
and Degani 2007], and the more systematic, scaleable approach developed by [Berstel et al. 2005].

2.5. Issues of scale

Two studies by ResIST members exemplify the problems posed by human and social aspects in ubiquitous
systems, although neither study goes all the way to attempting quantitative evaluation.

Newecastle researchers have been engaged in assessing pilot applications of an electronic transmission of
prescriptions in the UK National Health Service. The focus in [Sugden and Wilson 2004] is on the
probability of success of adoption of a new system. The important factors include resilience and
dependability aspects like reliability of communication and usability, as well as “work around” strategies
employed by users to obviate perceived problems of the automated systems or of the recommended
procedure. There are concerns of availability, performance, reliability and data integrity (with possible safety
implications) and privacy; both accidental faults (of the automation or of the users) and intentional attacks
may threaten these properties. The authors emphasise the needs for multi-disciplinary evaluation.

Following Newcastle's interest in E-voting systems, where cryptography is applied to ensure both
confidentiality and low probability of undetected tampering [Ryan 2005] (compare Part Eval of this
deliverable), the question arises of evaluating such systems [Bryans et al. 2006]. It is striking that other
authors in the E-voting area dedicate great care to a rigorous analysis of the algorithms themselves; yet, they
only talk in informal terms about other essential components of the E-voting systems: the human voters and
administrators of the election procedure with its ITC support. We have thus a huge number of components,
most of them loosely coupled, yet subject to common and reciprocal influences acting through the election
system as well from outside it, for example the media. Not only does proper evaluation of the system require
an analysis of the behaviour of the human components, but also a prediction of how their patterns of
behaviour may change as a result of the introduction of automation. Assessment must take into account the
effects of both intentional attacks and unintentional failures, and their interactions. Some preliminary work
took place in the DIRC project [Ryan and Peacock 2005]; [Bryans et al. 2006]. It is not difficult to
recognise the E-voting system as a fault-tolerant system. In this system, although the automated algorithm

RESIST D12 socio p 20

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

detects failures (violation of vote integrity, by accident or malice) with high probability, recovery actions are
the task of the human components of the system; issues of trust in automation, perception of risk and threat
will be important in the probability of initiation and success of these actions. The emphasis on error
detection also increases the likelihood of “safe” failures, e.g., votes not being counted rather than risking an
erroneous count. The proposed designs prudently restrict the need for high-confidence verification of
hardware and software to as small as possible a set of crucial functions (the original proposal by [Chaum et
al. 2004] suggested that the highly trustworthy error detection features would allow the use of ordinary PCs
in public schools as voting machines); but strong error detection naturally increases the probability of
failure: the design to avoid flawed election results needs to be complemented with design features to
guarantee high enough probability of elections actually completing. These characteristics may change the
strategies of would-be attackers — aiming, e.g., at denial of service attacks, either to discredit the election
system or to cause a relaxation of the technical and social defences in the system. Discrediting the election
system may become itself a direct means for defeating it, e.g., by weakening the voters’ belief in its
guarantees of secrecy to the point where widespread intimidation becomes possible.

In terms of large-scale modelling IRIT has previously been concerned with addressing the relationship of
modelling techniques and frameworks to large scale systems within the specific context of interactive
systems. [Jacomi et al. 1997] proposed the use of metaphors for structuring code in air traffic management
interactive applications like airspace sectors definition and performance evaluation. [Palanque et al. 1997]
presented scalability issues in modelling interactive applications for air traffic control while [Navarre et al.
2000] proposed structuring solutions for large models. In another domain, interactive cockpit applications
for civil aircrafts, [Barboni et al. 2006b], [Barboni et al. 2006b] present how interaction techniques in
modelling tools can support management of both numerous and large models of devices.

2.6. System evaluation

Various ResIST members are interested in the problem of inadequate or incomplete descriptive models of
socio-technical systems, which in turn may lead to quantitative models embodying false assumptions about
the system, or parameters that are too difficult to estimate in practice. Deep Blue [Pasquini et al. 2000] and
Newcastle [Sugden and Wilson 2004] are among these. [Pasquini et al. 2000] discuss the shortcomings of
common approaches to quantitative evaluation of human reliability: models that do not map on the actual
psychological mechanisms and the way human behaviour depends on and is affected by knowledge
distributed in the human’s physical and social environment. They present a process developed to obviate
these defects and applied to a case study in railway traffic management, which relies on multiple
observational techniques, interviewing and historical data to create a more complete model of the socio-
technical system and its possible behaviours.

Among ResIST partners, an example of results in the direction of system evaluation in the quantitative sense
is the study by City University (with partners from the UK DIRC project) [Alberdi et al. 2004] of Computer
Aided Detection (CAD) of cancer.

Here, the system to be modelled is composed of a physician examining X-ray images with a computer,
which highlights areas of probable cancer. The quantitative evaluation question is to what extent this system
is better (from the two viewpoints of detecting as many cancers as possible and recognising as healthy as
many healthy patients as possible) than a doctor without the machine, or two doctors (co-operating according
to one of the protocols in current use).

RESIST D12 socio p 21

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

Remarkably, the estimates in the literature vary widely. In most of the medical literature, evaluation of such
a system is via a controlled trial, a “black box” measurement of its effectiveness, to be extrapolated to future
behaviour. But to make the measurement feasible, it has to be performed in conditions that are very different
from those in actual operation (in particular, the frequency of cancer among the cases examined is artificially
raised from a few per thousand to more than 10%). It is then difficult to decide to what extent any
improvement or reduction in service quality observed in these measurements would be reproduced in actual
medical use. The DIRC interdisciplinary approach involved probabilistic modelling, direct observation to
challenge modelling assumptions and produce hypotheses about the underlying psychological mechanisms
determining the behaviour of the human in this system, and controlled experiment to explore these
conjectures and estimate ranges of model parameters [Alberdi et al. 2004]. A probabilistic model proposed
by the City researchers in [Strigini et al. 2003] can be seen as a unifying structure for the multiple facets of
evaluation: the differences between experimental environment and environments of practical use are
captured by changes in the model parameters. In turn, focused controlled experiments can clarify which
effects the probabilistic modelling must take into account and offer cues about the possible mechanisms
underlying changes in human performance, and thus parameters of the probabilistic modelling, when using
automated support [Alberdi et al. 2004], [Alberdi et al. 2005].

This study dealt with a small system with only two or three main components, yet its approach is somewhat
innovative and experimental: scaling it up to systems of many machines and people is an open challenge.

Stochastic user models

A technique that combines statistical analysis with model checking has been used by the ISTI group. In
[Doherty et al. 2001] both the device and aspects of user behaviour are modelled by using stochastic
modelling techniques. These specifications are a means of making explicit the assumptions made about the
capabilities of both user and device, and of exploring the behaviour of the combination of device and user on
the basis of these assumptions. Predicted results from the stochastic model can thereby be related to data
gathered by observing user behaviour. From the point of view of the overall development process,
introducing performance data at an early stage is an attractive proposition since it encourages consideration
of problems which might otherwise only emerge during testing, since neither prototypes nor high-
specification development platforms are constructed with such issues in mind. Hence, we see such analysis
as allowing an interactive development and validation loop to occur much earlier in the process.

The advantage of this approach is that it offers the capability of designing devices and adapting the design
more effectively to a user’s performance. However, interaction techniques and device structures cannot be
ported across environments assuming that they will be equally acceptable in the new environment but must
be validated again in the new hosting environment.

Failure modelling and quantitative arguments

As a result of hazard identification and analysis, certain events will be identified as critical to the safety of
the system. On the basis of these events a number of fault or event trees can be constructed. These trees
capture the possible logical or causal connections between events that can lead to these events. The trees are
used to describe the conjunctions or disjunctions of faults/events that can lead to the identified event and can
be used to capture alternative scenarios that might lead to it. Any given fault or event might be initiated
either by the devices or by the humans in the system and might be seen as items already analysed in the

RESIST D12 socio p 22

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

context of the hazard assessment method. The different hazard assessments may identify a number of events
that are of interest. These fault/event trees can then be used as a basis for analysis either as a source for
scenarios that can provide a basis for further descriptive assessment or as a means of providing estimates of
the probability of failure.

In the figure below (from [Shorrock and Kirwan 2002] the concern is that a collision occurs in unregulated
airspace whilst the aircraft is under the radar advisory service (RAS). In this diagram a triangle indicates that
the event above the triangle must occur as a conjunction of the lower events while a circle indicates that any
one of the events below may cause the event. Rounded boxes are events for which further causes are not
considered. As can be seen a collision occurs if a conflict occurs and the controller fails to resolve the
conflict, and the pilot fails to resolve the conflict and the aircraft are on the same level and converging
tracks. Hence causes and consequences are embedded in the tree. It is therefore possible to identify
sequences through the tree that take as given the fact that certain failures have occurred. This information
could be used as the basis of a probabilistic assessment that the situation has arisen or for a further
qualitative assessment.

RESIST D12 socio p 23

Part Socio

Callision occurs in
unregulated airspace whilst
aircraft under RAS

Aircraft under RAS

Collision occurs

2 — Evaluation and verification issues in resilience in socio-technical systems

Aircraft in Pilot Controller . ’ Aircraft on
unregulated requests . ; Pilot fails to
airspace RAS Conflict fails to resolve same level
P occurs resolve h converging
) conflict
conflict tracks
ATC
equipment / Controller Controller Controller fails C:Jnn;rkoellser Controller
data misperceives hearback to monitor incorrect has lapse
problem visual error RAS aircraft ; of memory
sual data or conflictor assumption

assumes

unknown aircraft
will/will not
continue

Controller
assumes
aircraft are in
visual contact

Figure 3: Fault tree for mid-air collision

Controller
assumes STCA
is false alarm

Quantitative arguments depend in common practice on databases of known frequencies of failures for

actions, events or goals. If the trees are to be used as a basis for assessing the probability of failure of the top
event then there are a number of concerns.

Finding appropriate figures that are relevant to the current design, particularly when the design is new or
modified in ways that might not have been anticipated, is non trivial.

Basic probabilistic data must be conditioned in the case of hardware by factors such as wear and tear and in
the context of human factors the context in which the scenario proceeds. Although so-called performance

RESIST D12

socio p 24

Part Socio 2 — Evaluation and verification issues in resilience in socio-technical systems

shaping factors or control modes have been designed to try to deal with these effects, their application is a
matter of subjective judgement and may be highly sensitive to the team that is applying them.

The typical signature of a failure in which human error takes place is that instead of dealing with unrelated
probabilities, the effect of failure may be to increase workload which will increase the likelihood of a future
failure in the tree. The tree therefore needs to be conditioned not just by contextually determined
performance shaping factors but also by the knock on effect of an earlier failure.

These difficulties are extremely significant and seriously jeopardise the possibility of deriving any
meaningful value for the probability of failure. However these trees may have value in putting events from
the different analyses together.

RESIST D12 socio p 25

Conclusions

ReslST interest in resilience in socio-technical systems is focussed narrowly on a subset of topics concerned
with the observation of such systems, the characterisation and modelling of devices and the analysis of
various properties of the device and the system. In some respects the focus of interest differs from many of
the prevailing themes because it focuses on a formal perspective on systems and their analysis. It is not
concerned with the ergonomics of devices with mechanisms and conventions for communication for
example. The ReslIST network’s focus in this area of socio-technical systems provides novel opportunities
for the exploration of new and distinctive avenues in the analysis of resilience.

The predominant discipline represented within the socio group is computer science rather than behavioural
science. This limitation though is overcome because all members of the group have strong links with
psychologists and sociologists and long term research collaborations. The unusual focus on formal
techniques fits well with the industrial scale formal methods used in other topic areas within ResIST. The use
of formal notations brings precision and clarity to some of the discussion within the human factors
community and provides more effective links to software and system engineering methods. However there is
the risk that the essentially reductionist culture of formalism can miss some of the important ideas of socio-
technical systems. This is a risk that the group is aware of and will take steps to avoid.

The particular focus of the working group provides strong opportunities for exploring issues in ubiquitous
systems: problems associated with scaling resilience in socio-technical systems particularly in relation to the
themes: evolvability; assessibility; usability and diversity.

RESIST D12 socio p 26

References

[Accot et al. 1997] Accot, J, Chatty, S, Maury, S, and Palanque, P. "Formal Transducers: Models of Devices
and Building Bricks for Highly Interactive Systems". 4th EUROGRAPHICS workshop on "Design,
specification and verification of Interactive systems”. 1997. Springer Verlag.

[Alberdi et al. 2005] Alberdi, E, Ayton, P, Povyakalo, A. A, and Strigini, L. Automation bias and system
design: a case study in a medical application”. Proc. IEE People & Systems Symposium. 2005.

[Alberdi et al. 2006] Alberdi, E, Ayton, P, Povyakalo, A. A, and Strigini, L. "Automation Bias in
Computer Aided Decision Making in Cancer Detection: Implications for System Design®. Technical
Report, CSR, City University, 2006. 2006.

[Alberdi et al. 2004] Alberdi, E Povyakalo A. A, Strigini, L, and Ayton, P. "Effects of incorrect CAD output
on human decision making in mammography". Academic Radiology 11(8): 909-918. 2004.

[Bannon 1991] Bannon, L. In J. Greenbaum & M. Kyng (eds.). "From Human Factors to Human Actors: The
Role of Psychology and Human-Computer Interaction Studies in Systems Design". 1991. Design at Work:
Cooperative Design of Computer Systems. Lawrence Erlbaum Associates.

[Barboni et al. 2006a] Barboni, E, Conversy, S, Navarre, D, and Palanque, P. ""Model-Based
Engineering of Widgets, User Applications and Servers Compliant with ARINC 661 Specification™.
Proceedings of the 13th conference on Design Specification and Verification of Interactive Systems
(DSVIS 2006). 2006. Lecture Notes in Computer Science, Springer Verlag.

[Barboni et al. 2006b] Barboni, E, Navarre, D, Palanque, P, and Basnyat, S. ""Exploitation of Formal
Specification Techniques for ARINC 661 Interactive Cockpit Applications". Proceedings of HCI aero
conference, (HCI Aero 2006). 2006.

[Barnard et al. 2000] Barnard, P. J, May.J, Duke, D, and Duce, D. "Systems, Interactions and macrotheory".
ACM Trans Comput-Human Interact 7(2): 222262. 2000. Wesley, Reading, MA.

[Basnyat PhD] Basnyat, S. "A Generic Integrated Modelling Framework for the Analysis, Desigh and
Validation of Interactive Safety-critical Error-tolerant Systems". PhD Thesis - University Paul Sabatier,
Toulouse, France. To be defended December 2006. Submitted.

[Basnyat et al. 2006] Basnyat, S., Chozos, N., & Palanque, P. (2006) "Multidisciplinary perspective on
accident investigation". Special Edition of Elsevier's Reliability Engineering and System Safety Journal.

RESIST D12 socio p 27

Part Socio References

[Basnyat and Palanque 2006] Basnyat, S and Palanque, P. ""A Barrier-based Approach for the Design
of Safety Critical Interactive Application. ESREL 2006 Safety and Reliability for Managing Risk.
Safety and Reliability Conference. 2006. Balkema (Taylor & Francis).

[Basnyat et al. Submitted] Basnyat, S, Schupp, B, Palanque, P, and Wright, P. "Formal Socio-
Technical Barrier Modelling for Safety-Critical Interactive Systems Design''. Special Issue of Safety
Science Journal. Submitted.

[Bastide et al. 2002] Bastide, R, Navarre, D, and Palanque, P. "A Model-Based Tool for Interactive
Prototyping of Highly Interactive Applications. Full demonstration”. ACM CHI 2002 conference on Human
Factors for Computing Systems. 2002.

[Bastide and Palanque 1990] Bastide, R and Palanque, P. "Petri Net Objects for the design, validation and
prototyping of user driven interfaces.". Proceedings Interact 90. IFIP TC13 Third International Conference.
1990.

[Berstel et al. 2005] Berstel, J, Reghizzi, S C, Roussel, G, and Pietro, P. S. "A scalable formal method for the
design and automatic checking of user interfaces.”. ACM Transactions on Software Engineering and
Methodology 14(2): 124-167. 2005.

[Beyer and Holtzblatt 1998] Beyer, H and Holtzblatt, K. "Contextual Design: defining customer-centred
systems". Morgan Kaufmann. 1998.

[Billings 1996] Billings, C. "Aviation Automation: the search for a human-centred approach”. 1996.
Lawrence Erlbaum Hillsdale, NJ.

[Bowman and Faconti 1996] Bowman, H and Faconti, G. "Analysing Cognitive Behaviour using LOTOS
and Mexitl". Formal Aspects of Computing, VVol. 11:132-159. 1996. Springer Verlag.

[Bowman et al. 1998] Bowman, H, Faconti, G, and Massink, M. "Specification and Verification of Media
Constraints Using UPPAAL". Proceedings of DSV-1S'98. 1998.

[Bryans et al. 2006] Bryans, J. W, Ryan, P. Y. A, Littlewood, B, and Strigini, L. "E-voting:
dependability requirements and design for dependability". First International Conference on
Availability, eliability and Security (ARES'06). 988-995. 2006.

[Campos and Harrison 2001] Campos, J. C and Harrison, M. D. "Model Checking Interactor Specifications.
Automated Software Engineering™ . 8(3). 275-310. 2001.

[Chaum et al. 2004] Chaum, D, Ryan, P, and Schneider, S. A practical, voter-veriable election scheme.
Technical Report CS-TR-880, University of Newcastle upon Tyne, 2004.
http://lwww.cs.ncl.ac.uk/research/pubs/trs/papers/880.pdf. 2004.

[Chipman and Shalin 2000] Chipman, S. F and Shalin, V. L. "Cognitive Task Analysis". 2000. Lawrence
Erlbaum Associates.

[Clarke Jr et al. 1999] Clarke Jr, E. M, Grumberg, O, and Peled, D. A. "Model Checking”. 1999. MIT Press.

[Dearden et al. 2000] Dearden, A, Harrison, M, and Wright, P. "Allocation of function: scenarios, context
and the economics of effort". International Journal of Human-Computer Studies, Vol. 52, No. 2, pp. 289-
318. 2000.

RESIST D12 socio p 28

Part Socio References

[Degani 1996] Degani, A. "Modeling Human-Machine Systems: On Modes, Error, and Patterns of
Interaction." PhD thesis, Georgia Institute of Technology. 1996.

[Dekker 2006] Dekker, S. "Resilience engineering: Chronicling the emergence of confused consensus". In
Hollnagel, E., Woods, D. D., Leveson, N. (Eds.) Resilience engineering. Concepts and Precepts. Ashgate,
Aldershot, England. 2006.

[Diaper and Stanton 2003] Diaper, D and Stanton, N. "The handbook of task analysis for human computer
interaction”. . Lawrence Erlbaum Associates. 2003.

[Doherty et al. 2001] Doherty, G, Faconti, G, and Massink, M. "Reasoning about interactive systems with
stochastic models". LNCS 2220, Lecture Notes in Computer Science 144-163, Springer-Verlag. 2001.

[Duke et al. 1994] Duke, D, Faconti, G, Harrison, M, and Paterno, F. Unifying Views of Interactors. In
Proceedings of the Workshop on Advanced Visual Interfaces pages 143-152, ACM Press. 1994.

[Duke 1995] Duke, D. J. "Reasoning About Gestural Interaction”. Computer Graphics Forum, Vol 14(3)
NCC/Blackwell. Conference Issue: Proc. Eurographics'95. 1995.

[Duke et al. 1998] Duke, D. J, Barnard, P. J, Duce, D. A, and May, J. "Syndetic Modelling". Human
Computer Interaction, Vol. 13, No. 4, 337-393. 1998.

[Dwyer et al. 1999] Dwyer, M, Avrunin, G, and Corbett, J. "Patterns in property specifications for finite state
verification.". In 21st International Conference on Software Engineering. 1999 .

[Endsley and Kaber 1999] Endsley, M. R and Kaber, D. B. "Level of automation effects on performance,
situation awareness and workload in a dynamic control task". Ergonomics, 42, 462-492. 1999.

[Faconti and Massink 1998] Faconti, G and Massink, M. Modelling and Verification of PREMO
Synchronizable Objects. Formal Aspects of Computing, Vol. 10: 405-434. 1998. Springer Verlag.

[Faconti 1996] Faconti, G. P. "Reasoning on Gestural Interfaces through Syndetic Modelling". ACM
SIGCHI Bulletin, V 28(3), July. 1996.

[Faconti and Duke 1996] Faconti, G. P and Duke, D. J. "Device Models". F. Bodart, and J. VVanderdonckt.
Design, Specification and Verification of Interactive Systems - DSV-1S'96, pp.73-91. 1996. Springer-
Verlag.

[Faconti and Massink 1997] Faconti, G. P and Massink, M. Using LOTOS for the Evaluation of Design
Options in the PREMO Standard. BCS-FACS Northern Formal Methods Workshop, Electronic Workshops
in Computing. 1997. Springer-Verlag.

[Fitts 1951] Fitts, P. "Human engineering for an effective air navigation and traffic control system".
(National Research Council, Washington D.C.) Reprinted as Appendix 1 in Beevis, D., Essens, P. and
Schuffel, H. (Eds) 1996 Improving Function Allocation for Integrated Systems Design. Technical report
CSERIAC SOAR 96-01. 1951.

[Giblin et al. 2005] Giblin, C, Liu, A. Y, Muller, S, Pfitzmann, B, and Zhou, X. Regulations Expressed As
Logical Models (REALM). 18th Annual Conference on Legal Knowledge and Information Systems (JURIX
2005). 37-48. 2005. , 10S Press, Amsterdam.

RESIST D12 socio p 29

Part Socio References

[Gilmore and Hillston 2003] Gilmore, S and Hillston, J. A survey of the PEPA tools. In Proceedings of the
Second Workshop on Process Algebra and Stochastically Timed Activities (PASTA Secondi Piatti). pages
40-49. 2003.

[Gordon and Gill 1997] Gordon, S. E and Gill, R. T. "Cognitive Task Analysis". In C. Zsambok and G.
Klein (Eds.). Naturalistic Decision Makin. 1997. Lawrence Erlbaum Associates.

[Harrison et al. 2003] Harrison, M, Johnson, P, and Wright, P. "Relating the automation of functions in
multi-agent control systems to a system engineering representation.”. E. Hollnagel. Handbook of Cognitive
Task Design. pp.503-524. 2003. Lawrence Erlbaum Associates.

[Harrison et al. 1993] Harrison, M. D, Abowd, G. D, and Dix, A. J. Analysing Display Oriented Interaction
by means of Systems Models. Byerley, Barnard and May. Computers, Communication and Usability: Design
Issues, Research and Methods for Integrated Services. ppl47-163. 1993. Elsevier .

[Harrison et al. 2006] Harrison, M. D, Campos, J. C, Dohery, G, and Loer, K. ""Connecting rigorous
system analysis to experience centred design'. Workshop on Software Engineering Challenges for
Ubiquitous Computing. 2006.

[Harrison and Loer 2006] Harrison, M. D and Loer, K. "Time as a dimension in the design and
analysis of interactive systems'. (in preparation).

[Harrison et al. 1989] Harrison, M. D, Roast, C. R, and Wright. P.C. "Complementary methods for the
iterative design of interactive systems”. G. Salvendy and M.J.Smith. Designing and Using Human-Computer
Interfaces and Knowledge Based Systems. 1989. Elsevier Scientific, pp. 651-658.

[Heymann and Degani 2007] Heymann, M and Degani, A. "Formal Analysis and Automatic Generation of
User Interfaces: approach,methodology, and an algorithm." . Human Factors journal, to appear. 2007.

[Hildebrandt and Harrison 2002a] Hildebrandt, M and Harrison, M. "The temporal dimension of dynamic
function allocation". Proceedings 11th European Conference on Cognitive Ergonomics (ECCE 11). pp.
283-292. 2002.

[Hildebrandt and Harrison 2002b] Hildebrandt, M and Harrison, M. "Time-related trade-offs in dynamic
function scheduling”. Johnson, C. 21st European Annual Conference on Human Decision Making and
Control GIST Technical Report G2002-1, Department of Computing Science, University of Glasgow,
Scotland. pages 89--95. 2002.

[Hildebrandt and Harrison 2003] Hildebrandt, M and Harrison, M. D. "Putting time (back) into Dynamic
Function Allocation". Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting .
pp. 488-492. 2003.

[Hildebrandt and Harrison 2004] Hildebrandt, M and Harrison, M. D. "PaintShop: A Microworld
Experiment Investigating Temporal Decisions in a Supervisory Control Task.". Proceedings of the Human
Factors and Ergonomics Society 48th Annual Meeting. pp. 300-304. 2004.

[Hoffman et al. 1995] Hoffman, R. R,