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Executive Summary

Security Information and Event Management (SIEM) systems offer various capabilities for real-time
event collection by monitoring a network at a diverse set of locations, with the correlation and analysis
of the obtained data to find out if attacks/intrusions are in progress, so that alarms and remediation actions
can be initiated. Since the different components of a SIEM system (e.g., the sensors and the correlation
engine) may be geographically dispersed, there is the need for a communication subsystem capable of
transmitting data (e.g., events and reconfiguration commands) not only in LAN settings, but also over
large scale networks such as the Internet. Some of the inherent problems associated with this setting
are delays, routing and node misconfigurations, event integrity violations and denial of service attacks,
which can all affect the correctness of the event analysis.

This deliverable describes the preliminary design of a set of solutions that can significantly improve
the resilience of the operation of a SIEM system. These solutions were developed based on the current
understanding of the MASSIF resilient architecture [16], but in most cases they can be easily generalized
to be of use to other SIEM systems. The document covers four fundamental areas: The Authenticated
Component Event Reporting addresses mechanisms that can be employed to give evidence that produced
event data has not been tampered with; The Resilient Event Bus (REB) enforces a resilient communi-
cation among the edge-MIS and core-MIS devices, ensuring reliable and timely data delivery in various
failure scenarios; Node defense mechanisms explains a set of techniques that can be applied in an in-
cremental way to make nodes increasingly more resilient, and they were applied to a design of a highly
resilient core-MIS; Resilient Event Storage (RES) presents a solution for the secure archival of event
data.

In the next deliverable of WP5.1, D5.1.4, these solutions will be further refined, in order to provide
the complete description of the resilient architecture, services and protocols of MASSIF.
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1 Introduction

Security Information and Event Management (SIEM) systems offer various capabilities for the collection
and analysis of security events and information in networked infrastructures. Currently, they are being
employed by organizations around the world as a way to facilitate operations related to maintenance,
monitoring and analysis of networks, by integrating a large range of security and network capabilities,
which allow for instance the correlation of thousands of events and the reporting of attacks and intrusions
in near real-time.

Network
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Edge 
MIS Edge

SIEM
Services

(e.g., LAN, MAN, or WAN)

Sensor
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Core
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MIS – MASSIF Information Switch
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Figure 1.1: SIEM general architecture.

A SIEM system operates by collecting data from the monitored network and applications, which
is then forwarded towards a correlation engine for processing. The engine then generates alarms and
other information for post-processing by other SIEM components, which provide a complete view on the
relevant state of the monitored system (called the payload machinery in Figure 1.1). For a more complete
discussion on the MASSIF architecture and services see [17].

Sensors are the components responsible for the periodical event generation based on real-time moni-
toring of selected network components (e.g., routers, firewalls, intrusion detection systems) and applica-
tions (see left part of Figure 1.1). Events are first forwarded to special nodes called edge-MIS, which are
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placed in the vicinity of the sensors, so that they can be aggregated to other events collected locally and
some pre-processing can be applied, such as format normalization. The edge-MISes then cooperate to
transmit the events towards the core-MIS, which controls the traffic going in or out of the network where
the SIEM processing components are located (see the right side of the figure). The core-MIS next sends
the data to the final destination, such as the correlation engine.

Due to its fundamental role in the security management of an organization, the SIEM should be
made resilient to faults and attacks. In this deliverable, we present the preliminary design of a set of
solutions that can significantly improve the resilience of the operation of the MASSIF SIEM system.
The document covers four fundamental areas:

Authenticated Component Event Reporting addresses mechanisms that can be employed to give evi-
dence that produced event data has not been tampered with, and therefore, that can effectively be
used to make decisions with regard to the monitored systems;

Resilient Event Bus (REB) enforces a resilient communication among the edge-MIS and core-MIS de-
vices. The REB is based on an overlay superimposed on top of the existing SIEM infrastructure,
which uses several mechanisms, such as coding algorithms, multihoming and multipath data trans-
mission, to ensure timely data delivery in various failure scenarios;

Node defense mechanisms explains a set of techniques that can be applied in an incremental way to
make nodes increasingly more resilient to different forms of faults, of either accidental nature or
malicious attacks. Since the core-MIS plays a fundamental role in the protection of the core SIEM
services, acting as a gatekeeper and preventing external attacks from entering in the network, we
provide a design of how it could be built to be highly resilient by taking advantage of the proposed
techniques;

Resilient Event Storage (RES) presents a solution for the secure archival of event data. RES is located
together with the core SIEM services, and gives support for the forensic analysis of an incident
based on the stored data, and enforces security policies that ensure that events are only made
available to authorized entities according to the regulations.

1.1 Guidelines Analysis

According to requirements analysis and guidelines in deliverable D.2.1.1 [15], this deliverable con-
tributes to the satisfaction of the following:

©2011-2013 by MASSIF Consortium 12 / 83
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Guideline Description

G.T.1. Resilience of the in-
frastructure

The various mechanisms presented contribute is different ways to this
objective.

G.T.2. Security of event
flows

The Authenticated Component Event Reporting, the REB, and the
resilient design of the core-MIS all contribute to protect the event
flows.

G.T.3. Protection of the
nodes

Specific mechanisms are proposed for increasing the robustness of
the nodes by introducing intrusion tolerance capabilities.

G.T.4. Timeliness of the in-
frastructure

The design of the REB and core-MIS have this guideline as one of
their objectives.

G.T.5. Data authenticity The various mechanisms presented contribute is different ways to this
objective.

G.T.6. Fault and intrusion-
tolerant stable storage

The RES design enforces this guideline.

G.T.7. Least persistence prin-
ciple

The RES design enforces this guideline.

G.T.8. Privacy of forensic
records

The RES design enforces this guideline.

G.S.6 Securing the evidence
progressed by the MASSIF
components

The Authenticated Component Event Reporting contributes to this
guideline.

Table 1.1: Guidelines covered by this deliverable

1.2 Glossary Adopted in this Deliverable

As agreed by the MASSIF Consortium, the main reference of security glossary is provided by the Na-
tional Institute of Standard and Technologies (NIST) [41].

1.3 Structure of the Document

The rest of the document is organized as follows: Chapter 2 presents the Authenticated Component Event
Reporting solutions. Chapter 3 describes the design and mechanisms employed by the REB to secure
the communication among the MIS. Chapter 4 provides an explanation of techniques that can be used to
improve the resilience of the nodes by making them intrusion-tolerant. These techniques are applied to
one of the fundamental components of our architecture, the core-MIS. Chapter 5 presents the RES for
secure event archival. The concluding remarks are provided in Chapter 6.

©2011-2013 by MASSIF Consortium 13 / 83



2 Authenticated Component Event Reporting

Various equipment, including the sources of event data, relevant for the operation of the overall infras-
tructure is placed in non-protected environments. This recent development can be observed for example
in smart grids for energy distribution or approaches in the area of facility management. It is therefore
possible for attackers to acquire access to equipment with relative ease, and then initiate fake event
reporting. This chapter studies the impacts of this problem and suggests solutions to address it.

2.1 Problem Description

We will start by analyzing some possible misuse cases, which have been reported in the scenario deliv-
erable [15] of the MASSIF project.

Water level sensor compromise The attacker takes control of the water level sensors and uses them to
send spoofed measurements to the dam control station. This hides the real status of the reservoir to the
dam administrator. In this way, the dam can be overflown without alarms being raised by the monitoring
system.

From this, we get the requirement that the water level measures have to be authentic for the adminis-
trator when they are displayed at the dam control station.

Tiltmeter compromise The attacker takes control of the tiltmeter sensors and uses them to send false
measurements to the dam control station, thus hiding the real status of the tilt of the dam’s walls to the
dam administrator. An excessive tilt may lead to the wall’s failure.

Crackmeter / jointmeter compromise The attacker has access to one of the crackmeters or joint-
meters deployed across the dam’s walls and takes control of it. So the attacker can weaken the joint or
increase the size of the crack at the wall’s weak point without any alarm being raised at the monitoring
station.

These examples show the need for respective authenticity requirements. In general, however, in-
formation flows between systems and components are highly complex, especially when organisational
processes need to be considered. Hence, not all security problems are discoverable easily. In order to
achieve the desired security goals, security requirements need to be derived systematically [18].

In summary, the analysis of the use case and misuse cases of this critical infrastructure scenario
shows that the overall function of the system requires authenticity of measurement values for several
sensors. In that sense, the dam scenario is a prime example for the relevance of devices which satisfy
respective authenticity requirements.

©2011-2013 by MASSIF Consortium 14 / 83
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Authenticity requirements and devices A data record can be considered secure if it was created
authentically by a device for which the following holds:

• The device is physically protected to ensure at least tamper-evidence. The data record is securely
bound to the identity and status of the device (including running software and configuration) and
to all other relevant parameters (such as time, temperature, location, users involved, etc.3)

• The data record has not been changed after creation.

Digital Evidence according to this definition comprises the measured value (e.g., water level sensor
measurement) and additional information on the state of the measurement device. This additional infor-
mation on the state of the measurement device aims to document the operation environment providing
evidence that can help lay the foundation for admissibility. As in the case of calibration of breathalyzers,
for example, if the measurement device is modified, such information should also be recorded as part
of amassing information supportive of admissibility. This will permit, at a later date, the linking of the
software version used to collect the evidence in question. This information would permit an expert wit-
ness to testify to the known vulnerabilities of that particular software version and thus the likelihood of
attacks.

Forensically Ready. By incorporating requirements into device design that focus on 1) potential ad-
missibility of data records created by the device and 2) creating additional documentation that would sup-
port arguments for admissibility, we establish devices that are ’forensically ready’. Subsequent transport
and secure storage of digital evidence are not part of this discussion, although they must be considered
by anyone responsible for operating a network in a manner that ensures collection of competent legal
evidence. However, for the purposes of this deliverable, we assume that digital evidence is created and
stored in the device in question, and that there exists reliable mechanisms to maintain authenticity and
integrity of the data records and also to provide non-repudiation for any steps of handling or changing the
data, perhaps relying on some kind of digital signature which is often the case. For long-term security,
archiving schemes can be used where digital signatures are replaced with some other security mitigations,
anticipating that employed cryptographic algorithms will become unreliable due to increasingly sophis-
ticated attacks or evolving computing capabilities. Physical attacks on devices are also not included in
the discussion. We are assuming that, as in many cases, it will be sufficient to install tamper-evident de-
vices (e.g., by using sealed boxes, installing devices in physically controlled rooms, etc.). Constructing
real tamper-proof devices is expensive and difficult. Thus we are focusing on security at the mechanism
level– how we develop and implement requirements for forensic readiness. Digital evidence requires
that additional security mechanisms be implemented into the hardware that will render them impossible
to be manipulated without physical access to the device.

The aim of this task is to integrate industry approaches to the attestation of event reporter states and
how to integrate these measurements to gain a certain degree of trustworthiness and non-repudiation for
events collected.

2.2 Technical solutions for the creation of digital evidence

The legal requirements towards the creation of digital evidence as discussed above imposes strong re-
quirements on the security of individual technical devices as the evidentiary records but also on the

3The actual set of parameters and the protection levels depend on the scenarios and on the type of data record
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processes involved in the processes for validating the device and software running on the device, for
transmitting and storing evidence records, for linking evidence records to a chain of evidence, and also
for verifying evidence records in the case of a dispute. The following subsections provide an overview of
existing technical approaches starting from securing the actual creation on the individual device, looking
at the infrastructure, and finally the processes involved.

2.2.1 Individual Device

Devices with various interfaces pose particular problems. Besides typical communication network inter-
faces, direct or close-range access via USB, for example, increase the complexity of protecting devices
from physical access, let alone network attacks. As discussed previously, the complexity of current state-
of-the-art devices presents a challenge for constructing a secure device that is both efficient and useable.
Therefore, taking a pragmatic approach to securing digital evidence on these devices, we suggest to
focus on establishing assurance that the device was not manipulated at the time of the creation of the
evidentiary record.

One approach might be to establish a cryptographic binding of evidence to the status of the de-
vice [67]. This can be achieved by using the existing technology of Trusted Computing [57] as specified
by the Trusted Computing Group. The so-called Trusted Platform Module (TPM) can establish a hard-
ware root of trust in the device. The security-level of a specialized security chip can be compared to
SmartCard security. In combination with a first trusted step in the boot process, the TPM can be used
to store, and securely report, measurement values documenting all software that was loaded after the
current boot started. Further, the TPM provides the functionality to sign data records combined with
these measured values and also to time-stamp data records to reliably reflect time relationships. The first
prototypes of traffic cameras secured by this technology are available [84, 83]. In addition to the so-
called attestation of the current boot process of a device as established by Trusted Computing, there also
exist approaches that go beyond attesting to only one boot cycle. The cumulative attestation proposed by
LeMay and Gunter [46] provides additional records and attests to the history of the boot process.

In contrast to the Trusted Computing approach, measurement values are not completely deleted for
each re-boot, but a cumulative measurement chain is generated over several boot processes. This ap-
proach ensures that the device has not been booted in an insecure start after the cumulative measurement
has started. It should be noted that, by using hardware-based roots of trust protection, this also prevents
some types of insider attacks where insiders try to produce false evidence. The trust in the status report-
ing of a particular device is rooted in certain core roots of trust. The TPM is one prominent example of
an available root of trust for reporting. These roots of trusts are built and certified by public bodies to
be tamper-proof, or at least hard to tamper. This reduces the possible attack vectors that could result in
modification of the reported status of the device, even to authorized insiders like administrators.

2.2.2 Infrastructure

It should be noted that securely creating a data record is not sufficient to establish secure digital evi-
dence. The device producing the record must be integrated into an appropriate infrastructure that can be
structured into two parts: 1) elements that collect the data that then is stored in the evidence record and
2) securely transmitting and maintaining long-term storage of that data. Data collection is not only about
maintaining the integrity of the data. Correctness of sensor data depends on many other factors, such as
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physical parameters of the environment (e.g., temperature or humidity), the location of the device and
the physical integrity of the sensor itself. Some of these factors can be controlled by additional sensors;
the status of these could be included in the reporting from the hardware-based attestation mechanisms.

Nevertheless, physical manipulation of the sensors is always possible. Threat modeling and risk
analysis can provide analysis of residual risks remaining after Trusted Computing is implemented. In-
tegrity and authenticity of data records can be maintained through use of public key cryptography. Since
the private key can be stored exclusively inside a hardware security chip, this aspect of the infrastructure
can be secured in this manner. Also solutions for long-term archiving exist (e.g., by renewing digital
signatures before their algorithms are broken and signatures become useless). The mechanisms for this
type of protection are well-established and can be efficiently implemented. However, digital evidence
can contain personal identifiable information (PII), requiring application of privacy enhancing technolo-
gies to digital evidence. Additional infrastructure is needed if several individual evidentiary records are
linked to a chain of evidence [43].

2.2.3 Process

In addition to technical solutions for securely creating and storing digital evidence and digital evidence
chains, organizational processes must enable the correct implementation and reproducibility of these
technical solutions. Verification and checking of digital evidence cannot be restricted to checking a sin-
gle digital signature per evidence record. It also needs to include additional checks on cryptographic
key certificates and validation of the status of the devices involved in the creation of evidence records.
Various types of digital certificates for cryptographic keys or software measurement values will be nec-
essary. Additional checks can be required such as certification of the platforms involved in the creation
of evidence records. A chain of evidence (or most probably a tree or several linked trees) would require
going through this process for each type of digital evidence and to establish all necessary links between
evidence records.

The following describes a proposed procedure required in advance of actually producing signed
digital evidence:

1. Produce hardware security anchor (e.g., TPM): The hardware security anchor must be produced at
a high security level.

2. Certify hardware security anchor: Security properties of the hardware security anchor should be
documented in a security certificate with an appropriate security level.

3. Certify platform: In addition to the single security chip, the means of its integration into the
platform and the properties of the root of trust for measurement are relevant and should be verified
and certified.

4. Produce software: Relevant infrastructure software such as operating system, drivers, and applica-
tion are produced and validated.

5. Installation, initialization and certification of software: It must be ensured, that software installa-
tion and initialization has occurred properly, has not been manipulated, and that security certifica-
tion does indeed cover all relevant aspects.

6. Define location, valid temperature, etc.: Certify reference measurement values for calibrated de-
vices.
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7. Generate and certify signing keys: Since the scheme described above relies heavily on cryptogra-
phy, and therefore on secure generation, distribution and storage of keys, these processes require
verification and certification. Because of the range of possible use cases, it is difficult to find and
recommend one single algorithm.

8. Define location, valid temperature, etc.: Parameter ranges for correct use of the system must be
established and then, either the occurrence of lower or higher temperatures prevented, or the in-
frastructure design changed to avoid problems. As an example, perhaps temperature control could
be included in the device in order to satisfy temperature requirements.

9. Installation of device: The installation an initialization process is critical as this is the phase where
keys can be generated and exchanged.

10. Establish communication with server: The establishment of client server communication is in
principle well-understood. However, there is no efficient solution currently for binding SSL keys
to underlying attestation values and also the platform the key owner claims it belongs to.

11. Reference measurement record: For attestation to make any sense, reference values for the correct
state of the device must be established in order to check for manipulation.

12. Document and store reference records and transfer to server: In addition to reference methods, it
can also be useful to store a number of data records on the server side in order to enable sanity
checks.

13. Start the boot process and time synchronization. The conditions to begin operation have been met.

14. Evidence collection: finally, sensor data can become data records that potentially can become
evidence. For this reason, data records are time-stamped using the TPM.

2.3 A high-level architecture for collecting secure digital evidence

The previous section has introduced a notion of secure digital chains of evidence. Before identifying
possible building blocks for actually realising the creation and collection of data for such secure digital
chains of evidence, this section introduces a high-level architecture for the collection of secure digital
evidence.

Obviously, it is infeasible for many real-life systems to identify, create, collect and store all possible
or potentially useful digital chains of evidence explicitly. It is more feasible to identify critical events
to be documented together with parameters linking events. Thus, the goal of a pro-active collection of
digital evidence should be to create and store a graph of linked secure evidence records in a way that a
path through the graph can represent a secure chain of evidence. Note that not all paths will represent a
useful chain of evidence. Such a system as depicted in Figure 2.1 consists of the following elements:

• Evidence generators create data records and securely bind them to relevant parameters e.g. by
digital signatures using hardware-based security [68].

• Evidence collectors can add semantic information to the evidence record and make it available for
distribution and storage [66, 64].
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• A Forensic data-base stores all secure evidence records as a graph structure representing the links
between different events.

• Actual creation of chains of evidence is an interactive process using the Interactive forensic data-
base explorer.

Evidence collector

Application Server

e.g. Intrusion detection

Network level

Evidence generator

Forensic data−base

Sensors for physical events

for forensic data−base

Interactive explorer

Figure 2.1: High-level architecture for collecting secure digital evidence

2.4 Building-blocks for secure evidence generation

In [68] an approach for the generation of individual secure evidence records was presented. This ap-
proach is based on established hardware-based security mechanisms and is applicable to special devices
producing data records with possible forensic use. The architecture presented includes a sketch of the
process needed to ensure the security of the evidence record. Figure 2.2 shows the different steps of this
process.

Even in individual data records (e.g. images taken by a digital camera), it becomes clear that the
security of the collected evidence records depends on a number of steps in the process that also need to
be documented. Thus, even in this relatively simple scenario, a number of events can produce additional
digital evidence, thereby creating a digital chain of evidence consisting of evidential data representing
events of very different types. The following paragraph introduces several building blocks that can be
used to build a system supporting the construction of secure digital chains of evidence. The roles of the
different building blocks correspond to the different components of the architecture for collecting secure
digital evidence.
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1. Produce hardware security anchor (TPM)

2. Certify hardware security anchor 

4. Certify platform

5. Produce software

7. Installation of software and initialisation

9. Generate and certify signing keys

Production 

6. Certify software

8. Certification of reference measurement values

12. Define location, valid temperature,etc.

Deployment

10. Installation of device

11. Establish communicaton with server

13. Reference measurement record

14. Document and store reference records

19. Transfer to server

Use

15. Boot system

16. Synchronize time

17. Evidence collection

18. Sign (stamp) evidence

3. Produce platform and integrate TPM

Figure 2.2: Process to establish secure evidence records

2.4.1 Secure evidence generator using Trusted Computing technology

The core part of the architecture is the actual generation of secure digital evidence. One possible approach
is the use of hardware-based security mechanisms in particular Trusted Computing and the Trusted Plat-
form Module (TPM) as specified by the Trusted Computing Group (TCG). A TPM provides a variety of
security functionality. For secure evidence generation, those parts of the TPM that identify the device,
bind data to the identity of the device, and provide authentic reports on the current state of the device
are essential. In the context of digital cameras, the feasibility of the use of TPMs for the protection of
digital images has already been proposed [68] and demonstrated [84]. The following paragraphs revise
the most important parameters to be secured.

Proof of software and configuration

One important aspect of the generation of digital evidence is the status of the device used in the process.
The software and configuration used to produce evidence needs to be presented and linked to the individ-
ual record. One simple scheme hereby is to include software name and version number as a simple string
of text in each evidence record. This first (and often used) approach allows for uncertainties with respect
to updates and various attacks on the evidence records. Just naming the software is not sufficient if the
device can be manipulated. Stronger means of protection are therefore required to reliably document the
software and configuration of the particular evidence generator.

To provide proof on the actual state of the evidence generator, trustworthy reporting in the device
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is required. The Trusted Computing standard introduces a core root of trust for measurement which
establishes the foundation to report on the status by creating a chain of trust [35]. This chain of trust
can be reported to external entities to allow for a verification of the evidence generator. This verification
process is called Remote Attestation.

Application of remote attestation allows for a session based or per record scheme. The session based
approach relies on an initial attestation of the system and a session bound to the individual evidence
generator and status. Every evidence record is then cryptographically bound to this session and therefore
to a particular system state. The second per record scheme involves an attestation process for each
evidence record. As in the basic remote attestation, an external random number generator is involved,
and longer delays as well as higher bandwidth utilisation are to be expected. As presented in [77], more
advanced schemes allowing for scalable attestation schemes are to be applied.

Lightweight Infrastructure. One important feature of the proposed incorporation of Trusted Comput-
ing is the lightweight infrastructure necessary during run-time compared with a traditional Public Key
Infrastructure system. Given the assertions of the hardware, a single key will not be revealed. Therefore,
it is not required to maintain certificate revocation lists and to check them before a certificate is accepted.
It is also not possible to move a certain identity of an evidence generator (represented by its key) from
one device to the next. These inherent features allow for typical deployment scenarios like embedded,
resource constraint environments.

Evidence record order

Time is a very important parameter in the forensic evaluation of evidence records. In most cases, it is
absolutely necessary to have more or less precise but reliable information on when a particular event,
such as the generation of an evidence record, has happened. Therefore, evidence generators need to bind
evidence records to timing information. For digital chains of evidence representing a particular process
this time information is essential to reconstruct the order of events in the process.

In the case of a single device, a monotonic counter (e.g. a clock) can be used to issue a time stamp
for each record to ensure the order. To ensure the probative force of the time stamp, the time needs a
cryptographically strong binding to the evidence record; further, it needs to be bound to time information
to be issued by a trustworthy time authority. Especially the latter proves to be a strong requirement
and is mostly solved by trusted third parties producing time stamps in specially secured and certified
installations. However, direct online time-stamping by a trusted time source is far too inefficient for
most reasonable evidence generators. Particularly in the case of embedded systems and/or high numbers
of records, such a remote time stamping would create a bottleneck. Thus, a secure evidence generator
should be able to produce time stamps on its own. Of course, the remote and probably more reliable time-
stamping service can be used to synchronise the local time of the evidence generator with an official time
source.

A feasible approach is to introduce a certified monotonic and timed tick-counter and a mechanism
for digital signatures and secure key storage to provide for time-stamps. The tick-counter as well as the
cryptographic functionality should be protected by hardware-means in order to prevent manipulations by
malicious software. To achieve a trustworthy local time stamp authority, the hardware being protected has
to provide for a shielded monotonic counter incremented in a certain interval. To ensure this particular
interval, a monitoring of the accuracy of the external clock of the hardware incrementing the counter is
also required. Such techniques are available in many standard PC architectures equipped with a Trusted
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Platform Module (TPM) and can also be provided via Smart Cards [76]. The TPM identifies each session
starting with the power up of the device with a new random number created within the TPM and is then
able to time stamp arbitrary data. These time stamps can then be used to identify the order of the evidence
records generated.

Considering distributed evidence generators, it is required to establish a link between the individual
monotonic counters. Linking two counters results in a measure to translate between the respective local
counter value into the other, which can be denoted as n1 := n2 + −offset. The offset is the expected
uncertainty in the association due to delays on the network and computational overhead. Figure 2.3
depicts a scheme to associate one counter to the other. Hereby generator g1 sends to g2 a tick stamp on a
random value TS. TS is then tick stamped by g2 and sent back to g1. The returned stampg2(TS) is then
again stamped by g1 and the resulting evidence is stored. Due to differences between the initial stamp of
g1 and the latter one, the maximum offset can be calculated and an attack on the response time of g2 can
be recorded and documented. To extend this scheme to a mutual link, the stamped result of g2 is to be
sent back to g2. g2, then it can stamp the actual message received to document the delay between g1 and
g2.

g1 g2

Nonce

TS

TS

stampg2 (TS)

stampg2 (TS)

stampg1 (stampg2 (TS))

1

Figure 2.3: Trustworthy counter linking

Depending on the particular infrastructure, it can be necessary to link the time between several nodes
belonging to one process. It can be efficient to use one central node to establish bilateral links between
each node and the one central node; by doing this indirectly, all timing ticks of all nodes can be linked.
Nevertheless, in highly distributed systems it can also be necessary to establish a peer-to-peer structure
without any central node. In these cases, more intelligent management procedures need to be set-up in
order to ensure that all events in a process can be ordered by their time tick information. Such an approach
is particularly important in networks with critical functionality as, e.g., industry controls systems used
for example in the dam scenario. In such networks the synchronisation of time ticks can be combined
with other existing security mechanisms distributed [47].

Real Time Association

The previous paragraph described that it must be possible to associate the correct order of events rep-
resented in a digital chain of evidence. For this requirement, it is sufficient to know the time an event
happened in relation to other events. Another stronger requirement for valid evidence can be to know the
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real time an event has happened. In principle, real time information can be established in the same way.
However, synchronisation can be quite loose when only the order of events is important. For real time
associations there are two major differences:

• First, the time synchronisation needs to be between the evidence generator and a reliable time
source, such as a certified time-stamping service. Indirect synchronisation via other nodes in-
creases the delay and thus the inaccuracy of the time synchronisation.

• Second, the accuracy of the time synchronisation becomes relevant.

Several protocols have been proposed for the use of the TPM tick counter to represent real time informa-
tion [68, 84] and also the general properties of time synchronisation protocols and algorithms have been
analysed [34]. Common to all approaches is that within the digital chain of evidence also information
on the time synchronisation has to be recorded. This information contains the original time stamp of the
time authority but also information on the accuracy of the synchronisation, the time intervals associated
with the tick counter in the evidence generator and also information to keep track of resets of the tick
counter. The TPM provides support for all these parameters. One example is the tick counter in the
TPM that comes with a tick nonce that identifies tick counter sessions. Tick stamps with the same nonce
belong to the same session without a reset of the counter. Thus, once the tick nonce has changed, a new
synchronisation with the authentic time source is necessary. It should be noted that in contrast to the
proposed use of the tick counter in [84], the change of the tick nonce cannot reliably identify a re-boot of
the device. As long as the TPM has power, the tick counter will not be explicitly reset during a re-boot
of the device.

Other parameters

Various other parameters can become relevant for forensic use of data records. However, not all of them
are readily available and can be easily or efficiently included in the secure digital chain of evidence. As
an example, we briefly discuss the geographical location of the device at the time of evidence generation.
Different techniques exist to determine the location. Depending on the technology used, the accuracy of
the location information differs. More and more devices support the Global Position System (GPS). If
adequate GPS signals are available, the GPS localisations can be in the range of 5 meters for consumer-
grade GPS devices under open skies. The results within buildings under trees or with other obstacles
range from 10 meters to no position information at all [82]. Other approaches, such as triangulation in
wireless LAN or localisation within the GSM network are usually less accurate although they can be
quite accurate in special scenarios, such as indoor localisation [40]. Parameters can have very different
characteristics; and as a means of supporting digital chains of evidence in developing systems, one has
to make sure all relevant parameters are covered and maybe additional sensors are installed to enable
the collection of these parameters. Examples can include the temperature of the device (very low or
high temperatures can lead to corrupted evidence data), the orientation of a camera, or the names of
users currently active on a multi-user device. Determining relevant parameters and their validity ranges
as well as their meaning for the chain of evidence is a very important step in the engineering of such
systems.
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Evidence records

In addition to the different parameters related to the evidence records, it is also important to generate
and secure the evidence records themselves. Obvious security measures such as digitally signing the
evidence records and binding these signatures to identity the other parameters described above can be
used to guarantee the authenticity and integrity of the data records in a way that these security properties
are not violated by distributing evidence records and storing them in the forensic data-base. However,
there can also be additional security requirements. One important factor is privacy. Evidence records
can potentially contain information in individual persons or other secret information, e.g. that which is
business related. Therefore, the confidentiality of evidence records shall not be neglected either. Suitable
encryption should be used and other best practises for dealing with confidential data shall be applied.

2.4.2 Event Collection and Event Correlation

In the majority of application scenarios, a certain decision by the system is not based on a singular event
but on the correlation of several factors defining a certain high-level event which is defined by a set of
low-level events and a process for the correlation of the low level events. Low level events are simple
occurrences, like fire wall incidents and configuration changes as well as photographic evidence from the
speeding camera. The process defines how these events have to interact based on an operational model
where a certain high level event is to be produced.

In non-complex use cases, as presented in digital cameras [84], the evidence is generated by a single
measurement agent and only the evidence records of the particular device are required. To achieve a
certain probative force also in complex scenarios, it is also required to provide data on other aspects of
the IT system not directly related to the evidence in question but documenting the trustworthy state of
the infrastructure. For scalability reasons in bandwidth or computationally restricted applications, it is
also required to split one event into a set of corresponding events.

The task of correlating events in order to construct digital chains of evidence is closely related to
the task of security information and event management (SIEM) in IT networks. In particular, correlation
of events from different levels and contexts, it is still very difficult in the SIEM context. In SIEM
systems the correlations need to be explored at run-time to be able to induce appropriate reactions on
misbehaviour. The situation is different for forensic use. Digital chains of evidence usually don’t have
to be created at run-time. In the case of the forensic use of event information, it is sufficient to collect
the event information and maybe add additional semantic information at run-time. The actual evaluation
of the correlations between events in order to produce a chain of evidence only occurs in the case of
disputes or other forensic evaluations. For forensic use, a bigger effort therefore needs to be made in
carefully choosing event information to be stored and in defining parameter related events.

To correlate data it is required to provide for an infrastructure supporting the processing of events
from various sources in a unified structure representing the relations between the individual events.

2.4.3 Forensic data-base

For the forensic data-base, two main characteristics can be identified:

• The data-base can potentially contain huge numbers of more or less related evidence records rep-
resenting graph structures where paths through the graphs can be chains of evidence also using
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semantic information on the events. Thus, the data-base needs to be scalable and it needs to sup-
port the exploration of large graphs with semantically enriched information.

• Evidence records need to be securely stored for a potentially long time. Storage of evidence needs
to comply to regulations for long-term archiving.

For the first characteristics, the so-called triplestore 1 seems to be particularly suitable. Evidence
records can consist of relatively short statements about what has happened. Triplestore is a special
purpose database type developed for the use in semantic web frameworks. For a system supporting
the proactive generation of secure digital chains of evidence, semantics of evidence records in terms of
events that happened need to be known already at design time. The resulting structure is very similar to
what can be expressed as resource triples within the Resource Description Framework (RDF) specified
by the W3C (http://www.w3.org/RDF/). Some triplestore databases are very powerful with support for
billions of triples loaded at a speed of more than 1.000 triples per second. Further, they support a variety
of graph representations and rule-based exploration.

In addition, a variety of solutions exist for the area of secure long-term archiving. According to
national regulations regarding long-term aspects of the probative force of a certain evidence, record
archiving is the last step in the creation process. During the time of an evidence record in the archive,
the cryptographic means used can wear out, resulting in a decreased level of trust in a specific evidence
record. Existing work (e.g. [44]) shows approaches to maintaining the probative force of digital evidence
in long term archives. There are also products on the market supporting long-term archiving and re-
signing archived data records.

However, combining long-term archiving with a high-speed triplestore without losing the advantages
of the triplestore seems to be very difficult. Therefore, it is probably necessary to follow a dual strategy
for the forensic data-base where the long-term archiving and the triplestore are not fully integrated. All
evidence records will go into the triple-store, but probably only a small subset really requires secure
long-term storage. During the creation of evidence records, the record has to be marked in a way that the
forensic data-base can decide whether long-term archiving is necessary or not. Then, a digital chain of
evidence can be created using the triplestore and after completing this step long-term secured represen-
tations of the evidence records are retrieved from the long-term archive in order to produce the complete,
secure digital chain of evidence.

2.4.4 Exploring the forensic data-base

This final part of the architecture for secure digital chains of evidence strongly depends on the format
and data model of the forensic data-base. If the data-base is implemented as a triplestore with a good
meta model for evidence records, a variety of tools and languages, such as Jena 2, SWI-Prolog 3 and
AllegroGraph 4, can be used to develop interactive tools to explore the data-base. Relations between
evidence records (and thus between events) can be graphically visualised, queries can be used to find
matching evidence records or Complex Event Processing can be used to search for evidence records
belonging to a particular chain of evidence.

1http://en.wikipedia.org/wiki/Triplestore
2http://jena.apache.org/index.html
3http://www.swi-prolog.org/pldoc/package/semweb.html
4http://www.franz.com/agraph/allegrograph/
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2.5 Trusted MASSIF Information Agent

The usefulness of monitoring large systems clearly depends on the observer’s level of confidence in the
correctness of the available monitoring data. In order to achieve that confidence, network security mea-
sures and provisions against technical faults are not enough. As stated above, unrevealed manipulation
of monitoring equipment can lead to serious consequences. In order to improve the coverage of this type
of requirements in a SIEM framework, we now describe a concept and a prototypical implementation of
a Trusted MASSIF Information Agent (T-MIA) [18].

2.5.1 Trust Anchor and Architecture

The protection of the identity of the device for measurement collection is necessary. Furthermore, the
lack of control on the physical access to the sensor node induces strong requirements on the protection
level.

By a suitable combination of hardware- and software-level protection techniques any manipulations
of a sensor have to be revealed. In addition to the node-level protection, network security measures are
needed in order to achieve specification-conformant behaviour of the sensor network, e.g., secure com-
munication channels that protect data against tampering. This work is not intended to discuss network
security, neither protection of hardware components. We rather concentrate on the important problem of
clandestine manipulations of the sensor software.

A commonly used technique to reveal manipulation of a software component is software measure-
ment: Each component is considered as a byte sequence and thus can be measured by computing a hash
value, which is subsequently compared to the component’s reference value. The component is authentic,
if and only if both values are identical. Obviously, such measurements make no sense if the measuring
component or the reference values are manipulated themselves. A common solution is to establish a
chain of trust: In a layered architecture, each layer is responsible for computing the checksums of the
components in the next upper layer. At the very bottom of this chain a dedicated security hardware chip
takes the role of the trust anchor or “root of trust”.

Trusted Computing [57] offers such a hardware root of trust providing certain security functionalities,
which can be used to reveal malicious manipulations of the sensors in the field. Trusted Computing tech-
nology standards provide methods for reliably checking a system’s integrity and identifying anomalous
and/or unwanted characteristics. A trusted system in this sense is build on top of a Trusted Platform Mod-
ule (TPM) as specified by the Trusted Computing Group (TCG). A TPM is hardened against physical
attacks and equipped with several cryptographic capabilities like strong encryption and digital signa-
tures. TPMs have been proven to be much less susceptible to attacks than corresponding software-only
solutions.

The key concept of Trusted Computing is the extension of trust from the TPM to further system
components [37]. This concept is commonly used to ensure that a system is and remains in a predictable
and trustworthy state and thus produces authentic results. As described above, each layer of the chain
checks the integrity of the next upper layer’s programs, libraries, etc. On a PC, for example, the TPM
has to check the BIOS before giving the control of the boot-process to it. The BIOS then has to verify
the operating system kernel, which in turn is responsible for the measurement of the next level. Actually,
a reliable and practically useful implementation for PCs and systems of similar or higher complexity is
not yet feasible. Sensoring and measuring devices, however, typically have a considerably more primi-
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tive architecture than PCs and are well-suited for this kind of integrity check concept. Even for modern
sensor-equipped smartphones, able to act as event detectors, but having the same magnitude of com-
puting power that PCs had a few years ago, an implementation of the presented concept is possible. A
prototypical implementation is presented in more detail now.

2.5.2 Proof of Concept: Base Measure Aquisition

Figure 2.4 depicts the architecture of the T-MIA.
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Figure 2.4: Trusted MASSIF Information Agent architecture

The main component of the T-MIA is the evidence generator (EG), which collects base measures and
provides the measurement functions used to produce derived measures. Furthermore, the EG supports
the processing of measures from external sensors, e.g., location data from a GPS module. The EG is
expected to operate in unprotected environments with low physical protection and externally accessible
interfaces such as wireless networks and USB access for maintenance. A necessary precondition to
guarantee authenticity of the measures, is a trustworthy state of the measurement device. To meet this
requirement, the EG is equipped with a TPM as trust anchor and implements a chain of trust [43]. As
explained above, revelation of software manipulations is based on the comparison between the software
checksums and the corresponding reference values. This comparison may be done locally within the
node (self-attestation) or by a remote verifier component (remote attestation) [57].

The EG submits the collected measures digitally signed to an IF-MAP [36] server, which acts as an
event information broker. During initialisation, the EG obtains two credentials from trusted third-party
services for signature purposes. Figure 2.5 depicts the boot-time interaction between the EG and those
services, and the role of the TPM in this interaction.

An Attestation Identity Key (AIK) is used to sign measurement results in a manner that allows ver-
ification by a remote party. The Privacy Certification Authority (PCA) issues a credential for the TPM-
generated AIK. The certified AIK is, henceforth, used as an identity for this platform. According to
TCG standards, AIKs cannot only be used to attest origin and authenticity of a trust measurement, but
also, to authenticate other keys and data generated by the TPM. However, the AIK functionality of a
TPM is designed primarily to support remote attestation by signing the checksums of the EG’s software
components, while signing arbitrary data is, in fact, not directly available as a TPM operation. We have
shown elsewhere, how to circumvent this limitation [42]. Hence, we are able to use TPM-signatures for
arbitrary data from the EG’s sensors.

Any TPM is equipped with an accurate timer. Each event signature includes the current timer value.
However, the TPM timer is a relative counter, not associated to an absolute time. A time authority (TA)
issues a certificate about the correspondence between a TPM timestamp (tickstamp) and the absolute
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time. The combination of tickstamp and TA-certificate can be used as a trusted timestamp. Alternatively,
another trusted time source, such as GPS, could have been used.

EG

TPM

PCA TA

verify AIK

sign AIK / mark invalid

unsigned AIK

signed/invalid AIK

generate Tickstamp

verify tickstamp

signed tickstamp

sign tickstamp

generate evidence

generate AIK

acquire base measure

ONLY AT BOOT TIME

unsigned tickstamp

Figure 2.5: Process model

Putting it all together, a measurement record includes arbitrary sensor data, a TA-certified time stamp,
and a hash value of the EG’s software components. The record itself is signed by the TA-certified AIK.

Figure 2.6 shows a prototype EG, which has been implemented based on the Android smartphone
platform. This platform has been selected for various reasons. Modern smartphones are equipped with a
variety of sensors such as GPS, gyro sensor, electronic compass, proximity sensor, accelerometer, barom-
eter, and ambient light sensor. Furthermore, photos, video and sound can be regarded and processed as
event data. Moreover, Android is well-suited as a software platform for future embedded devices.

The TPM-anchored chain of trust is extended to the linux system and linux application layers by using
the Integrity Measurement Architecture (IMA), which is integrated into any stock linux kernel as a kernel
module. The Android application layer is based on libraries and the Dalvik Virtual Machine (VM). While
the linux kernel layer can check the Android system libraries and the VM, Android applications run on
top of the VM and are invisible to the kernel. Thus, we built a modified VM, which extends the chain
of trust to the Android application level by computing the applications’ checksums. A timestamp-based
variant of remote attestation provided by the TPM is used for the verification of the node authenticity.
All communication is based on the Trusted Network Connect (TNC) [36] protocol suite, which offers
advanced security features, such as dedicated access control mechanisms for TPM-equipped nodes.

2.5.3 Use of a Trusted MIA in MASSIF

From the architectural perspective, the T-MIA implements a specific MASSIF Information Agent (MIA).
A MIA is a software appliance residing in edge payload nodes. A MIA in MASSIF terminology [17]
implements a remote smart sensor, that is, a MASSIF compliant sensor which allows part of the data layer
functions to be performed in the payload machinery. This requires payload nodes to offer a local API
to the basic sensing apparatus (syslogs, event services, etc.), and be open to installing external software
modules, but apart from that, it should require minimal host modifications, allowing swift integration of
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MASSIF functionality into non-closed payload nodes.
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Figure 2.6: Technical building blocks
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3 Resilient Event Bus

This chapter presents the design and some implementation details of the Resilient Event Bus (REB).
The REB is mainly in charge of disseminating the events collected by the edge-MIS, after being pre-
processed by the local Data services, towards the core-MIS. The core-MIS then uses some alternative
communication mechanism to forward the events to the processing engine (or other core services). Less
often, the REB may also need to transmit messages in the opposite direction, from the core network to
the edges, for instance when a Reaction component needs to convey reconfiguration commands to the
sensors. Consequently, the REB must provide a bidirectional communication path among the MIS, with
the attribute that most of the traffic goes from the edge to the core.

The REB is organized as an overlay network built among MIS nodes, which are named generically
as REB nodes. The communication in the overlay network is performed on top of the UDP/IP protocols,
allowing the support of different network settings. REB uses application-level one-hop source routing to
send messages towards the destination, instead of simply following the routes imposed by the network-
level routing. It also takes advantage of coding techniques and the available redundancy of the network,
such as when a node has multiple network connections (i.e., multihoming), to ensure that messages arrive
securely and timely with a very high probability.

3.1 Overview

The communication among the MIS plays a fundamental role in the MASSIF resilience architecture. This
feature is responsible for delivering events from the edge services to the core SIEM correlation engine
despite the threats affecting the underlying communication network. Accordingly, the REB design is
influenced by the way SIEM systems are deployed, which are usually distributed over several facilities.
A facility corresponds to a subset of the overall network, where a set of sensors provide event data to
a local edge-MIS (left side of Figure 3.1) or where a group of machines implement the engine (and
other supporting services) connected through the core-MIS (right side of Figure 3.1). A facility can
therefore be modeled as a LAN, and the associated MIS can be seen as a routing device that receives the
data produced locally and forwards it towards the final destination facility. The interconnection among
the facilities can be abstracted as a WAN. One however should keep in mind that LAN and WAN are
modeling artifacts, since in practice they will depend on the actual deployment of the SIEM. In one
extreme case, the WAN can be the Internet, if the SIEM collects information from various offices of an
organization that are located in different regions (of the same country or different countries). In the other
extreme case, the WAN could be a set of switches with virtual LANs that interconnect a few PC racks
on a data center. This organization has the virtue that entails no meaningful modification to the existing
SIEM system and only requires the introduction of a REB node in each MIS at the border of a facility.

The communication among REB nodes is through the UDP/IP protocols. REB nodes can define

©2011-2013 by MASSIF Consortium 30 / 83



MASSIF - FP7-257475

D5.1.2 - Preliminary Defense Services and Protocols

MASSIF - FP7-257475

D5.1.2 - Preliminary Defense Services and Protocols

MASSIF - FP7-257475

D5.1.2 - Preliminary Defense Services and Protocols

Network
Edge MIS

(e.g., LAN, MAN, or WAN)

Core
MIS

Resilient 
Event Bus

REB Node

Facility

Facility

Event BusFacility

REB Node

Edge MIS

Edge 
REB Node

MIS

Facility

Facility
MIS – MASSIF Information Switch

REB Node

Facility

Figure 3.1: REB topological view.

an overlay network atop the IP network, and run application-level routing strategies to select overlay
channels that are (expectedly) providing correct communication. Overlay networks have been used as
mechanisms to implement routing schemes that take into account specific application requirements [4].
In MASSIF we want to employ overlay networks to create redundant network-agnostic channels for
robust and timely communication, namely for event transport from the edge sensors to the core event
correlation engine.

Depending on the network setting, we envision different kinds of faults that might preclude the
transmission of data unless appropriate measures are enforced among the REB nodes. For instance,
accidental or/and malicious faults can cause the corruption, loss, re-order and delay of packets. An
adversary might try to modify the event data carried in a packet or add new events to prevent the detection
of an intrusion. Congestion or denial of service (DOS) attacks can also make certain IP routers between
specific REB nodes unresponsive, causing significant packet loss or the postponement of their delivery.
A strong adversary might also be able to take control of one of the IP routers, allowing her (or him)
the capability to perform sophisticated forms of man-in-the-middle attacks. REB nodes may also suffer
failures, such as a crash or a compromise by an adversary. In this case, the REB per se will not solve the
specific problem of the failed node1, and consequently a facility might become disconnected. However,
as a whole, the REB should continue to work properly allowing the remaining nodes to continue to
exchange data.

Many of the above threats can be addressed with well known security mechanisms that have been
applied to standard communication protocols, such as SSL/TLS [25] and IPsec [61]. For example, each
pair of REB nodes shares a symmetric secret key. Leveraging from this key, one can add to every packet
a Message Authentication Code (MAC) [56] that allows the integrity and authenticity of the arriving
packets to be checked in an efficient way. Consequently, any packet that deviates from the expected,
either because it was modified or was transmitted from a malicious source, can be identified and deleted.

1In the project we are addressing these failures in the context of node protection mechanisms, and later on in the deliverable
we describe a solution for a highly resilient core-MIS.
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This means that insertion attacks are simply avoided, and corruptions are transformed into erasures that
can be recovered with retransmissions (or in our case, also with coding techniques). Optionally, one can
also encrypt the packet contents, which guarantees confidentiality and prevents eavesdropping of event
data.

Based on these mechanisms, the REB is able to reduce substantially the attack surface that might be
exploited by an adversary. However, they only put the REB at the same level of resilience as standard
solutions, which are insufficient to prevent certain (sometimes more advanced) attacks. For example, an
adversary might thwart the correlation of two sources of events, if she (or he) is able to delay the packets
that contain the events from one of the sources. This occurs because events are correlated within a
predefined time window, and if they arrive in different windows the associated rule might not be activated.
Alternatively, the adversary might perform a DOS in one of the IP routers that forwards the packets from
one of the sources, causing very high transmission losses and the continuous retransmission of packets
(to recover from the packet drops). The overall effect of the attack is once again the delay of the certain
event packets, or eventually the temporary disconnection of one of the sources. Traditional solutions for
secure communication, such as those based on SSL over TCP, are also vulnerable to other more specific
attacks [11]. For instance, this approach is fragile to an adversary with access to the channel between
the two communicating parties, since she (or he) can continuously abort the establishment of any TCP
connection by sending Reset packets, creating in fact unavailability on the communications.

This sort of problems are addressed by the REB by employing some techniques that exploit distinct
forms of redundancy. In particular, spatial and temporal redundancy is explored to attain high levels of
robustness and timeliness.

Robustness The overlay network created among the REB nodes allows for multiple distinct routes (or
paths) to be taken to transmit data to a specific destination. The source can, for instance, send the
data directly or ask one of the other REB nodes to forward it to the destination. It is expected, in
particular in large scale SIEM deployments, that these two paths will go through distinct physical
links, and therefore, localized failures will only disrupt part of the communication. Based on this
insight, the REB uses multipath communication to send data concurrently over several different
paths in the overlay network. These routes consist either of direct paths between the source and
destination nodes, or paths in which an intermediary node receives data from a source and redirects
it to the destination. REB resorts to a one-hop source routing scheme. The overlay route of each
message is defined at the sender (source routing), based on the local knowledge of the state of
the links, and is composed of at most one intermediate relaying REB node (one-hop). The option
of having a single hop, i.e., a single intermediate node, is due to the conclusion of Gummadi et
al. [38] that there is no considerable benefit in using more hops.

A REB node can be connected to the WAN through one physical link or through multiple links.
The later case is often observed in organizations that operate in critical sectors, such as in elec-
trical production and distribution, as a way to increase their resilience to accidental failures by
ensuring that the links are physically separated (they contract the network service to multiple In-
ternet Service Providers (ISPs), and in some cases they go to the extent of using diverse network
technologies, one wired and another wireless). If available, the REB also takes advantage of this
form of redundancy by employing multihoming communication. Here, a node can either send or
receive packets over any of the physical connections, thus increasing the number of possible paths
that can be chosen when disseminating data to a certain destination. For example, if the sender
and the receiver have two connections, then there are four alternative direct links between the two
nodes instead of a single one. It is expected that at least in part these links fail in an independent
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way, which means they can be used to provided correct packet delivery under somewhat adverse
network conditions.

Given a certain application message m, the REB could send a copy of it over k distinct paths.
This would allow k − 1 path failures to be tolerated, at the cost of the transmission of k − 1 extra
message replicas — the overhead is (k − 1) ∗ m. Depending on the message size, this cost can
be significant especially when the network is behaving correctly (which is the expected normal
case). Additionally, it also requires the receiver to process and discard k− 1 duplicates, which can
be a limitation in a SIEM system given the asymmetric data flow (remember that the core-MIS
needs to receive all traffic coming from the edges). To address this difficulty, the REB employs
erasure coding techniques to ensure that packet loss can be recovered at the receiver, at a much
lower replication overhead. Basically, the sender needs to do some processing on the message m
to produce some extra repair information r, and then m + r is divided in several packets that are
transmitted over various links. Even if only a subset of the message and repair data arrives, the
receiver can still recover the original message.

Timeliness Messages should be transmitted respecting some delivery deadline. The objective is to make
the events be processed at the correlation engine while they are (temporally) valid, which requires
the REB to enforce timeliness properties of the communication. One should thus assume that
there is eventual synchrony, that is, assume that message transmission latency is bounded. How-
ever, we must note that the underlying infrastructure can be the target of performance instability,
or of attacks (is not trusted by default) which impact on the coverage of those latency assump-
tions. Although it may be difficult to state the exact bound, specific bounds have to be assumed at
run-time, which means that the network will alternate between synchronous and asynchronous be-
havior, which is undesirable for our objective. As we have seen, the overlay network can provide
the necessary path redundancy to provide for timing fault-tolerance. Unfortunately, all overlay
networks proposed in the past did not have this objective2, and therefore, a specific solution had to
be developed for the REB.

The REB uses fundamentally two mechanisms to achieve timeliness with high probability, despite
being built on top of a best effort time-agnostic protocol such as IP. A sender REB node periodi-
cally probes each of its most promising paths to a given destination to derive a quality metric to
be associated with the path. This metric is currently calculated based on the estimated latency and
loss rate, but in the future we are considering other criteria such as the level of independence of
this path in relation to the other ones (i.e., to what extent they share the same IP routers). Based
on this metric, the sender can determine at each moment which are the best paths for a destination,
and select them to disseminate a message based on its deadline.

On average, the above mechanism is able to address most timeliness problems. However, since the
metric is calculated based on actual data collected from the network, it may require some period of
time for the value of the metric to adjust after sudden changes in the network. During this period
the sender could still think that a specific path is good, and consequently continue to use the path
for transmissions, when in fact most packets could be lost. Moreover, a malicious REB node could
attack the measurement process, for instance by making its paths look particularly good, and then
suddenly start dropping all packets. In the REB, these failures end up being tolerated automatically
by the erasure codes together with a sufficiently high level of multipath communication. The codes
are able to recover from a reasonable number of arbitrary packet losses (in the original and/or

2In the past, some approaches had the aim of improving the end-to-end communication latency, but not of attaining
application-defined maximum delays (e.g., [3, 73]).
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repair data). Therefore, if one assumes that the failure only affects a limited number of channels,
the remaining ones still deliver enough packets for the original message to be reconstructed.

3.2 Communication properties

SIEM systems are often built directly on top of the TCP protocol, or resort to SSL/TLS to augment
TCP with security capabilities. Consequently, SIEM developers expect a communication substrate that
provides a set of properties that matches those of TCP, since they greatly simplify the implementation of
the system. For this reason, in addition to robustness and timeliness, REB was designed to grant most of
TCP properties.

REB exports a relatively simple interface, offering point-to-point communication channels between
nodes. Data is transmitted as a stream of bytes, and is delivered reliably in first-in first-out (FIFO) order.
The arrival of duplicate data is identified and removed, and flow control is enforced at the senders to
prevent receivers from being overwhelmed with too much information. REB also ensures data integrity
and authenticity, something that TCP does not provide by itself, but that can be attained, for instance,
with SSL/TLS. Confidentiality can also be guaranteed on an optional basis, depending on an indication
by the applications.

Since the REB is implemented on top of UDP/IP, which does not have any of these properties, it is
necessary to devise ways to implement them with a group of mechanisms. In the rest of this section, we
explain generically how these properties are attained.

3.2.1 Authentication and error-free (and optional confidentiality)

SIEM applications call the REB interface to send messages to a certain destination. REB treats these
messages as sets of bytes that are stored in a queue for transmission. Depending on the amount of queued
data and on the maximum transmission unit (MTU) of the underlying network, it might be necessary
to break the data first in segments and next in several packets that are forwarded independently (see
Section 3.3). REB nodes disseminate the packets using multiple concurrent routes, which can be based
on a single direct channel between the source and the destination, or can have a channel from the source
to an intermediary node and then another channel to the final receiver. Assuming that the sender and the
receiver are both correct, then attacks can occur both on the network and on the intermediary node (in
case this node was compromised).

The initialization of the REB creates two shared cryptographic keys between every pair of nodes.
The keys are used to protect the communications from attacks, supporting the authentication of nodes
and the integrity/authenticity of the data. One of the keys is used to generate a MAC that is appended to
every packet. MACs are verified at the receiver before packet delivery, and packets are discarded if their
MACs do not match the expected values.

In alternative, one could choose to append a MAC to the whole segment and verify it only after the
full reception. This solution would have the virtue of saving some MAC calculations, both at the sender
and receiver, whenever segments are large. However, it suffers from a few drawbacks, making it less
appealing in practice. First, the verification would be postponed, allowing corrupted packets to occupy
space on the receiver buffers until much later. Second, the receiver node cannot separate good from bad
packets, and therefore, a single damaged packet would cause the whole segment to be dropped (and then
later retransmitted again).
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On direct channels, only one MAC is generated per packet by the source, using the key shared with
the destination node. On two-hop channels, a pair MACs is created, the first for the intermediary node
and the second for the destination node. After receiving a packet, the intermediary validates and removes
the second MAC and only then it forwards the packet to the destination.

Here, again, one could save a few MAC calculations if a single MAC was added independently of
the type of route (i.e., direct or two-hop). However, since MACs are obtained relatively fast, we decided
that it was better to have the capability to immediately identify and delete modified packets, both at
the intermediary and final nodes. This feature is also helpful to determine if certain channels are under
attack, since we can pinpoint with good precision where the fault occurred.

SIEM systems exchange mainly events and security information collected by the sensors. This data
might be considered confidential in some organizations, while in others it can be of no concern. Since
encrypting/decrypting every packet can introduce a reasonable performance penalty, and thus create
delays that might affect timeliness, we decided to offer data confidentially on a optional basis. The
application using the REB can indicate if it desires packets to be transmitted encrypted. In this case, the
other key shared between the source and destination is employed for the encryption.

3.2.2 Reliable and timely data delivery

TCP messages are delivered to their destinations if both the source and destination processes are correct
and if the underlying communication network provides a fair-loss delivery. The Internet is one of such
networks, in the sense that it makes an effort to transmit a packet through a route and then delivers it to
the destination. It may happen that a packet is lost in-transit due to congestion or a crash of a network
router. TCP solves this issue by segmenting the input stream and by transmitting one segment at a time,
while waiting for the arrival of an acknowledgment of their reception. A retransmission occurs if it
appears that the segment was lost, e.g., when the retransmit timer expires at the sender. As each segment
is received and acknowledged, the receiver delivers them to the application. TCP does not offer any
guarantee about when a particular message will arrive, though, it tries to optimize the communication to
enforce the property of eventual delivery (without any upper time bound).

In REB, the messages input by the application are saved in a queue, and then they are split into several
segments for dissemination. Unlike TCP, retransmissions based on timers are avoided when possible so
that the timeliness of a message is not affected. This is accomplished by preprocessing each segment with
an encoder that applies an erasure code (also called a Forward Error Correction (FEC) code) to produce a
number of packets. Depending on the code that is applied, if it is systematic or not, the resulting packets
may contain the original data plus some repair information, or they may just have encoded data (see
Section 3.5.3). The overall sum of the packets lengths is typically larger than the original segment, but it
becomes feasible to reconstruct the segment even if some of the packets are lost.

The sender node disseminates the packets as they are produced by the encoder. It also starts a timer
that should expire in case retransmissions have to be performed. However, retransmissions are typically
avoided by adjusting the amount of repair capability of the code to the observed loss rate of the network.
It may happen nevertheless that: (1) more packets end up being discarded, and therefore, the receiver is
incapable of recovering the segment, or (2) the acknowledgement returned by the receiver is lost. When
a retransmit timer expires, the sender encodes a few more packets based on the original segment (or
selects some of the original packets), and forwards them to the destination. The expectation is that some
of these packets will arrive at the receiver, allowing it to decode the segment. Once again, we need to
initiate a new retransmit timer, now with a larger value.
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The receiver accumulates the arriving packets in a receive queue. When enough packets of a given
segment are available, the receiver attempts to decode them. In case of success, it returns an acknowl-
edgement back to the sender. Otherwise, it waits for the arrival of an extra packet for this segment
before trying again to decode. This process is repeated until the recovery of the original segment is ac-
complished. Depending on the network conditions, packets/segments may arrive and be decoded out of
order. To address this issue, REB utilizes a selective acknowledgement scheme, to convey to the source
information about which packets/segments have already arrived.

Communication in REB tries to be as timely as the network allows. By timely we mean that REB
makes an effort to deliver data within the application defined deadline. This is important because events
generated by the SIEM sensors maybe only useful for correlation if they arrive within their deadlines at
the engine. The timeliness property of data delivery is provided by making use of multiple routes and
some synchrony assumptions about the underlying network. Through the usage of a probing mechanism,
it is possible to infer a quality metric about the overlay routes, which include estimated latency values.
These latencies help selecting, based on the deadline of a transmitted message, the channels that are used
to transmit the packets.

It can happen during particularly bad network conditions that it is not possible to deliver an applica-
tion message within the specified deadline. Here, one could abort the transmission of this message, since
it would probably be no longer of use to the receiver. This approach is however not the applicable to a
SIEM. Consider the scenario where a sensor produces an event that should be processed within a certain
time period. If it arrives late, the event might not be properly correlated, but in any case its delivery can
be useful from a perspective of forensic analysis. Therefore, even if a deadline is violated, the REB will
still attempts to deliver the message.

3.2.3 Ordered and duplication-free data delivery

The Internet does not ensure an ordered delivery of packets. This occurs because different packets, sent
by one source, may experience distinct delays when transmitted through diverse routes. Additionally,
there is the possibility of spurious transmission of duplicate packets, which often happens due to rerout-
ing algorithms in intermediate nodes. Despite these difficulties, TCP provides FIFO ordering at the
delivery and also removes duplicates. This is accomplished by assigning to each segment a sequence
number, which is used on the receiver side to order the segments. Furthermore, the sequence numbers
are used to detect and discard duplicate segments.

In REB, the transmission of a segment corresponds to the dissemination of a fixed number of packets,
which encode part of the original segment data and some redundant bytes. At the destination, the receiver
decodes the original segment from a subset of the received packets.

Each segment has an associated sequence number (with 24-bits) that is incremented monotonically.
These sequence numbers are employed to keep track of lost segments and to detect data duplication (ac-
cidental or from replay attacks). Packets also have a distinct sequence number (16-bits), which increases
monotonically per segment (starting with 1). Therefore, a packet is univocally identified by carrying
in the header a pair composed of the sequence number of the segment it belongs to plus its sequence
number. Packets that arrive with the same identifiers are detected and removed as duplicates.

REB enforces FIFO order with the segment sequence number. A receiver node can deliver data in
the right order by buffering complete unordered segments until all their predecessors have been given to
the application. The amount of unordered data that is maintained in a REB node is managed through a
receiver sliding window flow control mechanism. This mechanism prevents the receiver from accumu-
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lating too much unordered data, something that could be used by an malicious REB node to overflow
the memory of the receiver. The sender is informed of how much empty space is still available inside
the window, and packets that arrive beyond this space are discarded. The flow control mechanism is
addressed in detail on Section 3.5.6.

We realize that there is a potential for an adverse effect caused by the simultaneous use of FIFO
ordering and the assignment of deadlines to messages. The issue lies in the fact that a message with
a deadline shorter than the one from its predecessor message, could eventually fail to be delivered on
time due to the FIFO discipline. For example, it could happen that all segments comprising the second
message are fully received before the segments of the first message. Since the receiver node buffers the
unordered complete segments until all their predecessors arrive, the second message would stay waiting
in the queue and eventually have its deadline expire. One possible solution for this problem could be
to use the deadlines to order the messages (which would become message priority values), but it is not
entirely clear how issues such as message starvation would be resolved in a setting were REB nodes can
be malicious. Our current approach is to keep the strict enforcement of the FIFO discipline, and as we
get more experience with using REB, we may need to revisit this issue later on.

3.3 Sending and receiving data

The procedure of sending/receiving messages in REB encompasses a number of steps in order to enforce
the various properties discussed in the previous sections, namely robust and timely guaranties with a
simple to use application level interface. Since REB nodes are organized as an overlay network, the
sender typically has several routes available for data transmission, which in most cases are expected to
correspond to disjoint physical links. It is anticipated that most of these routes will fail independently
with a reasonable probability. By forwarding data over a subset of the routes concurrently, the REB is
able to tolerate some kinds of failures in a transparent way, and at the same time support the distribution
of the network load over the alternative paths. Routes are selected using a metric that takes into consid-
eration the observed Round Trip Time (RTT) and loss rate in the recent past. The REB also uses erasure
coding to create multiple blocks of data from the messages, which have in total a slightly larger size than
the original message, and that are transmitted individually through the chosen routes.

The transmission process, which implements how individual messages are delivered from a source
to a destination, is illustrated in more detail in Figure 3.2. When an application needs to send a message,
it calls the REB interface and provides a buffer with the data, indicates the destination node and gives a
deadline for the delivery (see also Table 3.4). Multiple calls can occur concurrently if the application has
more than one thread. When the call returns, the application can re-use the buffer because it either has
been transmitted or its contents have been locally copied to a send queue (named segment queue).

The REB maintains multiple segment queues, one per each active destination. Messages are copied
to the queues in FIFO order. The procedure for selecting data from a queue for transmission involves the
following steps:

1. If there is data to be transmitted, search the various segment queues for the one with the message
with the shortest deadline. Otherwise, keep on performing the other tasks (such as probing the
links);

2. Extract from the queue a segment of data:
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Figure 3.2: The data transmission process at a REB node.

(a) If the queued data has a size larger than the maximum segment length, then create a segment
with this length;

(b) If the queued data has a size larger than the MTU (minus the headers) but less than the
maximum segment length, then create a segment with the available data;

(c) If the queued data is small (less than one MTU minus the headers), then (i.) use all data from
this queue if there is no previously transmitted segment for the same destination that is still
waiting for an acknowledgement; (ii.) otherwise, skip this queue and move to the next one.

The queue is mainly used for two purposes. First, in case the network is occupied with the trans-
mission of older messages, a local copy is created so that the send operation can return, allowing the
application to continue to run. However, if a message is too large and does not fit entirely inside the
queue, it is split so that part of it fills the queue and the rest is scheduled to be inserted in when there
is space again. Second, if the application normally sends small messages, the queue is utilized to ac-
cumulate more bytes. Ideally, one would like to increase efficiency by transmitting packets with a size
approximately equal to the MTU of the underlying network. Additionally, the coding algorithms require
a reasonable amount of data for optimal execution. This amount of data is named the maximum segment
length and its value has to take into consideration the size of the headers, the type of code and the network
MTU between the sender and receiver. To prevent the creation of many small segments, but at the same
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time avoid delaying a message indefinitely, the procedure only allows a small segment to be transmitted
concurrently to a certain destination (rule 2.c).

The extracted segment is then encoded by applying an erasure algorithm. The algorithm divides the
segment in multiple blocks, and then processes them to produce the encoded blocks. If the algorithm
is systematic (e.g., with Raptor codes [71]), then the first encoded blocks correspond exactly to the
original segment and the remaining blocks contain repair data. When needed, the repair data is used at
the receiver to reconstruct the missing blocks. On the other hand, in a non-systematic code (e.g., the LT
code [48]) all encoded blocks have a mix of several blocks of the original data. If the segment is very
small, it might be difficult to apply the most sophisticated algorithms, since often they are optimized for
larger data sizes. In this case, it is more efficient to place the whole segment in a block, which is then
replicated enough times to tolerate a certain number of failures.

Encoded blocks are then packetized by adding a header that contains, among other fields, the iden-
tification of the packet (sequence numbers of the segment and packet) and the final receiver. In order to
maximize the reconstruction capability of the code, each encoded block should be placed in a distinct
packet. This ensures that a packet drop in the network only affects one block, allowing the remaining
ones to recover the lost data. In some cases, for efficiency reasons, it makes sense to include more than
one encoded block per packet. This is only valid if two (or more) blocks fit inside the MTU of the
network. This optimization should be utilized however with some care because it weakens the failure
independence assumption on which erasure codes are based.

The sender next looks at the available routes to the destination, and selects a few of them that have a
good figure of merit, allowing the segment to arrive within the deadline. A MAC is added to the header
to let the final receiver detect integrity violations. In case an intermediary node needs to forward the
packet, then a second MAC is also appended. The packet is then sent over the corresponding overlay
channel, which translates in a transmission though the underlying network using UDP over IP.

On the receiver side, the node collects the packets arriving from the various channels as represented
in Figure 3.3. The node is prepared to receive only a subset of the packets, since some of them may be
lost in the network, while others can be corrupted. This second problem is detected with the included
MAC, and the corresponding packet is deleted. The MAC is also employed for the protection of attacks
where an external adversary (not controlling a REB node) may generate malicious packets, for instance,
to confuse the segment reconstruction procedure or to make a DoS. Since the adversary does not share a
key with the REB node, she (or he) is incapable of producing packets with the right MAC.

DoS attacks performed by a malicious REB node are addressed with a flow control mechanism
(see Section 3.5.6 for details). When requested or piggybacked in the acknowledgements, the receiver
indicates to the sender the amount of bytes that can be transmitted and that fall within the associated
receive queue. Packets arriving when the queue is full are simply discarded. Additionally, packets with
identifiers outside the expected range are also dropped, therefore, averting attacks that try to exhaust the
memory by extending the local queues.

Packets can be received for the local node or to be forwarded to some other destination. In the first
case, a few correctness checks are carried out, including duplication removal, and then the header is
removed to obtain the encoded block. Next, the block is stored in the receive queue associated with
the sender. Alternatively, when the node acts as a two-hop router, the packet is also checked and then
enqueued to be transmitted to the final destination. To thwart starvation attacks caused by a malicious
sender node, where it could try to delay the transmissions of this node, the packet is put at the end of the
queue to wait for its turn.

Each encoded block is assembled accordingly to the particular segment that it belongs to. Since we
are using erasure codes, we try to decode as soon as enough blocks have arrived. However, sometimes, it
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Figure 3.3: Scheme with the data receiving process.

may happen that it is impossible to reconstruct the segment with the available blocks. When this happens,
the receiver needs to wait for the arrival of more blocks, and then perform the decoding operation again.
As segments are decoded, they are stored in the receive queue waiting for the application to read them.
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Initialization/Finalization calls
init(local id) Initializes the REB object for the local node on which the remaining callsinit(local_id) Initializes the REB object for the local node, on which the remaining calls

are invoked. The parameter local_id indicates the textual identifier of
the local node.

destroy() Closes all communications and releases resources used by the REB object.

Communication calls
send(buffer, size, 

destination, deadline)
Sends a message with size bytes from the data buffer to the specified
destination node The deadline value is a time value that is used todestination, deadline) destination node. The deadline value is a time value that is used to
indicate the urgency of the message delivery.

receive(buffer, size,
source)

Receives a message with size bytes and stores it in the provided
buffer. The source value may indicate receipt from a specific node or
from any source node (when a wildcard is provided).

setEncryptedMode(mode) Sets the encryption mode for the communication. The mode value may be
either on or off. The mode is changed when all pending data has finished
being sent.be g se .

Information calls
getLocalNodeID() Returns the ID of the local node.

getLocalNodeAddresses() Returns a list with all the IP socket addresses from the local node.

getRemoteNodesIDs() Returns a list with the IDs of the remote nodes.

getRemoteNodeAddresses(id) Returns a list with all the IP socket addresses from the remote node withgetRemoteNodeAddresses(id) Returns a list with all the IP socket addresses from the remote node with
the specified ID.

getRemoteNodeID(address) Returns the ID of the remote node with the specified IP socket address.

Figure 3.4: Interface to the applications offered by the REB.

3.4 REB interface

REB is implemented as a Java library that can be linked with an application. It offers a relatively simple
interface that contains the fundamental operations for transmitting data and some auxiliary methods
for the application to collect information about the system. Figure 3.4 gives an overview of the main
operations of REB.

3.5 Communication mechanisms

This section describes some setup aspects and various mechanisms utilized by the REB. It offers an
explanation about the erasure codes, as well as how multihoming contributes to the overall robustness of
the communication. A mechanism for route probing is presented, supporting the inference of a quality
metric for individual routes. This quality metric is then used by a route selection algorithm that is also
discussed. To finish, we explain how the REB manages flow control.
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3.5.1 Overlay network configuration and setup

The current version of the REB uses a static configuration for the overlay that defines the set of nodes
that may participate in the communications (some of them may be down or disconnected). When a REB
node starts up it is assigned an unique identifier, which is referred to as the local ID. The identifier is
provided by the application that calls the startup interface of the REB (see Figure 3.4).

Based on this local ID, a node can get the information about the whole overlay network by reading a
few configuration files. The files are put in a predefined place in the local machine by the administrator
of the SIEM. The following information can be obtained:

Network addresses A REB node receives packets in a specific IP address and UDP port. The ports can
be different across the overlay, depending on the machine where the node is located. If a machine
has multihoming, then several IP addresses are assigned, one for each physical connection. When
this happens, the configuration file has the list of IP addresses that can be used;

Pair-wise shared keys Every pair of nodes shares a secret cryptographic key for secure communication.
Each key is stored in a separate file that is statically distributed to the relevant nodes and not shared
by any third party.

At start-up, a REB node is connected to no one. A connection is only established when the application
requests a message to be transmitted to a specific destination node. Establishing a connection consists in
resetting any previous state and in setting up two session keys. The former is necessary because nodes
are allowed to crash and then later to be reinstated in the overlay. It could occur that the destination node
had been exchanging packets with the source, and then the source had to reboot. In this case, during
the connection establishment, the destination node would become aware of the problem, and therefore,
it would clean information maintained on behalf of the source3.

The handshake protocol that is executed between the two nodes is relatively simple. It consists of
three messages protected with the shared key (with a MAC and encrypted). In the first message, the initia-
tor indicates that it wants to create a connection by including a nonce N1 and the local IDs of both parties
(< INIT, IDinitiator, IDdestination, N1 >). The destination node responds with a second message,
which has a new nonce N2 (< INIT RESP, IDinitiator, IDdestination, N1, N2 >), and that allows
the initiator to authenticate the destination. The last messages is transmitted by the initiator, to support
its authentication at the destination (< RESP, IDinitiator, IDdestination, N2, N1, conf info >). The
destination node only resets the connection when the RESP is correctly received, and it uses informa-
tion in conf info to determine exactly how this operation should be performed. Nonces are created by
concatenating two values, a locally generated random number with a high resolution timestamp (up to
the microsecond).

It can happen that one of the handshake messages is lost in the network. To address this problem,
the sender of the message is responsible for its retransmission until the other side responds. So, for
instance, if message INIT is dropped, the initiator should periodically resend it until the following
handshake message arrives. If the destination node sees a duplicate INIT , this could either indicate that
INIT RESP was lost or delayed. In this case, it simply waits for its retransmission timer to expire,

3The cleaning includes discarding pending packets and out of order segments, and other management data. Completely
reconstructed segments that are stored in order in the receive buffer cannot be deleted because the sender might have the
expectation that they will eventually be delivered to the application. This is important in the case that the connection needs to
be reestablished when the segment sequence number reaches its maximum value.
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which would cause INIT RESP to be resent, or for the arrival of RESP that would conclude the
handshake.

The loss of the last message, RESP , is recovered in a slightly different manner. From the point of
view of the destination node, it cannot distinguish the case when INIT RESP or RESP are dropped
by the network. Therefore, it keeps retransmitting INIT RESP until a RESP arrives. At the initiator,
when a duplicate INIT RESP is received, it resends the RESP message. In all situations, handshake
messages are only retransmitted a certain pre-defined number of times. When the limit is reached, and
the connection attempt is aborted and an error is stored in a log file.

When the overlay is being setup, it may occur that two nodes attempt to start a connection simul-
taneously. In this case, both would send concurrently the INIT message, and both would receive the
peer’s INIT as the response. To solve this issue, we use a simple arbitration procedure, where the node
with the largest ID aborts its connection attempt, and follows the handshake launched by the other side
by responding with a INIT RESP .

An adversary could take advantage of the handshake protocol to attack the REB communications. For
example, she could replay an old INIT message to fake a reboot of the initiator to force a connection
reset. Since in general the destination node cannot distinguish a replay from a valid connection attempt,
it starts the handshake protocol by responding with the INIT RESP . However, it continues to process
the packets arriving from the initiator as usual, ignoring for now the INIT . Since the adversary does not
know the shared key, she can not produce a valid RESP . Therefore, after a number of INIT RESP
retries, the destination node forgets about the connection.

In another example attack, the initiator could send an INIT message, and then the adversary could
replay an old INIT of the node. As a consequence, the destination would receive two valid but different
INIT messages from the same node. In this case, we again use a simple arbitration procedure, where
the handshake corresponding to the INIT carrying the nonce with the largest timestamp is the one that
is executed, and the other is disregarded4.

As a final attack example, when a node initiates a connection to a destination, where the IDinitiator >
IDdestination, the adversary could replay an old INITold message from the destination to the initiator.
When this happens, the initiator applies the arbitration procedure for a simultaneous connection, and
stops its handshake. Then, one of two things can happen. First, the destination node receives the original
INIToriginal and responds accordingly with the INIT RESP . As the initiator gets the INIT RESP ,
it checks that the message carries the N1 from its INIToriginal and a N2 with a timestamp larger than
the one in N1 from INITold. This provides evidence that an attack occurred, and therefore, the initiator
returns to the original handshake and completes it with a RESP . Second, the adversary could also
remove the INIT RESP and all its retransmissions, meaning that it has complete control of the routes
between the two nodes. In this case, the initiator will retransmit the INIT RESP corresponding to
INITold a number of times and then abort the connection, which an appropriate action given the attack
power of the adversary.

A node simply ignores a message for which the corresponding previous handshake message was
not received (if a INIT RESP or a RESP arrives without having sent the INIT or INIT RESP ,
respectively). Additionally, since a node only resends a message a predefined number of times, this pre-
vents denial of service attacks where an adversary keeps replaying the most recent handshake messages
(either INIT or INIT RESP ) to force the destination to perform retransmissions.

4Here, we are working under the assumption that the adversary can not change the clock of the initiator to a later time, and
then collect an INIT message with a larger timestamp. If this assumption is violated, then a new shared key needs to be setup
between the two nodes by the SIEM administrator. Notice, however, that even in this case the adversary cannot complete the
handshake protocol and deceive the two parties.
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At the end of the handshake, the two session keys are produced to secure the communication between
the nodes. One key provides authentication and data integrity by being used to generate the MACs
included in every transmitted packet, and the other key provides confidentiality by encrypting data. The
formula for producing the keys is the following:

KMAC = hash(SharedKey,N1, N2, IDsmaller, IDlarger,
′′M ′′)

KEncryption = hash(SharedKey,N1, N2, IDsmaller, IDlarger,
′′E′′)

In the formulas, SharedKey is the preconfigured shared key between the nodes, N1 and N2 are
the nonces from the handshake, and ID are the identifiers of the nodes. The identifiers are placed in a
deterministic order, first the smaller ID, so that both sides produce the same keys. Strings “M” and “E”
are used to differentiate the two keys.

The new keys substitute the old ones when the handshake finishes. Packets from the previous con-
nection may still be in transit when this occurs. These packets will be discarded upon arrival because the
MACs are no longer valid. This mechanism has the benefit that prevents packets from an older session
from confusing the receiving algorithms.

3.5.2 Multiple paths and multihoming

A REB node can typically reach a destination through many different overlay routes. If the REB is able
to determine which routes are behaving erroneously, and picks alternative paths for data transmissions, it
is possible to tolerate failures in the network. Of course, these measures are only effective if the failures
do not completely cut all communications.

Since REB uses one-hop source routing, the available paths are the following: first, there is the direct
link from the sender to the receiver; second, since any other node can act as an intermediate router, each
one of them defines an extra path. Overall, in a REB deployment with n nodes, there are at least n − 1
paths connecting every pair of nodes.

Facilities may be interconnected via multihoming, i.e., by two or more distinct physical links (e.g., a
REB node could have a pair of network interfaces and would be connected through two different ISPs).
Since these links usually only share a minimum amount of resources, their failure can be considered
independent in many scenarios (e.g., a DoS is performed in one of the ISPs). REB takes advantage of
multihoming to increase the number of available overlay paths, allowing a node to overcome the failure
of one of its links by exploring alternative routes.

The number of network interfaces directly influences the quantity of overlay paths a local node may
have at its disposal. Figure 3.5 shows an example overlay network configuration that makes use of
multihoming in order to provide a diversity of links. REB nodes with identifiers ID1 and ID3 have a
single network interface, while nodes ID2 and ID4 have two interfaces. Therefore, node ID2 can reach
node ID1 through two direct links, and can send packets to node ID4 over four direct paths.

The exact number of overlay routes that exist can be calculated in the following way. Let y be the
number of interfaces on a certain local node and w the number of interfaces on another remote node;
in total, there are y × w available direct paths between the nodes. Two-hop paths include an extra
intermediary node and make use of the same interfaces as in the direct paths, as well as the interfaces
of the intermediate node (the packet can arrive in one interface and then leave from any of the available
network interfaces). Let zi be the number of interfaces on a certain intermediary node. Then, the number
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Figure 3.5: Multihoming in REB.

of paths that can go through this intermediate are y × w × z2i . In total, the number of available paths
between the two nodes are:

Total paths =

n−2∑
i=1

y × w × z2i + y × w

Returning to the example from the figure, the total number of paths between nodes ID1 and ID4 is
equal to 12. There are two direct paths; eight two-hop paths through node ID2; and two two-hop paths
through node ID3. For overlays with many nodes, the growth in number of paths could become challenge
if all of them were used in the communications. However, only a subset of the paths is actually employed
by a node to transmit data, and these are picked based on their quality metric.

3.5.3 Multipath transmission and erasure codes

A REB node sends packets concurrently over a few of the available channels to the destination. However,
data transmission through multiple channels per se is not sufficient to achieve robustness in the commu-
nications. In fact, even a single channel behaving erroneously (e.g., losing packets) is enough to prevent
the original data from being reconstructed. Therefore, using multiple concurrent channels can actually
degrade the reliability of the whole communication.
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Two possible approaches to recover from losses are (1) the retransmission of the packets at a later
time, or (2) the concurrent transmission of several copies of the packets over different channels. The
first solution has the advantage of minimizing the amount of data that is send, at the cost of delaying
the delivery of the packets (since retransmissions occur after a timeout). The second approach has the
opposite characteristics.

In REB, we use erasure codes to both decrease the amount of transmitted data and to minimize the
delays in case of losses. Before disseminating a segment, it is split into k equal sized blocks. These
blocks are then encoded to generate N encoded blocks. The encoding process ensures, with very high
probability, that the reception of any K blocks is enough for the recovery of the full data, where K is
slightly larger than k (and less than N ). Therefore, if there is a limited quantity of losses in the network
(less than N −K blocks are dropped), then it is possible to reconstruct the original segment in a timely
manner, without requiring retransmissions. However, it may happen that the network is behaving worse
than expected, and only a less thanK blocks arrive. In this case, further communication will be required,
either by retransmitting some of the encoded blocks, or by producing and sending a few extra encoded
blocks5.

REB currently uses Fountain Codes [51, 49], or rateless erasure codes, that can infinitely encode the
data. In our current implementation, we resort to LT Codes [49], but in the future we intend to replace
these by the newer and more efficient RaptorQ Codes [50]. In LT codes, an encoded block is created
by XORing a few of the original blocks. Two pseudo-random functions are called, one to determine
the number of blocks that should be XORed, and the other to select the actual blocks. Decoding is
performed gradually, as the encoded blocks arrive at the receiver. In each step, it is checked if the new
encoded block allows the recovery of an original block, and if this is the case, this knowledge is further
propagated to decode other blocks. Eventually, when enough encoded blocks reach the receiver, it is
possible to reconstruct the segment.

At the source, if sufficient data is available in the send queue, then the segment size is selected in
such a way that every encoded block completely fills a packet. This means that an encoded block should
have EBlenght bytes, which is equal to MTU minus the size of the headers (added by the REB, UDP
and IP). Since the original blocks have the same dimension as the encoded ones, then the segment size
should be k × EBlenght. This ensures an efficient utilization of the network, and also that a packet drop
only affects a single encoded block, something that is typically assumed by the codes.

Erasure codes are, however, able to recover from bursts of encoded block losses. Therefore, if the
segment is small, one can put a few encoded blocks in the same packet to reach a dimension similar to
the MTU (note that the pseudo-random functions used by the LT codes are devised for particular values
of k, and therefore it is not possible to simply decrease k without affecting the properties of the code).
This way one can keep the network efficiency, at the cost of potentially losing more encoded blocks. For
tiny segments that fit in a single MTU, there is no advantage of employing coding algorithms. In this
case, we simply replicate the segment over a few packets and send them concurrently.

At the destination, the arrival of the encoded blocks triggers the decoding process, and when the
whole data is decoded, a confirmation is sent back to the source node. If decoding is unsuccessful, then
the source is responsible for retransmitting some of the missing encoded blocks. This makes the delivery
reliable since it is assured to happen in the presence of correct processes and a best-effort network (like
the Internet).

5The exact solution depends on the erasure code being used. The second approach that generates new encoded blocks has
the virtue that the sender does not have to know which blocks arrived correctly.
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3.5.4 Segment and packet identification

Segments have to be delivered in FIFO order to the application, so it is necessary to univocally identify
them to allow a proper organization at the receiver, in case they arrive or are decoded out of order. When
transmitting a segment, it is also required to identify each packet to determine which encoded blocks
have been received. As a result, each packet carries a unique ID on its header that identifies the segment
the enclosed blocks belong to, as well as their position inside the segment.

A packet ID comprises a concatenation of two sequence numbers, resulting in a total length of 40
bits. Out of those 40 bits, the first 24 represent the segment sequence number and the remaining 16
correspond to the packet sequence number inside the segment. Both sequence numbers start at 1 and are
incremented monotonically, having an upper bound of 224 − 1 and 216 − 1, respectively.

The first upper bound, for the segment sequence number, is expected to overflow eventually if the
REB is used over long periods of time. When that happens it is necessary to reset the connection be-
tween the source and destination nodes, so that these sequence numbers may be safely reused without
the danger of introducing corruption of data caused by replay attacks. Basically, after the connection is
reestablished, new shared keys are derived, and therefore packets carrying the previous sequence num-
bers will not be accepted as the MAC is invalid. The second upper bound, for the packet sequence
number, is not expected to overflow because REB limits the number of encoded blocks generated from a
segment.

The space size for the segment sequence number was defined using the information provided by the
MASSIF use case scenarios [15]. For example, the Olympic Games scenario, at its peak load, produces
around 12 million events per day before aggregation. If these events were to be transmitted in separate
segments, something highly unlikely because there is typically aggregation of events at the collectors,
then the connection would only have to be reestablished with a frequency less than once a day.

3.5.5 Acknowledgments and Retransmissions

During a transmission, the destination node receives the packets and stores the data in memory until
enough encoded blocks are available for decoding. After the successful segment reconstruction, the
node sends an acknowledgment back to the source and makes the segment readable to the application.

The usage of erasure coding and multiple overlay routes offers a good level of robustness against lost
packets. Despite this, the achieved reliability has a probabilistic nature, meaning there is always a (small)
chance that the segment cannot be rebuilt at the destination. One reason for such failure is an insufficient
number of encoded blocks reaching the destination node, caused by too many packets being dropped in
transit. Another reason is that even when K encoded blocks arrive, the decoding algorithm might be
incapable of recalculating the original data (with a small probability). To overcome these problems, the
source needs to retransmit packets if it does not receive an acknowledgment within a predetermined time.

The network may reorder the packets being disseminated. Additionally, the use of multiple routes
in the overlay may also contribute to the arrival of out of order packets, as the paths can have diverse
transmission times. Therefore, as unordered packet arrival will potentially occur often, it is advisable
that the destination node keeps these packets in buffers instead of dropping them. In REB, a separate
buffer is managed for each source at the receiver, and is named receive queue.

The receive queue has a fixed length, and allows for the storage of several segments. It can con-
tain segments completely decoded and packets belonging to various segments that have been partially
received (see an example in Figure 3.6). As the application reads the stored data (in FIFO order), the
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Figure 3.6: Example of a receive queue.

corresponding space is freed so that further packets can be accommodated. Packets are placed in the
queue in the right place accordingly to their identifier (segment sequence number + packet sequence
number), and consequently there might holes in the queue so that out of order packets can be added at a
later time. Packets that would need to be stored beyond the queue limit are simply dropped (as the queue
is not extended to save them; however, as the flow control mechanism is used exactly to prevent these
packets from being transmitted, this can only occur if the sender is malicious).

REB informs the source about which packets/segments have been correctly received with a selective
acknowledgment (SACK) (a mechanism somewhat inspired in TCP [55]). A SACK contains for each
partially received segment a list of pairs of packet IDs, which define continuous intervals of stored
packets (e.g., if only packets five to nine have arrived of a certain segment S, then the range is [S.5, S.9]).
To avoid always having to explicitly define the intervals for previously completed segments, the first pair
of IDs represents a cumulative acknowledgment that confirms the reception of all previous segments and
packets (including the indicated packets itself). This optimization is possible because segment sequence
numbers are incremented monotonically and cannot be reused during a session. In the queue of the
example figure, the cumulative acknowledgement appears at the end of the first packets of segment 3.

REB implements the following few simple rules with regard to the management of the receive queue
and the return of acknowledgements:

1. The receive queue places the packets/segments in their expected position with respect to their
identifiers.

2. The receive queue does not store packet/segments beyond its maximum size. Therefore, out of
bound packets are dropped.

3. The receive queue never garbage collects packets of the segment that is currently being received,
and that have been acknowledged to the source.

4. The receive queue can garbage collect packets and segments that are beyond the segment currently
being received, even if they had been acknowledged to the source.

5. Selective acknowledgments may only confirm the reception of part of packets/segments in the
queue as there is limited space in a SACK packet. The packets/segments that should be acknowl-
edged are the ones that appear first in the receive queue.

In the example of Figure 3.6, the segment that is currently being received is 3. Therefore, its packets
will never be garbage collected. The saved packets for segment 5 or even segment 5 may be removed if
the node needs to reclaim their space.
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Figure 3.7: The common scenario for transmissions.

The source node starts a timer with a predetermined duration after the transmission of the last packet
of the segment (in the flow control section, we will look into the case where there are more segments to
be send). Ideally, the duration is defined in such a way that allows for the receiver to decode the segment,
and return the acknowledgement. Figure 3.7 shows an example of a transmission in this normal scenario.

If the timer expires before an acknowledgment is received, then the network or the receiver had a
problem. For example, some of the data packets were dropped and the segment could not be recon-
structed, or there were delays in the network or/and receiver that made the acknowledgment arrive later.
Since the source does not know the cause of the problem, it sends a special packet with no data (referred
to as a ping packet) to the destination node to ask about which packets have been received so far. When
the destination node receives a ping, it immediately sends a SACK back to the source. The ping packets
are transmitted periodically, until either an acknowledgment arrives or the sender gives up (and returns
an error). With the reception of the SACK, the source node starts to retransmit all missing packets.
Figure 3.8 show an example scenario of a retransmission caused by lost packets.

Following the example of TCP, the value of the retransmission timer of REB is calculated based on
the estimated RTTs and variations [63]. However, in REB one needs to account for multiple overlay
routes, which have independent quality of service metrics. Since a node keeps information about each
overlay route RTT as well as an average of the RTT variation, it is possible to use this information to
select a reasonable value for the timer.

In REB, it was decided to take a conservative approach for the calculation of the timeout. We use
the worse values for the expected RTT and RTT variation of all the paths were packets were transmitted.
Additionally, since the decoding process at the receiver may take a non-negligible interval, the calculation
of the retransmission timer also takes into account an estimation of this period. The decoding time
depends on the type of erasure code being used, and specifically on its decoding algorithm complexity.
To simplify the estimation, we assume that it takes approximately the same interval to decode as to
encode, and therefore we measure its value at the sender. As we get more experience in using the REB,
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Figure 3.8: A retransmission caused by a high packet loss.

one may need to devise a more accurate way to make this estimation.
Let RTTest and RTTvar be the values for the estimated RTT and RTT variation, respectively, of

the route with highest expected RTT (RTTest + RTTvar), and let δ be the estimated processing time
for decoding. The retransmission timer value is calculated as:

Tret = RTTest+max(1, 4×RTTvar) + δ

.
Three important issues must be considered when addressing retransmissions. The first is that they can

potentially cause a delivery of a segment to expire its deadline. In general it is not possible to solve this
problem because the network is lossy and might be under attack. However, to minimize the probability
of this event, the REB combines the usage of multiple routes and erasure codes to make the need for
retransmissions very unlikely.

The second issue is related to the reliability of SACK delivery. SACK can be lost due to an accidental
corruption in the network or because of an attack that causes its deletion. In order to maximize the
probability of SACK arrival, it is sent through all the routes that were used by the source node when
transmitting the data packets. A destination node must therefore keep a record of these routes.

The third issue concerns acknowledgment loss, duplication and/or reordering, either of accidental
or malicious nature. For example, an attacker may try to replay previous acknowledgments to a source
node, trying to force unnecessary retransmissions. Even in a non-malicious scenario, the re-ordering
of two acknowledgements could make the source think that some of the previously received packets
were garbage collected, therefore, they would eventually need to be retransmitted. To solve this sort of
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problems, the source applies the following procedure when an SACK arrives:

• Compare the acknowledgment information in the new SACK with the last accepted SACK with
regard to (a) the value of the cumulative acknowledgement, and (b) the ranges of correctly received
packets in the segment that is currently being received.

– If any of the two indicates that less packets have arrived, then discard the new SACK;

– Otherwise, update the current knowledge of what has been received accordingly to the new
SACK.

3.5.6 Flow control

When a source node sends data to a destination, it may have several segments ready for transmission. In
this case, it would be interesting if the node could disseminate packets from multiple segments before
receiving an acknowledgment for the initial one. This has the benefit of allowing source nodes to do
useful work while the destinations are busy decoding packets, or while the SACK is being forwarded
through the network. However, the increased transmission capability needs to be bounded, otherwise too
many packets may reach the receivers, which can cause memory exhaustion on their machines (or too
many packet drops). To address the problem, REB implements a flow control mechanism to limit the
transmission rates between nodes.

The rate of a transmission is dictated by the capacity of the receive queue at the destination, but more
importantly by the rate of data consumption by the application. The receive queue holds (in order) the
latest completely received segments until they are consumed by the application. As a result, the queue
must have at least a capacity large enough to hold one encoded segment with maximum length. To
tolerate out-of-order reception, blocks from subsequent segments are also buffered inside the queue. If
those segments are received before the previous ones, they are decoded but stay in the queue until the
earlier segments are read (in order) by the application.

The portion of the receive queue that starts immediately after the last in order complete segment (or
the whole queue if it is empty) can be used to store further packets. When managing this space, we give
priority to the next transmitted segment because it will be read by the application right after the existing
segments. Therefore, the packets of this segment, which we call as the segment currently being received
(see Section 3.5.5), are never reclaimed by the garbage collector in case of lack of memory in the node.
The packets from the following segments can, however, be deleted.

The receive window is defined as the free space in the receive queue. We include in this space all
packets/segments that are more recent (i.e., with higher segment sequence number in the session) than the
segment that is currently being received. Therefore, the storage of these packets/segments is considered
provisional.

A source node keeps an informed view of the receive window, based on information that is returned
by the destination. The current view sometimes does not reflect the actual window state because packets
may be lost, but in normal network conditions it tends for the right value. This view is required by the
source node because the data transmission rate is constrained by its value (i.e., the the source can only
send packets that fit within the available space). To keep the value accurate, the destination node includes
the size of the receive window in each acknowledgment.

When a source node has outstanding encoded segments for a given destination, it starts transmitting
them block by block in a FIFO order, (ideally) each one inside a distinct packet. The transmission
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procedure is implemented in such a way that the initial outstanding segment is given a higher priority
than the rest. The procedure steps are as follows:

1. Let winSize the currently perceived value for the receive window size;

2. For the first outstanding segment, obtain the constants: N is the total number of encoded blocks;
K is the typical number of blocks required by the destination node to decode the segment with
high probability; and l is the length in bytes of each block;

3. Set variable D to the total number of delivered blocks from the first segment so far (0 at the
beginning of the transmission);

4. Obtain the number of undelivered blocks from the first segment that fit inside the window, as
Z = winSize/l (integer division);

5. If the receive window size is insufficient to hold all the undelivered blocks from the first segment,
that is, if Z < N −D, then:

(a) Send Z undelivered blocks from the first segment and keep a record of those transmissions;

(b) Begin a periodic transmission of ping packets (packets with a data of size 0, as described in
Section 3.5.5), to force the destination node to respond with an acknowledgment;

(c) Try to send segments to other destinations.

6. Otherwise, if there is space in the receive window:

(a) Send the remaining undelivered blocks from the first segment, that is, send N −D blocks;

(b) Start the retransmission timer (as described in Section 3.5.5);

(c) Update the receive window size, as winSize = winSize − l × (K −D) (note that it is K
instead of N );

(d) If there are outstanding segments beyond the first one, apply a similar procedure and send as
many blocks as the receive window allows; otherwise, try to send segments to other destina-
tions.

Notice that when sending extra blocks from the first segment (beyond the initial K), we take an
optimistic approach to update the receive window (rule 6.c). This is done because in most cases K
blocks are enough to decode a segment. As a result, the destination node needs to manage the receive
queue accordingly, being prepared for the fact that K blocks might not be enough and that extra blocks
might need to be stored (N −K blocks). This means that in some cases, a destination node may discard
received blocks from the next segments (and possibly even decoded segments), if not enough space is
available in the queue. This is reflected on the way acknowledgments are understood by the source,
where a newer SACK may “rollback” the delivery status of subsequent blocks/segments. Figure 3.9
shows an example of this scenario. Note that thanks to the efficiency of the erasure codes, it is expected
that such scenarios occur rarely in practice.

On the subject of window size updates, it is possible for a duplicate acknowledgment (spurious or
forced by an attacker) to give an incorrect view of the window, forcing unnecessary retransmissions.
This can happen when a destination node sends acknowledgments which roll back the information about
the delivery status of subsequent segments (see above). This situation arises because even though it
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Figure 3.9: Example scenario where a segment has to be discarded from the receive queue to get space
for storing packets of the segment that is currently being received.

is possible for a source node to detect an ordering on the acknowledgments by analyzing the delivery
status of the first segment (which never rolls back), different acknowledgments that only differ on the
subsequent segments cannot be consistently ordered. This roll back behavior however is expected to
occur only on rare occasions, so this particular scenario does not significantly affect the communication.
Besides, note that it only has a small impact on the communication progress because the first segment
continues to be delivered correctly.

On the subject of ping packet transmissions, there seems to be a possibility for a DoS attack on
destination nodes causing them to transmit a large number of acknowledgments in a row. To circumvent
this problem, destination nodes only respond to ping packets if their period is greater than a fixed amount
of time.

It is also worth mentioning that when receiving an acknowledgment, the advertised window size
could be too small (smaller than the size of a packet). To avoid this problem, the receiver only advertises
windows with a capacity that allows the transmission of packets with a considerable size. Currently, this
minimum capacity is MTU.

3.5.7 Route probing and selection

The timeliness of the communication is based on the assumption that the appropriate selection of overlay
routes will, with high probability, result in the delivery of segments before specified deadlines. Therefore,
it is required to periodically estimate the quality of service of the routes, in order to have a continuous
informed and updated knowledge about the best available paths.

Concerning metrics of quality of service, the fundamental one of an overlay route is the expected
Round Trip Time (RTT). For a source node, it is both important to know how much time will take for a
given segment to reach its destination, and also how long it will take before the respective acknowledg-
ment arrives back. One should not forget that a source is only capable of continuing the transmission of
buffered segments after the acknowledgment is received, with the respective update to the window size.
Another relevant metric is the loss rate of a route, which influences the effective time necessary for a
packet to arrive to a destination (if a packet is lost, then the transmission time can become the interval
for the timer to expire plus the retransmission through the network). Therefore, we do not use the loss
rate directly in the choice of the best routes, but as a way to penalize negatively the RTT value of a route.
This way, routes with high loss rates are viewed as being slower and so fall behind others with better
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latencies and/or lower loss rates.
In order to estimate the RTT values of its routes, a source node utilizes a probing mechanism that is

activated periodically, causing the destination node to return back information about the delivery delays
and packet losses. Given the current size of SIEM deployments, the REB overlay may have a few hundred
nodes. To keep the overhead of probing small, we adjust the probing frequency to the usefulness of
the routes – routes that are used regularly are probed more often. Furthermore, if a node normally
communicates with a certain destination, then the routes towards that node are checked more frequently.

REB uses two different approaches to manage probing traffic efficiently: a) a source node transmits
probe requests through unused routes to trigger immediate replies with probing data by the destination
nodes (a pull approach by the senders); b) a destination node also initiates the transmission of probing
data through some routes whenever a segment is fully received (a push approach by the receivers).
Consequently, a route that is used recurrently will have more probing traffic being conveyed by the
receiver. Routes that are never utilized are only checked when the source decides to send a probe through
them. This allows for a fast recovery of the routes being currently employed for the main communication
(should they suddenly become attacked), while keeping the knowledge about idle routes updated over
time.

The probing mechanism is intrinsically connected to the transmission of acknowledgments, that is,
probing information is delivered to a source node inside acknowledgment packets that are returned from
a destination node. As we have seen before, acknowledgments are transmitted when a segment is com-
pletely received, as well as when a source node explicitly requests them through the use of packets with
zero-length data (referred to as ping packets). We can see an immediate parallel with the push and pull
approaches defined earlier. Probing requests are nothing more than ping packets and probing information
is immediately transmitted per receipt of these packets.

However, sending probing data only when segments are completely received, as opposed to transmit-
ting this data when packets arrive, could at first seem to affect the precision of the RTT estimation at the
source. Adding such transmission of acknowledgments every time any packet is received through some
route, though, would increase the network traffic, which could interfere with the main communication by
delaying it and causing processes to stall. It was thus necessary to find a mechanism that kept the extra
traffic to a minimum, but at the same time offered a fine granularity on the probing of individual packets
(information about their loss rates and individual latencies).

To achieve the desired granularity of having probing information about individual packets during a
normal transmission, a destination node stores the arrival times of every received packet and includes
those times inside the acknowledgment. At the same time, a source node stores the departure times of
each packet it transmits, as well as the identification of the route that was used. When an acknowledgment
arrives, the source node calculates the RTT value of each packet using the saved departure time and the
announced arrival time. It then uses that sample RTT value to estimate the expected RTT value of the
route that was used to transmit the packet. Since REB nodes might not have their clocks synchronized
with very high precision, a source node cannot simply calculate the latency of a packet by subtracting
its departure time from its arrival time. Instead, a source node obtains the time of the acknowledgment
arrival, and for each reported packet inside:

1. Measures the elapsed time between the moment the packet was transmitted from the source Pack-
etDeparture and the moment the acknowledgment arrived back ACKArrival;

2. Obtains the elapsed time between the moment the packet arrived at the destination node PacketAr-
rival and the moment the acknowledgment was transmitted from there;

©2011-2013 by MASSIF Consortium 54 / 83



MASSIF - FP7-257475

D5.1.2 - Preliminary Defense Services and Protocols

MASSIF - FP7-257475

D5.1.2 - Preliminary Defense Services and Protocols

MASSIF - FP7-257475

D5.1.2 - Preliminary Defense Services and Protocols

source destination

PacketDeparture

PacketArrival

δ

PacketArrivalLast

ACKArrival

Figure 3.10: Example scenario where the RTT is estimated for packet with ID (1,2).

3. Subtracts the first elapsed time from the second and hence obtains the sample RTT value.

Note that in the second step, the source does not receive the instant when the acknowledgement was
received, but gets the moment when the last packet arrived PacketArrivalLast that allowed the segment
to be decoded. Since it may take some time for the decoding operation to conclude, the instant of the
acknowledgement transmission is estimated by adding δ to PacketArrivalLast (recall that δ is approxi-
mately equal to the decoding time6). Presenting it in a formula, the sample RTT value is taken as (see
Figure 3.10 for a graphical representation):

RTTsamp = (PacketDeparture−ACKArrival)− (PacketArrivalLast+ δ − PacketArrival)

It is important to refer that each acknowledgment must be transmitted through all the routes from
where the reported packets were received. In turn, for every acknowledgment copy it receives, the source
node must only measure the sample RTT values from the packets that were transmitted through the same
route as the acknowledgment. This is required because otherwise it would be possible for the latency of
a route to affect the estimation of the RTT of another.

The way REB calculates and keeps an expected RTT value per route is built upon the well tested
algorithms employed by TCP [63]. As mentioned before, the expected RTT value corresponds to the
sum of an RTT estimation and an RTT variation. Both metrics are averaged over time following an
exponentially-weighted moving average, which keeps an history of past values but gives more weight to
recent values over old ones. For each route, both metrics are computed as follows:

6As we get more experience with REB, we will find out if δ is a good estimate for the delays at the receiver. In any case,
as an alternative solution, the destination node could add to the message the instant when the ACK is sent ACKDeparture (not
represented in the figure), and then δ could be calculated as ACKDeparture− PacketArrivalLast.
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• If no sample RTT values have been taken, then:

– RTTvar = 0

– RTTest = a predefined large value

• When the first sample RTT value has been taken, then:

– RTTvar = RTTsamp/2

– RTTest = RTTsamp

• When an additional sample RTT value has been taken, then:

– RTTvar = (1− β)×RTTvar + β × |RTTest−RTTsamp|
– RTTest = (1− α)×RTTest+ α×RTTsamp
– Note that here, RTTvar is updated using the value of an RTTest from the previous update.

Following the advice in [63], α is set to 1/8 and β to 1/4. However, these values presuppose a modus
operandi for transmitting data that comes from TCP, and may not be ideal in REB because of the different
transmission semantics. This subject will require a further understanding in order to ascertain whether
different values for α and β make more sense in the context of REB.

Loss rate is another metric which is used to affect the perceived quality of the overlay routes. In order
to detect lost packets, source nodes inspect the IDs from the packets reported in the probing information.
If there are “holes” within the listed IDs, a source node assumes the respective packets were lost in
transit. The loss of an acknowledgment can also affect the perceived loss rate of a route. In order to
identify the loss of such acknowledgments, each one carries in the probing information the ID of the last
packet reported in previous acknowledgments. A source node assumes then that every unacknowledged
packet which has an ID inferior to the one indicated above is lost. However, since acknowledgments are
transmitted through all multiple routes, the chance of all being lost is reduced. Every time a packet is
deemed lost, the RTTest value of the route the packet was sent through is affected negatively in a fixed
amount λ.

The algorithm for selecting the routes that should be used for transmitting the packets uses the paths
with best quality of service (i.e., RTTest). At this point, this algorithm has been kept relatively simple.
For a given destination, the source picksR routes for transmission. Of these routes, some of them should
be direct links to the destination and the remaining should have an intermediary node. This ensures a
reasonable level of diversity among the chosen routes, which can beneficial in case of attacks. The quota
for direct links (up to R/2) is first filled in with the best direct routes. For the remaining slots are picked
the two-hop paths that have also the best quality of service.
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4 Node Defense Mechanisms

This chapter addresses defense mechanisms that can be employed to enhance the dependability and secu-
rity of the nodes. These mechanisms start to be presented in a generic way, since some of them might be
appropriate for certain nodes while others to other nodes. Moreover, given the various criticality levels
of the SIEM nodes and the cost of using some of these techniques, it is worth to consider a hierarchy of
designs that are incrementally more resilient. In order to ensure correct node behavior in the presence
of component failures, either of accidental nature or forced by an adversary, we resort to replication
techniques. These techniques support the construction of Intrusion-Tolerant Systems, allowing failures
to be automatically masked (and recovered) as long as enough good replicas remain operational. Conse-
quently, by introducing more replicas one can typically improve the overall dependability of the system
(of course, with some added costs).

To put these ideas in practice, the chapter also presents the design of a highly resilient core-MIS,
a solution that can eventually be extended to other MASSIF nodes like the edge-MIS. The core-MIS
role is to protect the most critical part of the SIEM, the core facility, where the events’ are processed,
correlated and archived. Since all traffic to and from the core facility needs to go through the core-MIS,
it can perform various filtering operations to ensure that external malicious messages are prevented from
entering. This is particularly true for traffic originating from nodes other than the edge-MIS, which
normally can be simply dropped, but also some checks can be carried out on the messages from the
edge-MIS (in case one of them was compromised and started to operate in a malicious way). Therefore,
it is fundamental to ensure correct functioning of the core-MIS on adverse conditions, such as when
this node becomes the target of attacks or/and experiences accidental faults (e.g., a replica component
crashes).

4.1 Resilient mechanisms support

This section starts by providing an overview of intrusion tolerance, and then describes the four main
mechanisms that can be used to enhance the resilience of a node: Byzantine fault tolerance, diversity,
proactive recovery, and a combination of proactive-reactive recovery. A more general rationale for these
mechanisms was presented in [16], namely in sections “Communication Support” and in “Runtime Sup-
port”.

4.1.1 Intrusion tolerance

The advancements in software development have provided us with an increasing number of useful appli-
cations with an ever improving functionality. These enhancements, however, are achieved in most cases
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Figure 4.1: Remote service accessed by a client C (and potentially by an adversary M ) that suffers a
fault, where (a) is a simplex system, and (b) is a replicated system.

with larger and more complex projects, which require the coordination of several teams. Third party
software, such as components off-the-shelf (COTS), is frequently utilized to speed up development, even
though in many cases it is poorly documented and supported. In the background, the ever-present trade-
off between thorough testing and time to deployment affects the quality of the software. These factors,
allied to the current development and testing methodologies, have proven to be inadequate and insuf-
ficient to construct dependable software. Everyday, new flaws (including vulnerabilities) are found in
what was previously believed to be secure applications, unlocking new risks and security hazards.

When the software is deployed, these flaws can result in accidental faults, such as when a boundary
condition is violated and creates a process crash, or in intentional (or malicious) faults. An intentional
fault can be caused by an external entity that performs a successful attack to exploit a vulnerability, and
the impact is various, for instance, the corruption of data or the termination of a service. In any case,
in the presence of faults the system can start to behave abnormally, i.e., stop to provide the expected
service.

One of the most efficient and transparent ways to deal with faults is to tolerate them. Replicated
systems have been used to solve this problem over the last decades, in the majority cases only addressing
accidental faults. These solutions are thus suitable for settings relatively benign (or where intrusions can
be dealt with by some other means, e.g., with insurance), but they easily fall prey of an adversary that is
able to compromise a single replica.

A system is said intrusion-tolerant when a subset of the components (i.e., replicas) fail without harm-
ing the offered service (for an overview of the area see [81]). Redundancy is the cost attached to intrusion
tolerance, for instance, by replicating the client’s request in several replicas. Hence, each replica executes
the same request and the system can assure that a number of failures can be tolerated with a (relatively
simple) voting on the produced results. The number of required replicas is related to the number of faults
one wants to tolerate, and its value depends on the type of service/algorithm that is implemented and on
the strength of the assumptions that can arguably be made on the execution environment. Typically, the
number of replicas n that is needed to tolerate f faults is n ≥ 3f + 1, in an environment with very weak
assumptions [45] .
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To illustrate these points, Figure 4.1 shows two versions of a service that is accessed remotely by
clients C: (a) a non replicated (or simplex) system, and (b) a replicated system. If the simplex system
suffers a fault, such as an intrusion, then the service stops from being correct and the client might start to
receive wrong responses (or no answers).

On the other hand, the intrusion tolerant replicated system offers a service to the clients under very
weak failure assumptions. Typically, it is assumed that an adversary M can perform various attacks on
the network (e.g., replay, delay, re-order, corrupt messages), and that he or she controls an undetermined
number of clients and up to f replicas. Nevertheless, even under these challenging conditions, the system
needs to provide correct responses to the good clients.

The design and implementation of the intrusion tolerant system has to address two main concerns.
First, the protection of the communication between the client and the service, where it is necessary that
all correct replicas execute the request and then that the client is able to select a correct response. By
employing re-transmissions and cryptographic methods, it is possible to secure the messages from the
network attacks and ensure their delivery. The selection of the response is a bit more delicate because
some of the replies might be produced by malicious replicas, and therefore contain erroneous data.
Consequently, the usual procedure is to wait for f +1 equal responses, and only then choose this answer
(this ensures that at least one correct replica vouches for the reply).

Second, all correct replicas should start to execute from an identical initial state, and then they should
evolve through the equivalent states as they process the requests (by assuring that requests are executed
in a deterministic way). For this reason, a service with these characteristics is said to implement State
Machine Replication (SMR) [70]. This is achieved by running a Byzantine fault-tolerant replication
protocol among the replicas, which associates a processing order number to each request and makes sure
the correct replicas carry out the same requests.

In MASSIF, SMR brings however a difficulty due to its programming model — the assumption that
there is a client that invokes an operation on a replicated service and waits for replies — since it does
not match the way some SIEM components operate. For example, the core-MIS acts as a forwarder
of message traffic to and from the core facility, and therefore, arriving messages need to be transmitted
to a node other than the original sender. Nevertheless, as we will explain in Sections 4.2 and 4.3, the
implementation of a replicated forwarder can be done with small modifications to the basic SMR model.
The idea is to replicate a deterministic forwarder and use a total order broadcast (see next section) to
make all replicas process the same sequence of messages (or requests). The difference from the SMR
model is that the result of the processing is delivered to the final destination of the message, and not the
sender (see Figure 4.2).

4.1.2 Byzantine Fault tolerance

A key building block of intrusion-tolerant systems is Byzantine fault-tolerant (BFT) protocols, which
guarantee the correct behavior in spite of arbitrary faults (also called Byzantine faults), provided that a
minority of the components are faulty.

In our implementation of a BFT replication protocol, we are considering two forms communication
support: reliable and atomic broadcast.

Reliable Multicast. A reliable multicast protocol is used to ensure that if a message is sent to a group
of processes (or replicas), either all correct processes deliver this message or none will do that. Formally,
a reliable broadcast protocol can be defined in terms of the following properties [12, 21, 39]:
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• Validity : if a correct process broadcasts a message m, then some correct process eventually deliv-
ers m.

• Agreement : if a correct process delivers a messagem, then all correct processes eventually deliver
m.

• Integrity : for any identifier ID, every correct process p delivers at most one message m with
identifier ID, and if sender(M) is correct then M was previously broadcast by sender(M).

We consider that the sender also delivers the messages it broadcasts, and the predicate sender(M)
gives the field of the message header that identifies the sender.

Total order multicast. A total order multicast (TOM) protocol is similar to a reliable broadcast proto-
col, but it ensures an additional property [21]:

• Total Order : if two correct processes deliver two messagesm1 andm2 then both processes deliver
them in the same order.

This additional property makes the implementation of a total order broadcast much harder than re-
liable broadcast. More precisely, the problem of total order broadcast has been shown equivalent to
the well known consensus problem [39, 14, 21], and thus cannot be solved deterministically in asyn-
chronous systems with crash failures (and therefore, cannot also be solved in systems with Byzantine
failures) [31]. Over the years, several approaches have been proposed to circumvent this limitation, i.e.,
to slightly modify the system model in such a way that consensus becomes solvable. Examples include
randomization [65, 9], failure detectors [14, 52], partial-synchrony [28, 26], and hybridization/worm-
holes [19, 60].

On the other hand, the up side is that a significant amount of research has been carried out on the
design of new consensus protocols (for a survey see [22]), and this work can be leveraged to build better
atomic broadcast protocols. For example within MASSIF, we have recently proposed an optimization to
a well known randomized BFT consensus protocol [80], which uses a speculative execution to reduce
the number of communication rounds from three to two in the normal case.

4.1.3 Replica diversity

Works concerning BFT protocols tend to assume that replica nodes fail in an independent manner [13, 85,
10, 20, 58, 2]. To respect this condition, system components need to exhibit failure diversity. However,
when security is considered, the possibility of simultaneous attacks against several components cannot
be dismissed. If multiple components exhibit the same vulnerabilities, they can be compromised by
a single attack, which defeats the whole purpose of building an intrusion-tolerant system in the first
place. Moreover, this problem is also relevant from an accidental fault perspective. Since all replicas are
executing similar tasks, if the software contains a bug that is activated when processing a request, then
every replica will progress into a faulty state.

To circumvent this limitation one must substantiate the fault independence assumption by construc-
tion. Diversity allows one to build safer replicated systems based on the assumption that different compo-
nents exhibit independent failure modes with high probability. Replicas should execute distinct software
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that offers similar functionality (e.g., think about the operating system), but since the code was devel-
oped by different teams no common flaws should occur. Moreover, every diverse replica should be fully
patched, clean from known vulnerabilities, to increase the difficulty of attacks.

One can find several opportunities to use diversity when setting up a system. For example, various
hardware platforms could be employed and/or the software could be configured in a different way (e.g.,
using randomization of the placement of the programs in memory), which often is enough to limit heav-
ily the success of attacks that are performed with automated tools. If higher levels of security are desired,
then one could use multiple operating systems (OS) and other support software. As a last step, even dif-
ferent implementations of the applications can also be employed, especially if the replicated component
has a standardized interface.

Nowadays, nearly all software systems rely on COTS, i.e., third party software components readily
available for use, like graphic packages, mathematical libraries, operating systems and database man-
agement systems. This is mostly due to the sheer complexity of such components, coupled with benefits
such as the perceived lower costs from their use (some of the components may be open-source and/or
freely available), faster deployment and the multitude of available options. Consequently, leveraging on
COTS to implement diversity is less complex and more cost-effective than actually developing variants
of software.

Within MASSIF, we have been exploring the idea of using diversity at the operating system level.
Realistically, people will resort to a COTS operating system rather than build their own. Given the variety
of operating systems available and the critical role played by the OS in any system, diversity at the OS
level can be a reasonable way of providing good security against common vulnerabilities at little extra
cost.

In a recent study, we analyzed the likelihood of common vulnerabilities on operating systems [32].
We analyzed more than 15 years of vulnerability reports from the NIST National Vulnerability Database
(NVD) totaling 2120 vulnerabilities of eleven operating system distributions. The results suggest sub-
stantial security gains by using diverse operating systems for intrusion tolerance. Some of the more
specific findings were: the number of common vulnerabilities on the studied operating system pairs was
reduced by 56% on average if the application and locally-exploitable vulnerabilities could be avoided;
more than 50% of the 55 OS pairs studied have at most one non-application, remotely exploitable com-
mon vulnerability; that there are some setups for a four-replica diverse system that have experienced very
few (or no) common vulnerabilities over the years.

We have also been researching ways to build diversity at the application level. In particular, we have
looked into the problem of incompatibilities that are created when using different implementations of
the same application in the replicas [6]. Various kinds of incompatibilities were analyzed, and a new
methodology was proposed to evaluate the compliance of diverse server replicas. The methodology col-
lects network traces to identify syntax and semantic violations, and to assist in their resolution. A tool
called DiveInto was developed based on the methodology and was applied to three replication scenar-
ios. The experiments demonstrated that DiveInto was capable of discovering various sorts of violations,
including problems related with nondeterministic execution.

4.1.4 Proactive Recovery

Individual replicas, even if fully patched, are still vulnerable to attacks that exploit flaws unknown to the
security community (normally called zero-day vulnerabilities). Typically, these vulnerabilities are kept
secret by the hackers until an suitable exploit is developed, and they are only discovered when eventually
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they start to be used to compromise systems. Although the number of zero-day vulnerabilities observed
per year is relatively small, since they require specialized knowledge, effort and time to be found, Syman-
tec stated that 14 zero-day vulnerabilities for operating systems were discovered in 2010 [78] and 8 in
2011 [79]. Therefore, they cannot be disregarded in highly resilient solutions, and proper techniques
should be employed to address them.

One however should keep in mind that the intrusion tolerant system remains correct as long as the
adversary only controls up to f replicas. The problem occurs if a powerful attacker could silently discover
flaws in f + 1 replicas, and then run the exploits at the same time taking over the system. Proactive
recovery (PR) is a way to avoid this scenario [69, 74, 13, 53], by forcing replicas to be periodically
rejuvenated with a diverse software configuration, which has a (hopefully) different set of vulnerabilities.

PR allows for: i) the cleaning of the faulty state in case the replica was silently compromised; ii) if a
replica is correct but is being probed by an attacker, then a recovery will force the attacker to restart over
because previously acquired knowledge is no longer of use. The system stays intrusion-tolerant as long
as the recoveries occur faster than the f + 1th fault. Moreover, the recovery must modify the replica in
such a way that it is not trivial for an attacker to compromise it again.

In previous works, the event that triggers the rejuvenation of a replica is based on time (e.g., every
hour the replica is recovered). This can bring non trivial problems to the actual implementation of the PR
mechanisms, since it needs to ensure that the trigger can not be delayed accidentally (e.g., due to heavy
load in the system) or maliciously, and that the rejuvenation terminates within a bounded time [75]. To
address this difficulty, we are developing within MASSIF other triggering actions, which at this point are
based on an assessment of the risk level associated with a given replica in operation [33].

4.1.5 Reactive Recovery

A limitation of proactive recovery is that a malicious replica can execute any action to disturb the system’s
normal operation (e.g., flood the network with arbitrary packets) until its recovery time, and there is little
or nothing that a correct replica (that detects this abnormal behavior) can do to stop the faulty one.
The observation is that a more complete solution should allow correct replicas to force the recovery of
detected or suspected faulty replicas. This solution is called Proactive-Reactive recovery [74], and it can
improve the overall performance of a system under attack by reducing significantly the amount of time a
malicious replica has to disturb the normal operation.

If f+1 different replicas suspect and/or detect that replicaRj is failed, then this replica is recovered.
This recovery can be done immediately, without endangering availability, in the presence of at least
f + 1 detections, given that in this case at least one correct replica detected that replica Rj is really
faulty. Otherwise, if there are only f + 1 suspicions, the replica may be correct and the recovery should
be coordinated with the proactive recoveries in order to guarantee that a minimum number of correct
replicas is always alive to ensure the progress of the system. The quorum of f +1 in terms of suspicions
or detections is needed to prevent recoveries triggered by malicious replicas – at least one correct replica
must detect/suspect a replica for some recovery action to be taken.

Notice that a proactive-reactive recovery service is completely orthogonal to the failure/intrusion
detection strategy used by a system. The proposed service only exports operations to be called when
a replica is detected/suspected to be faulty. In this sense, any approach for fault detection [7, 14, 27],
system monitoring [23] and/or intrusion detection [24, 59] can be integrated in the system. For example,
the observation of certain malicious actions performed by faulty replicas of the resilient core-MIS, such
as altering the content of messages to be forwarded, can be used for this propose.
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Figure 4.2: Architecture of the core-MIS.

4.2 Resilient core-MIS architecture

The core-MIS architecture and protocols takes advantage of the mechanisms described in the previous
section to achieve a high level of resilience. Its main role in a SIEM system is to forward messages
coming from the edge-MIS, usually containing the event data collected by the sensors, towards one of
the core services. Occasionally, the core-MIS may also need to return data to the edge facilities, for
instance, when reconfiguration actions need to be performed in some device. For simplicity, we will
focus on the description of the processing of messages coming from the outside of the core facility, since
these messages can have a malicious origin. Additionally, we will assume that the destination of these
messages is the correlation engine of the SIEM.

The core-MIS provides a message forwarding service that mimics the properties of the Resilient
Event Bus (REB) (see Chapter 3). For example, it ensures reliable delivery of the messages that arrive
to its interface. For messages transmitted from a particular source, it also guarantees FIFO order in
their delivery. Additionally, it attempts to minimize the operations that need to be performed with the
messages to avoid delays and increase throughput.

The core-MIS is a replicated system, built from two main components called the Pre-filters and
Filters, and a third component named Post-filter that is located in the SIEM Engine. In order to make this
system intrusion-tolerant up to f faults, the core-MIS needs at least f + 1 Pre-filters and 3f + 1 Filters.
Post-filters are assumed to be correct because they run together with the engine. The communication
between Pre-filters and Filters is made by a total order multicast channel, ensuring that every Filter
replica processes the messages in the same order. Filters run diverse operating systems to avoid common
flaws, and when a recovery is made, proactively or reactively, a different OS is loaded.

Figure 4.2 shows the general architecture of the core-MIS. The communication between the edge-
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MIS and the core-MIS is implemented by the REB. The REB delivers the messages to the Pre-filters,
which then retransmit them to the Filters via a group communication library (that is being built with some
support from the project, and is called BFT-SMaRt[1]) that offers a total order communication primitive.
At the end, the Filters use authenticated reliable point-to-point channels to send the messages to the
Post-filter for voting. An illustration of the communication among the various components if presented
in Figure 4.3.

Figure 4.3: Communication among the various core-MIS components.

Each of the three components has its specific function regarding the resilience of the system:

Pre-filter: receives messages from the REB, then verifies their source to accept only messages from
known edge-MIS. External messages are simply dropped. To avoid denial of service (DoS) attacks
carried out by compromised edge-MIS, Pre-filters implement a very simple (and efficient) message
flow control based on grants that limits to acceptable levels the amount of information that can be
transmitted from each source. Messages are discarded if their arrival rate is higher than what was
granted.

Filter: makes two fundamental verifications on the arriving messages. First, it checks a MAC added by
the edge-MIS, using a key that is shared between the edge-MIS and the Filter (different keys are
used for each pair of components). Second, it makes a sequence number verification to detect for
instance duplicates. Besides that, the Filter can also enforce more complex security policies, e.g.,
it can check if the events included in a message are acceptable for its source.

Post-Filter: must vote the Filters’ replies in order to deliver only correct messages to the SIEM En-
gine. Therefore, it prevents compromised Filters from influencing the correlation processing with
malicious data.

4.2.1 Denial-of-service mitigation

Denial-of-service (DoS) is one of the important attack vectors that has to be considered in the core-MIS
design. In general, there is no solution to prevent DoS attacks if a system can be accessed remotely. DoS
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attacks can be very simple (e.g., just send many SYN packets from the TCP protocol), and their strength
relies often on the number of machines that perform the attack. The power of multiple attackers can lead
to the exhaustion of resources, compromising the system’s availability.

A DoS can be roughly divided in two categories depending on the resource that is exhausted, either
the network or the application/node (but sometimes, both resources are the target). In the first one, the
state-of-the-art mitigation solutions propose techniques applied to the network to isolate the attack, via
for instance quarantine links or by closing ports. These measures are to a large extent orthogonal to the
core-MIS design, since they require reconfiguration operations in the network devices on the path to the
adversary machines. Therefore, we would like to count with this protection, but its availability depends
on the existing support in the network where the core-MIS is deployed.

The second category of DoS attempts to exhaust the resources of the system implementing the ser-
vice, in this case the various replicas of the core-MIS. In order to minimize the effects of the DoS, the
core-MIS employs two ideas: 1) when processing a message over the various layers (Pre-filter, Filter, and
Post-filter), apply first the simplest (and more efficient) tests to identify malicious traffic; 2) discard as
much as possible the malicious DoS traffic in the earlier layers of processing (ideally in the Pre-filters).
Together, these ideas ensure that DoS messages are dropped soon, without loading the later stages of
processing.

One of the mechanisms that is implemented is inspired on the use of capabilities that have been
proposed in previous works [5, 62]. Capabilities are a grant/token based communication, in which it
is needed permission to send messages, in order to prevent abusive flows of requests. However, our
solution does not make assumptions on the network, i.e., the network routers do not analyze or drop
packets. Assuming a reliable authenticated channel, as the one offered by the REB, we can provide
a grant system to control the amount of message that can be transmitted. The core-MIS periodically
provides grants to the edges, allowing a certain level of communication. Once the contract is violated,
which indicates that the edge is malfunctioning, the packets start to be dropped and an alarm is raised.

4.3 Core-MIS protocols

This section gives an explanation of the core-MIS protocols that are run among the components. We also
discuss some of the attack scenarios, and describe how they are addressed in order to prevent malicious
behaviors.

4.3.1 Failure-free execution

The protocol for exchanging data in a normal execution, i.e., without faults, is performed in the following
way among the components.

1. Sensors in the edge facilities collect data that is transmitted to the Data services (normalization,
aggregation, and local correlation) in the edge-MIS.

2. The edge-MIS creates a message with the received data, a sequence number and a vector of MACs
that ensures the integrity to the whole message. Overall, the vector contains a separate MAC for
every Filter. Each MAC is created using a shared key between the edge-MIS and one of the Filters.

3. The edge-MIS sends the message to f + 1 Pre-filters.
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4. Every Pre-filter does some validations on the message, and then forwards it by invoking a BFT
total order multicast to the 3f + 1 Filters.

5. Once the messages are ordered and delivered, the Filter application verifies the MAC and the se-
quence number. A message with an incorrect MAC is dropped. If the message has a sequence
number higher than the expected, then it is archived until all previous messages have been pro-
cessed. A message is discarded if has a sequence number lower than the expected. If the sequence
number is the right one, the message is ready to be go to the next stage, and therefore it is forwarded
to the Post-filter (on the SIEM Engine).

6. The Post-filter receives messages transmitted from the Filters until it collects f + 1 matching
messages. This ensures that the message is correct, since at least one correct Filter vouched for it.
Then, the Post-filter delivers the message to the SIEM Engine.

The voter in the Post-filter has a buffer to store messages until it collects f +1 matching messages
for a given sequence number. In the normal case, i.e., without faults, the first f + 1 messages will
be equal, and therefore, only one of the copies needs to be stored plus a counter on the number of
received votes. Since the core-MIS is intrusion tolerant, it must deal with eventual compromised
parts, and therefore our solution must guarantee that malicious Filters cannot send wrong events
to the SIEM Engine.

4.3.2 Behavior under attack

This section describes how the core-MIS behaves in presence of accidental faults or attacks. In par-
ticular, we consider attacks that may affect the events integrity, namely message content modification.
The core-MIS also tolerates re-ordering attacks performed for instance by malicious Pre-filters. In the
attacks description, we assume that the messages have already arrived to the Pre-filters, something that
is enforced by the REB. We also assume f = 1, therefore, we can have one malicious Pre-filter and/or
one malicious Filter. The objective is to keep the forwarding service of the core-MIS correct, despite the
attacks and intrusions.

To give more power to the adversary, we assume in the following scenarios that the correct Pre-
filters are slower than the malicious one but eventually send messages. Otherwise, our solutions trivially
overcome the attacks.

Content modification attack. A malicious Pre-filter has the ability to modify the content of a message.
Since the malicious Pre-filter is faster, it is the first to send a message to the Filters. Then each Filter
verifies the integrity of the message with the included vector of MACs. By checking its corresponding
MAC, the Filter confirms that the message was modified and therefore can discard it.

This attack does prevent the correct delivery of the message. Since a copy of the message also arrives
to a correct Pre-filter, it gets to be forwarded to the Filters. Now, the checks will be all valid, and the
message is transmitted to the Post-filter for final delivery.

MAC modification attack. This attack is more sophisticated as the malicious Pre-filter does not mod-
ify the part of the message with the events, but only a subset of the MACs in the vector, leaving the
remaining unaltered. The objective of this attack is to prevent a certain message from being delivered to
the engine, by averting the necessary quorum of votes to be reached in the Post-filter.
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Figure 4.4: core-MIS MAC attack.

Figure 4.4 illustrates how this attack is performed in case there is both a malicious Pre-filter (named
Pre-filter1) and a malicious Filter (identified as Filter0). The malicious Pre-filter starts by changing the
MACs for Filter1 and Filter2, and then forwards the message. Then, the Filters check their own MAC
in the message, and the following occurs (step (1) in the Figure): Filter0 is compromised and can do
anything; Filter1 and 2 see the MAC verification fail and drop the message; Filter3 checks correctly the
MAC verification, and therefore, it sends the message to the Post-filter (step (2)).

Eventually the correct Pre-filter (Pre-filter2) also gets and sends the message. Then, every MAC is
correctly validated (step (3)), and the following happens: Filter0 is compromised and can do anything;
Filter3 abstains from transmitting the message because this was previously done; Filter1 and 2 send the
message to the voter. To finish, the Post-filter collects f + 1 matching messages (step (4)), one from the
malicious Pre-filter through Filter3 and one from the correct Pre-filter either through Filter1 or 2, and
delivers the data to the engine.

Re-ordering attack. A malicious Pre-filter can try to do two possible re-ordering attacks: 1) mod-
ify the message’s sequence number; 2) delay some of the messages, and then send them out of order.
Regarding the first attack, since the sequence number is protected with the MAC, the modification is de-
tected and the packet is dropped as explained above. The second attack is addressed by having the Filters
check the sequence numbers. Messages are only forwarded to the Post-filter in order. If a message’s
sequence number is larger than the expected value, then the message is stored until the previous ones are
received.

A malicious edge-MIS could also send messages out of order, for example messages with sequence
numbers much larger than the expected. This could have an impact on the Filters, as they would need to
store them locally. To avoid this problem, the Filters only save messages with larger sequence numbers
up to a certain threshold. Messages with sequence numbers above the threshold are discarded, and an
alarm is raised.

DoS attack. There are various forms of DoS that can be performed, but they result in extra traffic/com-
putation, and therefore, they can be detected. For example, a Pre-filter could receive messages from an
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edge-MIS at a rate above the grant. In this case, the edge-MIS is performing abnormally and an alarm
is generated by the Pre-filter. In another example, the Pre-filter could constantly send messages with
wrong MACs, something that does not occur with the rest of the Pre-filters. This justifies the generation
of an alarm because it indicates that either the edge-MIS or the specific Pre-filter is malicious. As a last
example, the Post-filter could receive correctly authenticated messages from a Filter but with a content
different from the other Filters. In this case, the first Filter can be detected as malicious, and therefore
should be rejuvenated.

4.3.3 Pre-Filter protocol

Algorithm 1: Pre-filteri protocol
input: M: <DATA, EdgeMIS ID, SEQ NUMB,[MAC0, ... ,MAC3f ] >

begin1

if ( verify Source(EdgeMIS ID) == TRUE ) then2

if ( check message flow(EdgeMIS ID) == TRUE ) then3

Total Order Multicast(M);4

end5

Protocol 1 presents the tasks performed by a Pre-filter when it receives a message M from the REB
(see input). First, the Pre-filter checks if the source of the message in authorized to send traffic through
the core-MIS (line 2). Each Pre-filter has a pre-configured list of authorized sources (typically edge-MIS
identifiers). Then, the Pre-filter checks if the message is within the limits of the offered grant to edge-
MIS, to prevent the execution of DoS attacks (line 3). Last, the Pre-filter uses the total order multicast to
disseminate the message to the Filters (line 4).
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4.3.4 Filter protocol

Algorithm 2: Filteri protocol
input: M = <DATA,EdgeMIS ID,SEQ NUMB,[MAC0, ... ,MAC3f ] >

Initialization, executed only once;1

SEQ NUMB EXPECTED← 0;2

WaitingQueue← ∅;3

begin4

if (( verify MAC(M) == TRUE and semantic Validation(M) == TRUE ) ) then5

M = M \[MAC0, ... ,MAC3f ];6

if ( SEQ NUMB == SEQ NUMB EXPECTED) then7

send Voter(M);8

SEQ NUMB EXPECTED ++;9

else if ( SEQ NUMB > SEQ NUMB EXPECTED and SEQ NUMB <10

(SEQ NUMB EXPECTED + THRESHOLD) ) then
WaitingQueue = WaitingQueue ∪ {M};11

if ( MinSeqNumber(WaitingQueue, SEQ NUMB) == TRUE ) then12

MIN SEQ NUMB = SEQ NUMB;13

while ( MIN SEQ NUMB == SEQ NUMB EXPECTED) do14

M = retrieveMessage(WaitingQueue );15

SEQ NUMB EXPECTED ++;16

MIN SEQ NUMB = getMinSeqNumber(WaitingQueue );17

send Voter(M);18

end19

Protocol 2 presents the tasks carried out by the Filter. After the total order multicast is executed, the
message is delivered to each Filter in the same order. Every message has the identifier of the source, the
sequence number, and a MAC vector with 3f + 1 MACs (input). To simplify the presentation, we have
excluded from the variables the identification of the source — a separate copy of every variable is need
for each source. The first three lines of the algorithm are executed only once, when this source started to
send messages.

First, the Filter verifies the corresponding MACi in the message using the shared key (line 5). Then,
based on a pre-defined security policy, it can also perform other semantic checks on the content of the
message, such as verifying that the events were produced by a reasonable sensor (line 5). Next, the Filter
removes the MAC vector from the message, since it will not be needed anymore.

Second, the Filter compares the message’s sequence number with the one that is expected (line 7).
If is the same sequence number, then the message is sent the Post-filter voter and the expected sequence
number is incremented.

If the message’s sequence number is greater than the expected and less than a pre-defined threshold
(line 10), then the message is stored in a waiting queue. It also checks if the message just stored is the
one with lowest sequence number, and if it is true, then the minimum sequence number is updated to that
value.

To complete the procedure, the Filter checks if there are enqueue messages that need to be trans-
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mitted. Therefore, if the minimum message sequence number is equal to the expected sequence number
(line 14), then the enqueued message is retrieved and sent to the Post-filer voter.

4.3.5 Post-Filter protocol

Algorithm 3: Post-Filter’s protocol
input: Filter ID: the Filter that sent the message
input: M: <DATA,EdgeMIS ID,SEQ NUMB >

Initialization, executed only once;1

SEQ NUMB EXPECTED← 0;2

WaitingQuorom← ∅;3

begin4

if ( SEQ NUMB == SEQ NUMB EXPECTED) then5

WaitingQuorom←WaitingQuorom ∪ {<M,Filter ID>};6

else7

if (SEQ NUMB > SEQ NUMB EXPECTED) and (SEQ NUMB <8

(SEQ NUMB EXPECTED + THRESHOLD) ) then
WaitingQuorom←WaitingQuorom ∪ {<M,Filter ID>};9

while ( existsQuorom(SEQ NUMB EXPECTED) == TRUE ) do10

aux = getQuorom(SEQ NUMB EXPECTED);11

deliver SIEM ENGINE(aux);12

garbageCollection(aux);13

SEQ NUMB EXPECTED ++;14

end15

Protocol 3 presents the actions performed by the Post-filter. Fundamentally, it needs to ensure that
correct, new, and ordered messages are delivered. To simplify the presentation, we have excluded from
the variables the identification of the original source — a separate copy of every variable is need for each
edge-MIS.

First, the Post-filter checks if the sequence number is the expected one (line 5), and in the affirmative
case it stores the message in the WaitingQuorom set. Otherwise, it sees if the message has a sequence
number larger than the expected (line 8), and in this case, the message is also stored in the same set.
To prevent a malicious edge-MIS from sending large sequence numbers, which could overflow the Post-
filter queue, we bound the accepted sequence numbers with a threshold (line 8). If the sequence number
is under the expected sequence number, then the message is discarded because it was already delivered.

Second, the Post-filter verifies if there is a sufficiently large quorum of messages for the expected
sequence number, i.e., if there are f +1 or more equal messages for the expected sequence number (line
10). Then, it gets the corresponding message and delivers it to SIEM Engine. Next, the set is garbage
collected from the information related to this message and the expected sequence number is incremented.
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4.4 Core-MIS deployment decisions

The intrusion-tolerant core-MIS requires several replicas for effective deployment. However, costs are
a major concern of any administrator. Therefore, we present a few deployment alternatives that can be
made based on our solution. In any case, one must keep in mind that resilience usually has associated
costs.

Figure 4.5 presents the rational for making deployment decisions. The considered solutions try to
tradeoff costs with the use of virtualization [8]. In all options, different replicas run in separate virtual
machines and/or physical machines. A solution with more physical machines is desirable for more
critical systems, due to the higher fault isolation and also because of the potentially better performance.
With virtualization, each physical machine supports several virtual machines, which means that there
might be less machinery costs but performance can be reduced as resources are shared. Although virtual
machines provide some level of isolation among the different components, preventing in most cases
intrusions from propagating from one replica to the others, hardware faults may have an impact in all
replicas.
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Figure 4.5: Two-axis deployment decisions: four deployment options based on Criticality and Perfor-
mance.

Some possible deployment scenarios are:

Full Physical Replication (FPR) Every Pre-filter and Filter runs in a different physical machine.
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Full Virtual Replication (FVR) Every Pre-filter and Filter runs in different virtual machines in the
same physical machine.

Virtual Filter Replication (VFR) Pre-filters and Filters run in virtual machines, but the Pre-filters are
in a physical machine and the Filters are in another physical machine.

Physical Filter Replication (PFR) Pre-filters run in virtual machines of the same physical machine,
and each Filter runs in a separate physical machine.
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5 Resilient Event Storage

The system under scrutiny of MASSIF generates massive amount of events per second. There are some
practical algorithms for enforcing privacy on data stored on databases [30, 29, 54], storing no sensi-
tive data at all would remove the problem altogether. But in Critical Infrastructure protection systems
where security violation may result in terrible effects and put human life in danger, the reasons and
responsible persons of this terrible incident would require to be disclosed. So MASSIF will have this
constraint in great consideration when designing security enhancing solutions. By relying on Complex
Event Processing (CEP) technology and on a stream-based computing paradigm, MASSIF solutions
make enhancements in this ”zero storage” principle and makes use of what is called ”Least Persistence”
principle. According to Least Persistence principle the only data which will be permanently stored by
resilient storage is the one generated by processing engine at the time of security breach and will be
helpful to identify the reasons of this breach. This stored data will be used for forensic analysis of the
incident and will be made available only to authorized entities according to the regulations.

5.1 Architecture

A resilient architecture for forensic storage is a facility that allows secure storage of data by implementing
a set of techniques which make data alteration difficult to achieve. These techniques may include usage
of cryptographic functions and storage media equipped with tamper resistance/detection techniques. The
proposed architecture of the Resilient Event Storage (RES) is shown in Figure 5.1. This architecture
will take the security events as input and store them after digital signatures. The incoming data carry
information about the security breach which can be used for forensic purposes later on. In order to
be able to use this data for forensic purposes, it should be stored in raw format without any kind of
processing.

The security events will be digitally signed prior to storage in order to ensure their authenticity
and integrity for forensic purposes. Digital signatures will be performed using cryptographic algorithm
RSA but instead of using classical RSA, it will be used in threshold cryptographic mode. The reason
behind using RSA threshold signatures scheme instead of RSA classical is to enforce intrusion and fault
tolerance in the architecture and to make sure that the system is available to sign the security events when
a security breach occurs.

The first component starting from the left in Figure 5.1 is the Processing Engine in MASSIF which
serves as an input source for the RES. Each event generated from Processing Engine related to security
breach that requires to be stored forensically, will be sent to the controller. As described earlier, the
events related to a security breach should be stored in raw format, so the security event “m” shown in
Figure 5.1 will be in raw format. We suppose that we have n participants in the threshold signature
scheme (a detailed study about threshold signature scheme can be found in [72]) and each participant
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holds the secret key share necessary to sign the events. These participants are represented by Node 1,...,
Node n in Figure 5.1. In the initialization phase, the secret key is distributed among n shareholders in
such a way that at least a threshold number of shares, let’s say t where t < n, are necessary to calculate
the full secret key and not less that t shares reveal even partial information about the secret key. After
the secret key is divided into shares and distributed to all shareholders or nodes, the incoming message
(containing information about the security breach) is sent in parallel by controller to all nodes. Each node
computes a hash of the same message (represented as h in the Figure 5.1) and it uses its secret key share
to perform a partial digital signature. This hash is unique for each distinct message. A component called
Combiner is responsible for assembling all signature shares received from the shareholders in order to
generate a full signature which is attached to the original message thus forming a signed security record
i.e. a forensic record. This signed security event will be stored for future forensic analysis. The digital
signatures achieved in this distributed way will be exactly similar to the digital signatures achieved by
classical RSA with an advantage of intrusion and fault tolerance and enhanced availability of system. In
fact, the Combiner is also responsible for verifying the signature shares it receives from all nodes. Each
secret key share has a corresponding verification key share which can be used to verify the signature share
generated with the secret key share. All these verification key shares are places in Combiner, so when a
signature share arrives at Combiner, it will verify the validity of the signature share. After verification,
the signature share will be used with other verified signature shares to generate a full signature otherwise
the sender node is marked as compromised.

 

Figure 5.1: Architecture of Resilient Event Storage.

Forensic Services block represents the forensic analysis services which will be able to determine the
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altered data and intruder. This will be performed by analysing the information obtained by recorded
events. The Access Control is the service that will control the access to the resources. Due to their
importance in the architecture, Combiner and Storage medium will be replicated to avoid single point
of failure. Diversity will be employed in the replication of these components to further improve the
intrusion and fault tolerance in terms of using different programming languages and techniques for their
implementation.

The described architecture will be implemented as a distributed application. The overall organization
will follow the SOA model to offer services. Any new service is published by its provider in a registry
component. The registry can be searched by users requiring specific services as shown in Figure 5.2.

 

Figure 5.2: An example of registration and search of a service in Registry.

The registry provides a directory service and the application will be written as a choreography of
services. In order to ensure a good level of security when the different services communicate with each
other, only communication through SSL will be allowed. The authentication mode accepted will be
bilateral.

5.2 Feature of Intrusion and Fault Tolerance

The proposed architecture will be able to function even when the system is under attack or some hardware
faults occur. Usage of RSA threshold signature scheme instead of RSA classic guarantees that if some
secret shares, less than the threshold, are compromised or some shareholders face some hardware faults
or DoS attack, rest of the shareholders can do the job well and generate and send the signature shares
to the Combiner which will generate full signatures. If Combiner is compromised in some way or bears
some hardware faults, the Backup Combiner will start assembling the signature shares into full signatures
so that the critical security events are not lost. If the storage medium is corrupted because of hardware
faults, the Backup Storage will be available to store the signed security events. It is very important to
mention that in parallel to Storage, also the Backup Storage stores all the signed events coming from
Combiner or Backup Combiner so that if first level storage medium fails due to some reason, forensic
records stored in Backup storage will be available for forensic purposes.

5.3 RES Availability

The security events generated by a critical infrastructure at the time of a security breach should be stored
for forensic purposes. The intruders would try to compromise the RES in order to prevent the secure
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storage of security events. They can prevent some of the shareholders from signing the events or an DoS
attack can be performed upon them and Combiner. The presence of Backup Combiner and a certain
threshold of the shareholders to sign the events ensure the availability of the RES to sign and store
the events. If the attacker is successful in compromising some of the shareholders and Combiner, the
remaining shareholders and Backup Combiner continue to perform their job of signing security events.
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6 Conclusions

In this report, we described the preliminary specification of services and protocols for the MASSIF
resilient SIEM system. Our solution intends to reply to the challenge of how to achieve high levels of
security and dependability in a system that is potentially distributed across several facilities and that has
some strict requirements in terms of timeliness and performance. The document addresses the following
main areas:

Authenticated Component Event Reporting discusses mechanisms that can be employed to give ev-
idence that produced event data has not been tampered with, and therefore, that can effectively
be used to make decisions with regard to security problems that are observed in the monitored
systems.

Resilient Event Bus (REB) presents a solution for data dissemination from the edge-MIS towards the
core-MIS. This solution achieves high levels of resilience by resorting to a number of mechanisms,
such multipath data transmission, multihoming, and coding algorithms.

Node defense mechanisms explains a set of techniques that can be applied in an incremental way to
make nodes increasingly more resilient to different forms of faults, of either accidental nature or
malicious attacks. The design of a highly resilient core-MIS that takes advantage of the proposed
techniques is also described.

Resilient Event Storage (RES) presents a solution for the secure archival of event data. RES gives
support for the forensic analysis of an incident based on the stored data, and enforces security
policies that ensure that events are only made available to authorized entities according to the
regulations.

In the next deliverable of WP5.1, D5.1.4, the specification of the resilient architecture will be further
refined, and the complete description of services and protocols will be provided.
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