
Lightweight Logging for Lazy Release Consistent
Distributed Shared Memory

Manuel Costa, Paulo Guedes, Manuel Sequeira, Nuno Neves, Miguel Castro

IST - INESC
R. Alves Redol 9, 1000 Lisboa PORTUGAL

{msc, pjg, mds, nuno, miguel}@inesc.pt

Abstract

This paper presents a new logging and recovery
algorithm for lazy release consistent distributed shared
memory (DSM). The new algorithm tolerates single
node failures by maintaining a distributed log of data
dependencies in the volatile memory of processes.

The algorithm adds very little overhead to the
memory consistency protocol: it sends no additional
messages during failure-free periods; it adds only a
minimal amount of data to one of the DSM protocol
messages; it introduces no forced rollbacks of
non-faulty processes; and it performs no
communication-induced accesses to stable storage.
Furthermore, the algorithm logs only a very small
amount of data, because it uses the log of memory
accesses already maintained by the memory consistency
protocol.

The algorithm was implemented in TreadMarks, a
state-of-the-art DSM system. Experimental results show
that the algorithm has near zero time overhead and very
low space overhead during failure-free execution, thus
refuting the common belief that logging overhead is
necessarily high in recoverable DSM systems.

1. Introduction

Networks of workstations are a cost-effective
alternative to dedicated parallel computers for running
compute-intensive applications [Anderson 95]. In these
networks, the simplicity of programming with a shared
memory abstraction can be retained by using distributed
shared memory systems [Li 86, Keleher 94]. As these
networks grow and the number of nodes running a DSM
application increases, the probability of a failure also
increases. This probability can become unacceptably
high, especially for long-running applications.
Therefore, DSM systems need mechanisms to tolerate
faults in computing nodes.

This paper presents a new logging and recovery
algorithm for a DSM system based on lazy release

 Manuel Costa, Nuno Neves and Miguel Castro were supported in

part by Praxis XXI fellowships from JNICT.

consistency (LRC) [Keleher 92]. This algorithm is
inspired in our previous work where an approach with
comparable properties was applied to an entry-
consistent memory system [Neves 94]. We extended
TreadMarks [Keleher 94], an efficient implementation
of LRC, to implement the logging and recovery
algorithm. Experimental results show that the algorithm
has near zero time overhead and very low space
overhead during failure-free execution, thus refuting the
common belief that logging overhead is necessarily high
in recoverable DSM systems [Cabillic 95, Suri 95]. We
show that the logging overhead of the algorithm is much
lower than the previously proposed logging algorithms
for recovery of DSM systems based on LRC [Suri 95].

The algorithm tolerates single node failures by
maintaining a distributed log of data dependencies in
the volatile memory of processes. Whenever a process
sends relevant information to another, it keeps in its
volatile memory a log of that information. The
algorithm achieves very good performance because it is
tightly integrated with the LRC memory coherence
protocol. Since the LRC protocol already keeps most of
the relevant information in its data structures, the
algorithm only has to log the instants at which the
information is transferred. Whenever a remote
synchronization operation occurs, it logs a pair with the
vector times of the sender and receiver in the volatile
memories of both processes. The algorithm does not log
the value of shared memory updates, because it takes
advantage of the log of memory accesses already
maintained by the memory consistency protocol. This
results in significantly reduced space overhead when
compared to previously proposed solutions [Suri 95].
Furthermore, the algorithm sends no additional
messages and sends only a very small amount of extra
data, during failure-free periods, because most of the
information necessary for recovery is already part of the
LRC protocol messages. Only one of the LRC protocol
messages is modified to include an additional integer.

Periodically, each process takes a checkpoint,
independently from the other processes, where it
records in stable storage all its state. Unlike other
proposals [Janssens 93, Suri 95], our logging algorithm
performs no communication-induced accesses to stable

storage; independent checkpoints are used only to speed
up recovery. When a process crashes, the system detects
that it crashed and restarts the process on an available
processor, using its latest saved checkpoint. The
recovering process re-executes with information
gathered from the logs of the surviving processes; the
non-faulty processes are not forced to rollback after a
failure. We assume processes execute in a piecewise
deterministic manner [Strom 85] and the only non-
deterministic events are shared memory reads.
Therefore, the system will recover to a consistent state
if the reads of the faulty process can be replayed to
return the same values they returned before the crash.
This is achieved by providing the recovering process
with a sequence of page updates from other processes
that is equivalent to the one received before the crash.

The logging algorithm is combined with a consistent
checkpointing scheme, which allows multiple failures to
be tolerated. It supports the more probable single
failures with low overhead, and takes consistent
checkpoints infrequently to tolerate the less probable
multiple failures. Therefore, the combined algorithm is
a kind of two-level recovery scheme as described in
[Vaidya 95], where it was shown that this type of
algorithm can achieve better performance than one-level
recovery schemes. The consistent checkpointing scheme
is integrated with the global garbage collection
operations already performed by the LRC protocol,
hence introducing no additional coordination overhead.
During each garbage collection operation, all data
structures needed for recovery are discarded and a
consistent checkpoint is created. Although consistent
checkpointing could also be used to recover from single
failures, using the logging and recovery algorithm
provides several benefits. Single process faults are
recovered efficiently because only the failed process
needs to rollback. Some applications can still make
progress while one of the processes is recovering, and
during recovery only the recovering process consumes
resources. Recovery is potentially faster since idle time
due to remote synchronization operations is eliminated.

Our implementation required only small changes to
the existing TreadMarks implementation of LRC. Code
was added to log dependencies and handle recovery.
We retained the most significant optimizations used by
TreadMarks, such as lazy diff and interval creation
[Keleher 94]. In summary, this paper makes the
following contributions:

• It describes a new logging and recovery algorithm
for lazy release consistent DSM

• It explains how to integrate logging with the
memory consistency protocol without sending
additional messages, sending only a small amount of
extra data, and logging a minimal amount of data

• It presents an implementation of the algorithm using
a state-of-the-art LRC-based DSM system

• It presents results showing that the algorithm is very
space and time efficient, refuting the common belief
that logging overhead is necessarily high for
recoverable DSM systems.

The remainder of the paper is organized as follows.
The next section presents related work. Section 3
describes TreadMarks and lazy release consistency.
Section 4 explains the logging and recovery algorithm.
Section 5 presents experimental results showing the
overhead introduced by our logging mechanism, and in
section 6 we draw our conclusions.

2. Related Work

Several systems have used consistent or independent
checkpointing to transparently recover from transient
faults. In consistent checkpointing [Chandy 85, Koo 87]
processes execute a coordination protocol to establish a
new consistent global state. We use consistent
checkpointing only to recover from multiple concurrent
failures. Cabillic et al. [Cabillic 95] integrate consistent
checkpointing with barrier crossings, simplifying the
coordination protocol performed by the nodes of the
system. We integrate consistent checkpointing with the
LRC garbage collection protocol, introducing no
additional coordination overhead.

In independent checkpointing [Johnson 87, Strom
85] there is no coordination, but communication-
induced checkpoints are performed or some logging has
to be done during failure-free periods to prevent
rollback propagation during recovery. In sender-based
message logging [Johnson 87, Johnson 89], whenever a
process sends a message, it logs it in its volatile
memory; when the message is received, the receiver
returns a sequence number indicating the order of
receipt, which the sender adds to its volatile log. The
state of a failed process can then be recovered by
replaying the logged messages from the distributed log
at the surviving processes. We also log recovery
information in the volatile memory of sender processes,
and use that information to replay messages during
recovery. However, message logging protocols are not
directly applicable to DSM systems because they do not
handle asynchronous message reception [Suri 95] and it
has been shown that some potential message passing
dependencies can be eliminated in DSM systems
[Janssens 94, Janakiraman 94]. Our algorithm takes
advantage of this kind of optimization since it is tightly
integrated with the DSM consistency protocol and logs
only the minimal information required for recovery.

Wu and Fuchs [Wu 90] proposed the first recovery
algorithm for sequentially consistent DSM. In their

checkpointing scheme, a process is required to save its
state whenever a modified page is sent to another
process. Janssens and Fuchs [Janssens 93] introduced
checkpointing for relaxed memory models, proposing
that a node should checkpoint its state whenever it
releases or acquires a lock.

Richard and Singhal [Richard III 93] used logging
to recover a sequentially consistent DSM from single
node failures. In their protocol, shared pages are logged
in volatile memory whenever they are read. The log is
flushed to stable storage before transferring a modified
page to another process. Suri, Janssens and Fuchs [Suri
95] improved this proposal by noting that accesses to
shared memory need not be logged but only tracked.
For lazy release consistency, they proposed logging the
messages received at acquire points and access misses.
The log is flushed to stable storage whenever page
invalidates or page updates are sent to another process.

Our recovery algorithm for lazy release consistency
improves this by logging less data and not requiring
communication-induced flushing of the log to stable
storage. On the other hand, in our algorithm it is
necessary to involve operational processes in the
recovery of a failed process. However, operational
processes can continue their execution while the failed
process is recovering. Our recovery algorithm keeps
some of the properties of the protocol previously
proposed by Neves, Castro and Guedes [Neves 94].
This protocol was designed to recover DiSOM [Castro
96], a multi-threaded object-based entry consistent
DSM system based on an update protocol.

While the protocols described above recover the
state of the shared memory as well as the execution
state of the processes, some protocols only recover the
shared memory state. Stumm and Zhou [Stumm 90]
proposed a protocol which tolerates single node failures
by ensuring that each page is kept in the memory of at
least two nodes of the DSM system. Feeley et al.
[Feeley 94] developed a transactional distributed shared
memory where coherency is integrated with a
mechanism for recoverability of persistent data. The
protocol proposed by Kermarrec et al. [Kermarrec 95]
establishes a recovery point by creating two recovery
copies of every modified page and storing them at
distinct nodes. A two-phase commit protocol is used to
atomically update a recovery point.

3. LRC and TreadMarks

TreadMarks [Keleher 94] implements a relaxed
memory model called lazy release consistency [Keleher
92]. TreadMarks ensures that all programs without data
races behave as if they were executing on a
conventional sequentially consistent (SC) memory.
Most programs satisfy this condition and behave

identically in both models, but LRC has the advantage
that it can be implemented more efficiently. This section
describes TreadMarks’ implementation of LRC without
the extensions we added to provide fault tolerance.

LRC divides the execution of each process into
logical intervals that begin at each synchronization
access. Synchronization accesses are classified as
release or acquire accesses. Acquiring a lock is an
example of an acquire, and releasing a lock is an
example of a release. Waiting on a barrier is modeled as
a release followed by an acquire. LRC defines the
relation corresponds on synchronization accesses as
follows: a release access on a lock corresponds to the
next acquire on the lock to complete (in real time
order); and a release access on a barrier wait
corresponds to the acquire accesses executed by all the
processes on the same barrier wait.

Intervals are partially ordered according to the
transitive closure of the union of the following two
relations: (i) intervals on a single process are totally
ordered by program order; and (ii) an interval x
precedes an interval y, if the release that ends x
corresponds to the acquire that starts y. The partial
order between intervals is represented by assigning a
vector timestamp to each interval. TreadMarks
implements lazy release consistency by ensuring that if
interval x precedes interval y (according to this partial
order), all shared memory updates performed during x
are visible at the beginning of y.

3.1 Data Structures

Each process in TreadMarks maintains the following
data structures in its local volatile memory:

pageArray: array with one entry per shared page.
procArray: array with one list of interval records per

process.
dirtyList: identifiers of pages that were modified

during the current interval.
VC: local vector clock.
pid: local process identifier.

Each SharedPageEntry has fields:
 status: operating system protection status for page

(no-access, read-only or read-write)
 twin: original copy of the page
 writeNotices: array with one list of write notice

records per process
 manager: identification of the page manager
 copyset: set of processes with copy of the page
Each WriteNoticeRecord has fields:
 diff: pointer to diff
 interval: pointer to corresponding interval record
 pageID: page number

Each IntervalRecord has fields:
 idCreat: id of process which created the interval
 vc: vector time of creator
 writeNotices: list of write notice records for this

interval.

The status field of a page entry is the operating
system protection status for the page, i.e. if the status is
no-access then any access to the page triggers a page
fault, and if the status is read-only a write access to the
page triggers a page fault. The writeNotices field in the
page entry describes modifications to the page. The
entry for process i in the writeNotices array contains a
list with all the write notices created by i for the page,
that are known to the local process. Each of these write
notice records describes the updates performed by i to
the page in a given interval. The write notice record
contains a pointer to the interval record describing that
interval, and a pointer to a diff containing the words of
the page that were updated in the interval. The interval
records contain a backpointer to a list with one write
notice for each page that was modified during the
interval. Whenever an interval record is created, it is
tagged with the vector time and the identity of its
creator.

The procArray has an entry for each process. The
entry for process i contains a list of interval records
describing the intervals created by i that the local
process knows about. This list is ordered by decreasing
interval logical times. We refer to the value of VCi as i's
vector time, and to the value of VCi[i] as i's logical
time. Similarly, the vector time of an interval created
by i is the value of VCi when the interval is created, and
the logical time of the interval is the value of VCi[i].

3.2 Memory Consistency Algorithm

This subsection describes the implementation of
TreadMarks' memory consistency algorithm. The
description is based on the pseudo-code for this
algorithm presented in Figure 3.1.

LockAcquire is executed when a process tries to
acquire a lock and it was not the last process to hold the
lock. It sends a request message to the lock manager.
The message contains the current vector time of the
acquirer. The lock manager forwards the message to the
last acquirer.

LockAcquireServer is executed by the releaser when
it receives the lock request message. If a new interval
has not yet been created since the last local release of
this lock, the releaser creates a new interval record for
the current interval; and for all the pages modified
during the interval it creates write notice records. The
diffs encoding the modifications to each of these pages
are not created immediately. Instead, they are created

lazily when the process receives a diff request or a write
notice for a page. The reply message includes a
description of all the intervals with timestamps between
the acquirer's and the releaser's vector times. We say
that an interval i, created by process p, is between the
acquirer's and the releaser's vector times if
VCacq[p]<i.vc[p]≤VCrel[p].

The description of each interval contains the
identifier of the process that created the interval, the
vector timestamp of the interval, and the corresponding
write notices (remember that interval record = [idCreat,
vc, writeNotices]). Each write notice in the reply
contains only the number of a page that was modified
during the interval; no updates are transferred in this
message. The information in the reply is obtained by
traversing the lists of interval records in procArray. In
the reply, each sequence of intervals created by process
p is ordered by increasing logical time of p.

The acquirer calls IncorporateIntervals to
incorporate the information received in the reply in its
own data structures. Notice that the system creates a diff
for writable pages for which a write notice was
received. This is important to allow the system to
distinguish the modifications made by concurrent
writers to the page [Carter 91]. The status of the pages
for which write notices were received in the reply is set
to no-access. When the acquirer tries to access one of
the invalidated pages the system invokes the
PageFaultHandler. On the first fault for a page, a page
copy is requested from the page manager. Pages are
kept writable at the manager until the first page request
arrives. When this happens, the page status is changed
to read-only. After getting the page copy, if there are
write notices for the page without the corresponding
diffs, the system sends messages requesting those diffs,
to the processes that cache them. In TreadMarks, a
processor that modified a page in interval i is
guaranteed to have all the diffs for that page for all
intervals preceding i. After receiving the diffs, the
handler applies them to the page in timestamp order. On
a read miss, the system provides read-only access to the
page. On a write miss, the system provides read-write
access and creates a copy of the page (a “twin”), which
is used to detect modifications to the page. The twin is
later compared to the current contents of the page to
produce a diff that encodes the modifications produced
during the interval.

The Barrier routine is executed by the system when
a process waits on a barrier. If a process is not the
manager of the barrier, it sends to the manager its
current vector time, plus all intervals between the
logical time of the last local interval known at the
manager and its current logical time. After this, the
manager sends to each other process all the intervals
between the current vector time of the process and the

LockAcquire:
send (AcqRequest, VC) to lock manager;
receive (intervals)
IncorporateIntervals(intervals);

LockAcquireServer:
receive (AcqRequest, VC

acq
) from acquirer;

wait until lock is released;
if(an interval was not created since the

last release of this lock)
 CreateInterval;
send (intervals between VC

acq
 and VC) to

acquirer;

LockRelease:
if(lock request pending)

wakeup LockAcquireServer;

CreateInterval:
if(dirtyList is not empty) {

VC[pid] := VC[pid] + 1;
insert new interval i in

procArray[pid];
for each page in dirtyList

create write notice record for
interval i;

clear dirtyList;
}

IncorporateIntervals(intervals):
for each i in intervals {
 insert record for i in

procArray[i.idCreat];
VC[i.idCreat] := i.vc[i.idCreat];
for each write notice in i {

store write notice;
if (twin exists for the page write

 notice refers to){
 if(a write notice corresponding

 to the current writes was not
already created)
 CreateInterval;

create diff;
delete twin;

}
set page status to no-access;

 }
}

DiffRequestServer:
receive (DiffRequest, pageId, diffId)

from req node;
if (diff is not created) {
 create diff;
 delete twin;

set page status to read-only;
}
send (diff) to req node;

PageFaultHandler:
if(page status = no-access) {

if (local page copy not initialized) {
 send (PageRequest, pageId)

 to page manager;
 receive (page copy, copyset);
 }

send (DiffRequest, pageId, diffId) to
latest writers;

 receive (diffs) from latest writers;
 apply diffs to page in timestamp order;
}
if (write miss) {
 create twin;
 insert page in dirtyList;
 set page status to read-write;
} else
 set page status to read-only;

PageRequestServer:
receive (PageRequest, pageId) from req

node;
if (copyset={pid} and

page status=read-write)
set page status to read-only;

copyset := copyset ∪ {req};
send (page copy, copyset) to req node;

Barrier:
CreateInterval;
if (not manager) {

lastLt := logical time of last local
 interval known at manager;

send (Barrier, VC, local intervals
 between lastLt and VC[pid])

 to manager;
receive (intervals);
IncorporateIntervals(intervals);

} else {
for each client c {

 receive (Barrier, VC
c
, intervals);

 IncorporateIntervals(intervals);
 }
 for each client c

 send(intervals between VC
c
 and VC)

 to c;
}

Figure 3.1 -TreadMarks memory consistency algorithm.

manager’s current vector time.
The storage for the diffs, the write notice records

and the interval records is not freed until a garbage
collection is performed, i.e. a process effectively
maintains a log of all shared memory accesses since the
last garbage collection. During garbage collection, all

processes synchronize at a barrier. Then each process
updates its local copies of shared pages (either the copy
is discarded or all diffs are requested). After this, each
process sends a message to the garbage collection
manager, informing it that garbage collection is
complete. After receiving messages from all other

processes, the manager replies to each of them. Each
process then frees all data structures used by the LRC
protocol and resumes normal execution.

4. Recovery Algorithm

4.1 System Model

We consider a lazy-invalidate release consistent
DSM system [Keleher 94] composed of a set of nodes
strongly connected by an interconnection network. Each
node executes exactly one process, which
communicates with other processes by exchanging
messages. Messages are transmitted reliably by using
protocols specific to the operations of the DSM system.
Nodes fail independently by halting and all surviving
processes detect the failure within bounded time,
according to the fail-stop model [Schneider 84].
Processes execute in a piecewise deterministic manner
[Strom 85] and the only non-deterministic events are
shared memory reads. Processes have no data races.

4.2 New Data Structures

The recovery algorithm uses the existing LRC data
structures. In addition, each process maintains in its
local volatile memory the following data structures:

sentLog[NPROCS]: array with lists of pairs <VCacq,
VCrel’> with the vector times used by the local
process rel to determine which set of intervals to
send to the acquiring process acq.

receivedLog[NPROCS]: array with lists of pairs
<VCbef, VCaft> with the vector times of the local
process before and after incorporating the intervals
received at acquire time from other processes.

sent_to_mgrLog[NPROCS]: array with lists of pairs
<lastLtmgr, intLtp> with the last logical time of p
known to the barrier manager mgr and the logical
time of the last local interval record of process p.

received_by_mgrLog: list of pairs <VCbef, VCaft>,
maintained by the manager of the barrier, with the
vector times of the local process before and after
incorporating the intervals received at the barrier
crossing.

The send logs sentLog[i] and sent_to_mgrLog[i]
record information sent by the local process to process i
and are necessary to reconstruct the state of process i if
process i crashes. The receive logs receivedLog[i] and
received_by_mgrLog record information received by
the local process from process i and are necessary to
reconstruct the send logs of process i if process i
crashes.

4.3 Logging

This subsection describes the logging operations
which were added to the base TreadMarks LRC
algorithm. Figure 4.1 presents the pseudo-code for this
algorithm with fault tolerance extensions in boldface. In
Figure 4.1, VC’ is the approximate vector time of each
process. VC’ is simply a vector time equal to VC except
that VC’[pid] is the logical time of the last local interval
record created, which may be smaller than VC[pid].
Note that VC’ is implicitly updated whenever VC is
updated or a local interval is created.

4.3.1 Logging at Acquires

During an acquire, the releasing process must log
the instant at which it received the acquire request and
the instant at which the acquiring process issued the
request. This way, during recovery, the releaser will be
able to inform the recovering process of the set of
intervals received during that acquire. Therefore, the
acquiring process will invalidate the same pages at the
same execution point, which will cause the same read
faults to occur and the same pages and diffs to be
requested from the surviving processes. The diffs that
will be received are the same, because the LRC protocol
keeps these diffs in the memory of the processes which
sent them. The pages that will be received may not be
exactly the same that were received before the fault, but
our algorithm guarantees that they differ only in the
parts that will not be accessed by the process.

Each acquire operation is uniquely identified by the
logical time of the process at the time the acquire is
performed. In the base LRC protocol, incrementing the
logical time is delayed until there is communication
with other processes, to optimize the case when the lock
is re-acquired by the same process. In the fault tolerant
LRC protocol, the logical time is incremented at every
acquire because during replay it is necessary to uniquely
identify remote acquire operations. The logical time
increment cannot be associated with interval record
creation because interval creation can be asynchronous
(in LockAcquireServer). During re-execution, it would
not be possible to replay these asynchronous increments
and therefore acquires would not be identifiable by
logical time. The logical time of the process is also
incremented at every release because every time a
process executes a release a new logical interval begins.
If an interval record is created for this new interval, its
logical time must be different from the logical times of
previous intervals. For the same reason, the logical time
is also incremented at every barrier.

At each remote acquire, the releasing process
creates a new entry in the sentLog, where it saves its
approximate vector time, VCrel’, and the acquirer’s
vector time, VCacq. The intervals between these vector

LockAcquire:
VC[pid] := VC[pid] + 1;
VC

bef
 := VC;

send (AcqRequest, VC) to lock manager;
receive (intervals)
IncorporateIntervals(intervals);
log <VC

bef
,VC> in receivedLog[pid

rel
];

LockAcquireServer:
receive (AcqRequest, VC

acq
) from acquirer;

wait until lock is released;
if(an interval was not created since the

last release of this lock)
 CreateInterval;
log <VC

acq
,VC’> in sentLog[pid

acq
];

send (intervals between VC
acq
 and VC’) to

acquirer;

LockRelease:
VC[pid] := VC[pid] + 1;
if(lock request pending)

wakeup LockAcquireServer;

CreateInterval:
if(dirtyList is not empty) {
 -- removed logical time increment --

insert new interval i in
procArray[pid];

for each page in dirtyList
 create write notice record for

 interval i;
clear dirtyList;

}

IncorporateIntervals(intervals):
for each i in intervals {

insert record for i in
procArray[i.idCreat];

VC[i.idCreat] := i.vc[i.idCreat];

for each write notice in i {
store write notice;
if (twin exists for the page write

 notice refers to) {
 if(a write notice corresponding

 to the current writes was not
 already created)

 CreateInterval;
create diff tagged with VC[pid];
delete twin;

}
set page status to no-access;

 }
}

DiffRequestServer:
receive (DiffRequest, pageId, diffId)

from req node;
if (diff is not created) {
 create diff tagged with VC[pid];
 delete twin;

set page status to read-only;
}
send (diff) to req node;

PageFaultHandler:
if(page status = no-access) {

if (local page copy not initialized) {
 if(first GC done) {
 send (PageRequest, pageId)

 to page manager;
 receive (page copy, copyset);
 } else

 zero-fill local page copy;
 }

send (DiffRequest, pageId, diffId) to
 latest writers;
 receive (diffs) from latest writers;
 apply diffs to page in timestamp order;
}
if (write miss) {
 create twin;
 insert page in dirtyList;
 set page status to read-write;
} else
 set page status to read-only;

PageRequestServer:
receive (PageRequest, pageId) from req

node;
--removed possible page status change--
if (req ∉ copyset) {

copyset := copyset ∪ {req};
send (page copy, copyset) to

 req node;
} else {

send (page copy from last consistent
checkpoint, copyset) to req node;

}

Barrier:
VC[pid] := VC[pid] + 1;
CreateInterval;
if (not manager) {

lastLt := logical time of last local
 interval known at manager;

VC
bef
 := VC;

log <lastLt, VC’[pid]> in
sent_to_mgrLog[pid

manager
];

send(Barrier, VC, local intervals
 between lastLt and VC’[pid])

to manager;
receive (intervals);
IncorporateIntervals(intervals);
log <VC

bef
,VC> in

receivedLog[pid
manager

];
} else {
 VC

bef
 := VC;

for each client c {
 receive (Barrier, VC

c
, intervals);

 IncorporateIntervals(intervals);
 }
 log <VC

bef
,VC> in

received_by_mgrLog;
 for each client c {
 log <VC

c
,VC’> in sentLog[c];

 send(intervals between VC
c
 and VC’)

 to c;
 }
}

Figure 4.1 -TreadMarks memory consistency algorithm with fault tolerance extensions.

times can be obtained from procArray. During
recovery, these intervals are sent to the recovering
process to replay the acquire operation. VCrel’ is logged
instead of VCrel because when the acquire request is
serviced, an interval record with logical time VCrel[pid]
might not have been created. If later such an interval
record is created, it is necessary to guarantee that the
corresponding write notices are not sent to the acquirer
during replay of the acquire operation.

The releaser does not need to log the whole vector
times; it suffices to log the positions where
VCrel’[i]>VCacq[i]. We currently do not use this
optimization as its benefits would be minimal for our
number of processors, but it could be used to compress
the log if very large vector clocks were used.

After a failure, it is also necessary to recover the
sentLog to tolerate subsequent faults in other processes
that received write notices from the recovering process.
After an acquire operation, the acquiring process
records in its receivedLog its vector times from before
and after incorporating the intervals. Although this
might not be an exact copy of the log entry created by
the releaser, it contains information about which
intervals were received, because the positions where
VCaft[i]>VCbef[i] have the same values as the positions
where VCrel’[i]>VCacq[i] in the log of the releaser.
During recovery, the processes that received intervals
from the recovering process send it these log entries, so
that the recovering process can recover its sentLog.

4.3.2 Logging at Barriers

During barrier crossing, the manager logs in its
sentLog the vector times received from each process
and its approximate vector time, VC’, at the time of
reply. If a non-manager process is recovering, this
information allows the manager to re-send exactly the
same intervals as before the failure.

Each non-manager process logs in its
sent_to_mgrLog a tuple <lastLt, intLt> with the logical
time of the last local interval that is known at the
manager and the logical time of the last local interval
record created. This information is used to calculate the
local intervals sent to the manager, but it does not
uniquely identify the barrier crossing at which they were
sent. However this information is implicit in the
position of the tuple in the sent_to_mgrLog, because
barrier crossings are global operations performed by
every process and barrier managers are statically
assigned.

When a process receives the reply from the
manager, it logs in the receivedLog its vector times
before and after incorporating the received intervals.
This is exactly the same logging operation that is
performed during lock acquires. To recover the

information in the sent_to_mgrLog of failed processes,
the manager logs in the received_by_mgrLog its vector
times before and after incorporating the intervals at the
barrier. This entry keeps the same information kept by
the set of all corresponding sent_to_mgrLog entries at
non-manager processes.

4.3.3 Page Logging

On the first access to a page, the LRC protocol
requests an initial page copy from the page manager.
This copy may have writes which do not have
corresponding diffs, for two reasons. Since pages are
initially kept writable at the manager, it may perform
some writes which are not captured in diffs. Also,
immediately after each GC operation, all the diffs are
discarded and writes are kept only in page copies.

Suppose that some process requests a page copy and
reads the value of one of these writes. Suppose later the
process fails and is re-started. During recovery, the
recovering process will request the same page copy.
However, the manager cannot send its current copy
because it may have writes that follow (according to the
LRC partial order) the accesses the recovering process
is about to perform. These writes possibly overwrite the
values which the recovering process read during normal
execution. Figure 4.2 exemplifies this problem1.
Suppose P1 is the manager of some page and no other
process requested a copy of that page. The page is
writable when w(1)3 is performed, and hence no page
fault is generated and a twin is not created. Later P2

acquires lock i and initiates a r(1) access. This will
trigger a page fault and a page request is sent to P1.
Upon receipt of the reply, P2 completes the r(1)3 access
and performs w(1)1. Later P1 acquires lock i and
performs r(1). Hence the diff corresponding to w(1)1
will be requested from P2 and applied to the local page
copy. If P2 fails, during recovery it will request the same
page copy from P1. If P1 replies with its current copy,
the r(1) access at P2 will return 1, and thus P2 will not
reach the same state.

Figure 4.2 - The problem of sending current page copies during
process recovery.

1 r(x)y is used to denote a read operation from address x

returning value y. w(x)y denotes a write of value y to
address x. Wn is used to denote a set of write notices.

To avoid maintaining two copies of each shared
page in the memory of page managers, we introduced
the following modifications. When processes are
started, all their shared pages are write protected; this
includes page managers. When the first fault occurs for
a page, it is initialized to all zeros. Thus all processes
start from the same page contents. These modifications
cause at most one additional page fault and diff to be
created for each page. Until the first global garbage
collection operation is executed, there is no need to
issue page requests, as all writes have corresponding
diffs. After the first global GC, all shared pages are
saved in the consistent checkpoint of all the processes.
After the first global GC, if a process receives a page
request from a process which does not yet belong to the
copyset of the page, it returns its current copy. If, on the
other hand, the requesting process already belongs to
the copyset, the manager must fetch the initial page
copy from the last global checkpoint and return that
copy.

With this algorithm, the page copies received during
normal execution and recovery can be different, since
during normal execution the pages may contain writes
which do not precede the local accesses. However, this
poses no problem as it is guaranteed that a process with
no data races will not read these values and will
therefore re-execute as before the failure.

4.3.4 Termination Related Logging

When a diff is created during asynchronous
handling of a diff request, it can contain writes which
were performed immediately before the request arrived.
This means that recovery must end after these writes are
performed, if the system is to be in a consistent state.
Figure 4.3 shows an example where process P1 acquires
lock m from process P2. During this acquire, P1 receives
a write notice for the page where w(0)1 was performed.
P2 then locally acquires lock b and performs w(2)4 on
the same page. When process P1 requests the diff for the
write notice it received, P2 write protects the page
where the writes were performed and creates the diff.
The diff contains both w(0)1 and w(2)4.

Figure 4.3 - Diff creation due to asynchronous message
reception which keeps write done immediately before the request

arrives.

Suppose recovery of P2 ends at the Rel(m). If
process P1 acquires lock b and performs r(2), it will get
the value 4, which was not written by any process.

To guarantee that recovery ends after the last diff
creation, it is necessary to tag each diff with the logical
time of the process where it was created. During
recovery, when the logical time of the process becomes
greater than the logical time of the last diff, it is
guaranteed that all writes sent in diffs are performed.

Recovery must also terminate only when all
intervals that were sent to other processes are finished.
If this did not happen, then after recovery some
processes would have intervals from the faulty process
with logical times greater than the current logical time
of the recovered process. These intervals would not be
replayed and eventually intervals with the same logical
times would be created but with possibly different write
notices. This requirement does not introduce any new
logging operation. Although interval record creation can
be asynchronous, each interval is uniquely identified by
its logical time, and during replay, the process will re-
execute until the last interval sent to other processes is
finished.

4.4 Checkpointing

Periodically, the processes can take independent
checkpoints to optimize recovery time. When one of
these checkpoints is completed, its previous
independent checkpoint can be discarded.

Several optimizations can be used to speed up
independent checkpointing. Initially all shared pages are
excluded from the checkpoints. When there is a write
fault, the corresponding page is included in the next
checkpoint. When a page is invalidated, it is excluded
from the next checkpoint, because its state can be
recovered from the corresponding diffs. This is different
from incremental checkpointing because the page may
be written after one checkpoint and still need not be
included in the next one. The diffs received from other
processes are not included in the checkpoints because
they can be easily recovered from the processes where
they were created. The diffs created locally and sent to
other processes also need not be included in the
checkpoints because they can be recovered from the
processes that received them.

During the global garbage collection operations
already performed by the TreadMarks LRC protocol, a
consistent global checkpoint is created, and the LRC
data structures used for recovery are discarded. As
processes already have to coordinate to perform GC,
there is no additional coordination overhead to establish
the global checkpoint. This consistent checkpointing
mechanism is used to efficiently tolerate multiple faults.

If multiple faults are detected, all the processes are
rolled back to the last consistent checkpoint.

The consistent checkpointing and garbage collection
protocol proceeds as follows. First, all processes
synchronize at a barrier. Then each process updates its
local page copies, as in the normal GC protocol. Each
process then sends a message to a checkpoint server
requesting to save its checkpoint and waits for the reply.
After having received and saved all the checkpoints, the
checkpoint server sends acknowledgment messages to
all processes. Each process then frees all entries of the
send and receive logs (and all LRC data structures).
Afterwards normal execution is resumed. This is exactly
the protocol performed during LRC GC; the only
additional overhead is due to checkpoint transmission
and storage.

The incorporation of consistent checkpointing with
garbage collection does not permit increasing the
checkpointing interval. However GC operations must be
relatively infrequent to not affect the performance of the
DSM system. Therefore, increasing the amount of
memory for the LRC data structures improves the DSM
performance by reducing the frequency of both GC and
consistent checkpointing.

Usual optimizations such as incremental and non-
blocking checkpointing [Elnozahy 92, Li 90] can be
used to reduce checkpoint overhead. The performance
of copy-on-write checkpointing might be affected by the
low amount of free memory at GC time. However,
performing GC at a lower occupied memory threshold
would solve this problem. If non-blocking
checkpointing is used, single failures while the
checkpoints are being saved would cause the system to
rollback to the last consistent checkpoint. To avoid this,
the LRC data structures needed for recovery could be
freed only after the checkpoints are saved on stable
storage. This would also require GC to be done at a
lower occupied memory threshold, because processes
would need memory to continue execution while the
checkpoints are being saved.

4.5 Recovery

In order to simplify the following presentation, we
do not refer to barrier crossings but only to lock
acquires. Discussion of recovery for barriers is deferred
until the next section.

4.5.1 Data Collection

When a process failure is detected, a new process is
started from the most recent checkpoint of the failed
process, p. The recovering process logically broadcasts
a message informing it is in recovery. This message
contains the current logical time of the process, Tckpt,
which is the one saved in the checkpoint file, and the

logical time of the last local interval record created,
localIntLt. All surviving processes which have
VC[p]>localIntLt reply by sending their vector times
and the identifiers of the diffs created by the recovering
process, which are kept in their local memories.

The recovering process then requests all its intervals
with a logical time greater than localIntLt from the
process which has the largest VC[p]. All diffs generated
by the process after or at its current logical time are also
requested from the processes that cache them. The
process then builds a list of all the intervals it had
created during the failure-free period. This list, ordered
by descending logical time of the recovering process, is
prepended to procArray[p].

The recovering process also sends to each other
process, c, the VCacq[c] of its last entry in sentLog[c].
Each process replies by sending its receivedLog[p]
entries where VCbef[c] is greater than the received
VCacq[c]. These entries are appended to the sentLog[c]
of the recovering process.

Each process also sends the identifiers of the pages
for which it has a local copy and that are managed by
the recovering process. This enables the recovery of the
copyset information for each of these pages.

Each process, c, also sends a list of tuples <VCacq,
VCrel’, intervalSet> corresponding to its sentLog[p]
entries where VCacq[p]>Tckpt, where intervalSet is the
sequence of intervals received during that acquire. The
list of the prefixes <VCacq, VCrel’> of these tuples is
appended to the receivedLog[c] of the recovering
process. All the lists received are merged into a single
list, acquireList, of tuples <lt, intervalSet>, where lt is
the logical time of the acquire at the recovering process.
This list is ordered by ascending lt.

4.5.2 Execution Replay

After the data collection phase described above, the
process starts to re-execute. During execution replay,
requests from other processes are blocked and the page
fault handler is the same as for the normal execution.

During the first phase of recovery, each remote
acquire operation is replayed. The next remote acquire
is identified by the logical time of the next entry in
acquireList. The acquire replay is the same as the
normal acquire, except that no local intervals are
created since they were already recovered. The intervals
from other processes are prepended to the procArray
lists corresponding to the processes which created them.

There is however a case when the local data
structures created during an acquire operation are
affected by asynchronous message handling and these
data structures are not recoverable from other
processes. Figure 4.4 shows an example of this, when a
diff is created during an acquire operation where a write

notice is received for a writable page. In Figure 4.4, all
writes are performed on the same page.

Figure 4.4 - Creation of a diff which is not sent to other processes,
during an acquire operation.

If process P3 fails and is re-started, the asynchronous
reception of the lock and diff requests, sent by P1,
cannot be replayed. If the diff created during the last
acquire of P3 is not later sent to other processes, it must
be recovered during replay of the acquire operation.
The diff created during recovery cannot have all the
writes that were performed since the last write
invalidate. For instance, in the example of Figure 4.4,
w(1)2 and w(4)8 cannot both belong to the diff for the
write notice created in the last acquire, because w(1)2
precedes w(1)3 while w(4)8 is concurrent with w(1)3.

To solve this problem, when a process replays an
acquire operation, a diff is created if a received interval,
r, has a write notice for a writable page, and there is a
local interval, i, with a write notice with no diff for the
same page, such that i.vc[r.idCreat]<r.vc[r.idCreat].

To create the diff, all diffs that correspond to write
notices for the same page, which belong to intervals that
follow the last acquire where the page was invalidated,
are applied to the current twin. Only then is the new diff
between the page and its twin calculated. This diff is
associated with the write notice without diff. During
acquire operations where it is not necessary to create a
diff, the page twin is simply discarded.

The first phase of recovery proceeds until one of
these situations occurs:
• There are no more entries in acquireList, and the

logical time of the recovering process, VC[p],
becomes greater than both the logical time of the
first interval in procArray[p] (the last interval that
was sent to another process) and the logical time of
creation of the last diff created by p during the
failure-free execution.

• The logical time of the recovering process, VC[p],
is greater than the logical time of the first interval in
procArray[p] and the process is about to re-execute
the next acquire in acquireList.

When the first phase of recovery ends, the
recovering process applies to the twin of each writable
page all the diffs corresponding to write notices for the
page which belong to intervals that follow the last
acquire where a write notice was received for that page,
and whose logical time of creation is smaller than the
current logical time. If the last of these write notices
does not have a diff or if the twin does not become
equal to the page, it keeps the page writable. Otherwise
it write invalidates the page. The dirtyList keeps only
the writable pages whose last write notice has a diff or
does not exist. This page state recovery procedure
recovers the state of shared pages which can be affected
by asynchronous handling of diff requests, which can in
turn correspond to write notices for intervals created
during asynchronous handling of acquire requests.

If after the first phase of recovery there are no more
entries in acquireList, recovery terminates. Otherwise,
replay of remote acquire operations must continue.
However, after this phase, the intervals created were not
sent to other processes and therefore acquire operations
are executed as during normal execution. This is
another situation where a LRC protocol data structure is
created but is not transmitted to another process. To
recreate these data structures the following procedure is
used. Immediately before each of the subsequent remote
acquire operations, but after having incremented the
logical time of the process for that acquire, the
recovering process executes the same page state
recovery procedure as was executed at the end of the
first phase of recovery. Next, the acquire operation is
re-executed as during the failure-free period, creating
local intervals if needed. Re-execution continues until
there are no more entries in acquireList. At this point, if
the logical time of the recovering process is greater than
the logical time of creation of the last diff created
during the failure-free execution, recovery terminates.
Otherwise re-execution continues until the logical time
becomes greater than the time of creation of the last
diff. The recovering process then executes the same
page state recovery procedure as was executed at the
end of the first phase of recovery, after which recovery
terminates. At this point, all intervals that were sent
during failure-free operation are created and all writes
sent in diffs are performed.

One straightforward extension to the algorithm, to
allow faster recovery, consists of logging which diffs
and pages were requested by each process. This allows
the recovering process to prefetch all the diffs and
pages needed for recovery. This would provide an
interesting benefit. As the processes would not need to
communicate with other processes during recovery
except for the initial information gathering phase,
immediately after this phase other failures could be
tolerated.

4.6 Recovery for Barriers

For barrier crossings at barriers that are not
managed by the recovering process, recovery proceeds
exactly as for lock acquires. There are, however, some
differences in the replay of barrier crossings when the
process is the manager of the barrier. To replay these
operations, when a process p fails, it sends the number n
of entries in its received_by_mgrLog in its initial
broadcast message. Each process then sends a list2 of
tuples <intervalSet> corresponding to its intervals
between the logical times in its <lastLt, intLt> entries in
sent_to_mgrLog[p]m where m>n.

The manager then builds a list, barrierList, where
each barrierListi entry is an interval set calculated as the
union of the ith entries in all the lists of intervals sent by
each other process. Each entry in barrierList keeps all
the intervals received by the manager at the crossing of
one of the barriers it manages. Therefore these entries
are used to supply the same write notices to the manager
during replay of these crossings. The
received_by_mgrLog is recovered incrementally as each
barrier crossing is replayed.

To recover its sent_to_mgrLog, the process also
sends in its initial broadcast message the number of
entries, kq, in each sent_to_mgrLog[q] list. Each
process, q, then selects from all its
received_by_mgrLogl entries, where l>kq, the logical
times corresponding to the recovering process in the
pair <VCbef, VCaft>. It then sends to the recovering
process a list of all the selected <lastLt, intLt> pairs.
This list is then appended to the sent_to_mgrLog[q] list
at the recovering process.

5. Experimental Results

5.1 Implementation

We implemented the logging part of our algorithm
on top of TreadMarks as described in section 4.3; and
we used the libckpt library [Plank 95] to create the
process checkpoints. This library implements
incremental and non-blocking checkpointing with copy-
on-write. However, incremental checkpointing was
disabled in our experiments because it write protects all
data pages after each checkpoint, and this would
interfere with TreadMarks' management of page
protections. Currently, pages which are never
invalidated are written in every checkpoint. We used the
facilities provided by libckpt to include and exclude
memory from the checkpoints, to manage the portion of
the shared address space which is checkpointed.

2 The ith element in list L is denoted by Li.

The recovery part of our algorithm is partially
implemented. At the end of a run, all processes wait for
the re-execution of one process. This process rolls back
to the start of the application, gathers the recovery
information needed to build the acquireList (section
4.5.1), and re-executes its portion of the computation.

In order to evaluate our algorithm, we compare it
with the logging algorithm proposed in [Suri 95] for
LRC based systems. We implemented the logging
algorithm of [Suri 95] on top of TreadMarks. This
algorithm logs references to the diffs obtained from
other processes and copies of the messages received at
lock acquires and barrier crossings. When local diffs or
intervals are transmitted to other processes, the log is
synchronously flushed to a local disk in each
workstation.

5.2 Experimental Setup

Our measurements were performed on a network of
SPARCstations 10/30 running SunOS 4.1.3, connected
by a 10Mbps Ethernet network. Each SPARCstation has
a V8 SuperSPARC processor running at 36MHz, 36
Kbytes of internal cache and 32 Mbytes of memory.
Checkpoints were written to a Seagate Barracuda disk
via NFS. Our results are based on the execution of three
parallel applications included in the TreadMarks
distribution:

SOR: An implementation of the red-black successive
over-relaxation algorithm [Keleher 94].

TSP: Solves the traveling salesperson problem, using a
branch and bound algorithm [Carter 91].

Water: An N-body molecular dynamics simulation
from the SPLASH benchmark suite [Singh 91],
which calculates forces and potentials in a system of
water molecules in liquid state.

We ran two sets of experiments. First, a series of
experiments was performed to evaluate the overheads of
our logging algorithm and the one presented in [Suri 95]
when the number of processes running the application is
increased. For this first set of benchmarks, SOR was run
for 318 iterations on a 1024x1024 floating point matrix;
TSP was run with a graph of 20 cities; and Water was
run for 15 steps on 500 molecules.

The second set of experiments measures our logging
algorithm in 4-processor runs, with and without
checkpoint creation. For the second set of experiments,
SOR was run for 1400 iterations on a 1278x2048
floating point matrix; TSP was run with a graph of 22
cities; and Water was run for 23 steps on 1472
molecules. No global garbage collections or consistent
checkpoints were performed during the experiments.

In each series of experiments, the logging
algorithms are compared to the TreadMarks version
modified to not issue page requests before the first GC
operation. We found that this modification had a very
small positive impact on the performance of
applications, because it reduces the amount of data
transferred. Therefore, we chose to isolate this effect
from the logging overhead.

5.3 Results

In the following figures, VC Logging (Vector Clock
Logging) is used to label the results of our logging
algorithm, while Message Logging is used to label the
results of our implementation of the logging algorithm
proposed in [Suri 95].

Figures 5.1, 5.2 and 5.3 show the running time for
our three test applications in the first set of experiments;
and Figure 5.4 shows the log sizes for each application
in 4-processor runs. As expected, adding our logging
algorithm to TreadMarks almost does not affect
application execution time. The graphs show that the
logging mechanism introduces almost zero time
overhead. This happens because it does not send extra
messages, does not access stable storage, and logs only
a small amount of data. Figure 5.4 shows that the space
overhead of our algorithm is also very small.

On the other hand, Message Logging introduces a
significant execution time overhead, and the overhead
grows with the number of processes. The main causes
of this overhead are the accesses to stable storage and
the large amount of data logged. The Message Logging
approach flushes the log to disk with a synchronous
write every time local diffs or intervals are sent to
another process. The Message Logging approach logs
diffs and write notices, whereas the VC Logging
approach only logs pairs of vector times. Therefore, the
Message Logging approach has significantly larger logs.
Note that the Message Logging approach keeps most of
the log on disk; only the portion of the log created since
the last flush to disk is kept in memory.

0

100

200

300

1 2 4
Number of Processors

S
O

R
 E

xe
c.

 T
im

e
(s

) TreadMarks

VC Logging

Message
Logging

Figure 5.1 - Execution times for SOR.

0

300

600

900

1200

1 2 4
Number of Processors

T
S

P
 E

xe
c.

 T
im

e
(s

)

TreadMarks

VC Logging

Message
Logging

Figure 5.2 - Execution times for TSP.

0

200

400

600

1 2 4
Number of Processors

W
at

er
 E

xe
c.

 T
im

e
(s

) TreadMarks

VC Logging

Message
Logging

Figure 5.3 - Execution times for Water.
0.

7

0.
08

0.
06

8.
4

2.
63

1.
91

0

2

4

6

8

10

Water SOR TSP

L
o

g
 S

iz
e

(M
B

)

VC Logging

Message
Logging

Figure 5.4 - Log sizes for first set of benchmarks.

For VC Logging, the log sizes of the applications
are dictated by the number of remote synchronization
operations, i.e. the number of times a lock is acquired
from a remote process and the number of barrier
crossings. Water uses significantly more log space than
the other two applications, because it has an order of
magnitude more remote synchronization operations. For
Water, the sentLog and receivedLog keep 22073 VC
pairs each, for a total of 353168 bytes each. For TSP,
1981 VC pairs are kept in sentLog and receivedLog.
For Water and TSP most of the synchronization is done
using locks, and therefore the log components related to
logging at barrier managers are not significant. These
components are more significant in SOR because most
of the synchronization is done using barriers. SOR

keeps 1914 VC pairs in sentLog and receivedLog, 1914
logical time pairs in sent_to_mgrLog, and 638 VC pairs
in received_by_mgrLog.

Figure 5.5 shows the running time of our three test
applications in 4-processor runs in the second set of
experiments. Six checkpoints were created for each
process, during the execution of Water and TSP. For
SOR, only five checkpoints were created. Log sizes and
average checkpoint sizes for these runs are presented in
Table 5.1. These results confirm that our logging
algorithm has near zero time overhead and small space
overhead.

The overhead of checkpointing is below 2% for
Water and TSP. For SOR, the checkpointing overhead
is approximately 22%, because the average checkpoint
size in SOR is much larger than for the other two
applications (as shown in Table 5.1). SOR has a larger
checkpoint size because each process touches
significantly more memory than in the other two
applications. This inefficiency can be reduced by
integrating incremental checkpointing with the LRC
protocol and using modern switched network
technologies.

0

400

800

1200

Water SOR TSP

E
xe

cu
ti

o
n

 T
im

e
(s

) TreadMarks

VC Logging

VC Logging and
Checkpointing

Figure 5.5 - Execution times for the second set of benchmarks.

Application Log Size (MB) Average Checkpoint
Size (MB)

Water 3.10 3.05
SOR 0.33 7.84
TSP 0.05 2.49

Table 5.1 -Log sizes and average checkpoint sizes for benchmarks of
Figure 5.5.

Figure 5.6 shows the breakdown of normal
execution and recovery times for the first set of
benchmarks, in 4-processor runs. Re-execution time is
72% of normal execution time for Water, 75% for SOR
and 95% for TSP.

Two effects combine to make recovery faster than
normal execution. First, idle time is reduced. Idle time
results from waiting for locks and barriers and from
remote communication latency. During recovery, the
first component is completely eliminated and the second
is reduced, because the recovering process is the only

one using the network. Second, Unix overhead is
reduced, because the number of messages sent and
received is lower ([Keleher 94] shows that at least 80%
of the kernel execution time is spent in the
communications routines).

Water has a high remote synchronization rate,
resulting in a large amount of idle time during normal
execution. During recovery, idle time resulting from this
activity is greatly reduced. SOR has a lower
synchronization rate, but processes synchronize with
barriers and initiate data transfers at approximately the
same times, which results in idle time waiting for
network availability. TSP has a very small amount of
idle time, and therefore its recovery time is very close to
its normal execution time.

0

20

40

60

80

100

120

140

160

W
at

er

W
at

er
R

ec
ov

er
y

S
O

R

S
O

R
R

ec
ov

er
y

T
S

P

T
S

P
R

ec
ov

er
y

E
xe

cu
ti

o
n

 T
im

e
(s

)

Data collection

Idle Time

Unix

Computation

Figure 5.6 - Execution time breakdown for normal execution and
recovery of the first set of benchmarks.

6. Conclusions

This paper presented a lightweight logging
algorithm for lazy release consistent distributed shared
memory. This algorithm handles recovery from single
node failures, one of the most common failure scenarios
in networks of workstations. Furthermore, the algorithm
is integrated with a consistent checkpointing scheme,
which allows multiple failures to be tolerated.

The logging algorithm is very efficient, because it is
tightly integrated with the LRC memory coherence
protocol. Our experiments show that the logging
overhead for recovery of lazy release consistent DSM is
very low, both in time and space.

Acknowledgments

The authors would like to thank the anonymous
reviewers, Willy Zwaenepoel, Pete Keleher and
especially our shepherd David Johnson for the
comments which helped to improve the contents of this
paper.

References
[Anderson 95] T. E. Anderson, D. E. Culler and D. A.
Patterson. A Case for NOW (Networks of Workstations).
IEEE Micro, February 1995.

[Cabillic 95] G. Cabillic, G. Muller and I. Puaut. The
Performance of Consistent Checkpointing in Distributed
Shared Memory Sytems. Proceedings of the 14th Symposium
on Reliable Distributed Systems, September 1995.

[Carter 91] J. B. Carter, J. K. Bennett and W. Zwaenepoel.
Implementation and performance of Munin. Proceedings of
the 13th Symposium on Operating Systems Principles, pp.
152-164, October 1991.

[Castro 96] M. Castro, P. Guedes, M. Sequeira and M. Costa.
Efficient and Flexible Object Sharing. Proceedings of the
25th International Conference on Parallel Processing,
August 1996.

[Chandy 85] K. M. Chandy and L. Lamport. Distributed
Snapshots: Determining Global States of Distributed Systems.
ACM Transactions on Computer Systems, 3(1):63-75,
February 1985.

[Elnozahy 92] E. N. Elnozahy, D. B. Johnson and W.
Zwaenepoel. The Performance of Consistent Checkpointing.
Eleventh IEEE Symposium on Reliable Distributed Systems,
pp. 39-47, October 1992.

[Feeley 94] M. J. Feeley, J. S. Chase, V. R. Narasayya and H.
M. Levy. Integrating Coherency and Recoverability in
Distributed Systems. Proceedings of the First Symposium on
Operating Systems Design and Implementation, November
1994.

[Janakiraman 94] G. Janakiraman and Y. Tamir. Coordinated
checkpointing-rollback error recovery for distributed shared
memory multicomputers. Proceedings of the 13th Symposium
on Reliable Distributed Systems. pp. 42-51, October 1994.

[Janssens 93] B. Janssens and W. K. Fuchs. Relaxing
Consistency in Recoverable Distributed Shared Memory.
Proceedings of the 23rd International Symposium on Fault-
Tolerant Computing: Digest of Papers, pp. 155-163, June
1993.

[Janssens 94] B. Janssens and W. K. Fuchs. Reducing
Interprocess Dependence in Recoverable Distributed Shared
Memory. Proceedings of the 13th Symposium on Reliable
Distributed Systems, pp. 34-41, October 1994.

[Johnson 87] D. B. Johnson and W. Zwaenepoel. Sender-
based message logging. Proceedings of the Seventeenth
International Symposium on Fault-Tolerant Computing:
Digest of Papers, pp. 14-19, July 1987.

[Johnson 89] D. B. Johnson. Distributed System Fault
Tolerance Using Message Logging and Checkpointing. PhD
thesis, Rice University, December 1989.

[Keleher 92] P. Keleher, A. Cox and W. Zwaenepoel. Lazy
release consistency for software distributed shared memory.
Proceedings of the 19th Annual Symposium on Computer
Architecture, pp. 13-21, May 1992.

[Keleher 94] P. Keleher, A. Cox, S. Dwarkadas and W.
Zwaenepoel. TreadMarks: Distributed Shared Memory on

Standard Workstations and Operating Systems. Proceedings
of the 1994 Winter USENIX Conference, January 1994.

[Kermarrec 95] A. Kermarrec, G. Cabillic, A. Gefflaut, C.
Morin and I. Puaut. A recoverable distributed shared memory
integrating coherency and recoverability. Proceedings of the
25th International Symposium on Fault-Tolerant Computing
Systems, Pasadena, CA, June 1995.

[Koo 87] R. Koo and S. Toueg. Checkpointing and rollback-
recovery for distributed systems. IEEE Transactions on
Software Engineering, SE-13(1):23-31, January 1987.

[Li 86] K. Li. Shared Virtual Memory on Loosely Coupled
Microprocessors. PhD thesis, Yale University, September
1986.

[Li 90] K. Li, J. F. Naughton and J. S. Plank. Real-time,
concurrent checkpoint for parallel programs. Proceedings of
the 1990 Conference on the Principles and Practice of
Parallel Programming, pp. 79-88, March 1990.

[Neves 94] N. Neves, M. Castro and P. Guedes. A checkpoint
protocol for an entry consistent shared memory system.
Proceedings of the Thirteenth Annual Symposium on
Principles of Distributed Computing, pp. 121-129, August
1994.

[Plank 95] J.S. Plank, M. Beck, G. Kingsley and K. Li.
Libckpt: Transparent Checkpointing under Unix. Proceedings
of the USENIX Winter 1995 Technical Conference. January
1995.

[Richard III 93] G. G. Richard III and M. Singhal. Using
Logging and Asynchronous Checkpointing to Implement
Recoverable Distributed Shared Memory. Proceedings of the
12th Symposium on Reliable Distributed Systems, pp. 86-95,
October 1993.

[Schneider 84] F. Schneider. Byzantine generals in action:
Implementing fail-stop processors. ACM Transactions on
Computer Systems, 2(2):145-154, May 1984.

[Singh 91] J. Singh, W. Weber and A. Gupta. SPLASH:
Stanford Parallel Applications for Shared-Memory. Technical
Report CSL-TR-91-469, Stanford University, 1991.

[Strom 85] R. E. Strom and S. Yemini. Optimistic recovery in
distributed systems. ACM Transactions on Computer Systems,
3(3):204-226, August 1985.

[Stumm 90] M. Stumm and S. Zhou. Fault Tolerant
Distributed Shared Memory Algorithms. Proceedings of the
2nd Symposium on Parallel and Distributed Processing, pp.
719-724, December 1990.

[Suri 95] G. Suri, B. Janssens and W. K. Fuchs. Reduced
Overhead Logging for Rollback Recovery in Distributed
Shared Memory. Proceedings of the 25th Annual Intenational
Symposium on Fault-Tolerant Computing: Digest of Papers,
pp. 279-288, June 1995.

[Vaidya 95] N. H. Vaidya. A Case for Two-Level Distributed
Recovery Schemes. Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, pp. 64-73, May 1995.

[Wu 90] K. Wu and W. K. Fuchs. Recoverable Distributed
Shared Virtual Memory. IEEE Transactions on Computers,
Vol. 39, No. 4, pp. 460-469, April 1990.

