
MAnagement of Security information and events
in Service InFrastructures

MASSIF
FP7-257475

D5.1.1 - Preliminary Resilient Framework
Architecture

Activity A5 Workpackage WP5.1

Due Date M12 Submission Date 2011-09-21

Main Author(s) Nuno Neves (editor) (FFCUL)

Antonio Costa (FFCUL)

Alysson Bessani (FFCUL)

Paulo Verissimo (FFCUL)

Contributor(s) Bruno Vavala (FFCUL)

Version v1.0 Status Final

Dissemination
Level

PU Nature R

Keywords Accidental failures and attacks; Resilient SIEM architecture; Secure Communi-
cation; Node protection mechanisms; Intrusion tolerance

Reviewers Luigi Coppolino (Epsilon)

Claudio Soriente (UPM)

Part of the Seventh
Framework Programme

Funded by the EC - DG INFSO

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Version history

Rev Date Author Comments

V0.1 2011-5-5 Nuno Neves First version of the table of con-
tents

V0.5 2011-7-11 Nuno Neves Released initial version of the doc-
ument

V0.6 2011-7-15 Nuno Neves Released document for review

V1.0 2011-9-21 Nuno Neves Final document, including com-
ments from internal review

©2011 by MASSIF Consortium 2 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Glossary of Acronyms

AH Authentication Header

BFT Byzantine Fault Tolerance

DoW Description of Work

EC European Commission

ESP Encapsulation Security Payload

EU European Union

FP7 Seventh Framework Programme

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IP Internet Protocol

IPsec Internet Protocol Security

IT Intrusion Tolerant

MAC Message Authentication Code

MASSIF MAnagement of Security information and events in Service InFrastructures

MIA MASSIF Information Agent

MIS MASSIF Information Switch

PU Public Usage

R&D Research & Development

REB Resilient Event Bus

SIEM Security Information and Event Management

SMR State Machine Replication

SSL Secure Socket Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

TPM Trusted Platform Module

UDP User Datagram Protocol

VM Virtual Machine

VMM Virtual Machine Manager

©2011 by MASSIF Consortium 3 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Executive Summary

The document presents a preliminary architecture for a Security Information and Event Management
(SIEM) system, focusing on aspects related to the resilient operation of components and communica-
tions. The document includes a description of the models, building blocks and services. It analyzes the
tradeoffs of fault and synchrony models that are used to guide the overall architecture, since these aspects
characterize the nature of the problems (accidental or malicious) that must be addressed by the resilience
enhancing solutions, and also impact on the kind of approaches that can be followed. The architecture
covers the fundamental components that compose the system, such as the Edge and Core MASSIF In-
formation Switches (MIS), and the way they are supposed to interact. Topological aspects that influence
the placement of these components in the network are also discussed, as the services that must be offered
in order to improve security. The document also provides a short description of the middleware services
that could be employed to build the components, and explains several techniques that can be used to im-
prove the resilience. These techniques include reliable and secure communication with strong semantics,
replication (e.g., state machine replication and quorums), and approaches for proactive-reactive recovery
with diversity management.

©2011 by MASSIF Consortium 4 / 60

Contents

1 Introduction 8
1.1 Rational for the Architecture . 8
1.2 Organization of the document . 10

2 System Model 11
2.1 Fault model . 11

2.1.1 Edge layer . 12
2.1.2 Edge to core communications . 13
2.1.3 Core layer . 13

2.2 Synchrony model . 14
2.2.1 Asynchronous model . 14
2.2.2 Synchronous model . 15
2.2.3 Partial synchrony models . 15
2.2.4 Hybrid models . 16

3 Architecture Description 18
3.1 Key architectural options . 18
3.2 Structural model . 19
3.3 Main system components . 21

3.3.1 MASSIF Information Switches (MIS) . 22
3.3.2 MASSIF Information Agents (MIA) . 22
3.3.3 Resilient Event Bus (REB) . 22
3.3.4 SIEM Engine . 24

3.4 Overview services . 24
3.4.1 Overview of generic services . 24
3.4.2 Overview of edge services . 24
3.4.3 Overview of core services . 25

4 Resilient Middleware Support 26
4.1 Communication . 26
4.2 Storage . 28

5 Node Resilience Solutions 29
5.1 Local node architecture . 29
5.2 Incremental resilience strategies . 31
5.3 Multipoint Network . 31

©2011 by MASSIF Consortium 5 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

5.4 Communication Support . 32
5.5 Activity Support . 35

5.5.1 Replication management . 35
5.5.2 Confidentiality of replicated data . 37

5.6 Runtime Support . 38
5.6.1 Proactive recovery . 38
5.6.2 Reactive recovery . 39
5.6.3 Diversity management . 40

6 Conclusions 43

A Security Evaluation of OSSIM 49

©2011 by MASSIF Consortium 6 / 60

List of Figures

3.1 MASSIF overall architecture structure - payload vs. SIEM. 20
3.2 MASSIF Architecture Block Diagram . 21
3.3 MASSIF Resilient Event Bus. 23

4.1 Attack vectors to the MASSIF architecture. 27

5.1 Local architecture of a MASSIF node . 30
5.2 Byzantine fault tolerant total order broadcast (normal case). 34

©2011 by MASSIF Consortium 7 / 60

1 Introduction

This document gives a preliminary view of the MASSIF resilient framework architecture. The archi-
tecture is intended to provide seamless integration of resilience into distributed SIEM systems, with the
objective of ensuring several levels of security and dependability in an open, modular and versatile way.
Some of the features that characterize the infrastructures on which these SIEM systems may be used are
the following:

• The infrastructures can be highly distributed and large-scale, both in a geographical sense and with
respect to the number of entities involved;

• The infrastructures are heterogeneous, composed by end systems from possibly many vendors,
with very diverse software and operating systems;

• The networks interconnecting the end systems can be of different kinds, from more confined and
controlled ones to essentially open, generic and non-structured networks like the Internet.

These features are expected to become even more prevalent with the increasing inconspicuousness
of computing systems and networks, and as security information starts to be collected not only from
common networking devices (e.g., firewalls, routers, application servers) but also from various types of
sensors that for instance observe physical processes (e.g., a dam). This trend contributes to make the
monitored environments increasingly exposed to threats, and more prone to different sorts of failures.
Since the SIEM subsystems that perform event collection, delivery and processing operate in essentially
the same environments as the monitored systems, they can also become targets of attacks and the highly
distributed nature of event sources allows for more common accidental problems. Therefore, it is im-
portant to improve the trustworthiness of SIEM systems by developing appropriate solutions to achieve
resilience.

1.1 Rational for the Architecture

This section discusses the motivation and requirements that make up the rationale for the model and
architecture addressing the resilience aspects of the SIEM systems. The diagnosis of the shortcomings
of current SIEM systems, which led in part to the proposal of the MASSIF project, can be described
succinctly by the following:

• inability of encompassing ICT infrastructures with global deployment, since they normally con-
sider events from single organizations;

©2011 by MASSIF Consortium 8 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

• incapability of providing a high degree of trustworthiness or resilience in event collection, dissem-
ination and processing, thus becoming susceptible to attacks on the SIEM systems themselves;

• centralized rule processing, making scalability difficult by creating bottlenecks and single points
of failure.

We establish the rationale for the MASSIF resilient architecture through a list of propositions that
state a set of required macroscopic properties of the system. In consequence, the reader and/or potential
developer or user can get a clear view of what is behind the architectural options proposed for MASSIF.
Furthermore, since the architecture will be developed having in mind the requirements imposed by the
above-mentioned propositions, one can gain confidence that the architecture and respective algorithms
and middleware are bound to satisfy the imposed requirements.

• PROPOSITION 1: Complement classical security techniques with resilience mechanisms
Classical security techniques are largely based on prevention, human intervention and ultimately
disconnection. There is thus a need for achieving tolerance, automation and availability, both under
attack and in the presence of major accidents [65].

• PROPOSITION 2: Promote automatic control of macroscopic information flows
There is an growing need for SIEM systems to encompass multiple ICT infrastructures, achiev-
ing a global span. In such complex, large-scale, multi-tenant and distributed infrastructures, any
security solution, to be effective, has to involve automatic mechanisms to secure the macroscopic
command and information flows between the major modules, such as: between layers of different
trustworthiness, from unprotected edge layers up to the more protected core realm; amongst peer
layers implementing resilience-improving mechanisms.

• PROPOSITION 3: Reconcile resilience with legacy preservation
One should modify and/or interfere with the observed system (payload) the least possible. As such,
the SIEM system should preferably be deployed as a sort of overlay infrastructure, a system func-
tioning in parallel with the payload system, with hooks to the latter at appropriate points. Likewise,
resilience solutions should, in turn and as much as possible, be transparent to the functionality of
the SIEM system and, in consequence, to the payload system. On the other hand, those solutions
should be open and configurable, facilitating the porting to a diversity of SIEM systems.

• PROPOSITION 4: Avoid single points-of-failure
This objective gains paramount importance with the increasing dependence on the availability of
SIEM systems to secure the operation of on-line, often 24x7, large-scale infrastructures. As SIEM
systems become more sophisticated and effective, there is an obvious trend for them to become
targets of attack (neutralizing the sentinel) before direct attacks are staged on the payload systems.
Avoiding this problem is one major reason for the objective, in MASSIF, of making the observing
infrastructure itself resilient to direct attacks. Redundancy and diversity, both purposely introduced
and derived from the sheer infrastructure richness and complexity, will be used to devise fault
and intrusion tolerance mechanisms, keeping the system working despite the failure of individual
components.

• PROPOSITION 5: Secure timeliness in the presence of faults and attacks
Reconciling security with timeliness is a hard problem. Synchronous (or real-time) systems offer
an additional attack plane to adversaries, where they can attempt to compromise the ’values’ in

©2011 by MASSIF Consortium 9 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

the system, but also the ’time’ properties. This is why security solutions in distributed systems
tend to be asynchronous. In systems providing a real-time view, and requiring real-time capability
of reaction, achieving security at the cost of timeliness would be counterproductive. As such,
one fundamental algorithmic and architectural challenge will consist in simultaneously preserving
security and timeliness properties of the information flows coming from the collection points (the
edge) to the processing engine (in the core) and vice-versa.

1.2 Organization of the document

The document is organized as follows. In Chapter 2, we will discuss two fundamental aspects of the
system model, namely the fault and synchrony models. As mentioned above in the propositions, both
these features are important to ensure that on one side the right level of security and dependability is
enforced in the infrastructure, and on the other side, that some level of timeliness can be provided.
Chapter 3 presents the architecture, addressing areas such as the main components and their topological
organization in the network. After the functional description of the model and architecture, we enter the
discussion of the resilience enabling aspects. In Chapters 4 and 5 we describe the functionality of the
middleware support and explain the solutions that we propose to achieve resilience of MASSIF nodes.
Appendix A presents the result of an experimental evaluation that was performed with the current version
of the OSSIM SIEM tool, when installed in the default configuration. OSSIM was selected because of
its large deployment base, making it one of the leading open source SIEM and a good representative of
this sort of tools. The objective of the evaluation was to identify concrete potential security problems
that can exist in streamline SIEM tools, which might be used to enrich and finesse the fault and attack
model assumptions made within the context of the MASSIF project.

©2011 by MASSIF Consortium 10 / 60

2 System Model

SIEM subsystems operate in heterogeneous and large-scale environments, with varying levels of expo-
sure to attacks, and for which it is necessary to develop the right computational and resilience models
that represent these characteristics. This is in contrast with settings in which the operational environment
is more homogeneous, allowing a better (and simpler) understanding. The resilient SIEM architecture
will necessarily encompass various nodes and devices, possibly connected through public networks,
some of them operating at the edge of the system and performing data collection. We must consider
that these edge nodes are typically less protected and that the communication environment might be
untrusted. Other nodes, considered core nodes of the SIEM where data is processed, may be more pro-
tected. Nevertheless, they deserve a special care to ensure continuous operation (even if in a degraded
mode). Therefore, it is necessary to be aware that risk factors may vary and may not be easy to perceive
accurately, requiring that uncertainty is reconciled with security and timeliness requirements. For exam-
ple, the different grades of real-time needs, from edge to core, should be considered in the design of the
mechanisms for ensuring continuity and integrity of information flows. Additionally, other mechanisms
should be in place for detecting timing failures when timeliness enforcement is impossible.

Given the simultaneous need for real-time, security and fault tolerance, this makes the problem of
resilient SIEM operation hard vis-a-vis existing paradigms. As explained in the previous chapter, preven-
tion techniques are certainly an important approach to deal with many threats. However, most defenses
are dedicated to generic attacks and will likely be unable to resist to new, previously unknown, targeted
attacks. Therefore, we believe that there is the need for achieving tolerance in addition to prevention. The
design of solutions based on this paradigm can however only be accomplished with a good understanding
of the fault and synchrony models that are more appropriate to each part of the architecture.

2.1 Fault model

The definition of the fault model is an important aspect upon which the system architecture is conceived,
and component interactions are defined. The fault model conditions the correctness analysis, both in
the value and time domains, and dictates crucial aspects of system configuration, such as the level of
redundancy, the characteristics of the algorithms, and the placement and choice of components. Failure
assumptions of a fault model can typically be organized in two classes: controlled and arbitrary failure
assumptions.

Controlled failure assumptions specify qualitative and quantitative bounds on component failures.
For example, the failure assumptions may specify that components only have omission failures, and that
no more than f components fail during an interval of reference. Alternatively, they can admit value
failures, but not allow components to spontaneously generate or forge messages, nor impersonate, col-
lude with, or send conflicting information to other components. This approach is extremely realistic,

©2011 by MASSIF Consortium 11 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

since it represents how common systems work under the presence of accidental faults, where they typi-
cally fail in a benign manner (e.g., by crashing), but occasionally could produce some erroneous value.
This idea can be extrapolated to malicious faults (often called Byzantine faults [40]) caused by some
adversary, by assuming that they are qualitatively and quantitatively limited. However, it is traditionally
difficult to model the behavior of a hacker or a malicious person that is willing to disrupt the system, so
there is a problem of potential incorrectness of assumptions (lack of assumption coverage) that does not
recommend this approach unless it can be enforced with very high probability.

Arbitrary failure assumptions specify no qualitative or quantitative bounds on component failures.
Obviously, this should be understood in the context of a universe of ”possible” failures of the concerned
operation mode of the component. For example, the possible failure modes of interaction, between com-
ponents of a distributed system are limited to combinations of timeliness, form, meaning, and target of
those interactions (let us call them messages). In this context, an arbitrary failure means the capability of
generating a message at any time, with whatever syntax and semantics (form and meaning), and sending
it to anywhere in the system. Practical systems based on arbitrary failure assumptions very often spec-
ify quantitative bounds on component failures, or at least equate trade-offs between resilience of their
solutions and the number of failures eventually produced. For instance, by employing cryptographic
algorithms to protect the messages, it is possible to prevent attacks on the network that attempt to mod-
ify or generate new messages (because these messages will be recognized as faulty at the receiver, and
therefore, will be discarded). Additionally, since it takes some effort and time to compromise a compo-
nent, it is acceptable to assume that over a certain interval at most f components will be intruded by the
adversary,

Hybrid failure assumptions combine both kinds of failure assumptions. Generally, they can consist
of allocating different assumptions to different subsets or components of the system, and have been used
in a number of systems and protocols [18, 4, 58]. Hybrid models allow stronger assumptions to be
made about parts of the system that can justifiably be assumed to exhibit fail-controlled behavior, whilst
other parts of the system are still allowed an arbitrary behavior. For example, commodity computers
are starting to be deployed with a Trusted Platform Module (TPM), which can perform a limited set
of operations in a secure way, even if the rest of the machine is compromised and controlled by an
adversary. Alternatively, consider a computer with virtual machines, where the hacker can intrude the
guest operating systems using normal exploit techniques, but the hypervisor can be kept correct because
the attack surface is much smaller (and therefore the entry points can be carefully programmed and
monitored). This kind of organization is advantageous in modular and distributed system architectures,
but it can only be employed if the the model is well-founded, that is, the behavior of every single subset
of the system can be modeled and/or enforced with high coverage (which takes us back, at least for parts
of the system, to the problem controlled failure assumptions).

Given the highly distributed nature of SIEM systems, the fault model must consider the networking
environments and the nodes, and must take into account the differentiated level of threats in distinct
parts of the architecture. Therefore, in what follows we analyze the potential faults affecting the flow of
information from sensors to the core SIEM systems.

2.1.1 Edge layer

At the edge layer there will be sensing node devices that produce events (e.g., SYSLOG events), and then
transmit them to event collectors, also at the edge layer (see a more complete discussion about the net-
work topology in Section 3.2). Devices are exposed to several kinds of attacks, and in the extreme case,

©2011 by MASSIF Consortium 12 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

they can be intruded by a hacker. The attacks can cause various forms of disruption, such as the deletion
of specific events or complete removal of the logs, modification of event data (e.g., change some value)
or creation of spurious events. However, although these problems can be severe, it is typically impossi-
ble for an adversary to have enough resources to compromise all devices at the same time. Therefore,
the system will not fail as a whole, but only gradually – from a global perspective there will be partial
failures leading to a increasingly degraded service, but mechanisms may be sought to reconfigure and
recover the system from this problem. At least, if the right monitoring capabilities are in place, it should
be possible to detect such kind of faults through correlation at the core layer.

The network that connects sensors and event collectors might also fail. This can occur either ac-
cidentally (omissions and/or crash failures), or due to attacks that tamper with the standard protocols
conveying the information. In particular, the event flows can be interrupted or delayed (e.g., by control-
ling a router), and individual events can be for instance re-ordered, replayed, or forged. Once again, it is
reasonable to assume that the adversary has limited power, and therefore, that she is only able to disrupt
the networking environment in a partial way. Mechanisms can be deployed to detect such faults, which
can be based on relevant sets of collected information allowing correlation and fault diagnosis (e.g., time
stamps and their validity) or on structural protocol invariants that may be checked for correctness (e.g., a
periodic event transmission did not arrive).

Collector nodes, on which SIEM services and protocols are executed, might also be the target of
intrusion and their operation might be disrupted. However, since these nodes are managed by the SIEM
solution, it is possible to deploy specific measures to protect their operation. In particular, depending
on the value of the data being collected, distinct mechanisms can be implemented in order to achieve
different levels of resilience (and typically also cost).

2.1.2 Edge to core communications

The networks through which events are transmitted to the processing nodes are prone to several kinds of
failures. Depending on the configuration of the observed system, the information might be sent through
a local LAN, and therefore, it is easier to enforce a more controlled behavior. For organizations with
offices spread across a region, in most cases the communication has to be provided by some third party
telecom operator, which has its own policies regarding for instance security. In both cases, the commu-
nications can fail accidentally due to the crash of some node or messages can be lost because of network
congestion. Attackers can also tamper with the SIEM protocols for conveying events between the edge
and core nodes, causing for example the delay, re-order, or replay of messages.

2.1.3 Core layer

The core layer, which includes the processing engine that does correlation on the events, is typically
protected with some sort of devices (e.g., a firewall) aimed at increasing the resilience from external
attacks. However, these devices can also become a target of attack – in fact, over the past years, several
vulnerabilities have been described for the most commonly used firewalls [36, 15, 46]. This means that
in order to ensure the safe operation of the core layer, specific mechanisms will need to be developed to
offer higher levels of resilience to attacks and also to control the in and out flows of information. Given
that attackers are assumed to have limited power, avoiding single points-of-failures by using enough
redundancy will be one way to deal with these problems.

©2011 by MASSIF Consortium 13 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Certain services running in the core layer may require specific mechanisms to ensure correct op-
eration even under improbable attack scenarios. For example, the historian is responsible for storing
collected events and information in such a way that it can be presented and used in a court of law. In
this case, it may make sense to consider a scenario where an inside employee could try to disrupt the
operation. Addressing these problem requires the design of specific solutions, based for instance in
redundancy and self-healing capabilities, and strict authentication and access control policies.

2.2 Synchrony model

The synchrony model refers to assumptions related to the notions of time and timeliness. Since the
complexity of the solutions and the correctness of the system depend on these assumptions, they should
reflect as accurately as possible the real characteristics of the execution environments. Traditionally,
distributed systems have been developed by considering one of the two extreme models of synchrony.
The asynchronous model, also called time-free model, does not make any time-related or timeliness as-
sumption. On the other extreme, the synchronous model assumes that all system activities are executed
within known temporal bounds, which includes local activities (process execution) and distributed ones
(message transmission). However, many real systems are not fully asynchronous nor fully synchronous.
Therefore, there exist models of partial synchrony to cover various intermediate cases, for instance as-
suming that there are reliable local clocks or that only some components are temporally predictable.

The environments considered in MASSIF are heterogeneous in several aspects, also with respect to
timeliness. Therefore, it will be wise to consider different synchrony models or different assumptions
depending on the characteristics of the specific environments or networks. Hence we review the main
synchrony models and discuss their appropriateness for MASSIF.

2.2.1 Asynchronous model

In one of the extremes of the synchrony spectrum we can find the asynchronous model. In asynchronous
systems there is absolutely no notion of time, which means that there are no assumptions about the rel-
ative speeds of processes, about the delay time to transmit and deliver messages or about the existence
of time references [31]. Given that it is impossible to specify timed services in this model, some au-
thors prefer to call it the time-free asynchronous system model [20], to make a distinction with timed
asynchronous models.

An extremely attractive aspect of the asynchronous model is its simplicity. Since it makes no as-
sumptions about timeliness, any solution designed for the asynchronous model is easily ported to any
other model making stronger synchrony assumptions. Moreover, the coverage achieved with the imple-
mentation of asynchronous solutions is the best possible, since any behavior with respect to timeliness is
permitted by the model. In other works, since no assumptions are made about the temporal behavior of
the system, any activity can take as long as necessary without compromising correctness.

This model is thus appropriate for the parts of the infrastructure that are exposed to malicious attacks,
which could disturb, delay or deny the execution of operations. In fact, protocols developed under
the asynchronous model are immune to these attacks because they do not depend on any timeliness
assumption and are always correct independently of real delays.

On the other hand, the absence of time notions makes it impossible to satisfy temporal requirements
or enforce some required levels of Quality of Service. The system performs in a best-effort way since per-

©2011 by MASSIF Consortium 14 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

formance cannot be controlled. To some extent, with asynchronous models there is a trade-off between
safety and the ability to deal with Quality of Service (QoS) requirements.

Finally, it is important to note that in the asynchronous model it is impossible to deterministically
solve agreement problems, such as consensus or total order broadcast, in the presence of even a single
process crash [31]. This extremely important result (usually referred to as the FLP impossibility result)
implies that any problem requiring processes to reach agreement cannot be solved without making some
synchrony assumptions or assuming failure-free environments.

2.2.2 Synchronous model

The synchronous model lies on the other side of the synchrony spectrum, in opposition to the asyn-
chronous model. In synchronous systems both communication delays and processing delays are known
and bounded, and the rate of drift of local clocks is also known and bounded.

A direct consequence of these assumptions is that clocks can be synchronized, which can be useful
to perform synchronized actions and to order distributed events. Perhaps even more important is that in
synchronous systems it is possible to address the timeliness requirements of applications by means of
appropriate algorithms and protocols.

The synchronous model would therefore be the elected model to address timeliness, performance
or QoS requirements that exist in MASSIF. However, this model suffers from a major drawback, which
is related to the lack of coverage of the synchrony assumptions. The problem is that in some of the
considered execution environments it is difficult, inadequate or even impossible to determine worst-
case load scenarios and upper bounds for the communication and processing latencies. In consequence,
assumed bounds may not always hold, compromising the correctness of the SIEM system. The problem
is even amplified if one considers the possibility of time-based attacks. These attacks may introduce
artificial delays, leading to the violation of assumed temporal bounds, or may change values (e.g. time
stamps), which can lead to temporal disruptions and ultimately to the violation of safety properties. In
summary, considering the synchronous model when the infrastructure is unpredictable, unreliable or
prone to attacks, is an impediment for achieving trustworthiness.

An adequate approach to the problem of handling timeliness requirements in uncertain environments
requires taking a step back and relaxing the synchrony assumptions. This leads us to consider models of
partially synchrony.

2.2.3 Partial synchrony models

One approach to escape the problems encountered by developing solutions under the synchronous or
asynchronous models is to consider partial synchrony. Partially synchronous models essentially make
additional assumptions that allow achieving important properties or circumventing impossibility results
like the FLP one, without falling into the problems caused by the lack of assumption coverage.

The partially-synchronous model [27, 29] was one of the first to adopt the concept of partial syn-
chrony. In this model it is assumed that there exist fixed upper bounds for the relative speeds among
processes and for the message delivery delays, but that these bounds are not known a priori or they will
only hold after an unknown time instant, called Global Stabilization Time (GST). With any of these as-
sumptions it is possible to design various solutions for the consensus problem, with different resilience
to failures.

©2011 by MASSIF Consortium 15 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Another approach to increase the strength of the asynchronous model, also allowing circumventing
the FLP impossibility result, is to assume the existence of an external failure detection mechanism that
provides information about crash failures. The asynchronous model augmented with unreliable failure
detectors was first introduced by Chandra and Toueg [13]. In this model the system is fully asynchronous,
but each process has access to a local failure detector module that is allowed to make mistakes. Failure
detectors provide a very elegant way to structure consensus-related algorithmic, requiring the system to
be or become synchronous enough, and for long enough periods, in order to solve consensus [14].

The timed asynchronous model [21] can be described as being fundamentally an asynchronous model
with the additional assumption that processes have access to a physical clock with a bounded rate of drift.
The authors of [21] have observed that most computing systems have high-precisions quartz clocks,
which renders the assumption reasonable enough. Practical systems can then be built in infrastructures
that alternate between synchronous and asynchronous behavior, with the system making progress when
there is enough synchrony, being possible to detect timing failures otherwise.

Finally, another example of a partial synchrony model is the quasi-synchronous model that was
proposed by [61]. Here it is assumed that bounds exist for the system properties (process speed, message
transmission delay, clock drift rate), but some of the chosen values have a non-null probability of being
incorrect.

2.2.4 Hybrid models

The previously mentioned models of partial synchrony build on the idea that the infrastructure will
eventually behave in a synchronous way. They implicitly believe that synchrony is not a homogeneous
property in the time domain, that is, that systems become faster and slower during the execution and thus
that synchrony comes and goes. But it is also possible to consider that synchrony is not a homogeneous
property in the space domain. Some parts of the infrastructure may be more predictable and synchronous
while other parts may not. This perspective was introduced in [62], and it later led to the Wormholes
hybrid distributed system model.

Both perspectives are important and relevant for defining protocols in uncertain and attack-prone
environments, such as those considered in MASSIF. However, there is an important difference between
relying on heterogeneous synchrony in the time and in the space domains. In the former case, one just
expects the system to eventually become synchronous, whereas by exploring the space dimension i.e.,
acting on the system structure, one makes the necessary synchronism happen. From a trustworthiness
perspective this difference can be crucial, since the time-domain behavior for at least one part of the
system is well-known and can be relied upon.

A hybrid synchrony model, in which different synchrony assumptions can be stated for different parts
of the system, presents several advantages over homogeneous models, as explained in detail in [60]. In
the context of MASSIF, a hybrid synchrony model can be explored for instance by assuming that some
nodes (e.g., edge nodes) have trusted components able to deliver trustworthy time stamps. In a more
general sense, and given that hybridization has to be enforced by construction, the overall distributed
system model can be described as a hybrid distributed system model, composed by trusted components
that are added to the baseline legacy, unreliable and intrusion-prone components.

One general assumption that may be made in MASSIF is that nodes at the edge and core layers
have access to local clocks providing a global notion of time. This assumption can be enforced either
through the use external synchronization with an absolute reference (e.g., GPS time synchronization)
or through internal synchronization using clock synchronization protocols such as the Network Time

©2011 by MASSIF Consortium 16 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Protocol (NTP). GPS-based clock synchronization is considered more robust to faults and attacks, given
that it relies on radio signals directly received from satellites, which are typically trustworthy. The
disadvantage is that it requires specialized hardware and may not be easily implementable in practice,
since the receiver antennas need to be in direct view of satellites. On the other hand, software-based
internal synchronization relies on the network for the exchange of synchronization messages, possibly
suffering from malicious or just accidental faults. Fortunately, clocks can usually be kept in synch,
provided that a minimum level of synchrony is eventually achieved from time to time, which is very
likely to be true. Furthermore, NTP can be considered an off-the-shelf solution, readily available in main
stream operating systems.

One important implication of assuming the existence of a global notion of time is that time stamps
can be used, in general, to infer about the timeliness of events and about their ordering. This is very
important in the context of MASSIF, for the operation of the SIEM.

Some nodes at the edge layer, namely sensor nodes, may not have access to local clocks (e.g., physi-
cal sensors). This means that events produced by these nodes cannot be time stamped locally, but only at
collector nodes. The accuracy of these time stamps with respect to the real time instant at which events
were produced will then be dependent on the behavior of the network. In any case, since this time stamp
can be made trustworthy by construction, this should make it easier to reason about the validity of the
collected events at higher abstraction levels.

In the case where sensor nodes have access to local clocks, it can happen that the produced time
stamps may not be trustworthy. In practice, the situation will be similar to the one mentioned above,
although here the time stamps produced at the sensor node might be used for correlation purposes and
for inferring about the trustworthiness of collected sensor information.

Regarding the assumed synchrony properties for the networking infrastructure, one should assume
that there is eventual synchrony, that is, that message transmission latency is bounded, although it is
difficult to state the exact bound. Given the real-time requirements, specific bounds may have to be
assumed, which means that the network will alternate between synchronous and asynchronous behavior.
We must note that the underlying infrastructure can be the target of attacks (is not trusted by default) and
therefore this must be reflected on the assumed synchrony. This will also dictate the kind of architectural
solutions and protocols that will be developed in MASSIF.

©2011 by MASSIF Consortium 17 / 60

3 Architecture Description

This chapter presents the architecture. It begins by introducing the key options of the architecture, in
the context, when appropriate, of the propositions enumerated in Chapter 1 and of the requirements laid
down in the Scenario Requirements deliverable (D2.1.1) [16]. Next, the structural model is explained,
proposing a topology relating the payload system (observed system) with the SIEM system (observing
system), discussing the network structure and the placement of the main components. Then, these main
system components are discussed in more detail. Finally, the chapter gives an overview of the services
to be provided by the SIEM architecture.

3.1 Key architectural options

When reflecting about the key aspects of the MASSIF SIEM architecture, one has to take into account
the need for a resilient architecture considering:

• Different interaction realms, such as: multiple and (mainly) unprotected edge facilities; hostile
large-scale communication environment; more protected, centralised or decentralised core facili-
ties.

• Distinct levels of risk accepted for different instantiations of the architecture in various scenarios,
leading to different levels of resilience as a tradeoff for cost and complexity.

• The difficult combination of characteristics such as: security, timeliness, multi-tenancy.

The main desirable characteristics of the SIEM architecture must be laid down so as to fulfil a set of
more specific requirements, both functional and non-functional, which we outline below. Functional re-
quirements are mainly dictated by the findings of [16] cited above, whereas non-functional requirements
are mainly implied by the rationale propositions.

Functional requirements:

• scalable data acquisition of huge amounts of events, from diverse and geographically spread nodes;

• distributed and real-time collection, aggregation and processing of events; alert generation; and
incident notification;

• integrated and distributed correlation engine implementation alternatives;

• clear decoupling between the target and the SIEM system, for minimal impact on the observed
infrastructure.

©2011 by MASSIF Consortium 18 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Non-functional requirements:

• high resilience of whole SIEM system under attack, concurrent component failures, and/or unpre-
dictable network operation conditions;

• event flow protection, from the collection points through their distribution, processing and archival;

• authenticated and unforgeable component status reporting;

• modular functions and protocols, to be re-used by different instantiations of the architecture;

• flexible and incremental solutions for node resilience, providing for seamless deployment of nec-
essary functions and protocols.

We propose to address these requirements by an architecture structure as described below, having the
following main characteristics:

• A topology laid down as a logical overlay over the target system, so as to preserve legacy but allow
seamless integration of the observing and observed systems.

• Modular structure achieved by concentrating all functions in configurable conceptual devices
which act as the nodes of the overlay: MASSIF Information Switches (MIS). The MIS are usually
hardware implemented, however there can be software based implementations, called MASSIF
Information Agents (MIA).

• Information flow in the overlay implemented as a secure and real-time event bus, modeled es-
sentially as a producer-consumer SCADA-like 1 system upstream, with low-bandwidth commands
downstream.

• Resilience procurement based on: securing the information flow; making the dissemination infras-
tructure itself (event bus) resilient; protecting crucial processing units (MIS, MIA) with incremen-
tal resilience strategies relying on hardware and software based alternatives; and differentiating
between edge-side and core-side configurations.

3.2 Structural model

The structure of a MASSIF SIEM system is shown in Figure 3.1. We model both the payload and the
SIEM system interconnection as a WAN-of-LANS [63], a useful construct to represent loosely-coupled
wide-area infrastructures such as some of those envisaged as of the target scenarios for the MASSIF
technology. They are typically made-up of several facilities sometimes widely separated geographically,
whose local intranets are interconnected through public networks like the Internet, possibly under the
protection of secure channels or tunnels. It is easy to decouple the threat scenarios faced by the WAN
part from the LAN parts and, moreover, it is quite simple to consider distinct levels of trustworthiness
for different selected facilities and their LANS. The ’LAN’ concept is used in a generic way to mean
”short-range”, whose implementation may in fact involve switching or routing topologies at layers 3-1.

1Supervisory Control and Data Acquisition are distributed systems used in physical infrastructures, often large-scale, e.g.,
electrical grids, which, as the name implies, acquire data from all the infrastructure, to feed a real-time dynamic image of its
state, and sometimes produce control decisions, which are materialized by commands back down.

©2011 by MASSIF Consortium 19 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

General MASSIF Architecture

Internet
Sensor

Edge
MIS Edge

SIEM
Services

SIEM
Engine

Aux
Services

Core
MIS

Core
SIEM

Services
Sensor

MIA
Edge
SIEM

Resilient
Event Bus

Generic Events

Facility

Facility
Facility

Services
Event Bus

Edge
MIS

Edge

Core
MIS

MIS

Edge
SIEM

Services

Sensor

SIEM
Engine

Facility

Aux
Services

Sensor

Sensor

MIA

Edge
MIS

Edge
SIEM

Services

Core
SIEM

Services

MIA – MASSIF Information
Agent

MIS – MASSIF Information
Switch

Facility

9Massif project presentation

Payload Machinery

SIEM Machinery

Figure 3.1: MASSIF overall architecture structure - payload vs. SIEM.

We can notice that the payload system can retain its essential characteristics when the SIEM in-
frastructure is superimposed on it, since both work essentially in parallel. The hooks or contact points
between both are materialised by the devices mentioned above: the MASSIF Information Switches (MIS)
and the MASSIF Information Agents (MIA). The Resilient Event Bus (REB) is an abstraction created
through a suite of protocols that will be discussed ahead, and which can use essentially the same kind
of substrate of communication as the payload system. More secluded architectures for highly critical
applications can nevertheless be foreseen, with dedicated secure circuits or virtual private networks.

The essential difference between the edge-MIS and the MIA depicted in Figure 3.1, is that the first
is implemented by a ’box’ which resides on the network and can be addressed by any device of the pay-
load, through standard protocols like TCP/IP. This does not involve any modification of the information
producing devices, which send their log, event or alarm files to the nearest edge-MIS. However, certain
devices, such as firewalls or IDS (Intrusion Detection Systems) are so rich and sophisticated in the in-
formation they provide, that it makes sense to incur the cost of porting (some of) the MIS services to
a software module compliant with the architecture of the former. The gains are the capability of pre-
processing and filtering the information, and even tuning the firewall or IDS devices, and the reliability
of MIA to edge-MIS communication, which can use the reliable protocols of MASSIF.

As shown in Figure 3.1, the REB conveys this information collected by the edge-MIS to the core part
of the architecture, where the SIEM core processing engines reside. Once more, the contact point is a
MIS, this time a core-MIS (the difference lying essentially on the services it runs, and on the robustness
of its construction, as we will see ahead), which communicates reliably with the core SIEM engines, at
the same time it protects them from external attacks, acting pretty much as a sophisticated firewall.

©2011 by MASSIF Consortium 20 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

3.3 Main system components

The main building blocks of the architecture are: the edge and core MIS, which are typically implemented
in a separate machine/device; the MIA, which will be software implemented; the REB, implemented as a
set of protocols being run among the edge and core-MIS; and, the SIEM engine (which includes, besides
the event processing engine, other services like the historian, where the security and event information
is stored; and graphical interfaces). Incremental levels of resilience may obtained both at micro (local
node architecture) and macroscopic levels (inter-node algorithms), by the definition of tradeoffs between
resilience and cost, complexity or performance of the solutions.

Figure 3.2 depicts in a block diagram of the architecture. The bulk of MASSIF distributed services
reside between what we call Edge-side Infrastructure Interface and the Core-side Infrastructure Inter-
face, and are implemented by the MIS or MIA.

MASSIF Architecture
General Stack view

Auxiliary
Services

Core Services
(Correlation, Archival,

Reaction, GUI)

Generic Events Dissemination

Core-side Infrastructure Interface

flo
w

Event
Collection/ Aggregation/ Normalisation

Generic Events Dissemination
rm

at
io

n

S it I f ti

Collection/ Aggregation/ Normalisation

Edge-side Infrastructure Interface In
fo

r

Security Information
and

Event Production

Figure 3.2: MASSIF Architecture Block Diagram

The lower layer is materialised by the payload devices, supplying raw security information and event
data. These devices can be of different forms depending on the application scenario, but they can consist
of specialized servers (e.g., a mobile payment application), network management and protection systems
(e.g., a firewall or an IDS), and physical sensors (e.g., water level sensor). This data is offered at the
Edge-side Infrastructure Interface and is collected by the edge-MIS and/or MIA. Individual MIS or MIA
implement services related to data acquisition, namely they do at least event collection. However, they
might also implement other services, namely the normalization of the event formats, aggregation of
several events, and some local processing and correlation.

The set of MIS devices run the secure, reliable and real-time communication protocols needed to
implement the REB. The REB performs generic event dissemination towards the processing engine in

©2011 by MASSIF Consortium 21 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

the core-side of the infrastructure. The bulk of the traffic will be in this direction, from the edges to the
core, but in some cases it might be necessary to relay back commands. For example, when there is a
suspicion that an attack might be in progress, the processing engine might instruct the edge MIS and/or
sensors to start collecting more detailed information about the status of the network and specific nodes.
Additionally, the reaction components at the core may send commands to selected network management
systems to stop the progression of attacks.

The SIEM engine runs core application services like correlation, and archival of event information.
In MASSIF, for example, it will also include reaction mechanisms and tools for the visualization of
security events and policies.

3.3.1 MASSIF Information Switches (MIS)

The MIS can be built with incremental levels of resilience, depending on its criticality. The edge-MIS
is the simpler instantiation, since it is placed at more locations on the data collector side and costs may
be a concern. It receives information with a limited degree of trustworthiness, since it is produced by
untrusted machines and mainly conveyed by standard protocols.

The edge-MIS is located on the sensors side, it is normally single-homed, but in some cases may
be dual homed for protection of specific bulk and/or critical source traffic (i.e., IDS). The core-MIS is
positioned on the core processing elements side, and it is normally dual-homed, to actively protect the
core SIEM servers.

The trustworthy MIS-to-MIS interconnection, through the communication services implemented by
the REB, secures information flows. The flow from edge to core, as the figure shows, is expected to have
much greater bandwidth than the flow in the opposite direction, used to carry commands in reaction to
the analysis performed by the correlation engines.

3.3.2 MASSIF Information Agents (MIA)

The MIA is a software appliance residing with end target hosts, implementing a smart sensor, that is, a
MASSIF compliant sensor where part of the usual MIS functions may be performed. It may in conse-
quence be co-located with important event sources (e.g., a relevant application machine). MIAs require
minimal host modifications to achieve MASSIF functionality. The trustworthy MIA-MIS interconnec-
tion through MASSIF communication services secures the information flow, in a way not possible to
achieve by the standard device-to-MIS communication.

3.3.3 Resilient Event Bus (REB)

The collection of MIS devices run the secure, reliable and real-time communication protocols needed to
implement the REB. The event bus should encompass both events created by the periphery and events
generated from within the SIEM machinery.

Figure 3.3 offers a view of the architecture stack, detailing the block diagram view shown previously
in Figure 3.2. As the figure shows, the L-shaped structure of the REB aims at providing a generic events
abstraction where events from different origins coalesce on the event bus layer. Generic events are events

©2011 by MASSIF Consortium 22 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Overview of the MASSIF architecture
detailed event flow view

Core Services
(Correlation Archival Reaction GUI)(Correlation, Archival, Reaction, GUI)

Core-side Infrastructure Interface

Generic Events Dissemination

Event
Collection/ Aggregation/ Normalisation

Edge-side Infrastructure Interface

Security Information
and

Event Sources

14Massif project presentationFigure 3.3: MASSIF Resilient Event Bus.

following a common syntax and semantics, whatever their origin: (i) events produced or consumed by
the environment; or (ii) events produced or consumed by the SIEM machinery.

The Environment is anything from which sensory information should be collected. It includes the
payload machinery containing the security information and event sources, and the operational networks,
i.e. any networks used to convey information from sensors, dedicated or not.

The Translation layer captures and processes sensory information of diverse origins, transforming
it into generic events. To achieve this purpose it implements services such as collection, aggregation
and normalisation. The translation layer may be implemented in a MIS (general case), in a MIA (smart
sensor case), or split between both.

The Event Bus layer provides a “generic events bus” abstraction, that is, it publishes events following
a common syntax and semantics, whatever their origin, and following pre-defined delivery reliability and
causal and temporal ordering properties. It is bidirectional but asymmetric: upstream, it conveys high-
throughput data, sourced by edge-MIS and sinked by core-MIS; downstream, it conveys low-throughput
commands, sourced by core-MIS and sinked by core and/or edge-MIS, and possibly passed-on to envi-
ronment machinery, e.g. MIA, by the latter.

The Communication layer is concerned with the MASSIF protocols responsible for the resilient
propagation of events via the regular network system (the WAN-of-LANS mesh), creating the “bus”
abstraction in all MIS units. Actual media may involve a combination of the Internet, and/or corporate
LANs and WAN. Native media redundancy may be used, e.g., dual MPLS links.

©2011 by MASSIF Consortium 23 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

3.3.4 SIEM Engine

The SIEM engine performs complex event analysis, normally using the stream data processing model [17].
The SIEM engine’s core application services process the information and events arriving from the edge,
trying to find correlations in the data and detect anomalies (failures, intrusions). Besides correlation,
data is also archived in resilient storage, in order to allow ulterior forensic analysis. Reaction modules
may generate commands to modify the sensing and collecting conditions, or even modify protection or
filtering apparatus like firewalls or IDS, namely those mediated by MIA.

SIEM engines can be integrated or distributed, and its functions can be centralized or decentralised.
In SIEM engine implementations compliant with the MASSIF architecture, these variants can be trans-
parently supported by the modularity provided by the MIS, and core-MIS resident services may manage
issues like query fragmentation or dispatching, parallelism and replication.

3.4 Overview services

Below is given an overview of the main services that are provided by the components of the resilient
architecture. We start we a description of two more generic services, communication and protection, and
briefly explain more specific edge and core services.

3.4.1 Overview of generic services

There are two generic services offered by the collection of MIS: communication and protection.

Communication The communication service is implemented by protocols running amongst the MIS.
This service should be resilient both to accidental and malicious (or Byzantine) faults, given the fault-
/attack model outlined for MASSIF (see Chapter 2). It should take advantage of the overlayed MASSIF
networking infrastructure, for example to achieve routing resilience. It can benefit from the foreseen
asymmetry between edge-MIS and core-MIS in terms of sinked and sourced throughput, for more effi-
cient solutions. The combination of security and real-time requirements however makes the implemen-
tation of this service a challenging objective.

Protection The protection service is implemented by services residing in a dual-homed MIS, which
acts as a bastion providing perimeter defense to specific critical subsystems, such as the core SIEM
engines. As depicted in Figure 3.1, the SIEM engines lie behind a core-MIS, which filters all access,
both from the network and from the facility intranet. In fact, note that the Auxiliary services, which
belong to the payload, can only interact with the SIEM engine via the core-MIS.

3.4.2 Overview of edge services

As depicted in Figure 3.2, the edge services feed on the raw security information and event data provided
by the payload devices, at the Edge-side Infrastructure Interface. This information is collected by the
edge-MIS or MIA, which may implement the following services:

©2011 by MASSIF Consortium 24 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

1. Collection : the events are collected from the periphery machinery by sensors which acquire the
data through the appropriate standard protocols (e.g., SYSLOG).

2. Aggregation : related events are aggregated, to avoid repeated notifications of the same real life
cause event, and prevent event showers from cluttering the processing elements.

3. Anonymisation : for privacy or confidentiality reasons, it may be necessary to anonymize the events
being sourced by specific components.

4. Normalisation : all events and information are translated into a generic MASSIF event format, to
hide heterogeneity from the upper layer services.

5. Correlation : typically a core service to be performed by the SIEM engine. In the MASSIF
architecture, we may want to transfer some intelligence to the periphery, in the interest of balancing
the load of the core engines and/or reduce communication traffic. As such, it may be foreseen
that the edge-MIS perform some form of correlation, specifically about the semantics that can be
learned from components in a same facility intranet, for example, common mode attack or failure
syndromes.

3.4.3 Overview of core services

Likewise, the following services are implemented at the core, by the SIEM engine and the Historian and
GUI servers.

1. SIEM engine : the SIEM engine implements the main function of the core, namely the correlation
of events. Additionally, as a consequence of this processing, alarms can be raised and reactions
can be triggered, some of them to be sent down in the form of commands.

2. Historian : the Historian manages the archival service, using the resilient storage service provided
by the middleware.

3. GUI : the graphics user interface provides the console operation, and it is by no means less critical,
since loss or corruption of view may be as serious as the intrusion of the engine itself.

©2011 by MASSIF Consortium 25 / 60

4 Resilient Middleware Support

This chapter and the following discuss approaches to make the SIEM infrastructure and services resilient
to faults and attacks of possibly large and/or uncertain magnitude. It is interesting to start by analysing the
attack vectors discussed earlier in Chapter 2, put in context with the MASSIF architecture, as depicted in
Figure 4.1. As shown in the figure, in such a distributed and large-scale architecture, there are obviously
several attack vectors:

• integrity of the sensing flow, which typically uses standard protocols (illustrated as arrow 1);

• edge-MIS, targeting its availability and/or the integrity of event collection and/or communications
(arrow 2);

• MIA, with the objective of attacking its availability and/or the integrity of remote event collection
and/or MIA-to-MIS communications (arrow 3);

• Event bus, targeting its confidentiality, integrity and availability (arrow 4);

• core-MIS, aiming at attacking its availability and/or the integrity of the protection service and/or
the communications (arrow 5);

• SIEM engine, targeting its availability and/or the integrity of the core services (arrow 6);

• integrity of the interaction with the auxiliary services (arrow 7).

These attack vectors have to be prevented from compromising the correctness of the SIEM system,
by employing the appropriate mechanisms and protocols that safeguard the operation of the nodes and
the communications. These mechanisms and protocols will be implemented in a middleware software
that will offer primitives for the development of specific SIEM services. In this chapter, we consider two
important aspects of the middleware, namely the support for communications and storage of events.

4.1 Communication

The communication among the MIS plays a fundamental role in the MASSIF resilience architecture. This
feature is responsible for delivering events from the edge services to the core SIEM correlation engine
despite the threats affecting the underlying communication network. To give this kind of guarantee we
will employ application-level routing strategies among the MIS nodes, in such a way that they form an
overlay network able to deliver messages in a secure and timely way.

Overlay networks have been used as mechanisms to implement routing schemes that take into ac-
count specific application requirements [3]. In the MASSIF resilience architecture we want to employ

©2011 by MASSIF Consortium 26 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

General MASSIF Architecture
Attack Vectors

InternetSensor

Edge
MIS Edge

SIEM
Services

1

4 5

6
SIEM

Engine

Sensor
MIA

Core
MIS

Core
SIEM

Services
Aux

Services
Resilient
Event Bus

Edge
SIEM

Generic Events

4

2

5

Facility

Facility Edge
MIS

Facility

Event Bus
Services

7

MIS
Core
MISEdge

SIEM
Services

Sensor

SIEM
Engine

Sensor

Sensor

MIA

Edge
MIS

Facility

Core
SIEM

Services

Aux
Services

Edge
SIEM

Services

Facility

3

18Massif project presentation

Figure 4.1: Attack vectors to the MASSIF architecture.

overlay networks to create redundant network-agnostic channels for robust event transport from the edge
sensors to the core event correlation engine.

There are two main requirements on the inter-node MASSIF communication middleware. First,
messages should be transmitted respecting some delivery deadline. The objective is to make the events be
processed at the correlation engine while they are (temporally) valid, which requires the communication
subsystem to enforce timeliness properties of the communication. Unfortunately, most overlay networks
do not have this objective, and therefore, we will develop specific solutions to enforce these guarantees
in the MASSIF SIEM system. In the past, some approaches had the aim of improving the end-to-end
communication latency, but not of attaining application-defined maximum delays (e.g., [2, 57]). Only
more recently, some of the authors proposed a timeliness-aware application-level routing solution using
overlay/multihoming techniques called Calm-Paranoid (CP) [23]. Although the CP algorithm solves in
part the timeliness requirement of the communication, it was designed considering a static set of nodes
that only fail by crashing, therefore, it can not address the case where some nodes might be compromised
by a malicious adversary (i.e., nodes that are subject to Byzantine failures).

Second, the middleware should tolerate malicious intrusions in some of the nodes, such as in data
forwarding devices (e.g., routers) and eventually in a subset of the MIS. Our initial approach to solve the
problem is enhance the CP algorithm with Byzantine-routing capabilities [52, 50] and network coding
techniques [41]. The idea is to send each message through 1 to 2t + 1 different paths chosen based on
how disjoint they are (i.e., minimizing the number of common nodes among them) and their timeliness
(their expected delivery time must be smaller than the message delivery deadline), being t a bound on the
number of channel faults during the message transmissions. In order to avoid the bandwidth overhead
of sending the same requests more than once, one idea is to use network coding algorithms to generate
message blocks to be sent using different channels. With this technique, each channel will only transmit

©2011 by MASSIF Consortium 27 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

a fraction of the message size and a receiver will be able to recover the message as long as it receives at
least a subset of the blocks and decode them.

Besides the secure and timely message delivery, another important feature of the communication
system is to support trusted timestamping of events. The idea is to add a trusted timestamp to the events
when they arrive at the edge MIS, in order to complement the untrusted timestamp of the event assigned
on the distributed sensors. The timestamps of the MISes are trusted in the sense that MIS clocks will be
synchronized and their error and drift rates bounded due to the use of internal and external robust clock
synchronization algorithms.

4.2 Storage

The storage solutions to be deployed in the MASSIF architecture aims to provide one or more intrusion-
tolerant historian for archival of security events ensuring properties like confidentiality and unforgeabil-
ity.

The system will be deployed together with the processing engine, as described in Figure 3.1, to
archive important security events used for criminal/civil prosecution of attackers after a security breach.
Replication, diversity management and threshold cryptography will be employed to make sure that the
stored information is unforgeable, and to guarantee that the storage system will be tolerant to faults and
intrusions (see a description of these techniques in Chapter 5). Additionally, access control needs to
be used to ensure that certified records of security breaches will be made available only to authorized
parties, based on existing and upcoming regulations.

©2011 by MASSIF Consortium 28 / 60

5 Node Resilience Solutions

This chapter presents an overview of the concepts and protocols used in the implementation of the MAS-
SIF resilient architecture. Our intent is to describe the main techniques that are being explored to improve
the resilience of specific nodes of the architecture, such as the edge and core-MIS. It is worth to notice
that this is a preliminary description, as we expect that the solutions presented here in high level will
evolve to a more mature platform in future deliverables.

In our approach to increase resilience, we will employ prevention techniques whenever possible to
deal with various types of threats, such as eavesdropping and/or tampering of messages. For instance,
traditional cryptographic solutions based on in symmetric encryption and Message Authentication Codes
(MAC) are highly effective at averting this sort of attacks, and nowadays they provide efficiency levels
that can address information flows with huge amounts of events. However, some more severe attacks are
hard to solve with prevention solutions alone (e.g., an intrusion in the core-MIS machine), and therefore,
it advisable to employ mechanisms to achieve tolerance [64, 65]. In short, instead of trying to prevent
every single intrusion or fault, they are allowed, but tolerated: systems remain to some extent faulty
and/or vulnerable, attacks on components can happen and some will be successful, but the system has the
means to trigger automatic mechanisms that prevent faults or intrusions from generating a system failure.
Additionally, while disconnection can be an effective solution to avoid the propagation of attacks, it may
imply significant performance degradation and may have very negative and costly implications to service
provision. It is thus important to seek for solutions that allow availability under attack.

The chapter is organized in the following way. Section 5.1 presents the architecture of a node, in-
cluding a description of the main modules and layers of the middleware software. Sections 5.3 and 5.4
explain the basic communication support required by the nodes and some distributed protocols. Sec-
tion 5.5 describes the replication management options that can be used for supporting core and edge MIS
high availability. The runtime support subsystem responsible for fault recovery and periodic rejuvenation
is presented in Section 5.6.

5.1 Local node architecture

The organization of the nodes follows the structuring principles for intrusion-tolerant systems [64, 65]:

• trusted - versus untrusted - hardware : most of the hardware of a node is considered untrusted,
with small parts of it being considered trusted.

• trusted - versus untrusted - support software : some small parts of the software can be trusted to
execute a few critical functions correctly, while the rest being subjected to malicious faults.

©2011 by MASSIF Consortium 29 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

• run-time environment : offers trusted and untrusted software and operating system services in a
homogeneous way.

• trusted distributed components : software services implemented by collections of components,
interacting with a middleware that tolerates intrusions in a subset of the components.Micro view: MASSIF Node Ref. Arch.

Node Layers:
•Hardware
•Local SW

APD
APD

•Hypervisor/
VMM
•VM OS
•Runtime
supp

N

CS
AS

NSTW
CS
AS

NSTWCS

APD

AS

NSTW
CS
AS

NSTWCS

APD

AS
CS
AS

Applications

Activity Support

VM 1
OSVM 1

OSVM 1
OSVM 1HW

H
YP/V

supp.
•Distributed SW

•Appl
•AS
•CS

NSTWNSTW
NSTWNSTWComm’s Support

Multipoint Network

OS
HW VM

M

APPL – Applications
AS – Application

•NET

Hardware DistributedLocal AS – Application
Services
CS – Communication
Services
NET – Multipoint

Hardware Distributed
Software

Local
Software

Network
Figure 5.1: Local architecture of a MASSIF node

A snapshot of the node is depicted in three dimensions in Figure 5.1, where the above-mentioned
node structuring principles can be perceived. Firstly, there is the hardware dimension, which includes
the node and networking devices. We assume that most of a node’s operations run on untrusted hard-
ware, e.g., the usual machinery of a computer connected through a normal networking infrastructure.
However, some nodes may have pieces of hardware that are trusted, for example, that by construction
prevent intruders from having direct access to the inside of those components. For example, TPM offers
capabilities for the secure generation of cryptographic keys and pseudo-random numbers, and includes
for instance services to support remote attestation and sealed storage. Alternatively, an appliance board
with processor, which may or not have an adapter to a control channel (an alternative trusted network),
could be plugged to the node’s hardware for more generic trusted services.

Secondly, services based on the trusted hardware are accessed through the local software. As depicted
in the figure, the local software can take the form of a hypervisor (also called virtual machine manager
(VMM)) that employs virtualization techniques to run multiple operating systems (called guests) con-
currently on the same host hardware. The hypervisor presents to the guest operating systems a virtual
platform and manages their execution. Typically, hypervisors are shielded from different forms of remote
attacks, and enforce isolation between the guest operating systems and itself, and also among the guests.
Therefore, even if a guest operating system is compromised, the remaining ones can continue to operate
correctly.

Thirdly, there is the distributed software provided in a middleware with several layers, on top of
which distributed applications can run, even in the presence of malicious faults (far right in Figure 5.1).

©2011 by MASSIF Consortium 30 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

In the next section, we will discuss alternative approaches to setup a node with incremental resilience
capabilities, and describe in more detail the distributed software to be used in the project.

5.2 Incremental resilience strategies

Given that, as we have assumed earlier, different Facilities/Networks may have different levels of trust-
worthiness, and that distinct application and systems will require different levels of trust, the architecture
must allow for an incremental range of resilience solutions, in the interest of the best tradeoff with per-
formance, cost, or complexity.

A key issue is the resilience of the MASSIF nodes (MIS) against direct attacks. We give a few
examples illustrating the possible MIS construction methods, to achieve the desired incremental range of
resilience:

1. Ruggedised simplex : single ruggedised machine, where various intrusion prevention techniques
are applied to increase security (e.g., a better identification and authentication scheme; careful
configuration of network services and removal of unnecessary applications);

2. Loosely coupled duplex or N-plex : the service is replicated in two or more machines loosely
coupled in the network;

3. Closely coupled N-plex : the service is replicated on N machines connected with a private broadcast
network;

4. Tightly coupled N-plex : the service is replicated in a virtualized node running N diverse guest
operating systems (to prevent common vulnerabilities);

5. Twin quad : two replicas of virtualized nodes, each one running four virtual guest operating sys-
tems (to guarantee Byzantine fault tolerance and availability in case of a node crash).

5.3 Multipoint Network

The multipoint network is the lowest level of our distributed software, and is used to enable more ad-
vanced communication support for the SIEM under a common interface. In this layer, we assume only
the existence of the TCP/IP and UDP/IP network protocols, potentially with security extensions. In par-
ticular, we consider the Internet Protocol Security (IPSec) [51] and Secure Socket Layer (SSL/TLS) [26]
standard security technologies, as well as custom implementations of secure point-to-point communica-
tion solutions1.

IP Security IPSec is an extension of the IP Protocol that provides some level of security [51]. In its
basic form, IP messages can be modified and its content read by anyone with access to the network, e.g.,
a hacker controlling a router. IPSec prevents this problem by ensuring host-to-host end-to-end integrity,
authenticity and confidentiality. It offers several services, such as access control, connectionless integrity,

1For example, with a public key infrastructure, one can use Secure Diffie-Hellman to establish shared keys between pairs
of processes, and then employ message authentication codes and (optionally) symmetric encryption for secure communica-
tion [45].

©2011 by MASSIF Consortium 31 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

data origin authentication, protection against replays, confidentiality (through symmetric encryption) and
limited traffic flow confidentiality. Since these services are offered at the IP layer, they can be used by
any higher layer protocol, such as TCP, UDP, HTTP.

IPSec is divided in two (sub)protocols, which may be applied alone or in combination with each
other to provide the desired set of security properties at IP-level:

• Authentication Header (AH) : provides connectionless integrity, data origin authentication, and an
anti-replay service.

• Encapsulation Security Payload (ESP) : provides payload confidentiality (using encryption) and
limited traffic flow confidentiality. Optionally, it may also provide connectionless integrity, data
origin authentication, and an anti-replay service.

Both AH and ESP are vehicles for access control, based on the distribution of cryptographic keys.
These protocols support two different modes of operation: with Transport mode, IPSec essentially pro-
tects upper layer protocols (e.g., TCP); with Tunnel mode, the protocols are applied to tunneled IP
packets, i.e., the IP datagrams themselves are sent through a secure tunnel.

IPSec allows the user or the system administrator to control the granularity at which a security ser-
vice is offered, allowing, for example, the creation of a single encrypted tunnel to carry all the traffic
between two security gateways or a separate encrypted tunnel for each TCP connection between a pair
of hosts communicating across these gateways. Since IPSec works at the operating system level, most
implementations do not have an API that can be used by applications to transmit secure data, other than
the socket API used for IP, UDP or TCP. However, a system administrator can define the policy for IPSec
on a host basis, determining the ways by which a host can connect securely to another.

Secure Socket Layer The SSL, and the later standardization called Transport Layer Security (TLS),
is a security extension to TCP. It basically provides authentication of the hosts involved in the commu-
nication, and confidentiality and integrity of the communication. SSL/TLS is a modification of TCP:
the initial handshaking is followed by a negotiation to select cryptographic algorithms and create a ses-
sion key. Authentication is normaly based on public-key cryptography and digital certificates, and can
be mutual (both peers authenticate themselves), one-way or simply not done. Integrity and (optionally)
confidentiality of data are guaranteed using the session key, respectively by adding a MAC and encrypt-
ing the data. The security guarantees provided by SSL/TLS are similar to those provided by TCP over
IPSec, except for the more powerful authentication scheme and the usual availability of a user-level API,
something that is not common with IPSec. Another difference is that while IPSec provides security from
OS-to-OS, SSL/TLS provides a complete security protection from process-to-process.

SSL/TLS is provided by software packets like OpenSSL, and directly in languages like Java. The
basic APIs tend to be quite similar to the TCP sockets API. However, there are usually a set of calls to
define the location of the certificates and other configuration options, namely to decide if confidentiality
is turned on or off, and to choose which cryptographic algorithms should be used.

5.4 Communication Support

Communication support offers a set of primitives for distributed communication that can be used directly
by the processes implementing a service or by the Byzantine fault-tolerance replication mechanisms.
Currently, we are considering two forms communication support: reliable and atomic broadcast.

©2011 by MASSIF Consortium 32 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Reliable Broadcast A reliable broadcast protocol is used to ensure that if a message is sent to a group
of processes, either all correct processes deliver this message or none will do that. Formally, a reliable
broadcast protocol can be defined in terms of the following properties [35, 10, 19]:

• Validity : if a correct process broadcasts a message m, then some correct process eventually delivers
m.

• Agreement : if a correct process delivers a message m, then all correct processes eventually deliver
m.

• Integrity : for any identifier ID, every correct process p delivers at most one message m with
identifier ID, and if sender(M) is correct then M was previously broadcast by sender(M).

We consider that the sender also delivers the messages it broadcasts, and the predicate sender(M)
gives the field of the message header that identifies the sender.

An example protocol for Byzantine fault tolerant (BFT) reliable broadcast was proposed by Bracha [8].
The protocol ensures correct operation if there are n process where at most f of them can be controlled
by a malicious adversary (with n≥ 3 f +1). The main steps of the protocol are: 1) the sender transmits an
initial message 〈INITIAL, ID,m〉 to all processes; 2) when this message is received by a correct process,
it sends 〈ECHO, ID,m〉 to all processes; 3) when a correct process receives dn+ f

2 e of these messages,
it broadcasts a 〈READY, ID,m〉 to all processes; finally, 4) when a correct process receives dn+ f

2 e of
these messages, it reliably delivers m. The messages broadcast in steps 2 and 3 can also be triggered
in a process if it receives f + 1 messages 〈READY, ID,m〉 before executing these steps. An interesting
feature of this protocol is that it does not require any timing assumptions (i.e., asynchronous model), and
therefore, it is immune to attacks in the time domain.

Total order broadcast A total order broadcast protocol is similar to a reliable broadcast protocol, but
it ensures an additional property [19]:

• Total Order : if two correct processes deliver two messages m1 and m2 then both processes deliver
them in the same order.

This additional property makes the implementation of a total order broadcast much harder than im-
plementing a reliable broadcast. More precisely, total order broadcast is equivalent to the well known
consensus problem, and thus cannot be solved deterministically in asynchronous systems with crash
failures (and therefore, cannot also be solved in systems with Byzantine failures) [32].

Castro and Liskov presented an efficient protocol for implementing total order broadcast of client
requests sent to a set of 3 f + 1 replica servers, in the context of state machine replication (discussed in
the next section) [11]. The protocol of these authors can seen as a BFT version of the Paxos solution
proposed by Lamport [39]. The protocol begins with a sender transmitting a signed message m to all
servers. One of the servers, called the leader, is responsible for ordering the arriving messages. When
the leader receives m, it sends a PRE-PREPARE message to all servers assigning a sequence number i
to m. A server accepts a PRE-PREPARE message if the proposal of the leader is good – the signature
of m verifies and no other PRE-PREPARE message was accepted for sequence number i. When a server
accepts a PRE-PREPARE message, it sends a PREPARE message with m and i to all servers. When
a server receives 2 f PREPARE messages from other servers with the same m and i, it marks m as
prepared and sends a COMMIT message with m and i to all servers. When a server receives 2 f COMMIT

©2011 by MASSIF Consortium 33 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

s

s

s

1

2

3

4

c

s

PRE−PREPARE COMMITPREPARE

Byzantine Paxos

TO−Multicast(m)

TO−delivery(m)

Figure 5.2: Byzantine fault tolerant total order broadcast (normal case).

messages from other servers with the same m and i, it commits m, i.e., accepts that message m is the i-th
message to be delivered. Figure 5.2 illustrates the protocol execution.

While the PREPARE phase of the protocol ensures that there cannot be two prepared messages
with the same sequence number i (which is sufficient to order messages when the leader is correct),
the COMMIT phase ensures that a message committed with sequence number i will have this sequence
number even if the leader is faulty.

When the leader is detected to be faulty, a leader election protocol is used to freeze the current round
of the protocol, elect a new leader and start a new round. When a new leader is elected, it collects the
protocol state from 2 f + 1 servers. The protocol state comprises information about accepted, prepared
and committed messages. This information is signed and allows the new leader to verify if some message
was already committed with some sequence number. Then, the new leader continues to order messages.

It is worth to notice that this protocol implicitly implements the reliable broadcast described in pre-
vious section: the leader reliably broadcast the message plus sequence number in a reliable broadcast
(PRE-PREPARE corresponds to INITIAL, PREPARE corresponds to ECHO and COMMIT corresponds
to READY). Moreover, this protocol requires a partially synchronous system model [30] to work: the
aforementioned reliable broadcast by the leader must be completed before a timer (started in each pro-
cess when sender’ message is received) expires on a quorum of f +1 correct processes. For every timer
expiration, the value of the timer is doubled to ensure that eventually it will be larger than the required
communication and processing delay of the protocol.

©2011 by MASSIF Consortium 34 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

5.5 Activity Support

5.5.1 Replication management

One of the key mechanisms for implementing fault tolerant services is replication. In a replicated system
there is an unbounded set of clients C = {c0,c1, ...} interacting with a set of n servers S = {s0, ...,sn−1}
acting as replicas of a service. The clients and servers communicate among themselves using a protocol
that implements a replication scheme. In this section we describe three basic replication schemes that
potentially will be used in MASSIF, to enhance the resilience of the MIS and event archival.

Notice that the replication model usually employed for (crash only) fault tolerance, passive or primary-
backup replication [9], is not adequate for our purposes. In this model there is a primary replica that
executes all operations issued by the clients, and forwards the results of these operations to a set of
backup replicas that can take over the primary role in case of faults. The problem in using this model
with Byzantine failures is that a malicious primary may execute client’ operations in a wrong way to fool
both clients and backup replicas. Since the reply sent by the primary is not verified or compared with the
result of the execution of the operation in other replicas (in fact, the backup replicas do not execute the
request, only get the update result), there is no way to verify the correctness of the primary’ computation.

Given this limitation, in this section we discuss other replication models in which clients effectively
compare request’ results from different replicas to extract meaningful responses.

State Machine Replication A natural way to make a service fault-tolerant is to model it as a deter-
ministic state machine, and replicate the service implementation in a set of servers, while ensuring that
all of them start with the same state and execute the same sequence of operations. This is the core idea
of the State Machine Replication (SMR) model [54], also called active replication.

In this model, the servers, hereafter called replicas, receive an operation request issued by a client,
process it (possibly) modifying its state and send a reply. Formally, a state machine replication is char-
acterized by three properties:

1. Initial state : All correct replicas start in the same state;

2. Determinism : Two correct replicas on identical states that execute the same request go to the same
next state and generate equal results;

3. Coordination : All correct replicas receive and execute the same sequence of requests.

Although property 1 is trivial to implement, property 2 severely constraints the kind of services that
one can replicate using this technique. The problem is that by requiring determinism, the state machine
replication model rules out the possibility of replicas independently generate timestamps, random num-
bers or even run multiple threads, due to the fact of the inherent non-determinism of these actions that can
make correct replicas have divergent states. Some work has been devoted to replicate non-deterministic
state machines (e.g., [12]), but it is still hard to support it in practice.

Property 3 requires the implementation of a total order broadcast. The idea is to make clients issue
their requests through this communication primitive to ensure all replicas receive all requests in the
same (total) order. One of the early protocols for state machine replication with Byzantine failures was
described in the previous section [11]. The core of this protocol is used for ordering requests from clients.
After a message is ordered, replicas execute it and send a reply to the client that issued the request. A

©2011 by MASSIF Consortium 35 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

client waits for 2 f + 1 equal replies from different replicas in order to extract a response. This larger
quorum is needed (instead of the f + 1 equal replies from [54]) to ensure linearizability of operations,
even with read-only requests optimistically being processed without total order.

Forwarder Replication An inherent limitation of the SMR is its programming model: there is a client
that invokes an operation on a replicated service and waits for replies. Unfortunately, several components
of the MASSIF resilience architecture do not follow this client server model. For example, the core-MIS
is fundamentally an extensible message broker that can be used to firewall, translate and aggregate events
coming from several sources, and then forward them to one or more destinations. More generically,
this component receives, process and forwards messages. Load balancers, routers, stream processing
engines, publish/subscribe systems are other examples of critical systems that follow this pattern of
communication. In order to make this type of systems resilient, we are developing a new model called
Forwarder Replication, that will be employed in the project to implement a MIS.

A basic implementation of a replicated forwarder can be done straightforwardly with small modifica-
tions to the SMR model. The idea is to replicate a deterministic forwarder and use a total order broadcast
to make all replicas process the same sequence of requests/messages. The difference from the SMR
model is that the result of the message processing is delivered to the destination of the message, and not
the sender.

The SMR-based implementation of the forwarder can be seen as the starting point for more efficient
and scalable solutions that take into account the specificities of the forwarder being developed. As an
example, one would like to avoid total order broadcasts if the service is stateless (i.e., if the messages
being forwarded do not affect the state of the forwarder). Moreover, research is required to deal with the
forwarder scalability and its integration with existing services. More specifically, in MASSIF we want
to provide infinite scalability for the event correlation engine, in the sense that by adding more machines
we increase the event processing throughput. However, to make an end-to-end scalable solution, the
core-MIS must also be able to increase its forwarding throughput if we add more replicas to it, without
endangering its resilience properties.

The main idea for implementing a scalable forwarder is to dynamically assign clusters of at least
2 f + 1 replicas to each message in such a way that one of the replicas is responsible to forward the
message and the others witness this operation. The key problem to be solved in this solution is how
to efficiently make the witness verify if the forwarder is correctly forwarding its messages. We are
working on this problem in the context of the core MIS, and we intend to provide a solution in future
deliverables. This method has two potential benefits: First, the total order broadcast can be avoided
if the witnesses are able to verify the forwarder execution without receiving all its requests (causing a
significant improvement to performance); Second, adding more 2 f + 1 replicas to the system increases
the throughput of the forwarder by a factor of n+2 f+1

n , and scalability can be achieved as long as more
replicas are added.

Quorum systems Quorum systems is a technique for implementing dependable shared memory objects
in message passing distributed systems [34]. Given a universe of data servers, a quorum system is a set
of server sets, called quorums, that have a non-empty intersection. The intuition is that if, for instance,
a shared variable is stored in all servers, any read or write operation has to be done only in a quorum of
servers, not in all servers. The existence of intersections between the quorums allows the development
of read and write protocols that maintain the integrity of the shared variable even if these operations are
performed in different quorums.

©2011 by MASSIF Consortium 36 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

Byzantine quorum systems are an extension of this technique for environments in which clients and
servers can have Byzantine failures [42]. Formally, a Byzantine quorum system is a set of server quorums
Q ⊆ 2U in which each pair of quorums intersect in sufficiently many servers (consistency) and there is
always a quorum in which all servers are correct (availability). The servers can be used to implement one
or more shared memory objects. Among the many types of quorum systems, two of them are fundamental
for implementing Byzantine replication.

In the first type, the servers form a f -masking quorum system that tolerates at most f faulty servers,
i.e., it masks the failure of at most that number of servers [42]. This type of Byzantine quorum systems
needs that the majority of the servers in the intersection between any two quorums are correct, thus
∀Q1,Q2 ∈Q, |Q1 ∩Q2| ≥ 2 f + 1. Given this requirement, each quorum of the system must have q =
dn+2 f+1

2 e servers and the quorum system can be defined as: Q = {Q ⊆U : |Q| = q}. This implies that
|U |= n≥ 4 f +1 servers.

The second type is called f -dissemination quorum system, in which a value is disseminated among
n servers despite the existence of f faulty servers. This type of system requires data to be self-verifiable,
i.e., any faulty server that corrupts its replica of the shared object will be detected. This type quorum
systems needs at least one correct server is in the intersection between any two quorums, thus ∀Q1,Q2 ∈
Q, |Q1∩Q2| ≥ f +1. Given this requirement, each quorum of the system must have q = dn+ f+1

2 e servers
and the quorum system can be defined as: Q = {Q ⊆ U : |Q| = q}, which implies |U | = n ≥ 3 f + 1
servers.

With these constraints, a f -masking quorum system (resp. f -dissemination quorum system) with
n = 4 f +1 (resp. n = 3 f +1) will have quorums of 3 f +1 servers (resp. 2 f +1 servers).

There are several shared storage implementations using quorum-based replication tolerating Byzan-
tine failures [42, 43, 24], and in all of them each server saves at least the values of data being stored and
a timestamp. Given that, a write protocol for implementing a storage service using an f -dissemination
quorum system works in the following way [43]: first a writer client reads the current timestamp from a
quorum; then, it increments the higher value found by one unit; and, finaly, it writes the signed value with
this new timestamp. The corresponding read protocol consists of: the client reads the value-timestamp
pair from a quorum; next, it chooses the value with the higher timestamp as the read value. Optionally,
the read protocol can have a write-back phase, in which the client sends the value with highest timestamp
to the servers that reported older values to ensure atomicity [38]. This very simple protocol works with
non-malicious writers in a completely asynchronous distributed system model.

5.5.2 Confidentiality of replicated data

In some services, it might be important to ensure the confidentiality of data stored at replicated servers
even if a subset of the replicas is compromised by an adversary. In this case, a useful cryptographic
technique to ensure confidentiality of replicated data is secret sharing [56]. This technique comprises
the use of a special party called dealer that distributes a secret to n players, where each player gets only
a share of the secret. The main properties of the scheme are: 1) at least k ≤ n different shares of the
secret are needed to recover it; and 2) no information about the secret is disclosed with k− 1 or less
shares. This kind of scheme can be integrated in f -fault-tolerant replication protocols making k ≥ f +1
and distributing a share of the data being written to each of the n replicas. This ensures that f or less
individual replicas will not have access to the data being stored, but that clients that have authorization
to access the data will be granted access to the shares of (at least) n− f ≥ f + 1 different replicas, and
will be able to rebuild the original data.

©2011 by MASSIF Consortium 37 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

An important benefit of using secret sharing schemes is to integrate confidentiality guarantees to the
stored data, without using a key distribution mechanism to create shared secret keys between the writers
and readers of stored objects.

A drawback of using secret sharing is that each generated share has at least the same size of the
original data, which increases the total amount of storage by a factor of n. In order to avoid this limitation,
it is possible to compose a secret sharing scheme with an information-optimal erasure code, reducing the
size of each share by a factor of n

f+1 of the original data [53]. This composition was originally described
in [37]: first, the data is encrypted using a random secret key; then, the encrypted data is encoded using
the erasure code; next, the key is divided using the secret share scheme; and finally, each of the n replicas
receive a block of the encrypted data and a share of the key.

In the last few years, we have applied confidentiality solutions on stored data in different scenarios [6,
7]. In MASSIF, we intend to extend these ideas and to apply them to design an intrusion-tolerant storage
for the SIEM engine, while taking into considerations its particularities.

5.6 Runtime Support

The runtime support of the nodes is mainly related with the rejuvenation and recovery from intrusions,
and in parallel ensure that replicas do not share common vulnerabilities by employing diversity tech-
niques.

5.6.1 Proactive recovery

Byzantine fault-tolerant protocols for state machine or quorum replication may be used to deal with
the arbitrary failures of a finite set of f out-of n replica servers [42, 11, 66, 47]. Such protocols have
limited utility in long-lived systems where malicious adversaries are constantly deploying attacks and
causing intrusions. In fact, fault/intrusion tolerant protocols are useful to delay the corruption of the
overall replicated system by a certain interval of time that depends on the actual value of f and on
how different/diverse the individual replicas are [50]. Unfortunately, while a higher f allows more
compromised replicas to be tolerated, it also means that more individual servers are need to be different
from each other (to avoid common vulnerabilities, which could be easily exploited over a short period o
time). For instance, some of the previously mentioned protocols require at least n = 3 f + 1 replicas to
tolerate f faults. This means that when f is increased from 1 to 2, the minimum total number of replicas
is increased from 4 to 7.

We argue that fault- and intrusion-tolerant protocols are useful as long as they are complemented
with recovery mechanisms able to reduce both the value of f and the time window for an adversary
to compromise more than f replicas. The way to implement this idea is to rejuvenate each replica
periodically even if they are not compromised, a technique called proactive recovery. The rationale is
that compromised servers may not exhibit any detectable behavior until the adversary controls more than
f servers, but then it is too late to avoid the corruption of the overall system. Some existing works
implement proactive recovery mechanisms, thus making the system tolerate an unbounded number of
malicious faults during its lifetime [11, 67].

Proactive recovery mechanisms are however a natural candidate for being the first targets of an attack
– a malicious adversary will start by stopping, delaying, or even by corrupting the recovery process,
before deploying the actual attack that compromises the replicated system. Sousa et al. [59] demonstrates

©2011 by MASSIF Consortium 38 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

how proactive recovery approaches may collapse precisely because these mechanisms are not adequately
protected. That work analyzes systems that are designed under the asynchronous model, but end-up
making a few synchrony assumptions, namely related to recovery triggering and execution time. Such
assumptions may have acceptable coverage in the presence of accidental (non-intentional) faults, but
represent a vulnerability in an environment where malicious attacks can occur.

We argue that recovery mechanisms must be architected in a way that their timeliness and effective-
ness cannot be affected, namely by a malicious adversary. When a replica is recovering, there exists
normally a non-negligible interval of time during which messages (from clients or other replicas) are
lost, and thus a recovering replica behaves as being crashed during that time. The unavailability of indi-
vidual replicas may provoke the unavailability of the overall replicated system. Consider for instance a
BFT replicated system with 4 replicas that, therefore, is able to tolerate one faulty replica. If this system
is enhanced with recovery mechanisms, then its availability will be affected if 1) more than one replica
recovers at the same time, or 2) one replica is recovering while another one is compromised. In both
cases, the sum of arbitrary faulty replicas and purposely crashed (recovering) replicas is greater than f ,
and thus the replicated system will become unavailable during those periods.

This means that recovery mechanisms cannot be added in a straightforward manner to existing BFT
replicated systems. In order to avoid unavailability, recoveries have to be coordinated in an agreed
schedule, and the system needs a higher total number of replicas to tolerate both Byzantine (arbitrary)
faults and recovery-induced (crash) faults.

5.6.2 Reactive recovery

An inherent limitation of proactive recovery is that a malicious replica can execute any action to disturb
the system’s normal operation (e.g., flood the network with arbitrary packets) until its recovery time, and
there is little or nothing that a correct replica (that detects this abnormal behavior) can do to stop/recover
the faulty one. Our observation is that a more complete solution should allow correct replicas to force the
recovery of detected or suspected faulty replicas. This solution is called proactive-reactive recovery [58],
and it can improve the overall performance of a system under attack by reducing significantly the amount
of time a malicious replica has to disturb the normal operation.

A proactive-reactive recovery mechanism is implemented in a hybrid system model, where on a
synchronous and trusted part is implemented a service that manages both the periodic rejuvenations
and the forced ones. This service needs that the payload replicas indicate when some other replica is
executing incorrectly. This information is provided through two interface functions: PR suspect(j) and
PR detect(j).

A replica i calls PR suspect(j) to notify the service that replica j is suspected of being faulty. This
means that replica i suspects replica j but it does not know for sure if it is really failed. Otherwise, if
replica i knows without doubt that replica j has problems, then PR detect(j) is called instead. Notice
that the service is generic enough to deal with any kind of replica failures, e.g., crash and Byzantine. For
instance, replicas may: use an unreliable crash failure detector [13, 14] (or a muteness detector [28]) and
call PR suspect(j) when a replica j is suspected of being crashed; or detect that a replica j is sending
unexpected messages or messages with incorrect content [5], calling PR detect(j) in this case.

If f +1 different replicas suspect and/or detect that replica j is failed, then this replica is recovered.
This recovery can be done immediately, without endangering availability, in the presence of at least f +1
detections, given that in this case at least one correct replica detected that replica j is really faulty. Other-
wise, if there are only f +1 suspicions, the replica may be correct and the recovery must be coordinated

©2011 by MASSIF Consortium 39 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

with the periodic proactive recoveries in order to guarantee that a minimum number of correct replicas
is always alive to ensure the system availability. The quorum of f + 1 in terms of suspicions or detec-
tions is needed to prevent recoveries triggered by malicious replicas – at least one correct replica must
detect/suspect a replica for some recovery action to be taken.

Notice that the proactive-reactive recovery service is completely orthogonal to the failure/intrusion
detection strategy used by a system. The proposed service only exports operations to be called when
a replica is detected/suspected to be faulty. In this sense, any approach for fault detection [14, 28, 5],
system monitoring [22] and/or intrusion detection [25, 48] can be integrated in the system.

5.6.3 Diversity management

If a recovery procedure restores a replica to a previous known-to-be-good state (e.g., by rebooting the
operating system of a virtual machine from a clean media), this replica is still vulnerable to whatever
flaw that caused its compromise in the first place. Therefore, it is not enough to simply restore replicas to
known states, since this would allow an attacker to exploit the same vulnerabilities as before. To address
this issue, the recovery procedure should itself introduce some degree of diversity to restored replicas, so
that attackers will have to find other vulnerabilities in order to compromise a replica.

Recall that an intrusion-tolerant replicated system maintains a correct behavior even if there is an
undetermined number of malicious users and/or if an attacker controls up to f out-of n replicas. The aim
of the diversity rejuvenation service is to ensure that this last invariant continues to be valid throughout
the lifetime of the system. It basically employs two mechanisms. First, replicas run diverse software
to guarantee that vulnerabilities are not shared. If this is true, then the adversary would need to spend
a considerable time to compromise each replica, since previously found exploits cannot be re-used to
create intrusions in further servers. Second, periodically each replica is rejuvenated with a new diverse
software, removing the effects of some prior intrusion, and therefore making the adversary start over.

The implementation of diverse proactive-reactive recovery works by dividing each replica in two
logical components: the server software is run in a separate virtual machine and the diversity rejuvenation
module (DRM) is executed in the hypervisor. This setup provides an acceptable level of protection for the
DRM because the hypervisor is isolated from the virtual machines. Therefore, if an adversary manages
to exploit a vulnerability in the operating system supporting the server execution, he or she will not be
able to propagate the intrusion to the hypervisor and affect the correctness of the DRM. Additionally,
replica rejuvenation can also be performed in an efficient manner by carrying out the following steps:

• DRM starts a new virtual machine with a diverse OS configuration stored in a local cache. This
virtual machine runs in parallel with the current server replica;

• A new server is initiated in the virtual machine by running the necessary setup operations, which
might include contacting the other server replicas to obtain an updated state of the service;

• The virtual machine of the current server is shutdown and discarded, and the new server takes the
place of the old one;

• DRM runs a selection algorithm to find out which OS configuration should be run in the next
rejuvenation;

• DRM fetches from a configuration repository the chosen OS configuration and stores it in the
cache; This occurs in the background, while the server is processing the user requests.

©2011 by MASSIF Consortium 40 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

An OS configuration basically contains the operating system, plus other auxiliary programs, and a
replica of the service being provided by the intrusion-tolerant system. They are stored in a virtual ma-
chine disk (i.e., a file) that can be run by the virtualization solution. System administrators typically
create these configurations, which should only contain fully patched software without any known vul-
nerabilities, and save them in a secure repository. The access to this repository is protected by employing
a separate LAN or by using cryptographic mechanisms to safeguard the communications.

Intuitively, the selection algorithm should pick from the available alternatives the best OS configura-
tion, in the sense that it should not have common vulnerabilities with the already running replicas. This
would considerably delay the adversary to compromise more than f replicas2. This solution however
suffers from one difficulty – given two fully patched configurations, one does not know if they share
some vulnerability (which might be discovered in the future). Therefore, when designing the selection
algorithm, we should attempt to fulfill the following objectives:

P1 : The new selected OS configuration does not share vulnerabilities with the configurations already
executing in the other replicas.

P2 : Given the group of configurations currently running, the adversary can not predict the configura-
tions that will be selected in the future.

P3 : All diverse OS configurations available in the configuration repository3 for selection are picked by
the algorithm with a reasonable probability.

P4 : The algorithm is run individually by each DRM of the replicas.

As explained, P1 cannot be ensured with absolute certainty. However, a recent study about OS
diversity [33] found strong empirical evidence for: 1) it is possible to find OS pairs that have had no
(or only a few) vulnerabilities in common in the past; and 2) if OS pairs share few vulnerabilities in the
past, then with high probability no (or very few) common vulnerabilities are found in the future. This
study was based on vulnerability data from the NVD database [49] over a period of 15 years, and it
allowed the collection information about vulnerabilities that are present in more than one OS version.
For each OS version pair one can obtain the list of shared vulnerabilities and the CVSS score of each
vulnerability4. There are studies that cross-validate this idea, also based on data from NVD (see [1, 55]
for more details). Therefore, by combining this data it is possible to calculate a rough criteria for deciding
if two OS configurations share vulnerabilities: score(OSA,OSB) = ∑v∈VA,B

CVSSscorev, where v ∈ VA,B

is the set of past common vulnerabilities of OSA and OSB, and CVSSscorev is the score of a vulnerability
v.

P2 is necessary to address the following attack – to increase the available time to find vulnerabilities,
the adversary predicts a system configuration that will be used some time from now (e.g., in a month);
then, he or she starts to attack the corresponding OS versions, so that when this configuration is eventually
installed, more than f replicas can be corrupted in a limited amount of time. Since we only have a limited
number of OS configurations, our aim should be to make the prediction as hard as possible. This means

2Notice that we are working under the assumption that finding and exploiting new vulnerabilities in mature software takes
some time.

3Which is a subset of all available configurations containing the operating systems that match some performance or depend-
ability criteria.

4The Common Vulnerability Scoring System (CVSS) score provides an indication of the impact of a vulnerability in a
system, and it takes into consideration aspects like ease of exploitation and the impact on the integrity/confidentiality/availability
[44].

©2011 by MASSIF Consortium 41 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

that selecting an OS configuration from the available ones should entail some level of randomness, even
if this implies choosing a system configuration that has a somewhat higher score among some of the
executing replicas.

Some OS pairs share much less vulnerabilities than others, and therefore, there is the risk that some
of the available OS configurations are never selected. To address this problem, the algorithm should
enforce P3. The last objective is useful because it simplifies the implementation, since this allows the
DRM to determine which OS configurations are (and will be) used in replicas without having to exchange
information through the network. This requires that the algorithm executes in a deterministic way (after
some potential initial random setup step).

The algorithm for choosing specific replica configurations is under development. We expect to use
it as a key component together with the proactive-reactive recovery service to enhance the dependability
of the MIS.

©2011 by MASSIF Consortium 42 / 60

6 Conclusions

This deliverable presents a preliminary architecture for a resilient SIEM framework, covering the aspects
related to its operation when faced with accidental faults and malicious attacks. The document address
the following main areas:

• System Model : provides a detailed discussion on two fundamental models - the fault and syn-
chrony. These models have a strong impact on the organization of the architecture and on the
design of the protocols.

• Architecture : describes the building blocks and services of the MASSIF resilient architecture. It
includes the main components that will enforce the security, namely the Edge and Core MIS and
MIA, and the communication services.

• Middleware and Node Resilient Solutions : explains mechanisms and techniques that can be im-
plemented in a middleware, and that can be applied to construct increasingly more resilient com-
ponents.

In the next deliverable of WP5.1, D5.1.2, the specification of the resilient architecture will be further
refined with a detailed description of services and protocols that will be used to implement the various
components.

©2011 by MASSIF Consortium 43 / 60

Bibliography

[1] O. Alhazmi and Y. Malayia. Application of vulnerability discovery models to major operating
systems. IEEE Transactions on Reliability, 57(1), March 2008.

[2] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis. An overlay architecture for high quality
VoIP streams. IEEE Transactions on Multimedia, 8(6):1250–1262, December 2006.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. In Pro-
ceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01), pages 131–145,
October 2001.

[4] M. Backes and C. Cachin. Reliable broadcast in a computational hybrid model with Byzantine
faults, crashes, and recoveries. In Proceedings of the International Conference on Dependable
Systems and Networks, pages 37–46, June 2003.

[5] R. Baldoni, J.-M. Hélary, M. Raynal, and L. Tangui. Consensus in Byzantine asynchronous sys-
tems. Journal of Discrete Algorithms, 1(2):185–210, April 2003.

[6] A. Bessani, E. Alchieri, M. Correia, and J. Fraga. DepSpace: a Byzantine fault-tolerant coordina-
tion service. In Proc. of the ACM/EuroSys Conference on Computer Systems, pages 163–176, April
2008.

[7] A. Bessani, B. Quaresma, M. Correia, F. André, and P. Sousa. DepSky: Dependable and secure
storage in a cloud-of-clouds. In Proc. of the 6th ACM/EuroSys Conference on Computer Systems,
pages 31–45, April 2011.

[8] G. Bracha. An asynchronous b(n−1)/3c-resilient consensus protocol. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, pages 154–162, August 1984.

[9] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. Distributed Systems, chapter The
Primary-Backup Approach, pages 199–216. ACM Press, 1993.

[10] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous broadcast
protocols. In Advances in Cryptology: CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science. Springer-Verlag, 2001.

[11] M. Castro and B. Liskov. Practical Byzantine fault-tolerance and proactive recovery. ACM Trans-
actions Computer Systems, 20(4):398–461, November 2002.

[12] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstraction to improve fault tolerance. ACM
Transactions Computer Systems, 21(3):236–269, August 2003.

©2011 by MASSIF Consortium 44 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

[13] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. In Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing, pages 325–340, August
1991.

[14] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, March 1996.

[15] Cisco. Cisco security advisories and notices. http://www.cisco.com/en/US/products/
products_security_advisories_listing.html.

[16] MASSIF Consortium. Scenario requirements. Deliverable D2.1.1, Project MASSIF EC FP7-
257475, April 2011.

[17] STREAM Consortium. State of the art of data streaming. Deliverable D2.1, Project STREAM EC
FP7-216181, May 2008.

[18] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo. Efficient Byzantine-resilient reliable mul-
ticast on a hybrid failure model. In Proceedings of the 21st Symposium on Reliable Distributed
Systems, October 2002.

[19] M. Correia, N. Neves, and P. Verı́ssimo. From consensus to atomic broadcast: Time-free Byzantine-
resistant protocols without signatures. The Computer Journal, 49(1):82–96, January 2006.

[20] F. Cristian. Synchronous and Asynchronous Group Communication. Communications of the ACM,
39(4):88–97, April 1996.

[21] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE Transactions
on Parallel and Distributed Systems, 10:642–657, June 1999.

[22] A. Daidone, F. Di Giandomenico, A. Bondavalli, and S. Chiaradonna. Hidden Markov models as a
support for diagnosis: Formalization of the problem and synthesis of the solution. In Proc. of the
25th IEEE Symp. on Reliable Distributed Systems, pages 245–256, October 2006.

[23] W. Dantas, A. Bessani, and M. Correia. Not quickly, just in time: Improving the timeliness and
reliability of control traffic in utility networks. In Proc. of the Workshop on Hot Topics in System
Dependability, June 2009.

[24] W. Dantas, A. Bessani, J. Fraga, and M. Correia. Evaluating Byzantine quorum systems. In Pro-
ceedings of the IEEE Symposium on Reliable Distributed Systems, October 2007.

[25] D. Denning. An intrusion-detection model. IEEE Transactions on Software Engineering,
13(2):222–232, 1987.

[26] T. Dierks and C. Allen. The TLS Protocol Version 1.0 (RFC 2246). IETF Request For Comments,
January 1999.

[27] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for distributed
consensus. Journal of the ACM, 34:77–97, January 1987.

[28] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness failure detectors: Specification
and implementation. In Proceedings of the 3rd European Dependable Computing Conference,
September 1999.

©2011 by MASSIF Consortium 45 / 60

http://www.cisco.com/en/US/products/products_security_advisories_listing.html
http://www.cisco.com/en/US/products/products_security_advisories_listing.html

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

[29] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288–323, April 1988.

[30] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288–322, 1988.

[31] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, April 1985.

[32] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, April 1985.

[33] M. Garcia, A. Bessani, and N. Neves. OS diversity for intrusion tolerance: Myth or reality? In
Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks, Jun
2011.

[34] D. Gifford. Weighted voting for replicated data. In Proc. of the ACM Symposium on Operating
Systems Principles, pages 150–162, December 1979.

[35] V. Hadzilacos and S. Toueg. A modular approach to the specification and implementation of fault-
tolerant broadcasts. Technical Report TR 94-1425, Department of Computer Science, Cornell
University, New York - USA, May 1994.

[36] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen. Analysis of vulnerabilities in
internet firewalls. Computers and Security, 22(3):214 – 232, 2003.

[37] HugoH. Krawczyk. Secret sharing made short. In Proc. of the International Cryptology Conference,
pages 136–146, August 1993.

[38] L. Lamport. On interprocess communication (part II). Distributed Computing, 1(1):203–213,
January 1986.

[39] L. Lamport. The part-time parliament. ACM Transactions Computer Systems, 16(2):133–169, May
1998.

[40] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on
Programing Languages and Systems, 4(3):382–401, July 1982.

[41] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press,
2003.

[42] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–213,
1998.

[43] D. Malkhi and M. Reiter. Secure and scalable replication in Phalanx. In Proc. of the IEEE Sympo-
sium on Reliable Distributed Systems, pages 51–60, October 1998.

[44] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system. IEEE Security &
Privacy, 4(6), Nov–Dec 2006.

[45] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1997.

©2011 by MASSIF Consortium 46 / 60

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

[46] C. Middela, A. Dommeti, and K. Deekonda. Vulnerability analysis and management of an internet
firewall. Technical report, George Mason University, Fairfax, USA, 2007.

[47] H. Moniz, N. Neves, M. Correia, and P. Verı́ssimo. Randomized intrusion-tolerant asynchronous
services. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and
Networks, Jun 2006.

[48] B. Mukherjee, L. Heberlein, and K. Levitt. Network intrusion detection. IEEE Network, 8(3):26–
41, 1994.

[49] National Vulnerability Database. http://nvd.nist.gov/.

[50] R. Obelheiro and J. Fraga. A lightweight intrusion-tolerant overlay network. In Proceedings of
the 9th IEEE International Symposium on Object and Component-oriented Real-time Distributed
Computing, 2006.

[51] R. Oppliger. Security at the Internet layer. IEEE Computer, 31(9):43–47, September 1998.

[52] R. J. Perlman. Network Layer Protocols with Byzantine Robustness. Phd thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1988.

[53] M. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Jour-
nal of the ACM, 36(2):335–348, February 1989.

[54] F. Schneider. Implementing fault-tolerant service using the state machine aproach: A tutorial. ACM
Computing Surveys, 22(4):299–319, December 1990.

[55] GuidoG. Schryen. Security of open source and closed source software: An empirical comparison
of published vulnerabilities. In Proceedings of the Americas Conference on Information System,
August 2009.

[56] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November 1979.

[57] A. Snoeren, K. Conley, and D. Gifford. Mesh-based content routing using XML. In Proceedings
of the ACM Symposium on Operating Systems Principles, pages 160–173, October 2001.

[58] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verissimo. Highly available intrusion-tolerant
services with proactive-reactive recovery. IEEE Transactions on Parallel and Distributed Systems,
21(4), 2010.

[59] P. Sousa, N. F. Neves, and P. Verissimo. Hidden problems of asynchronous proactive recovery. In
Proceedings of the Workshop on Hot Topics in System Dependability, Jun 2007.

[60] P. Verissimo. Travelling through wormholes: a new look at distributed systems models. SIGACT
News, 37:66–81, March 2006.

[61] P. Verissimo and C. Almeida. Quasi-synchronism: a step away from the traditional fault-tolerant
real-time system models. Bulletin of the TCOS, 7(4):35–39, 1995.

[62] P. Verissimo and A. Casimiro. The Timely Computing Base model and architecture. Transaction
on Computers - Special Issue on Asynchronous Real-Time Systems, 51(8):916–930, August 2002.

©2011 by MASSIF Consortium 47 / 60

http://nvd.nist.gov/

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

MASSIF - FP7-257475

D5.1.1 - Preliminary Resilient Framework Architecture

[63] P. Verissimo, N. Neves, and M. Correia. The middleware architecture of MAFTIA: A blueprint. In
Proceedings of the IEEE Third Survivability Workshop, pages 157–161, October 2000.

[64] P. Verissimo, N. Neves, and M. Correia. Intrusion tolerant architectures: Concepts and design.
In R. de Lemos, C. Gacek, and A. Romanovsky, editors, Architecting Dependable Systems, pages
3–36. Springer-Verlag LNCS 2677, 2003.

[65] P. Verissimo, N. Neves, M. Correia, and P. Sousa. Intrusion-resilient middleware design and vali-
dation. In H. Raghav Rao and S. Upadhyaya, editors, Information Assurance, Security and Privacy
Services (Handbooks in Information Systems : volume 4), pages 615–678. Emerald Group Publish-
ing, 2009.

[66] G. Veronese, M. Correia, A. N. Bessani, and L. Lung. Spin one’s wheels? Byzantine fault tolerance
with a spinning primary. In Proceedings of the IEEE Symposium on Reliable Distributed Systems,
September 2009.

[67] L. Zhou, F. Schneider, and R. Van Rennesse. COCA: A secure distributed online certification
authority. ACM Transactions Computer Systems, 20(4):329–368, November 2002.

©2011 by MASSIF Consortium 48 / 60

A Security Evaluation of OSSIM

SIEM systems offer various capabilities for the collection and analysis of security information in net-
worked infrastructures. Currently, they are being employed by organizations around the world as a way
to facilitate operations related to maintenance, monitoring and analysis of networks, by integrating a
large range of security and network tools, which allow for instance the correlation of thousands of events
and the reporting of attacks and intrusions in near real-time.

This appendix presents the results of an experimental evaluation that was made with a current SIEM
system, when faced with adversaries with different capabilities, ranging from access to the local network
to physical control of the event processing engine. The objective of the evaluation was to identify con-
crete potential security problems that can exist in streamline SIEM tools, which might be used to enrich
the fault and attack model assumptions made within the context of the MASSIF project.

The study was performed by creating a testbed where the OSSIM SIEM system was installed with
the default configuration. Then, the available documentation of OSSIM was analyzed to derive potential
attack vectors that could compromise the security of the system. Finally, specific attacks were imple-
mented and tried in the testbed.

In the following pages, we describe several attack vectors that were successfully executed, and there-
fore that were able to expose a potential vulnerability in OSSIM. Each MASSIF vulnerability report is
named with an individual indentifier with the following format: < Letter1 > . < Letter2 >< letter3 >
. < number1 > . < number2 >; < Letter1 > takes the value S to indicate that it is about a SIEM itself;
< Letter2 >< letter3 > indicate the type, which is Vu for vulnerability; < number1 > is a unique num-
ber of the vulnerability within a type; and < number2 > is a unique number of the same vulnerability
version.

©2011 by MASSIF Consortium 49 / 60

Vulnerability: S.Vu.1.0
Code Name: login-sniffing
Classification: high
Type: impersonation attack

Access Vector: local machine or/and network
Access Complexity: low
Authentication: none

Description: password can be stolen by means of a http packet interception

Target
Products: AlienVault OSSIM v2.3 Components: web service

Configuration: default
Comments: authentication procedures through the provided php-forms are susceptible to tapping

Detailed Description

The OSSIM system, or part of it, can be configured, managed and monitored by an operator through a web
service. The operator is authenticated by means of a web login php-form. Though the typed password is hidden
on the screen, no encryption is performed before sending it to the server via the http protocol. The password
is therefore sent in plaintext, up to a simple base64 encoding. The interception of the http packet carrying it
(e.g. through a network monitoring tool like Wireshark) enables the attacker to recover it, so to impersonate
the operator.

Impact
Type: unauthorized unrestricted access
Confidentiality: almost complete

Integrity: almost complete
Availability: complete

Comments: the attacker has complete control over the service provided through the web interface, which usually
runs on the server host. Therefore, if the stolen credentials have high privileges (e.g., the administrator account
is compromised) she can: shut down some components, have access to the database and modify events, rules,
directives, policies and actions.

Solutions

1) confine the web access to a trusted domain (network, machines)
2) utilize cryptographic protocols (e.g., SSL) to build logical private channels for web authentication

Remarks

The attack is feasible as long as it is possible to tap the network or the local machine where the login is performed.

References

URL: http://www.ossim.net/wiki/doku.php?id=user_manual:introduction

Other: http://*ossim_webserver*/ossim/session/login.php

Vulnerability: S.Vu.2.0
Code Name: db-info-injection
Classification: high
Type: information injection through impersonation

Access Vector: adjacent network
Access Complexity: low
Authentication: none

Description: unauthorized commands can be executed and unauthentic events can be stored in the database by
means of an impersonation attack through TCP packet spoofing

Target
Products: AlienVault OSSIM v2.3 Components: MySQL database

Configuration: default
Comments: arbitrary data can be (legally) injected into the database by leveraging the unencrypted communication

Detailed Description

In the OSSIM system, each server that correlates events is usually provided with a MySQL database to store
the information. Such database is accessed directly by the OSSIM server and by tools like Snort. At each
connection established between the components, the client is authenticated with a unique username and
encrypted password. Once the authentication succeeds, the communication is performed in plaintext. This is
immediately visible by performing a tcpdump of the transmitted packets: the payload associated with each
one contains the command/response data just as it was issued. Therefore, this suggests the following attack:
assume that the adversary has access to the same domain in which these communications frequently take place;
she can eavesdrop on the channel and attempt to impersonate the client by spoofing packets, thus being able to
execute all the commands allowed by the client’s privileges. The impersonation attack is not difficult since the
previous packet eavesdropping provides the adversary with all the required information to forge and inject legal
packets: Ethernet, IP and TCP headers indeed carry the MAC and IP address and port number that represent
the client; also, the sequence and the ACK number are available to proceed correctly with the TCP session.
On the other side, the server cannot distinguish between the actual client and the impostor just by looking at
the contents of the packet. Also, if the packet carries the correct sequence and ACK numbers, it cannot reject
it (because the packet could have been sent by the client itself). Therefore, the packet and its content are
accepted and acknowledged, and the request (whatever it is) is executed.

Impact
Type: unauthorized command execution
Confidentiality: complete

Integrity: complete
Availability: complete

Comments: the attacker can have either persistent or repeated access to the database with the client’s privileges.
Therefore, she can execute all the commands that are legal for the client’s authentication credentials. This
usually translates in the ability to store/modify/delete security events (possibly just the ones that may raise an
alert) in order to hide ongoing more dangerous attacks. In the worst-case, if the client is running under root
privileges, the attacker would be able to create new user accounts, or to drop entire databases.

Solutions

1) confine the database access to a trusted domain to avoid communication eavesdropping
2) secure the communication between the client and server to enforce message integrity, authenticity and
confidentiality

Remarks

References

URL: http://www.alienvault.com/wiki/doku.php?id=documentation:serverd

Vulnerability: S.Vu.3.0
Code Name: my-db-is-there
Classification: high
Type: password disclosure

Access Vector: adjacent network
Access Complexity: medium
Authentication: none

Description: the password to access the database is disclosed

Target
Products: AlienVault OSSIM v2.3 Components: database password storage

Configuration: default
Comments: the communication channel between the non-local database and the other components suffers from
confidentiality issues

Detailed Description

In the default configuration of the mysql server, after the client authenticates, the communication is performed
in the clear. While the database is local (on the same machine), it is difficult to eavesdrop on the channel since
the loopback interface is usually used to improve communication speed, thereby avoiding forcing it through the
network interface. However, if the loopback interface is not used, particularly when the database is not local, the
communication actually takes place on the wire and information can be captured. The vulnerability thus arises
from the content of the database table ossim.conf. Such table indeed contains the database access passwords of
tools like snort and nagios (hopefully, but not surely, different from the root account) stored in plaintext. Since
the retrieval of the table turns out to be somewhat frequent, sensitive information is therefore rapidly disclosed.

Impact
Type: jeopardy of correlation process
Confidentiality: almost complete

Integrity: almost complete
Availability: almost complete

Comments: the threat level depends on the privileges of the compromised account. Since many tools have at least
the privilege to insert new events into the database, then spurious information can be injected with the intent
to cause: event hiding, alarm flooding, resource exhaustion. It must be noted that if all the authentication
credentials of the tools that reside on a specific component/machine get compromised (i.e. all of the information
inserted in the database can no longer be considered trustworthy) then an impersonation attack can take place.
In this case, the original component/machine would be disconnected and replaced with another one thor-
oughly under control of the attacker. Such component would be undistinguishable by/from the other trusted ones.

Solutions

1) enforce the usage of a local database and implement authentication mechanisms and confidential channels
among the components
2) dedicate the database to a specific server; encrypt all of the sensitive information with its key; enforce
database information requests to pass through the server (which in turn retrieves, decrypt, and relay the
responses); implement authenticated and confidential channels between the server and the other components

Remarks

though it is usual that each server has a local database, this may not be the case for a sensor component. Indeed,
it turns out that even the sensor component frequently and remotely requests the table and receives it in plaintext

References

URL: http://www.alienvault.com/wiki/doku.php?id=documentation:serverd

URL: http://www.alienvault.com/wiki/doku.php?id=documentation:agent

URL: http://forge.mysql.com/wiki/MySQL_Internals_ClientServer_Protocol\#Client_

Authentication_Packet

Vulnerability: S.Vu.4.0
Code Name: events-from-some(no)where
Classification: high
Type: data forgery

Access Vector: adjacent network
Access Complexity: low
Authentication: none

Description: the database can be populated with spurious events arbitrarily forged

Target
Products: AlienVault OSSIM v2.3 Components: server collector

Configuration: default
Comments: the collector does not perform any check on the event source

Detailed Description

The server collects normalized events from other components, but no checks are performed. The normalized
event is sent in the clear, using the TCP protocol, with no integrity protection. It is just a text string. Also, no
authentication is carried out, and the event’s information is not checked against the data contained inside the
packet headers. In particular, no information from these headers is stored in the database. Therefore, as long as
the collector is reachable, a TCP connection can be established and the collector can be fed with any arbitrarily
forged normalized event.

Impact
Type: security information mismanagement
Confidentiality: none

Integrity: none
Availability: complete

Comments: first, the database in which the events are stored can be flooded with spurious information, with the
intent of causing resource exhaustion. Second, if no attack is in progress and some machines periodically send
heartbeat events, just to inform that the monitoring system is alive, then these may be expressly disconnected
and their events spoofed. In this way, part of the network would unconsciously go unmonitored. Third, since
correct events (possibly related to an ongoing attack) are still being delivered and may generate specific alarms,
the attacker’s strategy could be to raise deliberately other false alarms, by sending events which fully match
different directives, thus sidetracking the threat detection process.

Solutions

1) isolate the infrastructure from external interference, possibly using component authentication mechanisms

Remarks

Once this problem is solved, ideally all events are generated in cascade starting from the monitored machines.
However, since most of the events are generated from their syslog, which send messages using the UDP protocol
and without encrypting them, the vulnerability could remain somehow open. Authentication and integrity of
these messages, which usually are the ones that transit from the monitored to the monitoring system, is thus
necessary.

References

URL: http://www.alienvault.com/wiki/doku.php?id=documentation:serverd

URL: http://www.alienvault.com/wiki/doku.php?id=documentation:agent

Vulnerability: S.Vu.5.0
Code Name: I-forward-it
Classification: medium
Type: man-in-the-middle

Access Vector: adjacent network
Access Complexity: medium
Authentication: none

Description: a man-in-the-middle attack can be carried out when forwarding security information events

Target
Products: AlienVault OSSIM v2.3 Components: ARP protocol

Configuration: default
Comments: ARP messages are not authenticated and properly monitored

Detailed Description

An ARP poisoning attack can be successfully accomplished to detour the normal path of security event routing.
The attack is performed by repeatedly spoofing ARP replies, as ARP information are frequently refreshed.
The victims are the ones responsible for forwarding security information, namely: the monitored machines that
create syslog events sent through the UDP protocol, and sensors and servers that create normalized events sent
through the TCP protocol. The attacker’s machine(s) present inside the same network can receive and tamper
with that information, and then (if necessary) at forward it to the right destination.

Impact
Type: stealthy attack and unreliable event correlation
Confidentiality: almost complete

Integrity: complete
Availability: complete

Comments: syslog and normalized event communication (respectively using the UDP and the TCP protocol) are by
default performed in clear, with no authentication and any other form of protection. Hence, security information
events are susceptible to additions, deletions and modifications, disrupting the event correlation and so the
threat detection process. An attacker would therefore be able to attack the monitored network (or part of it)
and to hide this threat.

Solutions

1) implement authenticated channels among the components to prevent outsider’s packet injection
2) utilize message integrity protection mechanisms to prevent man-in-the-middle and packet spoofing attacks
3) use counters inside events, to prevent message deletion and to check for security information gaps
4) if confidentiality is a must, then use encryption techniques
5) replicate network monitoring tools to increase the cost of the attack

Remarks

The attack is feasible with whatever UDP/TCP-based communication. Though OSSIM is provided with tools
to monitor ARP messages, these may not be always effective. First, by default they generate events that are
not considered reliable enough to raise alarms. Since the security event flow in the system is considerable, such
events are likely to go unnoticed. Second, if some part of the network is monitored by just one sensor (which
has these tools enabled) and the attack successfully changes the sensor’s ARP table before it is detected by the
ARP monitoring tool, the event itself generated by the tool is compromised. The attack detection and reaction
mechanism is therefore favorable to the attacker.

References

URL: http://www.alienvault.com/wiki/doku.php?id=documentation:agent

Vulnerability: S.Vu.6.0
Code Name: where-is-the-event
Classification: low
Type: timing attack

Access Vector: local
Access Complexity: high
Authentication: single

Description: alarms and events can be concealed from the operator’s sight by changing the system time

Target
Products: AlienVault OSSIM v2.3 Components: Collector System

Configuration: default, NTP disabled
Comments: the date field of the events/alarms is tied to the time of the system in which it was generated

Detailed Description

In OSSIM, the way an operator can look at the most recent events/alarms is to order them by date through the
web interface. The date of each event depends strictly on the time of the system in which it was generated: an
event generated by a sensor carries its system-time; if after the event is correlated (suppose at another machine)
it triggers the creation of a directive event, this last one will carry the system-time of the machine that generated
it. Since there is a considerable number of events flowing through the monitoring infrastructure that are stored
in databases, the modification of the time of the system that generates (perhaps critical) events may prevent
the operator from understanding what are the most recent ones, by dispersing them into the myriad of events
already collected.

Impact
Type: delay in countermeasure actuation
Confidentiality: none

Integrity: none
Availability: none

Comments: since a huge number of events may to flow in the infrastructure, it can be difficult for an operator
to find out the last received events in order to understand what monitored component generated them.
Additionally, one should notice that OSSIM focus fundamentally on security monitoring, while the actuation
procedure –to reestablish the normal trustworthy system execution– is left to be reactively performed by an
operator. Therefore, the recovery procedures may be delayed if the display of the events is not carefully managed.

Solutions

Since the infrastructure is hierarchical, a tamper-proof timestamp (possibly supplied by a TPM) could be associ-
ated to each event by the generating machine or in the forwarding nodes. In this way, the association of the event
with the physical time can be performed with a more trustworthy approach, which can provide several advantages:
First, it can represent better the causal order of the raised events. Second, it enables the event collector to detect
(possibly malicious) gaps in the serial flow of the events. Third, if the event collection is performed through multi-
ple paths, the presence of gaps may trigger mechanisms to examine the network conditions through event arrivals.

Remarks

Since the events are not dropped, the attack is only related to how these are ordered. Despite the fact that the
operator might not be immediately able to locale them, he can still observe that the alarm/event counter keeps
increasing, thus being sure that events are nevertheless collected.

References

URL: http://www.alienvault.com/wiki/doku.php?id=documentation:serverd

Other: http://www.alienvault.com/wiki/doku.php?id=documentation:agent

Vulnerability: S.Vu.7.0
Code Name: alarm-prevention
Classification: medium
Type: timing attack

Access Vector: local
Access Complexity: high
Authentication: single

Description: alarms can be prevented from being raised by changing the system time

Target
Products: AlienVault OSSIM v2.3 Components: correlation mechanism

Configuration: default, NTP disabled
Comments: correlation is tied to the time of the system in which correlation is performed

Detailed Description

In OSSIM, directive correlation is used to give a meaning to a set of events that get aggregated. Directives may
be composed of several rules and many levels. The first level of a directive is particular in that it waits for a
single occurrence of a specific event and does not contain any timeout. However, starting from the second level
is usual to find one. The timeout is used because it is assumed that ”a brute force attack will generate a lot of
events in a short period of time and not in the next two years”. Hence, when it expires, ”the directive process
defined in that rule is discarded”. This means that subsequent events will not be aggregated to that specific
directive, but (if possible) will have to restart a new directive correlation process. Therefore, by modifying the
correlation engine system time, an attacker would able to disrupt the event-rule matching process.

Impact
Type: alarm prevention
Confidentiality: none

Integrity: none
Availability: none

Comments: directives aim at recognizing attacks through successive events correlation. Each time an event
matches a rule, it increases the reliability value, which measures both the truthfulness and the dangerousness of
the attack. The reliability value is a parameter used to compute the risk following a successful event correlation.
If the risk is greater than 1, an alarm is raised. Since it is a good policy not to use high reliability values at low
correlation levels, in order not to have lots of false alarms raised, the risk is not greater than 1 until enough
events are collected. The modification of the system time thus can prevent future events to make the correlation
process progress in the directive. The situation may be even worse if the attacker were aware of the timeouts
used inside the directives and the number of events that his attacks generate. The ultimate result of the attack
is that: the correlation process is disrupted and no alarm is generated from directive events.

Solutions

A solution that does not use timeouts in the rules would require the rethinking of the correlation system.
Therefore, a more straightforward solution is to secure the system time update. It is true that changing the
time already requires high privileges, but this change may also be induced by tampering with the NTP protocol
(when enabled). Consequently, since the OSSIM machines can be replicated for security reasons, a fault-tolerant
time synchronization protocol could be executed locally (among the local replicas) to ensure time consistency.

Remarks

Even though the events are still available in the database, if no alarm is raised then it is unlikely that the
operator will notice the incongruence just by looking at them.

References

URL: http://www.alienvault.com/wiki/doku.php?id=user_manual:intelligence:correlation_

directives:directives\#intelligence_-_correlation_directives_-_directives

Vulnerability: S.Vu.8.0
Code Name: ntp-poisoning
Classification: high
Type: NTP information corruption

Access Vector: adjacent network
Access Complexity: low
Authentication: none

Description: arbitrary system time change can be induced by means of corruption of the external messages
received by the time-synchronization server

Target
Products: AlienVault OSSIM v2.3 Components: Network Time Protocol

Configuration: default
Comments: the system’s NTP server/client can be fed with arbitrarily forged legal data due to lack of authentication

Detailed Description

In the OSSIM system, each component that normalizes and correlates events uses the (local) system time/date
whenever it has to create a new event. Event timestamping can be subjected to unexpected malicious alterations,
by tampering with the NTP protocol. In order to synchronize the system time, a local NTP server (that
periodically gets synchronized with some external reference time source) can run in the background and act
as a synchronizer for the machines in the same domain. Equivalently, it is possible to run the NTP client
from time to time, specifying the a synchronization server. In these cases, the synchronization is usually
performed in more than one communication round, using the UDP protocol and no authentication. Therefore,
the access to the collision domain of the target machine enables the attacker to eavesdrop the synchroniza-
tion requests and to reply properly by spoofing NTP packets, thus succeeding in the alteration of the system time.

Impact
Type: unsecure information event management
Confidentiality: none

Integrity: none
Availability: none

Comments: the attack compromises the reliable management of security information. First, since events are usually
displayed by date, the change of the system time may not make new events be listed on the top, perhaps
preventing a prompt security threat detection and consequent actuation. Second, the attack can prevent alarms
from being raised. Typically, alarms are raised from directive events, which are created following correlation
directives. Such directives are composed by rules and conditions that are progressively matched with incoming
events, so to generate directive events to provide a more and more accurate security threat level. This matching
process however is not asynchronous, as it makes extensive use of timeouts: the correlation engine waits for a
bounded time to match other events. When either the directive is fully matched, or no further related events are
delivered for some time, the directive expires and it is discarded. Since these timeouts are tied with the system
time, the attack can indeed prevent an accurate risk assessment, and thus alarms.

Solutions

1) create a centralized NTP server and isolate the domain to make it trusted.
2) disable local system time management, or at least consider every time change as a critical event that must
be reported. Enable and configure the available NTP authentication options.

Remarks

References

URL: http://alienvault.com/docs/Installation_Guide.pdf

URL: http://www.alienvault.com/wiki/doku.php?id=user_manual:correlation\#correlation_

directives

Vulnerability: S.Vu.9.0
Code Name: direct-disk-read
Classification: high
Type: password disclosure

Access Vector: local
Access Complexity: high
Authentication: none

Description: the password to access the database is disclosed

Target
Products: AlienVault OSSIM v2.3 Components: ossim setup.conf

Configuration: default
Comments: the OSSIM system configuration file contains the database password stored in plaintext

Detailed Description

If the attacker has physical access to the machine and downtime happens, the disk can be externally connected
and read, and therefore the database password is disclosed. An equivalent problem can occur with passwords
stored inside the database (such in the ossim.config table).

Impact
Type: jeopardy of security information
Confidentiality: almost complete

Integrity: almost complete
Availability: almost complete

Comments: the threat level depends on the privileges of the compromised account. In any case, even if the access
is limited to part of the database, then: read operations impact on confidentiality and availability (through
DOS); write operations impact on integrity and availability (by means of resource exhaustion). The correlation
engine that uses the database in question is thus compromised.

Solutions

1) physically protect the machine where the files are stored
2) encrypt the filesystem or implement a password storage to keep confidentiality

Remarks

The password must not be stored on disk in plaintext, but it must be safely used at runtime. According to the
authentication protocol of mysql, only the hash of the password need to be know to log in. Storing the hash
directly on disk does not solve the vulnerability.

References

URL: http://www.alienvault.com/wiki/doku.php?id=installation

URL: http://forge.mysql.com/wiki/MySQL_Internals_ClientServer_Protocol\#Client_

Authentication_Packet

Vulnerability: S.Vu.10.0
Code Name: hidden-loading
Classification: high
Type: execution integrity attack

Access Vector: local
Access Complexity: high
Authentication: none

Description: OSSIM execution on a specific machine can be arbitrarily deviated by means of either code injection
or impersonation attack

Target
Products: AlienVault OSSIM v2.3 Components: system storage

Configuration: default
Comments: the OSSIM system does not use an encrypted filesystem by default and lacks in code execution integrity
check and plugin attestation mechanisms

Detailed Description

The OSSIM system is based on the Debian Linux distribution. On one side, the operating system uses by
default neither an encrypted file system, nor driver signing enforcement, nor code execution integrity checks. On
the other side, OSSIM does not perform any check both on the plugins that are loaded and on their content.
The system on the whole is thus seriously exposed to offline attacks and others by which the attacker can gain
the highest privileges (e.g., by exploiting some buffer-overflow). In the first case, the content on disk can be
arbitrarily modified during a possibly malicious downtime. In the second case, the whole system is accessible
and its execution can be arbitrarily deviated.

Impact
Type: security information management hijack
Confidentiality: complete

Integrity: complete
Availability: complete

Comments: since the filesystem is not encrypted, all of the information stored in plaintext is compromised.
Furthermore, ad-hoc kernel modules and OSSIM plugins can be loaded to tamper with the reliable security
information management. As a result, an attacker can fully control the component, disrupting the process
of event collection and undermining the information that has to be forwarded (i.e. normalized and correlated
events). If the component is the only gateway between (some part of) the monitored network and the monitoring
infrastructure, attacks can be hidden through impersonation.

Solutions

1) use an encrypted filesystem to mitigate confidentiality issues
2) use kernel module (resp. plugin) digital signing techniques, and enforce verification-based module (resp.
plugin) loading through cross-certificates, up to the trusted certification authority
3) use code execution integrity check or software-based attestation techniques to prevent malicious execution
detouring
3) enforce safe boot through a TPM to prevent offline attacks to module signatures and operating system’s keys

Remarks

References

URL: http://www.alienvault.com/wiki/doku.php?id=installation

URL: http://www.alienvault.com/wiki/doku.php?id=architecture:plugins

	Introduction
	Rational for the Architecture
	Organization of the document

	System Model
	Fault model
	Edge layer
	Edge to core communications
	Core layer

	Synchrony model
	Asynchronous model
	Synchronous model
	Partial synchrony models
	Hybrid models

	Architecture Description
	Key architectural options
	Structural model
	Main system components
	MASSIF Information Switches (MIS)
	MASSIF Information Agents (MIA)
	Resilient Event Bus (REB)
	SIEM Engine

	Overview services
	Overview of generic services
	Overview of edge services
	Overview of core services

	Resilient Middleware Support
	Communication
	Storage

	Node Resilience Solutions
	Local node architecture
	Incremental resilience strategies
	Multipoint Network
	Communication Support
	Activity Support
	Replication management
	Confidentiality of replicated data

	Runtime Support
	Proactive recovery
	Reactive recovery
	Diversity management

	Conclusions
	Security Evaluation of OSSIM

