
DIVERSYS: DIVErse Rejuvenation SYStem

Miguel Garcia, Nuno Neves, and Alysson Bessani

Universidade de Lisboa, Faculdade Ciências
mhenriques@lasige.di.fc.ul.pt,

{neves,bessani}@di.fc.ul.pt

Abstract. Replication has been used to build intrusion-tolerant sys-
tems, which are able to tolerate a limited number intrusions before the
system is compromised. An important limitation of intrusion-tolerant
systems is that if the system’s replicas are similar, once a flaw is discov-
ered and exploited in one replica, then it is easy to replicate it on the
other replicas, compromising the whole system. To circumvent this lim-
itation one must find a way to make these exploits occur independently.
We propose the deployment of different operating systems in order to
avoid common failures, making a system correct unless f +1 replicas are
compromised. However, if enough time is given to the adversary, then
eventually f + 1 different replicas will suffer an intrusion. Hence, to re-
duce the size of this time window, we introduce diversity on recoveries,
where the system will replace the faulty replicas with fresh and different
ones (therefore, cleaning their faulty state) as the adversary compromises
the replicas. The remaining challenge is to manage the recoveries without
violating the availability of the system. Our contribution is to assess the
risk on replicated systems to trigger recoveries.

Keywords: Diversity, Intrusion Tolerance, Rejuvenation, Operating Sys-
tems, Vulnerabilities.

1 Introduction

Despite the effort to verify and test software, it is extremely hard to produce
source code that has no flaws. When the software is deployed these flaws can be-
come intentional faults (malicious) or accidental faults. In the presence of faults
the system can behave abnormally, i.e., stop providing the expected service.

One of the most efficient and transparent ways to deal with faults is to
tolerate them. Replicated systems have been used to solve this problem in the
last decades. Server redundancy (called replicas) allows the system to be able
to tolerate faults in some of the nodes and keep the availability of the service.
These systems follow the state machine replication abstraction to guarantee
that every replica executes the same steps. A key building block of fault-tolerant
systems is Byzantine fault-tolerant (BFT) protocols, which guarantee the correct
behavior in spite of arbitrary faults, provided that a minority (usually less than
one third [1]) of the components are faulty. Works concerning these protocols
tend to assume that nodes fail independently [2–5]. However, if the replicas have



the same software, once one flaw is discovered and exploited then it is easy to
replicate the attack on the remaining replicas until the system is compromised.
Moreover, if an accidental fault occurs then every replica will progress, by the
state machine replication definition, into a faulty state.

To circumvent this limitation one must substantiate the fault independence
assumption by construction. Diversity allows one to build safer replicated sys-
tems through the assumption that different components exhibit independent
failure modes. Still, given enough time, the attacker will eventually compromise
f + 1 different replicas. The only way to deal with this limitation is to make
the optimistic assumption that the (at most) f faulty replicas of the the sys-
tem can be repaired before f + 1 occur1. Moreover, every diverse replica is fully
patched, clean from known vulnerabilities, although, a remaining challenge is to
deal with zero-day vulnerabilities, i.e., vulnerabilities that only became known
when the exploit occurs. Although zero-day vulnerabilities require that the at-
tacker spends some time to discover a new vulnerability for each different OS,
Symantec stated that 14 zero-day vulnerabilities were discovered in 2010 [7], and
8 in 2011 [8]. A powerful attacker could silently discover vulnerabilities on f + 1
replicas, and then run the exploits at the same time, taking over the system.

Proactive recovery (PR) is a way to avoid this scenario. PR allows the system
to periodically rejuvenate replicas: i) if the replica was silently compromised the
faulty state will be cleaned; ii) if a replica is correct but it is being probed
by the attacker then a recovery will force the attacker to restart the probing.
Besides the PR, robust systems tend also to invoke recoveries if a misbehavior
is detected [9]. The system is intrusion-tolerant as long as the recoveries occur
faster than the f + 1th fault. Moreover, this recovery must modify the replica
in such a way that it is not trivial for an attacker to compromise it again. One
way to do it is to create a diverse software configuration for the rejuvenated
replica, with a (hopefully) different set of (unknown) vulnerabilities. One can
find several opportunities to use diversity (for example at the operating system,
application, hardware, location, and configuration). A previous work from the
authors show that OS diversity might be effective against common mode faults
at the OS level [10].

We propose a intrusion-tolerant system support called DIVERSYS (DIVEr-
sity Recovery SYStem), which enables a system’ replicas to fail independently
through automatic management of diverse configurations and recoveries. Any f
replicas can fail within a bounded evaluation condition, i.e., between recoveries,
first to clean faulty states and then to stop attacks in progress (i.e., the attacker
probing the system). We want to present a new way to manage recoveries: timely
loose, without unavailability periods, adaptable and configurable by the admin-
istrator. We propose a metric to evaluate the replicated system, the Risk level,
which is calculated based on the risk of replica’s operating system being intruded.
DIVERSYS uses this metric to guide decisions of replicas’ proactive recovery,
changing the system to keep its risk level under a predefined threshold. In the

1 However, even with this repairing, there is a natural and slow decaying on the the-
oretical reliability of the recoverable system [6].



end, the objectives of DIVERSYS are to detect exploits as soon as possible, to
perform fast recoveries and to install patches as soon as they are available.

2 Related work

Diversity. Design diversity was introduced in 1975 as a mechanism for soft-
ware fault tolerance [11]. N-version programming is a technique to create diverse
software systems [12]. The objective is to achieve fault tolerance, assuming that
designs and implementations developed independently will exhibit failure diver-
sity.

Gashi et al. [13] analyzed bug reports for four database servers (PostgreSQL,
Interbase, Oracle, and Microsoft SQL Server) and verified which products were
affected by each bug reported. They found a few cases of a single bug affecting
more than one server, and that there were no coincident failures in more than
two of the servers.

Garcia et al. [10] present a study based on the National Vulnerability Database
data (NVD)2, that shows that there is strong indication that different operating
systems can exhibit vulnerability independence. They collected the NVD data
and analyzed how many common vulnerabilities affected two OSes, and what is
the best way to achieve vulnerability independence in a replicated system with
diversity.

Rejuvenation. Software rejuvenation was proposed in the 90’s by Huang et al
[14]. The initial motivation was to reset the state of a server, in a client-server
communication model, taking advantage of the idle time of the server to clean
the state.

Castro and Liskov presented BFT-PR, a new algorithm that enhances the
availability of the PBFT [15] by employing Proactive Recovery (PR) [2]. This
enhancement requires that each replica has a watchdog timer that periodically
yields the control to a recovery monitor, that is stored in a read-only memory.
This watchdog allows the system to trigger timeouts to hold the recoveries. Hence
this solution requires strong synchrony assumptions.

Sousa et al. proposed an intrusion-tolerant system [9] with proactive-reactive
recovery. The system detects faulty replicas and forces them to recover, with-
out sacrificing periodic rejuvenations. The technique can only be implemented
with some synchrony [16], due to the recovery trigger clocks. To overcome this
limitation the authors proposed an hybrid system model: the payload is an any-
synchrony subsystem, and the wormhole is a synchronous subsystem. This is a
limitation which we address in this paper.

Rodrigues et al. [17] proposed BASE, a PBFT protocol extension with a
filesystem storage, similar to NFS. The replicated filesystem uses proactive re-
covery, although the authors were optimistic on the experiments and had an
imprecise approach for estimating the reboot times as 30 seconds (to simulate

2 http://nvd.nist.gov/



a reboot), which is very fast time for an OS recovery. A recovery was started
every 80 seconds in a round-robin discipline.

Distler et al. [18] and Reiser and Kapitza [19] identified several issues that
make virtualization useful for proactive recovery, which allows to create an hy-
brid fault model system: periodic recoveries can be triggered by a service in
the privileged domain, which makes the replacement of the application domain,
reducing the downtime of the recovery. Although it could not assure continu-
ous availability because the service has to be suspended for 3 seconds in each
recovery.

Roeder and Scheinder [20] propose the use proactive obfuscation, whereby
each replica is periodically restarted using a clean generated diverse binary.
Proactive obfuscation employs semantics-preserving program transformations.
There is a technical limitation in this line of research: it seems very hard to
transform (re-compile) a code that is not open (e.g., Windows OSes). The reju-
venations are timely triggered by synchronized processors, built on the assump-
tion that hardware similarity and a hybrid architecture provide better synchrony
conditions.

These cited works on rejuvenation comprise some of the state-of-the-art solu-
tion on recoveries. However, a common requirement is that recoveries are timely
triggered. Typically by requiring strict scheduling, design assumptions (i.e., hy-
brid systems with synchronous parts), and trusted components such as watch-
dogs to provide clock timeouts. In this work we intend to solve the recovery
management problem with loosely time requirements.

3 DIVERSYS: DIVErse Rejuvenation SYStem

This section presents the architecture of DIVERSYS, a diversity and recovery
management for fault-tolerant replication systems running in a virtualized envi-
ronment. This system implements proactive and reactive recovery mechanisms
and introduces diversity during recoveries. DIVERSYS is built on a hybrid ar-
chitecture, although without requiring the support of a real-time system, as in
Sousa et al [16], but instead, relying on the shared knowledge about replicas’
risk to define when it is time to recover (or change) a replica.

3.1 Diversity

In order to deploy a system with diversity we use distinct operating systems,
aiming for fault independence. We can find several OS families like Linux, BSD,
Solaris and Windows. Each family has different distributions (e.g., Debian, Red-
hat and Ubuntu for the Linux family), and each distribution has several releases
available on the web (e.g., Debian 6.0, Debian 5.0 and Debian 4.0).

Figures 1 and 2 show two replicated systems with 4 replicas that tolerate one
fault (according to the n ≥ 3f+1 relation [2]). In Figure 1 the replicated system
has no diverse components, therefore once a replica is compromised it is easy
to replicate the attack on f + 1 replicas. In Figure 2 the replicated system has



diversity on the components, then the attacker needs more effort to compromise
the f +1 replicas, because it is expected that they do not share vulnerable code.

Fig. 1. Zero-day vulnerabilities in a
replicated system without diversity.
When a vulnerability is discovered
the attacker can easily compromise
the whole system reproducing the at-
tack.

Fig. 2. Zero-day vulnerabilities in a repli-
cated system with diversity. When a vulner-
ability is discovered the attacker needs to
make more effort to compromise the whole
system, since reproducing the attack is in-
effective as vulnerabilities are not shared.

With diverse components, one is able to potentially assure fault indepen-
dence, assuming that the attack’s power is the same in both figures scenarios.
However, the attacker will compromise f + 1 replicas within a certain amount
of time. Then we require the use of recovery mechanisms to guarantee that the
system refreshes faulty replicas before f+1 replicas are compromised. Therefore
we are reducing the time in which a replica is exposed to malicious users.

Notice that although we define DIVERSYS for OS reconfiguration, the re-
placement method can be employed for any software component for which di-
versity exists (e.g., databases, web servers, ftp servers). We focus on OS due to
the existence of real-world data that can be used to feed our method.

3.2 OS recycling

In the previous section we stated that recovery mechanisms are needed, in this
section we will explain how we use these mechanisms. On each recovery a diverse
operating system should be loaded.

Figure 3 shows the vulnerability life-cycle of two vulnerabilities in two dif-
ferent OSes. OS X runs until the exploit X1 is detected, and then the system
replaces OS X with OS Y, which has one vulnerability Y1 with its own life-
cycle. While the system is running, a patch will be available and installed for
vulnerability X1 and OS X is again able to be used safely.

Our solution makes one main assumption: eventually a patch will be produced
for a given vulnerability. However, the time it takes for a patch to be made
available can be large. Additionally, if many other OSes are available (i.e., if



Fig. 3. Vulnerability life-cycle: In OS X first the vulnerability X1 is discovered, then
X1 is exploited, the system detects the fault and starts a recovery, replacing OS X with
OS Y and a new life-cycle starts for vulnerability Y1 in OS Y. Between the exploit of
X1 and the patch of X1 OS X can not be used. After X1 is patched OS X can be used
again.

there are many options) we do not need to recycle already used (i.e., vulnerable
or/and patched) OSes.

3.3 DIVERSYS architecture

The system is composed by two main parts: the safe part and the unsafe part.
Figure 4 shows the generic architecture of DIVERSYS. The architecture is built
to take advantage from virtualization mechanisms [19].

Safe part. In this part the system is built to be secure and isolated. It is
composed by n hypervisors, which are paired through reliable, timely and in-
dependent channels. These channels guarantee that it is possible to securely
replicate information within an upper time bound. Each hypervisor has a secure
connection to an OS pool, which is a virtual machine image repository where
diverse OSes images are stored.

Unsafe part. This part is built to be secure, although since it is connected to
the Internet we must expect threats from external agents. It is responsible to
provide the service for clients. In order to detect malicious interactions in the
replicas we use BFT state machine replication (e.g., [2, 22]) to guarantee that
each server executes the same requests in the same order and replies correctly to
the clients. This part runs in a virtual environment, the objective is to use this
virtual instance as a sandbox, that can be reconfigured (by the safe part) when
deemed insecure.

3.4 Risk level

This section describes the main contribution of the paper, the risk level metric
and how we use it of trigger proactive recoveries of replicas. Some of the related



Fig. 4. DIVERSYS architecture is built on two main parts, the unsafe part which is
exposed to potentially malicious agents, and the safe part which is a hypervisor that
controls the unsafe part.

works in the literature depends on the existence of secure clocks to trigger re-
coveries [2, 9], which forces one to assume synchronized clocks between replicas
(usually in the a secure sub-part of the system, e.g., wormhole or hypervisors).
Our recovery scheduling is based on the Risk level of the system, therefore the
system needs to be monitoring its risk level.

The main idea is that the Risk level should not exceed α, which is a parameter
set by the administrator during system’s deployment. This value is the security
threshold: whenever the risk level reaches α a replica recovery is triggered. The
candidate to be recovered is the replica with the major contribution to the Risk
level of the system.

The Risk level is calculated based on the operating systems selected to run
on each replica of the system, and the expected number of common vulnerabili-
ties among different operating systems [10]. For instance, if the system runs four
OSes with the same version then it is much likely to have a greater Risk level
(a single vulnerability can expose all replicas). But if the system runs different
OS versions, it is more likely to have a lower Risk level. Also, via BFT proto-
cols or distributed IDS (Intrusion Detection System), the system can detect a
replica as faulty, then the system increases the faulty OS’s risk value (see Ta-
ble 1), and eventually will be replaced by a new OS, which decreases the Risk
level. In order to proactive-recover all replicas, DIVERSYS keeps increasing the
degradation value, otherwise the risk level is constant until some replica is faulty.
This increase rate depends on the specific OS, therefore each OS version has a
degradation time.

Figure 5 shows a replicated system with OS diversity. The Risk level increases
at every time unit, and when it reaches the α value the system performs a
recovery. In order to minimize the risk level, the system must evaluate which



R2

R3
α

R1 recovery R2 recovery 

R
is
k

time

R0

R1

R2

0

Risk level
time unit

Fig. 5. Timeline of the replicated system: Risk level grows with time. When risk level
achieves α, the system performs a recovery and the risk level decreases.

OSes are running, and what is the best OS to replace, and which new OS should
be used. As a caution note we are not addressing the diversity selection problem,
we can use an algorithm like [21] to solve this problem.

Risk level calculation. The value for the Risk level of a given system (based
only on the OSes used by its replicas) can be calculated using three equations.
To start, the Risk level itself is given by Equation 1, where n is the number of
replicas, Ri is the ith replica’s contribution, and the commonality value (CV ).

Risklevel = (

n∑
i=0

Ririsklevel) + CV (1)

Equation 2 is used to calculate the risk of each OS running in each replica.
Where ∆dt is a constant set for each OS and represents the degradation time
rate, rd is the current round of each OS. Each OS running has it owns rd
counting, because recoveries occur at different times.

Ririsklevel =

rd∑
i=0

rd

1 − (∆dt− i)
(2)

Equation 3 allows one to calculate the commonality of two OSes. The Equa-
tion returns the count of common vulnerabilities affecting Ri and Rj OSes.

CV =

n−1∑
i=0

n∑
j=i+1

common(Ri, Rj) (3)

While Risk level is below the α threshold the system is considered not in
risk. Remember that α is defined by the administrator, and thus it can be ad-
justed depending on the criticality of the deployed system. During the system’s
execution, the algorithm only needs to calculate CV once per recovered replica.



3.5 Illustrative Results

In this section we present a simple illustration of our approach considering real
data. To evaluate the Risk level contribution on a replicated system we selected
OS vulnerabilities published by NVD between 2001 and 2012. In the experiments
we consider OSes from different families: OpenBSD, FreeBSD, Debian, Ubuntu,
Windows2003 and Windows2008.

The contribution of each OS is positive when the risk level decreases, and
negative when the risk level increases. Analyzing Table 1 values one can see that
OpenBSD or Debian have negative values, and Windows2008 has positive values,
that means that Windows2008 has a more negative contribution than OpenBSD
and Debian to Risk level. Each entry of Table 1 is the result of Equation 2 with
rd from 0 to 15, and ∆dt is the average number of days that takes one OS to
have a vulnerability published after another.

rd 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ∆dt

OpenBSD -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 49
FreeBSD -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 48

Debian -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 43
Ubuntu -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 41

Windows2003 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 7
Windows2008 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 7

Table 1. Degradation level of each OS, outcome from Equation 2.

Table 2 presents the results of Equation 3 for every possible set. Recall that
CV is the sum of common vulnerabilities of each pair of the set (without vul-
nerability duplicates).

OS set CV OS set CV

Openbsd, Freebsd, Debian, Ubuntu 46 Openbsd, Debian, Win2003, Win2008 211
Openbsd, Freebsd, Debian, Win2003 35 Openbsd, Ubuntu, Win2003, Win2008 213
Openbsd, Freebsd, Debian, Win2008 35 Freebsd, Debian, Ubuntu, Win2003 11
Openbsd, Freebsd, Ubuntu, Win2003 37 Freebsd, Debian, Ubuntu, Win2008 10
Openbsd, Freebsd, Ubuntu, Win2008 37 Freebsd, Debian, Win2003, Win2008 211
Openbsd, Freebsd, Win2003, Win2008 244 Freebsd, Ubuntu, Win2003, Win2008 211
Openbsd, Debian, Ubuntu, Win2003 13 Debian, Ubuntu, Win2003, Win2008 219
Openbsd, Debian, Ubuntu, Win2008 12

Table 2. Commonality value (CV), which is given by sum of the common vulnerabil-
ities between OS, the outcome from Equation 3.



The best set, according to [10], from Table 2 is: OpenBSD, Debian, Ubuntu
and Windows2008, then the set CV is 12. In Table 3 we show the Risk level
(given by Equation 1 for the selected OSes). We set the α value as −15, each
round the system updates the Risk level. A recovery will take place in the 13th

round. The candidate to be replaced with a new diverse OS is Windows2008,
because it has the most negative contribution to Risk level. The system replaces
it with Windows2003, which has its round counter as 0 and CV is then set to
13.

round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Risk level -68 -64 -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 (-12) (-8)

OpenBSD -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19
Debian -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13
Ubuntu -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11
Windows2008 8 9 10 11 12 13 14 15 16 17 18 19 20 21 (22) (23)

round - - - - - - - - - - - - - - 0 1

Risk level - - - - - - - - - - - - - - -25 -21

Windows2003 - - - - - - - - - - - - - - -33 -32

Table 3. Risk level evolution during 15 rounds (Equation 1). At the 13th the system
performs a recovery, replacing Windows2008 with Windows2003.

Table 3 shows the Risk level contribution in action: the risk reaches α in
the 13th round, and then a recovery is performed replacing Windows2008 with
Windows2003. In the 14th round, the overall Risk level (eighth row) decreases
to −25, even with each OS increasing its Risk level.

4 Limitations & Future work

Adding diversity to a system inevitably introduce some limitations or difficulties.
The main limitation we have found in this work was to obtain data on vulner-
ability life-cycle as in [23]. First because Open Source Vulnerability Data Base
(OSVDB)3 is temporarily unavailable4. Second, most of the information avail-
able in the web is not structured, or do not contain the information we needed.
Therefore it is infeasible to manually check every source of information, and cross
data manually. In another issue, each OS has a different way to be patched, this
problem is even more complex when applications are also considered.

Regarding DIVERSYS and the Risk leve, we are aware that it is impossi-
ble to guarantee that our system is (always) secure, however, our approach gives

3 http://www.osvdb.org/
4 http://blog.osvdb.org/2012/03/30/were-still-here-update-on-osvdb-project-data-

and-exports



more confidence using several techniques that mitigate the attack’s consequences.
DIVERSYS uses proactive and reactive recoveries together with diversity man-
agement to avoid common failures in replicated long-lived critical systems. The
recovery mechanisms within DIVERSYS are built without hard timing assump-
tions, contrary to some state-of-the-art approaches. We manage the recoveries
based on security information about the software running on the system replicas
(in this paper we focus on OSes). This information is focused on the common
vulnerabilities, in order to present a set of replicas with less probability from
being exploited with the same flaw, and the average in which vulnerabilities are
discovered for each OS, in order to set a degradation factor to each replica.

In the future we will implement automatic mechanisms to gather vulnera-
bility and patch information in order to automatically update the OS images
in the OS pool. Moreover, we also want to integrate our approach with recent
techniques for automatic patching replicas [24]. Finally, we want to validate the
Risk level metric with further data and gain more experience on its use for real
system. Our feeling is that there are still more parameters that can contribute
with the risk evaluation of a system, in particular it is worth to investigate the
relationship of this metric with recent work on using reliability theory to evaluate
intrusion-tolerant systems [6].

Acknowledgments. This work was partially supported by the EC through
project FP7-257475 (MASSIF) and by the FCT through the Multiannual (LaSIGE)
and the CMU-Portugal Programmes, and the project PTDC/EIA-EIA/100894/2008
(DIVERSE).

References

1. Lamport L., Shostak R. and Pease M.: The Byzantine Generals Problem, ACM
Transactions on Programing Languages and Systems, 1982, 4(3): 382–401.

2. Castro M. and Liskov B.: Practical Byzantine Fault-Tolerance and Proactive Recov-
ery, ACM Transactions on Computer System, 2002, 20(4): 398–461.

3. Correia M., Neves N. and Veŕıssimo P.: How to Tolerate Half Less One Byzantine
Nodes in Practical Distributed Systems, in Proceedings of the IEEE Symposium on
Reliable Distributed Systems 2004, 174–183.

4. Bessani A., Alchieri E., Correia M. and Fraga J.: DepSpace: A Byzantine Fault-
Tolerant Coordination Service, in Proceedings of the ACM/EuroSys Conference on
Computer Systems, 2008, 43(4): 163–176.

5. Moniz H., Neves N., Correia M. and Veŕıssimo P.: RITAS: Services for Randomized
Intrusion Tolerance, IEEE Transactions on Dependable and Secure Computing,
2011, 8(1): 122–136.

6. Brandão L. and Bessani A.: On the Reliability and Availability of Replicated and
Rejuvenating Systems Under Stealth Attacks and Intrusions, Journal of the Brazilian
Computer Society, Springer London, 2012, 18(1): 61–80.

7. Symantec Internet Security Threat Report, Vol. 16, published: April
2011. http://msisac.cisecurity.org/resources/reports/documents/

SymantecInternetSecurityThreatReport2010.pdf.



8. Symantec Internet Security Threat Report, Vol. 17 published: April 2012.
http://www.symantec.com/content/en/us/enterprise/other_resources/

b-istr_main_report_2011_21239364.en-us.pdf.
9. Sousa P., Bessani A., Correia M., Neves N. and Verisśımo P.: Highly Available

intrusion-tolerant Services with Proactive-Reactive Recovery, IEEE Transactions on
Parallel and Distributed Systems, 2010, 21(4): 452–465.

10. Garcia M., Bessani A., Gashi I., Neves N. and Obelheiro R.: OS Diversity for In-
trusion Tolerance: Myth or Reality?, in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks, 2011, 383–394.

11. Randell B.: System Structure for Software Fault Tolerance, ACM SIGPLAN No-
tices, 1975, 10(6): 437–449.

12. Avizienis A. and Chen L.: On the Implementation of N-Version Programming for
Software Fault Tolerance During Execution, Software Engineering, IEEE Transac-
tions, 1985, 11(12): 1491–1501.

13. Gashi I., Popov P. and Strigini L.: Fault Tolerance via Diversity for Off-the-Shelf
Products: A Study with SQL Database Servers, IEEE Transactions on Dependable
and Secure Computing, 2007, 4(4): 280–294.

14. Huang Y. and Kintala C.: Software Implemented Fault Tolerance: Technologies and
Experience, 1993.

15. Castro M. and Liskov B.: Practical Byzantine Fault Tolerance, in Proceedings of
the Symposium on Operating Systems Design and Implementation, 1999.

16. Sousa P., Neves N. and Verisśımo P.: How Resilient are Distributed f
Fault/intrusion-Tolerant Systems?, in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks, 2005.

17. Rodrigues R., Castro M. and Liskov B.: BASE: Using Abstraction to Improve Fault
Tolerance, in Proceedings of the ACM Symposium on Operating Systems, 2001.

18. Distler T., Kapitza R. and Reiser H.: Efficient State Transfer for Hypervisor-
Based Proactive Recovery, in Proceedings of the Workshop on Recent Advances
on intrusion-Tolerant Systems, 2008.

19. Reiser H. and Kapitza R.: Fault and Intrusion Tolerance on the Basis of Virtual
Machines, Tagungsband des 1. Fachgesprch Virtualisierung, 2008.

20. Roeder T. and Schneider F.: Proactive Obfuscation, ACM Transactions on Com-
puter Systems, 2010, 28(2): 4:1–4:54.

21. Garcia M., Bessani A. and Neves N. Diverse OS Rejuvenation for Intrusion Toler-
ance, in poster session of the IEEE/IFIP International Conference on Dependable
Systems and Networks, 2011.

22. Sousa J., Branco B. Bessani A. and Pasin M.: Desempenho e Escalabilidade de uma
Biblioteca de Replicação de Máquina de Estados Tolerante a Faltas Bizantinas. in
Simpósio de Informática INFORUM, 2011.

23. Frei S., May M., Fiedler U. and Plattner B.: Large-scale Vulnerability Analysis,
in Proceedings of the SIGCOMM workshop on Large-scale attack defense, 2006,
131–138.

24. Costa M., Crowcroft J., Castro M., Rowstron A., Zhou L., Zhang L. and Barham P.:
Vigilante: End-to-end containment of Internet Worm Epidemics, ACM Transaction
on Computer Systems, 2008, 26(4).


