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Abstract

This document briefly describes three prototypes, each one corresponding to a sub-
set of the MAFTIA middleware architecture. Together, these prototypes represent the
most important components of the architecture, and constitute Deliverable D25 - Run-
ning Lab Prototype of MAFTIA Middleware. The code distribution of the prototypes is
available for review, and it includes a more extensive documentation.

The first prototype is composed of an implementation of the Trusted Timely Com-
puting Base (TTCB) on a real-time Linux kernel, and two secure reliable multicast proto-
cols that explore the services provided by the TTCB. The second prototype implements the
Communication Support (CS) layer of the architecture, and supplies a number of protocols
including binary and multi-value agreement and atomic broadcast. The third prototype
represents an Activity Support (AS) module and offers a transactional support service.
This prototype implements a number of protocols and activities that facilitate the creation
of resource and transaction managers.
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1 Introduction

This document briefly presents three prototypes that together represent the most
important components of the MAFTIA middleware architecture. The main ideas and the
rationale for this architecture has been presented in a previous deliverable (D23 [9]), where
the various system models, modules and services were introduced. The APIs and some of
the protocols that are provided by the prototypes have also been previously described in
another deliverable (D24 [7]). In the following year, we expect to consolidate and integrate
the prototypes to create a complete implementation of the middleware subsystem (D11:
Running prototype of MAFTIA middleware – due to T0 + 36 months).
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Figure 1.1: Architecture of a MAFTIA Host

Figure 1.1 represents the main components of the architecture of a MAFTIA host, in
which the relations between modules are depicted by the arrows. The figure also represents
the main runtime environments that will support the architecture, and other components
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in general that might want to call their interfaces, namely the Trusted Timely Computing
Base (TTCB).

This document is organized in three parts, each one corresponding to one of the
prototypes. The first prototype implements the TTCB, which is a distributed security
kernel that might have its services called by every other module. It can be seen as an
assistant for parts of the execution of the protocols and applications, since it provides a
small set of trusted services related to time and security. Examples of these services are:
trusted block agreement, local authentication, and trusted duration measurement. The
current implementation is built on a real-time Linux kernel (RT-Linux) that has been
enhanced with several modifications to improve its security. The control channel is based
on an extra fast Ethernet that can only be accessed by the TTCB. Even though we have
only now started an extensive testing phase, we expect that the current prototype already
exhibits a good coverage of the TTCBs properties, such as fail-controlled behavior (i.e., it
fails only by crashing).

This prototype also includes the implementation of two secure reliable multicast
protocols that are capable of tolerating Byzantine failures. These protocols use the services
provided by the TTCB to execute a small number of crucial steps in a secure way. Even
though the protocols have some similarities, they have been optimized for different working
conditions, which can be useful for building systems which can adapt to distinct levels of
threat. In the architecture displayed in Figure 1.1, these protocols will be part of the
Communication Support (CS) component. Currently, they have been implemented in
Java as a set of Appia layers. Appia is a layered communication framework. Each layer
represents a micro-protocol that has a uniform interface which allows each layer to be
combined with other layers in a stack to provide a service. The development of the of
Multipoint Network (MN) did not require too much effort since the Appia distribution
already provides a number layers that can be included in this component. Nevertheless, it
was necessary to produce an adaptation module from the interface offered by the TTCB
at the kernel-level to the interface provided by Appia to the layers.

The second prototype offers an hierarchy of secure protocols that correspond to
a CS component implementation. It supplies primitives for group communication such
as binary and multi-valued agreement, reliable and consistent broadcast, and an atomic
broadcast stream. Atomic broadcast immediately provides secure state-machine replica-
tion. MAFTIA architecture documents describe a multi-dimensional parameter space of
system models, such as: purely asynchronous, partially synchronous or fully equipped with
access to a Trusted Timely Computing Base; static, dynamic, open and closed groups; etc.
This prototype resides in only one point of this space, with a fully asynchronous network
and static, open groups. This makes it useful on an asynchronous wide-area network such
as the Internet, where messages may be delayed indefinitely and protocol participants do
not have access to a common clock.
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The tools provided by this prototype enable Activity Support (AS) modules to
achieve fault tolerance in this system model by distributing their trust to several servers,
some of which may be failing in a malicious manner. Care must be taken in implementing
such AS modules as the failed servers must not learn any secrets by participating in some
protocol, nor should they have the power to act in unauthorized ways on the group’s
behalf or to prevent the other, honest servers from properly processing a request. Such
robustness is achieved by Byzantine Agreement and Atomic Broadcast protocols which
make extensive use of threshold cryptography, as well as by the direct application of such
threshold cryptographic primitives. For example, the Distributed Certificate Authority
(DCA) described in Deliverable D5 [3] uses Atomic Broadcast to circulate client requests
among the DCA servers, Binary Byzantine Agreement to decide whether or not to honor
certain requests, and Threshold Signatures on the certificates to ensure that they reliably
represent the will of the honest DCA servers.

The third prototype offers a transactional support service (TSS), which is an AS
module. It provides multiparty, single level transaction support. The TSS is intended to
be used as a building block for intrusion tolerant applications and other AS modules. The
architecture of the TSS is derived by applying the general MAFTIA architectural principle
of distributing trust [8] to a standard transaction processing architecture. Effectively, the
servers implementing the transaction service and optionally the resource managers and
resources are replicated.

The current version of the TSS is implemented in Java as a set of Appia layers. The
layers can be combined to implement different TSS components, for example Resource
Managers or Transaction Managers. The prototype depends upon group communication
layers that are provided as part of the standard Appia distribution. In the current imple-
mentation we assume only benign failures so the standard group communications layers
are sufficient. However, the next version of the TSS will be built on top of the CS in-
trusion tolerant group communication modules and local platform services. It is assumed
that both TTCB-based and time-free communication modules will have similar interfaces
which will make it relatively simple to switch from a benign fault model to one incorpo-
rating malicious faults. We also assume that under either fault model that simple local
platform services such as local cryptographic support, limited secure storage for keys, and
durable storage are available.
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2 Trusted Timely Computing Base Prototype

This section presents a brief overview of the prototype of the TTCB on a RT-Linux.
It also describes two secure reliable multicast protocols that take advantage of the services
offered by the TTCB in certain crucial steps of their execution. These protocols will be
included in the future in a CS module.

2.1 Architecture

Each host contains the typical software layers, such as the operating system and
runtime environments, and an extra component, the TTCB. The TTCB is a distributed
entity with local parts in the hosts and a control channel (see Figures 2.1 and 2.2). The local
parts, or local TTCBs, are computational components with activity, conceptually separate
from the hosts’ operating system. The control channel is a private communication channel
or network that interconnects the local TTCBs. It is conceptually separated from the
payload network, the network used by the hosts to communicate.

2.2 Implementation

The current TTCB implementation is a preliminary version of the design presented
in [5], with the programming interface presented in [7]. The overall TTCB architecture is
quite simple: local TTCBs in hosts, interconnected by a (private) control network.

For very high coverage, local TTCBs would normally be built on dedicated tamper-
proof hardware modules with a dedicated network attachment, such that the modules can
be plugged with the proper physical isolation into the host hardware. However, the current
design is based on the same COTS hardware and software which runs the payload, with
isolation implemented in software. The local architecture of this software-based solution
consists of a small secure real-time kernel running on the bare machine hardware, on top
of which the regular operating system runs, as all the rest of the host software. The local
TTCB is basically a privileged and highly protected set of real-time tasks of that kernel.

For the kernel, we use a general purpose real-time executive, RT-Linux, based on
a modified Linux kernel [2, 10]. This approach has the advantage of running Linux and
Linux applications on top of it, but it controls all hardware resources in order to safeguard
the timeliness of real-time tasks, which are used to support the TTCB. As a disadvantage,
it can be as insecure as Linux. The TTCB is built on the RT-Linux kernel, and in conse-
quence, our design concentrates mainly on securing the design principles that make-up a
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Figure 2.1: Architecture of a host with a Local TTCB.

trustworthy implementation of a security kernel— interposition and shielding [5]. This is
achieved removing a set of Linux capabilities during the normal system operation [1].

The control channel can assume several forms. To pursue the COTS strategy, our
architecture is based on Fast Ethernet, for campus-wide systems: we provide each host
having a TTCB with an extra LAN adapter.

Figure 2.1 presents the architecture of a host with a local TTCB. The local TTCB
is composed by a Linux kernel module (“TTCB Interface Module”) and a set of real-time
tasks that run in the RT-Linux kernel. The former module handles the communication with
the applications and executes some non-real-time basic services, such as giving timestamps
or random numbers. The real-time tasks include always one for reading packets from the
Fast-Ethernet device driver and another to send packets periodically to this same network.

Applications communicate with the TTCB using RT-Linux fifos. However, a library
with a set of C functions is provided so that the programmer does not need to go into that
level of detail (see figure). Currently, a Java library is also being developed. It was used
to implement the reliable multicast protocol described below.
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2.3 Example

The BRM is a package that provides secure reliable multicast, as a component
of MAFTIA architecture, which tolerates arbitrary faults, including Byzantine faults. It
is a building block that can be used for applications that required intrusion tolerance.
Furthermore, it is intended to be combined with other protocols to provide warranties more
restrictive of agreement and ordering (e.g. atomic multicast [6]). There are two protocols
in this package, BRM-T and BRM-M, first one protocol exhibits fast termination in the
presence of attacks and/or crash or malicious process failures, but has a higher message
complexity. On the other hand, the BRM-M uses fewer messages and terminates faster in
fault-free situations, but takes longer to terminate in the presence of attacks/faults. These
two similar protocols, optimized for different conditions, can be useful for building systems
which adapt to, e.g., different levels of threat.

The BRM prototype is implemented using Appia, a layered communication frame-
work, and the TTCB, a distributed secure kernel. Appia provides the facilities for group
communication under the assumption of a benign fault model. The BRM protocols are
built using the facilities provided by IP Multicast layer of Appia. The TTCB is used in the
BRM to execute crucial parts of the protocols operation, under the protection of a crash
failure model. The TTCB provides only a few basic services, using TTCB allows to BRM
not to need of a public key infrastructure. Furthermore, our protocols to have efficiency
similar to that of accidental fault-tolerant protocols: for f faults, our protocols require f+1
processes, instead of the typical 3f+1 of Byzantine systems. More details about Appia and
TTCB can be found in Deliverable D24 [7], and the protocols in [4].

2.3.1 BRM Architecture

The architecture of the prototype of MAFTIA secure reliable multicast is shown
in Figure 2.2. Four hosts are shown, one Certified Authority Manager host and three
MAFTIA hosts equipped with TTCBs. Actual deployments may have more MAFTIA
hosts.

The Certified Authority Manager manages and provides the secret keys (symmetric
cryptography) for each pair of participants. These keys are used to create the Message Au-
thentication Codes (MAC) that are included in ACK messages from the BRM-M protocol.
These keys are transmitted using the SSL Layer provided by Appia.

The MAFTIA hosts make use of the BRMulticast Layer which relies upon the
TTCB, the Appia IP Multicast Layer, the Appia SSL Layer and the SKMClient Layer
(for simplicity, the last two layers are not displayed). The BRMulticast Layer provides an
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Figure 2.2: Architecture of a distributed TTCB with the BRM protocols.

implementation of a secure reliable multicast protocol. It provides methods for multicasting
a message and receiving a callback when a message is received by the protocol layer. The
BRM protocols uses the TTCB Trusted Block Agreement Service to multicast the hash of
the message to the recipients. The hash is used by the recipients, according the protocol,
to validate the message M transmitted by Multicast Layer (payload network). The IP
Multicast Layer is an Appia layer that provides access to low-level IP multicast sockets.
The Appia SSL Layer is used to connect to the Certified Authority Manager via a secured
connection, and the SKMClient Layer manages locally the secret keys provided by Certified
Authority Manager.
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3 Asynchronous Group Communication Prototype

This section describes an hierarchy of secure group communication protocols that
correspond to a CS component implementation. The prototype implements one of the
various system models that are being considered in MAFTIA, where the network is asyn-
chronous and the groups are static and open.

3.1 Architecture

The CS prototype is built in a modular way, as shown in Figure 3.1. Modularity
greatly simplifies the construction and analysis of the complex protocols needed to tolerate
Byzantine (malicious) faults.

Secure Causal Broadcast

Atomic Broadcast

Multi−valued Agreement

Broadcast
Primitives

Binary
Agreement

Threshold Cryptography

Reliable Point−to−Point Links

Figure 3.1: Architecture of the CS protocols.

Currently, the CS prototype needs a trusted dealer to generate the secret keys for
a particular configuration. The dealer is needed only once, when the system is initialized.
The keys must be distributed to all servers in a trusted way. The point-to-point links are
authenticated using a message authentication code (MAC) for which one symmetric key
for every pair of servers is also generated by the dealer.

The point-to-point links in CS are currently implemented by reliable TCP streams
for simplicity and are therefore subject to a denial-of-service attack by sending forged TCP
acknowledgements. It is planned to replace TCP by a custom sliding-window management
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over UDP which will provide authenticated acknowledgments and more appropriate session
management.

Link authentication is provided over TCP using SHA1 (160-bit output). SHA1 is
also used as the hash function in the threshold signature and standard signature schemes,
and in the threshold coin-tossing protocol.

A single configuration file contains all important parameters, such as the identities
of all parties, the over-all system parameters, cryptographic key sizes, etc. A party is
identified by an Internet address of the form hostname:port, which denotes the socket
endpoint through which it connects to the others.

3.1.1 Threshold Cryptography

Threshold cryptography is crucial for several of the CS protocols and forms a core
component of the architecture. Threshold schemes are used for digital signatures, coin-
tossing, and public-key encryption. These are all non-interactive and robust; they are
implemented by a collection of algorithms for generating, verifying, and assembling shares
of the cryptographic operation. In this way, they do not require any particular communi-
cation pattern and can be easily integrated into asynchronous protocols.

In contrast to the other threshold schemes, true threshold signatures are not es-
sential for the operation of the CS protocols. Since the group is static and a standard
digital signature scheme is also available, whose public keys are known to all servers, it
is sometimes more efficient to use a vector of standard signatures instead of a threshold
signature. This is called a multi-signature and requires no change to the protocols that use
threshold signatures. Multi-signatures are particularly suited for small groups when fast
communication is available and computation is expensive.

The keys for all threshold schemes are generated by the dealer and included in the
initial state of each server.

3.2 Implementation

The prototype is implemented in Java (version 1.2 or later), with each commu-
nications protocol type using a particular extension of an abstract base class Protocol.
Similar protocols with largely identical APIs are grouped together by being extensions of
a common class, as follows:
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Broadcast – ReliableBroadcast and ConsistentBroadcast provide reliable and con-
sistent broadcast, respectively

Agreement – BinaryAgreement provides binary Byzantine agreement, ValidatedA-
greement provides validated binary Byzantine agreement, and ArrayAgreement
provides multi-valued agreement

Stream – AtomicStream provides an atomic broadcast stream, SecureAtomicStream
provides a secure causal atomic broadcast stream, and ReliableStream and Con-
sistentStream provide reliable and consistent broadcast streams, respectively

In addition, the threshold cryptographic algorithms used within the CS layer and
also accessible to AS modules are in the following classes:

ThresholdCoin – manipulates a threshold coin

ThresholdSignature – has extensions RSAThresholdSignature and MultiSignature
with the two different approaches to threshold digital signatures described in Section
3.1.1

ThresholdCipher – provides the threshold public-key encryption scheme

The CS module also includes a stand-alone Java program which reads the config-
uration file and creates keys of the desired strength for all threshold cryptographic tools
and point-to-point authentication MACs.

3.3 Example

The various protocols and tools of the CS prototype have been extensively tested
across a variety of different operating systems, physical hardware and network configura-
tions, including LANs on a single Ethernet backbone and WANs covering three continents.
The most difficult test, using full-strength cryptography (1024-bit RSA and discrete loga-
rithm keys), the global WAN and servers ranging from a 200 MHz Pentium Pro to a 1GHz
Pentium III, gave times of a few seconds to agree to the “next” message in atomic broad-
cast. This indicates that these protocols are practical today in certain critical contexts,
and are likely soon to be practical, with an optimized implementation and some protocol
improvements, for a much broader spectrum of applications.
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4 Transaction Support Prototype

This section provides an overview of the prototype of MAFTIA transactional sup-
port [7] which is an Activity Service. In the following sections we provide a brief overview of
the architecture, the implementation of the architecture and the demonstration application
provided with the prototype.

ResourceRecovery

TransactionalResource

LockManager

Consensus

AtomicBroadcast

TransactionalRecovery

TransactionManager

AtomicBroadcast

Multicast

Multicast

Multicast

Resource Manager

Transaction Manager

Client

Figure 4.1: Architecture of the Transactional Support Service.

4.1 Architecture

The TSS architecture is composed of clients, resource managers and transaction
managers. Only the resource managers and transaction managers are replicated. Each
component is implemented in a modular way out of Appia layers, as shown in Figure 4.1.
The replicated components use a closed group style of communication which is implemented
by the atomic broadcast layer. Other communication, for example between clients and
resource managers, is an open group style of communication which is implemented by the
multicast layer. The role of each component is introduced below.

Clients. Clients use the transaction manager to begin and end transactions. Within
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the scope of a transaction the clients operate on resources via resource managers. As a slight
extension to the typical transaction architecture, we allow multiple clients to participate
in a transaction. A single client begins a transaction, and passes the transaction identifier
to other clients so that they can cooperate within the transaction scope too. Individual
clients can unilaterally force a transaction abort but all clients must unanimously agree to
attempt a transaction commit.

Resource Managers. A resource manager is a wrapper for resources that allows
the resource to participate in two phase commit and recovery protocols coordinated by a
transaction manager. The resource may or may not be persistent. Persistent resources may
use a persistency service or a database. Resource managers also manage the concurrent
access by clients to resources. Concurrency control is pessimistic. Resource managers use
a local recovery log to support recovery after a crash.

Transaction manager. The transaction manager is primarily a protocol engine.
It implements the two phase commit protocol and recovery protocol. It also allows the
creation of new transactions and the marking of transaction boundaries. In order to par-
ticipate in transactions, resource managers are required to register themselves with the
transaction manager. Transaction managers use a local recovery log to support recovery
after a crash.

4.2 Implementation

The prototype is implemented in Java using the Appia framework. In this section
we provide a brief description of each Appia layer. We have grouped layers according to
their relationship to the middleware modules.

4.2.1 Communication Service Layers

These layers provide abstractions for various modules of the communication service,
in particular multicast, atomic broadcast, and consensus. In future versions of the proto-
type we will use the TTCB-based and time-free communication services instead of the ones
described here. However, we expect that the future versions will have similar interfaces
thereby making the transition from group communications that assume benign failures to
group communications that assume Byzantine failures.

Multicast Layer – Provides an open group style of group communication. A client sends
its request to a single member of a closed group, the recipient then uses the Atomic
Broadcast layer to send the request to all group members. Ordering of requests
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is FIFO but dependent on the order in which that the first member of the group
received the requests from the client.

Atomic Broadcast Layer – Provides a closed group style of group communication and
supports FIFO-ordered, view-synchronous multicast.

Consensus Layer – As solving consensus is equivalent to solving reliable and totally
ordered multicast we build a consensus layer on top of the atomic broadcast layer.

4.2.2 Activity Service Layers

These layers provide the TSS-specific protocols as described in Deliverable D24.

ResourceRecovery Layer – Controls recovery of a resource after a benign failure. Re-
sources make use of local durable logs to support recovery. This layer is required by
the ResourceManager layer.

TransactionalResource Layer – Allows a resource to take part in the two phase commit
and abort protocols. It also implements the registration of ResourceManagers with
TransactionManagers. This layer is required by the ResourceManager layer.

LockManager Layer – Provides a distributed pessimistic locking protocol. The isola-
tion property depends upon this to prevent clients that are not within a transaction
observing the effects of the transaction until it is complete. This layer is required by
the ResourceManager layer and in turn depends upon the Consensus layer.

TransactionManagerRecovery Layer – Controls recovery of a transaction manager
after a benign failure. During recovery, Transaction Managers rely upon other mem-
bers of the Transaction Manager group to determine the outcome of a transaction.
This layer is requires the TransactionManager layer.

TransactionManager Layer – Implements the two phase commit protocol and abort
protocol. It allows the creation of new transactions and the marking of transaction
boundaries. In order to participate in transactions, resource managers are required
to register themselves with the transaction manager.

4.3 Example

A text-based demonstration application is provided with the prototype. The ap-
plication is made up of implementations of clients, transaction managers and resource
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managers. When using the demonstration application, the user must first start a group
of transaction managers, and two groups of resource managers. The user can then be-
gin a transaction, send requests to the resource managers and either commit or abort a
transaction. The transaction managers and resource managers echo their responses to the
console window so that the user can verify their correct behaviour. Instructions on the use
of demonstrator is included with the TSS distribution.
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5 Conclusion

This deliverable contains three prototypes, each one of them represents a subset
of the MAFTIA middleware architecture. The first prototype implements the TTCB dis-
tributed security kernel on a RT-Linux. To ensure good coverage of the TTCB properties,
this version of the RT-Linux suffered several enhancements to improve its overall security.
The local TTCB is composed by a Linux kernel module, which is responsible for some non-
real-time services and interactions with the applications, and a set of real-time tasks that
handle all to communication through the control channel. This prototype also includes
the implementation of two secure reliable multicast protocols that are capable of taking
advantage of the services provided by the TTCB to execute a small number of crucial steps
in a secure way. The second prototype offers an hierarchy of secure protocols that corre-
spond to a CS component implementation. It supplies primitives for group communication
such as binary and multi-valued agreement, and an atomic broadcast stream. The system
model assumed by this prototype is a fully asynchronous network, and static, open groups,
which makes it useful on an asynchronous wide-area network such as the Internet. The
protocols being provided enable AS modules to achieve fault tolerance in this system model
by distributing their trust to several servers, some of which may be failing in a malicious
manner. The third prototype offers a transactional support service, which is an AS module.
It provides multiparty, single level transaction support that can be used as a building block
for intrusion tolerant applications and other AS modules. The architecture of the TSS is
derived by applying the general MAFTIA architectural principle of distributing trust to
a standard transaction processing architecture. Effectively, the servers implementing the
transaction service and optionally the resource managers and resources are replicated.

In the next deliverable of WP2, ”D11 - Running prototype of MAFTIA middle-
ware”, we will expand and integrate the current prototypes to produce a complete imple-
mentation of the middleware subsystem.
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