
Recycling Test Cases to Detect Security Vulnerabilities

João Antunes Nuno Neves
LASIGE, Departamento de Informática,

Faculdade de Ciências da Universidade de Lisboa, Portugal
{jantunes,nuno}@di.fc.ul.pt

Abstract—The design of new protocols and features, e.g., in
the context of organizations such as the IETF, produces a flow of
novel standards and amendments that lead to ever changing im-
plementations. These implementations can be difficult to test for
security vulnerabilities because existing tools often lag behind.
In the paper, we propose a new methodology that addresses this
issue by recycling test cases from several sources, even if aimed
at distinct protocols. It resorts to protocol reverse engineering
techniques to build parsers that are capable of extracting the
relevant payloads from the test cases, and then applies them to
new test cases tailored to the particular features that need to
be checked. An evaluation with 10 commercial and open-source
testing tools and a large set of FTP vulnerabilities shows that our
approach is able to get better or equal vulnerability coverage
than the original tools. In a more detailed experiment with
two fuzzers, our solution showed an improvement of 19% on
vulnerability coverage when compared with the two combined
fuzzers, being capable of finding 25 additional vulnerabilities.

Keywords-test case generation; vulnerability assessment; pro-
tocol reverse engineering

I. INTRODUCTION

Over the years, several black box approaches have been de-
vised to discover security vulnerabilities in software, namely
in network facing components such as servers. For exam-
ple, scanners resort to a database of checking modules to
automate the task of identifying the presence of previously
reported vulnerabilities [1], [2]. They typically start by de-
termining the type and version of a target server running
in a remote machine, and then they perform a pre-defined
message exchange to find out if a particular vulnerability
exists. Other tools such as fuzzers automatically generate
many test cases that include unexpected data, which may
cause incorrect behavior in the component (e.g., a crash),
allowing the detection of a flaw.

When they appeared, fuzzers mainly used random data
to evaluate the component’s robustness [3], but eventually
they evolved to include more knowledge. Servers are usually
protected with a group of validation routines that decide
on the correctness of an interaction, letting the computation
progress only when the appropriate conditions are present
(e.g., non-compliant protocol messages are immediately dis-
carded). Therefore, specialized fuzzers, which understand
the component interfaces, were developed and are able to
generate valid interactions carrying malicious payloads [4],
[5], [2], [6], [7]. The down side of these approaches is
that as they become increasingly knowledgeable about the

target component, and therefore more effective at finding
vulnerabilities, they lose generality and become useless to
assess other types of servers.

To address this issue, the paper describes an approach that
recycles existing test cases, making it particularly useful in
the following scenarios. First, servers implementing newly
designed protocols are typically hard to test because of lack
of support from the available tools. For instance, the IETF
publishes a few hundred new RFCs every year, some of them
introducing novel protocols [8]. This fast-paced standard
deployment would require a constant upgrade of the testing
tools, but what happens in practice is that tools typically lag
behind. Second, many application areas are very dynamic,
which is usually reflected in protocol specifications that are
constantly being updated. For instance, from the publication
of the current File Transfer Protocol (FTP) standard [9], the
IETF has published 42 related RFCs. When this happens,
old test cases are unable to check the new features, and
extensions to the protocol may even render them ineffective.
Last, servers implementing proprietary (or closed) protocols
are difficult to assess because little information is available,
and therefore, they end up being evaluated only by their own
developers.

Our methodology takes test cases available for a certain
protocol and re-uses them to evaluate other protocols or
features. It resorts to protocol reverse engineering techniques
to build parsers that are capable of extracting the relevant
payloads from the test cases, i.e., the malicious parameter
data of the messages. These payloads are then applied in
new test cases for the target server, by generating malicious
interactions that cover the particular features under test. In
case the whole server needs to be checked, tests are created
to explore the entire state space of the implemented protocol.

To evaluate the methodology, we implemented it in a tool
and made a comparison with 10 commercial and open-source
testing tools. The experiments were based in analyzing the
capabilities of the tools to discover vulnerabilities in FTP
servers. A large database was built with all FTP vulner-
abilities discussed in security related web sites (currently
with 131 vulnerability descriptions and exploits), covering
various kinds of problems, from SQL injection to resource
exhaustion. The results show that recycling various test
cases for the FTP and other protocols, does not diminish
the vulnerability detection capability of the automatically
generated test cases. In fact, our approach is able to get better

or equal protocol and vulnerability coverage than the original
tools. In a more detailed experiment with the Metaploit
and DotDotPwn fuzzers, our tool showed an improvement
of 19% on vulnerability coverage when compared with the
two combined fuzzers, being able to discover 25 additional
vulnerabilities.

II. METHODOLOGY

The goal of our approach is to produce test cases in an
automated way for a particular protocol implementation, i.e.,
the target server. The solution resorts to test cases from
different sources to maximize the richness of the testing
payloads, together with a specification of the protocol imple-
mented by the target server to increase the overall coverage
of the generated test cases. This allows testing payloads for
a particular protocol to be re-used in other kinds of servers,
as well as the assessment of added features to newer releases
of a server.

The specification of the protocol implemented by the
server determines, among other things, the format of the mes-
sages (protocol language) and the rules for exchanging them
with the clients (protocol state machine). It also indicates the
expected behavior of the server, such as the responses that
should be returned. We define a test case as a sequence of
network messages that check the implementation of a specific
protocol feature (e.g., the correctness of directory traversal).
The whole set of test cases should, however, cover as much of
the protocol implementation as possible. Usually, a test case
is composed of a prelude of messages that take the server
into the desired protocol state, followed by a message that
contains the actual test, the testing message.

The messages used in the prelude must be carefully
constructed. Malformed messages can be dismissed by the
validation mechanisms at the server, and therefore the server
will not go to the intended protocol state. Messages with
wrong parameter data, such as invalid credentials or non-
existing path names, will also fail to take the server into the
desired state. For these reasons, the prelude of messages must
comply to the protocol specification and to the configuration
of the target server. The testing message is transmitted to
trigger some response from the target server, causing some
abnormal behavior in case the server has a flaw. This message
is usually a valid protocol request with a special payload,
such a frontier value or random data. We call this payload,
i.e., the parameter data of the protocol request, the testing
payload. Since we are looking for security vulnerabilities,
the testing payload will correspond to some malicious data.

The main steps of methodology are summarized in Fig-
ure 1. The test case generation approach resorts to existing
test cases obtained from various sources, potentially for
different protocols, in order to get a rich set of testing
payloads. To parse and extract the payloads of the messages
included in the input test cases, we employ input protocol
language parsers that recognize the formats of the messages.
The obtained payloads are forwarded to the testing payload

Input Protocol1
Language Parser

Input Test Cases
(Input Protocol1)

Test Case Sources

Testing
Payload
Extractor Output Protocol Spec.

(Language +
State Machine)

Test Case
Generator

Target Server
Transition Context

Output Test Cases
(Output Protocol)

Input Protocol2
Language Parser

Input Test Cases
(Input Protocol2)

Input Protocoln
Language Parser

Input Test Cases
(Input Protocoln)

…

…

Target
Server

Methodology

Figure 1. Overview of our methodology.

extractor to be organized and selected for the next phase. An
output protocol specification provides the definition of the
protocol that the target server implements. This specification
gives the ability to construct messages according to the
recognized formats and state machine of the protocol. To
make the target server go from the initial protocol state to
another state requires that a sequence of messages of the
correct type and with the correct payload is transmitted –
the prelude of the test case. Hence, a target server transition
context provides the necessary information about the server’s
configuration and execution to create protocol messages with
the correct parameter values (e.g., valid credentials and/or file
system structure) so that it can reach any protocol state.

The test case generator produces the output test cases to
be sent to the target server. It generates test cases that cover
the whole protocol space, containing the extracted testing
payloads. To exhaustively test each protocol feature (or type
of request), several approaches can be employed, such as us-
ing all combinations of the testing payloads in each message
field or pairwise testing. Therefore, various strategies can be
implemented in the generator, which tradeoff the time and
resources to complete with the coverage of the testing.

III. IMPLEMENTED TOOL

This section provides details about an implementation of
our methodology. The general architecture of the tool is
depicted in Figure 2. The implementation differs from the
methodology in a few key points. Most notably our tool
does not require individual protocol language parsers and
a protocol specification to be provided, since we resort to
additional samples of network traces and protocol reverse
engineering techniques to infer the language of the protocols.

A. Generic protocol language parser

The tool implements a generic protocol language parser
component to infer input protocol language parsers from
additional samples of network traces. The additional network
traces can be collected from custom network servers that
implement the protocol used in the input test cases, or
downloaded from the Internet as packet capture files. They
only need to include the messages of regular client-server
interactions. Then, a reverse engineering method is employed
to derive the message formats of the protocols.

Input Test Cases
Sample Traces

(Input Protocol1)
Protocol Spec.

Inference

Target Server

Input Test Cases
Sample Traces

(Input Protocol2)

Input Test Cases
Sample Traces

(Input Protocoln)

…

Testing
Payloads

Test Case Sources

Sample Traces
(Target Server)

Target Server
Trans. Context

Test Case
Generator

Output Protocol
Specification

Output Test Cases
(Output Protocol)

Parameter Payloads
(state machine traversal)

External Payloads
(Manually extracted)

+ Generic Proto.
Lang. Parser

Figure 2. Architecture of the implemented tool.

The current implementation is based on the reverse en-
gineering techniques developed in ReverX for text-based
protocols [10]. Messages in text-based protocols are usually
composed of a sequence of text fields. Some fields hold
a limited range of predefined command names, which dis-
criminate the type of the protocol request. Following the
field with the command name, the message usually has one
or more parameter fields that further refine the function of
the protocol request. Based on this idea, reverse engineering
divides the messages of the trace in their respective fields,
and then builds a prefix tree acceptor (PTA) that recognizes
all messages. The PTA is minimized to obtain a more
condensed representation, which corresponds a finite-state
machine automaton. Next, a statistical analysis is performed
on the automaton to identify the command and parameter
fields. The parameters are generalized as a regular expression,
to produce a new automaton that is capable of accepting other
messages of the protocol that are not present in the traces.
This automaton is however non-deterministic, and therefore
a determinization and a minimization procedure is performed
to create the final automaton, which understands the formats
of the messages.

Naturally, the sample traces that are used to infer the
language automata must be sufficient and representative
enough. Otherwise, the automata may be incomplete and fail
to recognize some of the protocol messages of the test cases.
To guarantee that the test cases are fully supported, our tool
simply adds the messages of the test cases to the sample
traces during construction of the input parser.

To extract the testing payloads, the tool feeds the test cases
to the language parser and extracts the parameter data, i.e.,
the content of the fields that are identified as parameters.
Normally, the most interesting payloads are those found in
the last message of the test cases (the preceding messages
act as prelude to take the server to the designated state).
However, it happens sometimes that the fault is triggered by a
message in the middle or even the beginning of the test case.
Therefore, it is preferable to collect the payloads from all
messages, than risking neglecting payloads that could detect

vulnerabilities.

B. Protocol specification inference

The tool resorts to the same techniques of protocol reverse
engineering used in the generic parsers to infer the output
protocol specification from a sample of network traces from
the target server. As before, the traces only need to have
normal protocol sessions.

The reverse engineering process of this component derives
the language of the protocol, and in addition infers the state
machine of the protocol. The state machine is obtained by
identifying the implicit causal relations among the various
types of messages as observed in the traces. Naturally, parts
of the protocol that are missing from the traces cannot be
inferred, and therefore will not be contemplated in the test
case generation. The client sessions must therefore exercise
all the functionality that one wants to test. This approach
supports the creation of test cases for new protocol exten-
sions that may be missing from the standard specifications,
simply by including in the traces the client-server messages
related to those features. The server implementing the custom
modifications (or the features still under development) only
needs to be experimented with a client and the messages
corresponding to the new extensions have to be captured.

Figure 3 shows the inferred protocol specification from a
small trace containing 5 FTP sessions. The reverse engineer-
ing process starts by deriving the language automaton, where
each path corresponds to a unique message format. Seven
distinct FTP types of requests were identified – CDUP and
QUIT with no parameters, and USER, PASS, CWD, RNFR
and RNTO each with one parameter. Then, the protocol state
machine is obtained by converting each client session into a
sequence of message formats. Next, an automaton is built
to accept the various sequences of messages of each session
and to represent any implicit causal relation between message
formats. For example, CWD and CDUP messages are used
interchangeably after the PASS messages, so they are merged
into the same protocol state (Q2). On the other hand, since
PASS messages always follow USER messages (and not the
inverse), and the causal relation is captured with three states
(Q0 → Q1 → Q2).

C. Target server transition context

The sample traces from the target server contain messages
from the clients that make the server go from the initial
state to other protocol states. The information included in
these messages consist of valid usernames and passwords,
and other parameter data that are specific to the target
server. Examples of these parameter values are “clark” and
“bruce” in USER messages and “kent” and “wayne” in PASS
messages (see Figure 3a). The target server transition context
component can take advantage of this data to obtain the
necessary information about the server’s configuration.

The component implements a table that correlates the
parameter values in the sample traces with the previously

USER clark
PASS kent
QUIT
USER bruce
PASS wayne
CWD /home/bruce
RNFR cave
RNTO batcave
QUIT
USER peter
PASS parker
CWD /home/peter
CWD daily
CDUP
RNFR news
RNTO journal
QUIT
USER clark
PASS kent
CWD /home/clark
CDUP
QUIT
USER bruce
PASS wayne
QUIT

Sample traces (FTP target server)

Session S1

Session S2

Session S3

Session S4

Session S5

(a) Sample traces of a target server.

Q4

Q1

Q2

PASS.*

Q3

RNFR .*

RNTO .*

CWD .*
CDUP

QUIT

Q0

USER .*

IP1: USER clark
IP1: PASS kent
IP1: QUIT
IP2: USER bruce
IP2: PASS wayne
IP3: USER peter
IP3: PASS parker
IP3: CWD /home/peter
IP2: CWD /home/bruce
IP2: RNFR cave
IP2: RNTO batcave
IP2: QUIT
IP3: CWD daily
IP3: CDUP
IP3: RNFR news
IP3: RNTO journal
IP3: QUIT
IP1: USER clark
IP1: PASS kent
IP1: CWD /home/clark
IP1: CDUP
IP1: QUIT
IP2: USER bruce
IP2: PASS wayne
IP2: QUIT

Session S1

Session S2

Session S3

Session S4

Session S5 (b) Inferred protocol specification.

Figure 3. Reverse engineering the protocol specification.

inferred output protocol specification. The table is built by
parsing each message that causes the protocol to make
a state transition and extracting the values of each field.
Table Ia shows an example for the traces of Figure 3a and
using derived protocol specification of Figure 3b. The first
two columns have the source and destination states; the
third column depicts the message format from the language
automaton (here abbreviated as the command name); and the
forth column contains the list of observed parameter values
and their respective sessions.

The table is then used to build the preludes of the test
cases, i.e., the sequences of protocol messages that take the
target server from the initial state to any other protocol state.
The first step to create a message sequence is to select
the shortest path in the protocol state machine from the
initial state to the desired state. For instance, the smallest
sequence of messages to reach state Q3 would be: USER .*,
PASS .*, and RNFR .*. The second step is to select the
correct parameter values, which cannot come from different
sessions because this could take the server to an unexpected
state. Therefore, the table is searched to find which sessions
reach the desired state. When more than one session is
found, the one that reaches the desired state with a smaller
number of messages is chosen. For instance, session S2 is
selected to go to state Q3 (S3 also reaches Q3, but only

Table I
TARGET SERVER TRANSITION TABLE AND PRELUDE GENERATION.

(a) Target server transition table.

From To Msg type Parameter values (from session)

Q0 Q1 USER clark (S1,S4); bruce (S2,S5); peter (S3)
Q1 Q2 PASS kent (S1,S4); wayne (S2,S5); parker (S3)
Q2 Q3 RNFR cave (S2); news (S3)
Q3 Q2 RNTO batcave (S2); journal (S3)
Q2 Q4 QUIT none

(b) Generated prelude to test cases.

Dest. state Preludes (from session)

Q0 none (initial state)
Q1 USER clark (S1)

USER clark (S1),
PASS kent (S1)
USER bruce (S2),
PASS wayne (S2),
RNFR cave (S2)
USER clark (S1),
PASS kent (S1),
QUIT (S1)

Q2

Q3

Q4

after the six messages). Then, the parameter values of the
respective messages are used. In the example, the prelude
would be: “USER bruce”, “PASS wayne” and “RNFR cave”.
Table Ib shows the generated preludes, allowing each one of
the protocol states to be reached.

D. Test case generator

The test case generator component aims at creating a set
of test cases that covers the entire protocol space. So, it
exhaustively creates tests for all states and transitions of the
output protocol specification. Each test case is composed by
a prelude of messages plus a testing message.

The generator iteratively selects a protocol state and one
of its transitions. To reach the selected protocol state, the
component uses the previously derived prelude of messages.
The transition is associated to a message type, so the gener-
ator uses the inferred message format for the creation of a
testing message. The testing message consists of a variation
of the message format with a special payload—one of the
extracted testing payloads. Therefore, several test cases can
be produced for a single protocol state and transition. The
existing implementation resorts to single parameter testing,
i.e., only one of the parameters has a testing payload, which
is the normal scheme used by most tools (e.g., fuzzers).
Naturally, other techniques, such as pairwise or exhaustive
testing, could also be programmed.

Table II presents a subset of the generated test cases for
the example of Figure 3. The test cases were created for
the entire inferred protocol using extracted testing payloads
(e.g., “AAAAAA1” or “CCCCCC2”). The tool starts by
generating test cases for the initial state, which only accepts

Table II
TEST CASE GENERATION EXAMPLE.

Dest. state Prelude Transition Generated test case

#1 USER AAAAAA1
#2 USER AAAAAA2

...
#8 USER clark

PASS AAAAAA1
#9 USER clark

PASS AAAAAA2
...

CDUP none (no parameters)
#15 USER clark

PASS kent
CWD AAAAAA1
...

#22 USER clark
PASS kent
RNFR AAAAAA1
...

QUIT none (no parameters)
#29 USER bruce

PASS wayne
RNFR cave
RNTO AAAAAA1
...

#35 USER bruce
PASS wayne
RNFR cave
RNTO CCCCCC2

Q2
USER clark,
PASS kent

CWD .*

RNFR .*

Q0 none (initial state) USER .*

Q1 USER clark PASS .*

Q4
USER clark,
PASS kent, QUIT

Q3
USER bruce,
PASS wayne,
RNFR cave

RNTO .*

none (final state)

one transition (or message type) “USER .*”. Since this is
an initial state, the prelude for these test cases is empty,
and therefore they consist of only the testing message (e.g.,
“USER AAAAAA1”). As this message only has one param-
eter, the number of test cases that is produced is equal to the
number of different testing payloads.

Test cases for transitions of non-initial states require a
prelude of messages. For instance, to test the “RNTO .*”
transition, the generator would first get the corresponding
prelude (i.e., “USER bruce”, “PASS wayne” and “RNFR
cave”), and then generate several variations of the “RNTO
.*” message, each one with a different testing payload (e.g.,
test cases #29 and #35).

IV. EVALUATION

This section presents the results of the evaluation of our ap-
proach by analyzing and comparing it with several commer-
cial and open source fuzzers and vulnerability scanners. Due
to time and space restrictions we focused on a well-known
protocol, FTP [9], as the target protocol of the generated test
cases. FTP has a reasonable level of complexity and there
is a rich set of testing tools that support it, so it can clearly
illustrate our approach and support our evaluation. However,
this approach can be used on other target protocols, as long

Table III
TEST CASE GENERATION TOOLS FOR FTP PROTOCOL.

Type of tool Testing tool

Codenomicon Defensics FTP test suite 10.0
Infigo FTPStress Fuzzer 1.0
Metasploit Framework (FTP Simple Fuzzer) 4.0
FuzzTalk Fuzzing Framework 1.0
Bruteforce Exploit Detector (BED) 5.0
DotDotPwn 2.1
fuzzer.py 1.1
Nessus 4.4.1
OpenVAS 4
NeXpose (Community Edition) 2011

Framework fuzzers
(FTP setup)

Vulnerability
scanners

(FTP test cases)

Specialized FTP
fuzzers

Table IV
COVERAGE OF THE FTP PROTOCOL SPACE.

Basic FTP
(RFC959)

Full FTP
(10 RFCs)

State
machine

Total
test cases

Codenomicon 97% 61% 67% 71658
Infigo 86% 66% 17% 292644

Metasploit 94% 72% 17% 3125
FuzzTalk 91% 80% 17% 257892

BED 69% 44% 17% 24918
DotDotPwn 6% 3% 17% 28244

fuzzer.py 63% 44% 17% 197616
Nessus 20% 13% 17% 148

OpenVAS 14% 8% 17% 53
NeXpose 23% 14% 17% 54

Our approach w/ traces
from ee.lbl.gov 97% 92% 67% 1463151

as their specification is provided or reverse engineered from
network traces.

A. Protocol Space Coverage

Table III shows the test case generation tools used in the
experiments. We chose different types of tools that have
varying levels of protocol coverage and payloads: two com-
mercial fuzzers specialized in FTP, five fuzzer frameworks
that support FTP out-of-the-box, and three vulnerability scan-
ners with the most up-to-date versions of their vulnerability
databases (which included some test cases for previously
reported FTP vulnerabilities). All tools were setup to be as
complete and thorough as possible, without modifying the
default configuration too much (only some minor options that
were specific to the server configuration were changed, such
as the network address and login credentials).

We analyzed the protocol space coverage achieved by
the tools by observing which FTP commands were tested.
Columns Basic FTP and Full FTP of Table IV indicate the
percentage of the commands that were tried by the tools when
compared to the basic standard RFC 959 and the complete
specification (with all known non-obsolete extensions defined
in nine extra RFCs), respectively. With regard to Basic FTP,
the specialized FTP fuzzers have a high command coverage
because they are focused on generating test cases for a single
protocol. The vulnerability scanners, on the other hand, have
a very low coverage because they create test cases designed
to confirm the existence of vulnerabilities that are known to

Table V
TAXONOMY OF PAYLOADS FROM EXPLOITS OF 131 FTP VULNERABILITIES.

Type of payload Vulns Test case example Extrated payload
Arbitrary strings BO, ID, DoS MKD Ax255 Ax255

Strings w/ special prefix BO, FS, DoS LIST ~{ ~{
Large numbers BO, DoS REST 1073931080 1073931080
Format strings FS, DoS USER %x%x%x %x%x%x

Directory structure BO, FS, ID, DoS LIST ../../../ ../../../
Known keywords ID, DoS, DC USER test test
Special constructs BO, EE USER ')UNION SELECT (...)' ')UNION SELECT (...)'

BO: Buffer Overflow; FS: Format String; EE: Ext. App Exec. and SQL injection;
ID:Dir. Traversal and Inf. Disclosure; DoS: Denial of Service and Resource Exhaustion; DC: Default Configuration

exist in specific versions of FTP servers. These test cases
thus contain very precise testing payloads, addressing only a
small part of protocol space.

Although a tool may have a good basic coverage of the
standard, it is important to test the full command space,
including protocol extensions and even non-standard com-
mands. This less used part of the protocol is also often less
tested, and therefore its implementation might be more prone
to vulnerabilities. In effect, Codenomicon’s fuzzer, which has
the highest coverage of the FTP basic standard (97%), lacks
support for many of the extensions (it has 61% of overall
protocol coverage). The coverage of the fuzzer frameworks
depends on how comprehensive is the setup or template
for testing a specific protocol. In our study, FuzzTalk and
Metasploit have the highest coverage with 80% and 72%,
which implies that 20% or more of the commands are left
without being checked. DotDotPwn has a lower protocol cov-
erage because it is designed to search for directory traversal
vulnerabilities, and therefore, only path traversal commands
are tried (e.g., CWD and RETR). Nevertheless, as we will
see in Section IV-D, it produces payloads that are useful
to detect other types of vulnerabilities. We also found that
none of the tools tested other parameters of the commands,
besides the first one (e.g., TYPE A, TYPE E, HELP USER),
thus ignoring these parts of the implementation.

We analyzed the coverage of the protocol state machine
achieved by the tools, i.e., if they test the commands in their
correct state (e.g., trying a RNTO command after sending
a RNFR command). Column State machine of the table
depicts, for the basic RFC 959 specification, the percentage
of transitions that change the state of the protocol that are
checked by the tools. A value of 17%, for instance, reveals
that most tools only support the USER → PASS sequence
in their test cases. Codenomicon’s fuzzer is the only tool
that experiments some additional protocol transitions, such
as RNFR → RNTO, REST → STOR, and REST → RETR.
Even though testing the commands in the wrong state is
useful to discover certain kinds of flaws, they should also
be tried in their correct state. Otherwise, simple validation
mechanisms implemented at the server (e.g., that discard
arriving commands unexpected for the current state) could
prevent the processing of the malicious payloads, rendering

the test cases ineffective in practice.
The last row of Table IV outlines the results of our

approach. In these experiments we used a subset of a network
trace from 320 public FTP servers located at the Lawrence
Berkeley National Laboratory (LBL) over a period of ten
days1. The full trace contains more than 3.2 million packets
exchanged between the servers and thousands of clients. Our
tool does not require such a large amount of messages to infer
a protocol specification, so we randomly selected a 5 hour
period from the LBL trace. Next, we added a trace with the
messages collected while the ten tools of Table III tested the
FTP server. This second trace provides the messages with
the execution context of the server and also complements
the LBL trace with unusual message types, increasing the
diversity of the exchanges. The complete trace was then used
to infer a specification of the FTP protocol and to obtain the
transition context of the target server.

The set of test cases generated by our tool covers 97%
and 92% of the overall command space for the basic and full
FTP specification, which is equal or better than the results
achieved by any of the other tools. The second best coverage
for the full standard, for instance, was obtained by FuzzTalk
with 80% of the overall protocol space. With respect to the
state machine coverage, our solution also matches the best
coverage of 67%. These results are particularly interesting
because our specification is automatically generated from
network traces, while the others are manually programmed
by experts in the protocol being tested. The downside of
our better protocol coverage is a larger number of test cases
(see column Total test cases). For this experiment, the tool
generated over one million test cases as a consequence of the
combination of several testing payloads with a more complete
protocol coverage.

The overall trace used by our tool contained the most
used types of FTP requests as well as messages defined in
protocol extensions. An analysis on the command coverage
of the trace showed that the LBL trace only covered 45% of
the full command space, which was complemented with the
messages from the tools’ test cases in the second trace, thus
resulting in the final coverage of 92%. In any case, the LBL
trace contained some unconventional message types that were

1http://ee.lbl.gov/anonymized-traces.html

Table VI
POTENTIAL VULNERABILITY COVERAGE OF FTP TEST CASES.

Codenomicon Infigo Metasploit FuzzTalk BED DotDotPwn fuzzer.py Nessus OpenVAS NeXpose Our approach
50 Arbitrary strings 94% 94% 94% 94% 94% 94% 94% 94% 10% 10% 94%
10 Strings w/ special prefix 25% 50% 0% 25% 25% 0% 50% 0% 0% 25% 50%
3 Large numbers 100% 100% 0% 100% 33% 0% 100% 0% 0% 0% 100%

11 Format strings 100% 91% 0% 73% 82% 64% 82% 0% 0% 0% 100%
41 Directory structure 76% 71% 0% 61% 27% 63% 54% 2% 0% 5% 90%
14 Known keywords 21% 0% 0% 14% 7% 7% 0% 50% 29% 36% 64%
2 Special constructs 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

131 Potential coverage 78% 74% 36% 66% 58% 62% 63% 42% 7% 10% 88% (actual)
Total test cases 71658 292644 3125 257892 24918 28244 197616 148 53 54 1463151
Distinct payloads 5554 14116 12 3450 139 10286 1023 45 12 23 23569

Vulns and type of payload

not published, such as MACB and CLNT requests. MACB
commands are sometimes used by FTP clients running in the
Macintosh Operating Systems (e.g., CuteFTP or WebTen)
to transfer files in MacBinary mode, while CLNT refers
to an obscure feature of a particular FTP client (NcFTP)
apparently used to identify it and to access shell utilities.
Little more information is available for these two non-
standard commands, as they are not specified by any RFC or
other official document. This further reveals the importance
of using real traces, since it allows our approach to generate
test cases that cover otherwise unknown parts of a server
implementation.

B. FTP test cases

Another aspect analyzed in our evaluation is the quality
of the payloads generated by the tools. In order to measure
such attribute, we studied the potential coverage of these
payloads in detecting vulnerabilities. Note that this metric
is optimistic in the sense that it does not reflect the ability of
the tool to detect those vulnerabilities, but rather how many
vulnerabilities could be detected by these payloads if applied
to the correct commands in the right state. For instance, a
tool may be using a rich set of payloads, but if it does not
generate test cases for the vulnerable commands, it will not
be able to detect them.

To perform this experiment, we exhaustively searched the
web for all known FTP vulnerabilities and obtained the
respective exploits (i.e., the FTP command and the payload).
We retrieved a total of 131 known vulnerabilities and classi-
fied them according to the type of payloads that were used in
the exploits. In total, seven classes of payloads were defined,
covering six types of vulnerabilities, from buffer overflows
to SQL injection (see Table V for examples).

Table VI depicts the coverage of the payloads of the
test cases generated by the tools with respect to the 131
vulnerabilities. Only the specialized fuzzers have a potential
vulnerability coverage of over 70%, whereas the fuzzer
frameworks achieved values between 36% and 66%. The
vulnerability scanners posses the lowest coverage of 7% and
10%, with Nessus as exception with 42%, due to its high
coverage in buffer overflow payloads and known keywords.
In many cases, vulnerability scanners use passive test cases

that only obtain the welcome banner of the server to check
if the reported version is known to be vulnerable. This
type of test case does not aim at triggering vulnerabilities
and therefore its payload has a null potential vulnerability
coverage.

Naturally, the highest potential vulnerability coverage was
obtained by our tool since it extracts the testing payloads of
all the input test cases. This result shows that our approach
effectively combines the test cases from different sources to
produce a new set of test cases with a higher vulnerability
coverage than even the best specialized testing tools. Fur-
thermore, given that our test cases had a very high protocol
space coverage (92%), the actual vulnerability coverage
should be very close to the observed potential vulnerability
coverage (88%). See Section IV-D for an experiment that
gives evidence to confirm this observation.

An increased vulnerability coverage comes at the expense
of executing a larger number of test cases, which may be
too costly in some scenarios. We believe, however, that in
security testing maximizing the vulnerability coverage is
crucial. In any case, a good coverage can still be achieved
with our approach by resorting only to the test cases of two
tools, as Section IV-D will show. Moreover, some kind of
prioritization could be used to selected the actually tried test
cases, therefore reducing the number of tests to some desired
level, but this is left as future work.

C. Non-FTP test cases

This experiment studies the effectiveness of our approach
when it resorts to test cases designed for implementations
of other protocols. Table VII presents the ten sources of test
cases for non-FTP protocols that were used. It includes fuzzer
frameworks and vulnerabilities scanners that create test cases
for the SMTP [11] and POP3 [12] protocols, as well as two
plain payload generators, including the popular fuzz program
from 1990 [3].

Table VIII depicts the potential vulnerability coverage of
the extracted payloads. As with the previous experiment,
our generated test cases got the best vulnerability coverage
(83%). In fact, these test cases even obtained a better po-
tential vulnerability coverage then the best specialized FTP

Table VIII
POTENTIAL VULNERABILITY COVERAGE OF NON-FTP TEST CASES.

FTP
BED Metasploit FuzzTalk sfuzz Nessus BED sfuzz Nessus DotDotPwn fuzz Our approach

50 Arbitrary strings 94% 76% 94% 96% 94% 94% 94% 94% 94% 76% 96%
10 Strings w/ special prefix 25% 0% 25% 0% 0% 25% 0% 0% 0% 75% 75%

3 Large numbers 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 100%
11 Format strings 82% 0% 73% 100% 0% 82% 100% 82% 64% 100% 100%
41 Directory structure 27% 0% 0% 0% 0% 27% 0% 0% 63% 80% 88%
14 Known keywords 7% 0% 0% 0% 0% 7% 0% 0% 0% 14% 14%

2 Special constructs 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
131 Potential coverage 57% 29% 45% 45% 36% 57% 44% 43% 61% 71% 83% (actual)

Total test cases 34288 1300 106136 3660 13 16195 676 367 6984 150370 9939567
Distinct payloads 1087 304 303 156 29 193 676 7 6984 150370 160109

SMTP POP Plain payloads
Vulns and type of payload

Table VII
TEST CASE GENERATION TOOLS FOR NON-FTP PROTOCOLS.

Target protocol Testing tool
Bruteforce Exploit Detector (BED) 5.0
Metasploit Framework (SMTP Simple Fuzzer) 4.0
FuzzTalk Fuzzing Framework 1.0
Simple Fuzzer 0.6.2 (sfuzz)
Nessus 4.4.1
Bruteforce Exploit Detector (BED) 5.0
Simple Fuzzer 0.6.2 (sfuzz)
Nessus 4.4.1
DotDotPwn 2.1
Fuzz Generator (fuzz)Plain payloads

POP3

SMTP

testing tools, such as Codenomicon’s or Infigo’s fuzzers, with
78% and 74% respectively.

This result indicates that recycling the test cases is help-
ful because the payloads from one protocol can also be
successfully used in other protocols, since the classes of
vulnerabilities they might experience are relatively similar
(and therefore, they can be exploited in equivalent ways).
The table also suggests that using other sources of test cases
can contribute to a richer set of payloads. For instance, fuzz,
which is a simple random payload generator, has a high
potential coverage for FTP vulnerabilities.

D. Case study with two FTP fuzzers

This experiment provides a closer look at how our ap-
proach can create test cases with greater coverage than
the original input test cases. To better illustrate this, we
restricted the sources of input test cases for our tool to two
testing tools with very different values of protocol space and
potential vulnerability coverage. We chose the FTP fuzzer
from the Metasploit Project, which has a protocol coverage
of 72% and a potential vulnerability coverage of 36%, and
the DotDotPwn, a fuzzer specialized at directory traversal
vulnerabilities, which has the lowest protocol coverage of
3%, but a high potential vulnerability coverage of 62%.

We analyzed the test cases produced by the tools and eval-
uated their true vulnerability coverage. One way to calculate
this coverage is by trying the tools with the various FTP

servers to determine if they discovered the corresponding
vulnerabilities. Unfortunately this is not feasible to do in
practice because several of the vulnerable versions of the
servers are no longer available, either because they are
deleted from the web to avoid the dissemination of the flaws
or because they are no longer distributed by the commercial
software vendors. Additionally, in other cases, some of the
support software (operating system and/or specific libraries
versions) is also missing, since some of the vulnerabilities
have a few years.

In alternative, we calculated the true vulnerability coverage
by inspecting manually the generated test cases to find out
if one of them was equivalent (from a testing perspective)
to the exploit of the vulnerability. Figure 4a shows the
actual coverage of the two fuzzers and our tool. We can see
that neither fuzzer achieved their full potential vulnerability
coverage. Metasploit’s fuzzer, for instance, is able to detect
39 vulnerabilities, although it has a potential vulnerability
coverage of 47 vulnerabilities (36%). DotDotPwn is a good
example of a tool that even though it produces good payloads
(with a potential vulnerability coverage of 62%), it is only
able to cover 23 vulnerabilities (only 18% of the total number
of vulnerabilities).

The graph further reveals the gain of combining both tools
to detect vulnerabilities, where together they can discover 59
FTP vulnerabilities (about 45% of the total number). Our
tool, however, generated a set of test cases with a coverage
of 64% of the known FTP vulnerabilities. This shows that
our approach can cover an additional 25 vulnerabilities that
none of the tools created test cases for. Figure 4b displays a
representation of the coverage of the FTP vulnerabilities by
Metaploit’s FTP fuzzer, DotDotPwn and our own approach.
Each dot corresponds to one of the 131 vulnerabilities, and
vulnerabilities of the same type are graphically depicted near
to each other. The area of the circles depicts the number
and type of vulnerabilities found by each tool. For example,
there are 65 dots for the buffer overflow type of vulnerability,
where 35 were found by Metasploit, 9 by DotDotPwn, and 47
were disclosed by our tool (an additional 5 when compared
with using both tools), while 18 still remained undetected

0

20

40

60

80

100

Metasploit DotDotPwn Metasploit +
DotDotPwn

Our
approach

Buffer Overflow

Format String

External App Execution
and SQL injection
Directory Traversal and
Information Disclosure
Denial of Service and
Resource Exhaustion
Default Configuration

Potential vulnerability
coverage

vu

ln
er

ab
ili

tie
s

47

81

(a) True vulnerability coverage.

Buffer
Overflow

Format
String

External App Execution
and SQL injection

Directory Traversal and
Information Disclosure

Denial of Service and
Resource Exhaustion

Default Configuration

65 Buffer
Overflow

9 Format
String

0/3 External App Execution
and SQL injection

13/32 Directory Traversal
and Information Disclosure

32 Denial of Service and
Resource Exhaustion

0/9 Default Configuration

Metasploit

DotDotPwn

Our approach

Bugtraq 2496

(b) Representation of the vulnerability coverage.

Figure 4. Analysis of the true vulnerability coverage of experiment 3.

from all tools.
The figure shows that the Metasploit’s FTP fuzzer has

a much larger coverage than DotDotPwn, circumscribing
many vulnerabilities. Nevertheless, DotDotPwn can cover
many vulnerabilities that Metasploit cannot, such as directory
traversal and information disclosure and buffer overflow. Our
approach is depicted by the line surrounding both circles.
The area delineated by this line is larger than the union of
both circles because it combines a much better protocol space
coverage with the payloads of both tools. As a last experiment
to help to confirm this hypothesis, we actually installed the
open source server wu-ftp 2.6.0 that is known to contain a
denial of service vulnerability (bugtraq 2496). Then, we used
the three tools to test it, and found out that both Metasploit
and DotDotPwn fuzzers were incapable of finding the flaw,
but our tool was successful.

V. RELATED WORK

The paper describes a methodology and a tool that au-
tomates the process of generating test cases. In different
contexts, other approaches also perform systematic and au-
tomatic generation of test cases, however, to the best of our
knowledge there is no approach that reuses and combines
different test cases.

Fault Injection is an experimental approach for the ver-
ification of fault handling mechanisms and for the estima-
tion of various parameters that characterize an operational
system [13], [14]. Traditionally, fault injection has been
utilized to emulate hardware and software faults, ranging
from transient memory corruptions to permanent stuck-at
faults (see for instance [15], [16]). The emulation of other
types of faults has also been accomplished with fault injection
techniques, such as software and operator faults [17], [18].

Robustness Testing Mechanisms study the behavior of
a system in the presence of erroneous input conditions.
Their origin comes both from the software testing and fault-
injection communities, and they have been applied to various
areas, such as POSIX APIs and device driver interfaces [19],
[20]. However, due to the relative simplicity of the mimicked

faults, it is difficult to apply these tools to discover security
vulnerabilities.

Fuzzers deal with this complexity by injecting random
samples as input to the software components. For example,
Fuzz [3] generates large sequences of random characters to
be used as testing parameters for command-line programs.
Many programs failed to process the illegal arguments and
crashed, revealing dangerous flaws like buffer overflows. By
automating testing with fuzzing, a significant number of
interesting input permutations can be tried, which would be
difficult to write as individual test cases [21], but with the cost
of only exercising a random sample of the system behavior.
Throughout the years fuzzers have evolved into more intel-
ligent vulnerability detectors by exploring knowledge about
the system under test [22], [4], [5], [23], [24].

Fuzzing Frameworks have been developed to ease the
process of tailoring fuzzing tools to specific systems [2],
[6], [7]. Metasploit is one of these frameworks that provides
support for the creation of new testing modules [2]. It allows
the tester to define the complete testing process, from the
payload generation to the actual test case execution and
interaction with the target system.

Vulnerability Scanners are a practical type of testing tools
whose purpose is the discovery of known vulnerabilities [1],
[25], [26], [27], [28]. These tools resort to a database of
previously reported vulnerabilities and attacks that allow their
detection. One entry in this database typically contains the
server type and version where the vulnerability is known
to exist, as well as the test case to detect it. Usually, this
test case can only be used to confirm the existence of that
vulnerability on that particular version of the server, and
it cannot be used on other kinds of servers, such as those
that implement other protocols. The analysis of a system is
usually performed in three steps: first, the scanner interacts
with the target to obtain information about its execution
environment (e.g., operating system and available services);
then, this information is correlated with the data stored in
the database, to determine which vulnerabilities have been

observed in this type of system; then, the scanner performs
the corresponding attacks and presents statistics about which
ones were successful. Even though these tools are extremely
useful to improve the security of systems in production,
they have the limitation of being unable to uncover new
vulnerabilities.

VI. CONCLUSION

This paper proposes to recycle existing test cases from sev-
eral sources, including those designed to test implementations
of other protocols. The approach automatically extracts the
malicious payloads of the original test cases, and then re-
uses them in a new set of test cases. These new test cases
are generated based on a protocol specification inferred from
network traces of the target server, allowing the inclusion of
not only the normal protocol exchanges but also extensions
and non-standard features. The experiments with ten FTP
testing tools and ten other sources of test cases for non-FTP
protocols, show that in both cases our tool is able to get
better or equal protocol and vulnerability coverage than with
the original test cases. In a experiment with the Metaploit
and DotDotPwn FTP fuzzer frameworks, our tool showed
an improvement of 19% on the vulnerability coverage when
compared with the two combined fuzzers, being able to
discover 25 additional vulnerabilities.

Acknowledgements: This work was partially supported
by EC through project FP7-257475 (MASSIF) and by FCT
through the Multi-annual Program and project PTDC/EIA-
EIA/100894/2008 (DIVERSE).

REFERENCES

[1] Tenable Network Security, “Nessus vulnerability scanner,”
2008, http://www.nessus.org.

[2] Rapid7, “Metasploit project,” 2011,
http://www.metasploit.com.

[3] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of UNIX utilities,” Communications of the
ACM, vol. 33, no. 12, pp. 32–44, 1990.

[4] Codenomicon, “Defensics X,” 2011,
http://www.codenomicon.com.

[5] Infigo Information Security, “Infigo FTPStress Fuzzer,” 2011,
http://www.infigo.hr/.

[6] AutoSec Tools, “Fuzztalk fuzzing framework,” 2011,
http://www.autosectools.com/Page/FuzzTalk-Guide.

[7] C. Navarrete and A. Hernandez, “DotDotPwn,” 2011,
http://dotdotpwn.blogspot.com/.

[8] Internet Engineering Task Force, “RFC Editor,” 2011.

[9] J. Postel and J. Reynolds, “File Transfer Protocol,” RFC 959,
1985.

[10] J. Antunes, N. Neves, and P. Verissimo, “Reverse engineering
of protocols from network traces,” in Proc. of the Working
Conf. on Reverse Engineering, 2011.

[11] J. Klensin, “Simple Mail Transfer Protocol,” RFC 5321, 2008.

[12] J. Myers and M. Rose, “Post Office Protocol - Version 3,”
RFC 1939, 1996.

[13] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell,
“Fault injection and dependability evaluation of fault-tolerant
systems,” IEEE Trans. on Computers, vol. 42, no. 8, pp. 913–
923, 1993.

[14] M. Hsueh and T. Tsai, “Fault injection techniques and tools,”
IEEE Computer, vol. 30, no. 4, pp. 75–82, 1997.

[15] J. Carreira, H. Madeira, and J. G. Silva, “Xception: Software
fault injection and monitoring in processor functional units,”
in Proc. of the Int. Working Conf. on Dependable Computing
for Critical Applications, 1995, pp. 135–149.

[16] T. Tsai and R. Iyer, “Measuring fault tolerance with the FTAPE
fault injection tool,” Quantitative Evaluation of Computing
and Communication Systems, pp. 26–40, 1995.

[17] J. Christmansson and R. Chillarege, “Generation of an error
set that emulates software faults,” in Proc. of the Int. Symp.
on Fault-Tolerant Computing, 1996, pp. 304–313.

[18] J. Durães and H. Madeira, “Definition of software fault emu-
lation operators: A field data study,” in Proc. of the Int. Conf.
on Dependable Systems and Networks, 2003, pp. 105–114.

[19] P. Koopman and J. DeVale, “Comparing the robustness of
POSIX operating systems,” in Proc. of the Int. Symp. on Fault-
Tolerant Computing, 1999, pp. 30–37.

[20] M. Mendonça and N. Neves, “Robustness testing of the
windows DDK,” in Proc. of the Int. Conf. on Dependable
Systems and Networks, 2007, pp. 554–564.

[21] P. Oehlert, “Violating assumptions with fuzzing,” IEEE Secu-
rity and Privacy, vol. 03, no. 2, pp. 58–62, 2005.

[22] University of Oulu, “PROTOS – security test-
ing of protocol implementations,” 1999–2003,
http://www.ee.oulu.fi/research/ouspg/protos/.

[23] M. Sutton, “FileFuzz,” 2005, http://labs.idefense.com/labs-
software.php?show=3.

[24] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley, 2007.

[25] Greenbone Networks GMBH, “Openvas,” 2011,
http://www.openvas.org/.

[26] Rapid7, “NeXpose,” 2011, http://www.rapid7.com.

[27] Saint Corp., “SAINT network vulnerability scanner,” 2008,
http://www.saintcorporation.com.

[28] Qualys Inc., “QualysGuard enterprise,” 2008,
http://www.qualys.com.

