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Abstract. The communication between computer systems is dictated by
network protocols, which determine how the network components inter-
act with each other. Knowing the specification of a network protocol can
greatly improve the security and dependability of both the design of the
protocol and the applications implementing it. The specification can be
used, for example, to verify if the application’s implementation is cor-
rect and in accordance, or even to aid in the creation of specific firewall
rules or IDS filters to block messages that do not comply with the defined
standard.

However, the protocol specification is not always available, which makes
assessing the correctness and security of such protocols difficult. Protocol
reverse engineering has been used to overcome this problem, by deducing
the specification of closed protocols from their utilization alone and with-
out any assumption about their structure or operation. In this paper, we
present two different approaches, based on sequence alignment techniques,
to build an automaton of a network protocol from network traces.

Resumo. A comunicação entre sistemas computacionais é ditada pelos
protocolos de rede que determinam a forma como os componentes de rede
interagem entre si. Conhecer a especificação do protocolo de rede pode
melhorar profundamente a segurança e confiabilidade, tanto no desenho
do protocolo, como nas aplicações que o concretizam. A especificação pode
ser usada, por exemplo, para verificar se a concretização da aplicação está
correcta e em conformidade, ou ainda para ajudar na criação de regras
espećıficas de firewall ou filtros de IDS para bloquear mensagens que não
estejam em conformidade com o padrão definido.

No entanto, a especificação do protocolo nem sempre está dispońıvel, o
que dificulta a avaliação da correcção e segurança destes protocolos. Para
resolver este problema, foi proposto usar engenharia de reversão para de-
duzir a especificação de protocolos fechados a partir apenas da sua uti-
lização e sem qualquer suposição sobre a sua estrutura ou funcionamento.
Neste trabalho, apresentamos duas abordagens diferentes, com base nas
técnicas de alinhamento de sequências, para construir um autómato de
um protocolo através do tráfego de rede.

? This work was partially supported by FCT through the Multiannual Funding and the
CMU-Portugal Programs.



1 Introduction

Network protocols are essential in today’s interconnected world. The communi-
cation between computer systems is dictated by a set of rules that regulates the
syntax, semantics, and synchronization of the exchanged messages. Since it deter-
mines how the network components interact with each other, they are of crucial
importance in security-related contexts. Most exploits, for instance, take advan-
tage of vulnerabilities present in network protocols, or at least use them as a
vehicle to explore vulnerabilities present in interconnected applications, such as
servers or critical infrastructures. Knowing the specification of a network protocol
can improve the security and dependability of both the design of the protocol
and the applications that implement it. For example, one can verify if a network
server correctly complies to the specification of the protocol by creating test cases
covering the protocol space and then comparing its responses (and internal state)
with the expected ones. The protocol specification can even be used to create fire-
wall rules, denying messages not fully complying with the standard, or to provide
intrusion detection systems (IDS) with the capability of performing deep packet
inspection.

However, some Commercial Off-The-Shelf (COTS) components rely on closed
protocols for their execution, sometimes to avoid the integration with other third-
party components, other times for security reasons. Nonetheless, security through
obscurity is not a safe principle, as a sufficiently motivated attacker will eventually
discover the hidden flaws.

Protocol reverse engineering has been used to address this problem, by deduc-
ing the specification of closed protocols from their utilization alone and without
any assumption about their structure or operation. In this paper, we present two
different approaches to build an automaton of a network protocol from network
traces. Our approaches are based on sequence alignment techniques, taken from
the field of bioinformatics, which try to find the optimal alignment between the
automaton and the protocol messages. The alignments are then used to further
extend the automaton, which represents the syntax rules of the protocol.

The rest of this paper is organized as follows: Section 2 provides some back-
ground about sequence alignment algorithms and techniques. The proposed ap-
proaches to automata generation through sequence alignment are addressed in
Section 3. Section 4 provides some preliminary evaluation results with FTP net-
work traces. In Section 5 we present some related work. And finally, we conclude
in Section 6.

2 Sequence Alignment

Sequence alignment is used in bioinformatics to identify similarity regions in se-
quences of DNA, RNA, or protein. Sequences are represented as a series of nu-
cleotide and amino acid residues that are aligned, based on the residues similar-
ities, within a matrix. Gaps can be introduced in any of the sequences so that
similar residues can be aligned in consecutive columns.
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(a) Alignment of the two sequences. (b) Substitution matrix.

Fig. 1. Pairwise sequence alignment using dynamic programming.

Figure 1a shows the alignment of two DNA sequences. Vertical lines represent
matches between residues, whereas horizontal lines depict gaps. Gaps and mis-
matches represent the edit operations required to transform one sequence into the
other.

2.1 Pairwise Sequence Alignment

Finding the best alignment between two sequences is an optimization problem
in which the optimal solution of the overall problem can be deduced from the
optimal solutions of many overlapping subproblems. Most sequence alignment
algorithms are based on dynamic programming that makes use of such properties
by memorizing previously computed subsequence alignments in a substitution
matrix. Figure 1b shows the final substitution matrix of a sequence alignment
algorithm using dynamic programming. A two-dimensional matrix is constructed
with one column for each residue in one sequence and one row for each residue
in the other sequence. Thus, if we are aligning sequences of length n and m, the
running time of the algorithm is O(n×m). Each cell in the matrix has the value
of the best-aligned subsequence as well as a reference to the adjacent cell from
which that value was computed. When the algorithm reaches the last cell of the
matrix, it backtraces through the referenced cells.

Usually, alignment algorithms fall into one of two categories, global or lo-
cal alignment, in which the Needleman-Wunsch algorithm [1] and the Smith-
Waterman [2] algorithm are the best examples. Local alignment algorithms try to
identify similarity regions within the sequence, as opposed to the global alignment
that attempt to align every residue in the entire sequences.

2.2 Multiple Sequence Alignment

Ideally, one would like to align more than two sequences. However, a straight-
forward dynamic programming algorithm in a k-dimensional matrix (where k is
the number of sequences) would be computational unfeasible even for a modest
number of sequences—the complexity to align k sequences of length n would be
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Fig. 2. Partial order graph representing a merged sequence alignment.

O(2knk). Hence, over the last 30 years several approaches have been developed
to provide multiple sequence alignment, such as progressive alignment strategies,
evolutionary trees, alternative alignment representations, probabilistic alignment,
etc., resulting in a very large number of alignment applications, each with their
own strengths and weaknesses [3]. Most techniques use heuristics for finding sub-
optimal multiple alignments, such as computing all

(
k
2

)
optimal pairwise align-

ments between every pair of sequences and then combine them together using
other heuristics. For instance, the results of multiple sequence alignments can be
merged into one reduced consensus sequence that shows which residues are most
abundant at each position of the alignment. Clustal, for instance, uses pairwise
alignment as a building block for multiple k-way alignments [4]. A phylogenetic
tree is built from the similarities between each pair of sequences (pairwise align-
ment). This progressive multiple alignment heuristic then combines each align-
ment iteratively as a linear consensus sequence, starting with the closest related
groups in the tree towards the root. Consensus sequences, or profiles, allow multi-
ple alignments to be achieved by only performing one pairwise alignment for each
new sequence.

2.3 Partial Order Alignment (POA)

Consensus sequences are an incomplete representation of the alignment of mul-
tiple sequences. Information about less frequent residues found in early sequence
alignments will be lost and cannot be used later when more similar sequences
appear. Therefore, the order in which the sequences are aligned is determinant to
the quality of the final multiple sequence alignment.

One solution that preserves information of the previous alignments is to rep-
resent the consensus sequence as a complete partial-order graph. Partial order
alignment (POA) performs multiple sequence alignment by aligning each new se-
quence (in any order) with a partially ordered graph in which individual sequence
letters are represented by nodes, and directed edges are drawn between consec-
utive letters in each sequence [5]. As each new sequence is aligned, even the less
frequent residues are represented, so no information is lost. Thus, instead of a
single incomplete consensus sequence, several subsequences are used (one for each
chain of consecutive residues). Figure 2 shows the alignment of the sequences from
the previous examples, merged into a partial-order graph. As more sequences are
aligned, unmatched residues will create new branches. POA extends the dynamic
programming method of aligning two sequences by replacing one of the linear
sequences with the partial order nodes. Branches in the graph are resolved by
grafting a copy of the bifurcations across the matrix, forming additional dynamic
programming matrix surfaces that are joined exactly as the individual branches



Fig. 3. Substitution graph for the partial order alignment (image taken from [5]).

are joined in the partial order graph. Figure 3 shows the complete substitution
matrix for a partial order alignment. The branch in the graph is depicted in the
matrix by an alternative sub-matrix, which is then calculated as in the original
dynamic programming algorithms.

This method has the advantage of merging similar nodes and sequences into
one larger partial order graph, and executing only one pairwise alignment for each
new sequence, though all branching subsequences must be visited.

3 Building an Automaton From Protocol Messages

A protocol is a set of rules that dictates the communication between two or more
entities. Messages accepted by a given protocol must follow some very specific
syntax rules. In this sense, a network protocol can be seen as a formal language
whose syntax rules are defined through a formal grammar. In formal language
theory, languages are completely deprived of any semantic meaning, and only their
syntax formation rules define the words that are accepted. The formal grammar
is the set of formation rules that describes how symbols of the alphabet can be
combined to form words that are accepted by the language. In another words, the
formal grammar of a network protocol describes how bytes can be combined to
form acceptable messages.

An equivalent and perhaps more comfortable way of modeling a network pro-
tocol is through a finite-state machine automaton. In particular, a deterministic
finite automaton is one of the most practical models of computation, since there
are trivial linear time, constant-space, and online algorithms to simulate them on



a stream of input. In fact, the automata theory is closely related to formal lan-
guage theory as the automata are often classified by the class of formal languages
they are able to recognize.

The purpose of our work is to provide a solution to construct an automaton
that recognizes a specific network protocol based on a sample of its messages.
Each state of the automaton represents the sequence of symbols (i.e., bytes of the
message) accepted so far, and the remaining symbols required to accept the entire
word (i.e., the message of the protocol). Formally, the automata can represented
by the 5-tuple 〈Q,Σ, δ, q0, F 〉, where Q is a set of all possible states1, Σ is the
alphabet (28 possible symbols) of the protocol, δ is the transition function that
tells the automaton which state to go to next given a current state and a current
symbol (byte), q0 is the initial state, and F is the set of final states.

Graphs can also be used to represent automata, with nodes denoting states
and edges describing the transition functions. To our purposes, representing the
automaton as a directed graph or a finite-state machine is equivalent. Graphically,
however, the directed graph offers a more clear and simple representation because
edges have no labels and each state is represented by the symbol that leads to it.

The partial order alignment (POA) algorithm briefly described earlier, succes-
sively aligns new sequences with a growing partial order graph. In order theory, a
partial order set formalizes the intuitive concept of an ordered set, which can be
represented through a directed acyclic graph (DAG). A DAG is a directed graph
in which there are no directed cycles, i.e., in other words, a DAG flows in a single
direction where each state can only be visited once.

3.1 Greedy Approach

Our first approach was to extend the POA algorithm, used in DNA multiple
sequence alignment, to generate an automaton from protocol messages that would
describe the language of the protocol. A pairwise sequence alignment algorithm is
used to identify the best automaton path, i.e., the ordered set of nodes that
provides a better scoring alignment, and to align the new sequence with the
automaton. Figure 4 shows the DAG of the multiple sequence alignments of
the previous examples, being aligned with a new sequence. The original pairwise
sequence alignment algorithm resorts to a matrix of scores. Instead, our solution
avoids matrixes by addressing each column of the matrix as an individual vector
of scores, calculated from the adjacent vector of scores. A vector of scores is
calculated for each node, so that each position of the vector represents the total
score of the best alignment sequence that aligns the symbol of that node with
the symbol at that position of the sequence. Additionally, the order in which the
vectors are actually calculated is reversed, so that the alignment algorithm starts
backtracing the alignment at the first node (instead of the last cell of the matrix).
This optimization also relieves the need for additional references (i.e., parent’s
references on each child).

1 In the context of reverse protocol engineering, we refer to state as the state of the
automaton that accepts/rejects network messages, and not the various states that the
protocol might have, such as waiting for login, authenticated, etc.
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GGATCGA aligned automaton’s chosen path!

GG-TC-- aligned sequence!

Fig. 4. Aligning a new sequence with the automaton.

This approach uses the Needleman-Wunsch algorithm as a pairwise sequence
alignment, but other dynamic programming alignment algorithms, such as the
Smith-Waterman, could also be adapted in the same way. The alignment algo-
rithm starts by calculating the vector of scores from the first node, which recur-
sively calculates the adjacent vectors of scores. In the end, the first cell of the first
vector of scores provides the remaining cell references for the complete alignment.
Pseudocode 1.1 depicts the recursive algorithm to calculate the vector of scores.
Each cell of the vector also holds a reference of the adjacent cell from which that
value was calculated, i.e., diagonal, right or bottom. The corresponding recur-
rence (adapted from the Needleman-Wunsch algorithm) for the score Si,j of an
optimal alignment between node i and the j-th character of the sequence is given
as follows:

Si,j = max


Si+1,j + 0
Si,j+1 + 0
Si+1,j+1 + 1

This score function attributes a score of zero for each additional gap penalty
and one for each match. The sequence alignment provides information about the
nodes of the automaton that are best aligned with the sequence, i.e., which path
is closest to the new message. The maximum value chosen for the vector of scores
of node i directs the path of the alignment—in the first case a gap is introduced in
the sequence, the second case adds a gap before the next node of the automaton,
and in the third case the node i and the j-th character of the sequence are aligned.

The next step is then to incorporate the new sequence in the automaton. The
POA algorithm tries to minimize the number of different nodes; hence, it follows
a greedy approach by merging every aligned node that shares the same symbol.
In the same example, merging the sequence GGTC with our automaton would not
produce new nodes because all symbols of the sequence were already perfectly
aligned in the graph. However, a sequence with a mismatched node, such as GGTU,
would generate a new edge from T (any of the first two, as they would score the
same) to a newly created node U.

This approach is especially useful to detect common subsequences, wherever
they are placed in the messages. For example, consider the IMAP protocol in



vectorScores
Input: Node ← Node of the automaton
Input: Sequence ← Sequence to be aligned
Output: Scores ← Vector with the best scores of the children

// base case
Scores ← vector of zeros of length #Sequence
if Node has no children then

return Scores

// recursion for every child
foreach Child of Node do

Temp ← PairwiseAlignment(Child, Sequence, vectorScores(Child,
Sequence))

foreach i of Temp
if Temp[i] is best than Scores[i] then

Scores[i] ← Temp[i]
return Scores

Pseudocode 1.1. Algorithm for the calculation of the vector of scores.

which every command is prefixed with a distinct alphanumeric tag (e.g., A03
SELECT Inbox, A04 SELECT Spam, etc.). The most relevant part of the message
(i.e., the command SELECT) appears after the variable tag parameter. Hence,
similar command names will always be aligned, independently of the remaining of
the message. Figure 5b shows the greedy approach while merging the alignment of
the two IMAP messages of Figure 5a. The graph evidences the common patterns
of both messages, in particular the SELECT command.

While messages previously processed are always accepted by the automaton, a
greedy merge might be too optimistic and generate transitions allowing messages
that do not belong to the language to be accepted. One could imagine a protocol
that uses a special prefix to confer different parameters to the same commands,
making the syntax of those messages different altogether.

3.2 Conservative Approach

Our other approach to merge the aligned sequences is to produce a conserva-
tive automaton, which would only accept sequences that were previously aligned,
therefore avoiding any false positives. For instance, the automaton of Figure 4,
which was constructed from two sequences: GAATTCAGTTA and GGATCGA, is prone to
false positives because it would also accept the sequences GAATTCGA or GGATCAGTTA
(which were never merged before).

In order to keep the automaton strictly correct, i.e., it only accepts messages
already received, our conservative approach only branches new nodes when the
alignments start to differ (after a common prefix) or ever cease to differ (upon
a common suffix). Hence, our solution is to do a greedy merge only for common
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Fig. 5. Two approaches to merge a sequence alignment into the automaton.

prefixes and suffixes, and create new nodes and transitions for the remaining cases.
This approach will produce a conservative automaton, with a higher number of
states than the greedy one and much more specific (and less permissive) as to
which messages it accepts.

Figure 5c shows the conservative approach with two separate paths for the
same command SELECT, as opposed to the merged path in the greedy approach.

4 Preliminary Evaluation

To evaluate the impact of the conservative and greedy approaches we used the
methodology presented here to create two separate automata from the network
traces of three FTP sessions. The FTP sessions were composed of 103 messages
containing 14 different FTP commands. We then evaluated the resulting automata
with respect to the number of nodes and edges of the resulting graphs.

The automata generator prototype was implemented in Java and supports
both the greedy and the conservative merging approaches. The program appli-
cation reads a packet capture file containing the network traces. It filters out all
network interactions from other protocols and not coming from the client, so that
it only processes FTP messages from the client, i.e., the TCP messages from the
FTP session coming from the client. Currently, each network packet is regarded
as a single protocol message, disregarding any issues related with the streaming
nature of the TCP2. The application then iteratively feeds each packet to the
automaton, obtaining a sequence alignment, which it will integrate according to
the predefined strategy, i.e., greedy or conservative.

This preliminary evaluation tries to reveal the strengths and weaknesses of
either approach. Figure 6 shows the resulting directed graphs of the automata.
The greedy approach, which optimistically merges every aligned node sharing
the same symbol, generated a much smaller automaton with only 110 nodes as
2 Although TCP is stream-oriented, it is very common that each application-layer mes-

sage corresponds to a single TCP message, unless the payload is too large.
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(a) Greedy approach (110 nodes, 199 edges, 135 branches).
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(b) Conservative approach (225 nodes, 242 edges, 32
branches).

Fig. 6. Preliminary evaluation of three FTP sessions with 103 client messages.

opposed to the 225 nodes of the conservative approach. However, 68% of the edges
of the greedy automaton are actually branches, thus increasing the complexity of
the graph, whereas the conservative automaton the branches account for only 13%
of the edges.

A greedy approach will result in smaller but more complex automata, suscep-
tible of false positives. The conservative automata, on the other hand, guarantees
that only valid messages are accepted at the cost of some additional separate
paths, i.e., several single-transition nodes.

5 Related Work

Protocol reverse engineering is a traditionally manual and tedious process. Aided
by network packet analyzers, reverse engineers carefully analyze each packet look-
ing for common and recognizable patterns, such as special delimiters and text
fields [6]. The process of reverse engineering a protocol also depends on the num-
ber (and quality) of protocol interactions. The more complete the collection of
network traces is, more confidence can be placed in the resulting protocol speci-
fication.

Since some of the tasks associated with the manual process could be automated
or at least automatically assisted, several techniques started to emerge to ease the
reverse engineering process. PDB, for instance, is a Protocol Debugger tool that



operates as a transparent network proxy, allowing the operator to set breakpoints
on specific packets or events, and inspect and modify individual packets [7].

More recently, new works appeared in the literature trying to infer the pro-
tocol specification automatically. Protocol informatics, for instance, applied con-
cepts from bioinformatics to construct a rough description of the protocol [8]. The
tool employs sequence alignment algorithms to group similar messages together in
phylogenetic trees to automatically identify fields in network packets. The tree is
traversed to guide a progressive sequence alignment that will produce a consensus
sequence for each cluster of similar messages. As the authors notice, using con-
sensus sequence alone is subject to loss of information as only the most prevalent
characters are preserved.

Discoverer is another tool that operates on network traces to perform clus-
tering and type-based sequence alignment to infer message formats [9]. It first
tokenizes each message in to binary and text segments to cluster messages of sim-
ilar format. Clusters are then further divided in a refining process where messages
are re-compared and their fields analyzed for cross-field dependencies. This allows
some special fields to be identified, such as length fields, or fields whose value dif-
ferentiates the format of the remaining message. To avoid over-classification, i.e.,
the creation of small irrelevant clusters, the tool then compares the field structure
of the inferred message formats to merge messages with identical format in the
same cluster.

Other techniques focus on the binary programs that implement the protocol.
Some researches have proposed to use static analysis to generate possible inputs
that a program can accept [10]. Beside the fact that it is undecidable to statically
determine the complete set of inputs for a program, this approach also suffers
from significant scalability issues.

Other researches have also proposed to use dynamic analysis on applications
that implement the protocol. Dynamic analysis also circumvents the problems
inherent to static analysis, such as memory aliasing and indirect jumps. These
tools closely monitor the program’s execution while processing the input messages,
resorting to dynamic taint analysis to identify the relevant sections responsible
for processing and parsing the network packets [11, 12]. One of the limitations of
these tools is that they cannot generalize message formats over multiple message
samples.

6 Conclusion

In this paper, we have presented two different approaches to build an automaton
of a network protocol from network traces. Our solution is based on sequence
alignment techniques, taken from the field of bioinformatics, which try to find
the optimal alignment between the automaton and the protocol messages. The
alignments are then used to further extend the automaton, which represents the
syntax rules of the protocol.

The preliminary results of our evaluation with FTP network traces show the
main differences in generating a greedy automaton (which tries to minimize the
number of nodes with similar symbols) and a conservative one (where new nodes



are created only if they do not introduce any spurious paths). Our results show
that a greedy strategy will identify common patterns in the messages, indepen-
dently of their position, but it will generate more complex automata, i.e., with
several bifurcations. On the other hand, the conservative approach will produce
simpler automata, but with alternative paths whenever the new message diverges
with the automata.

On this work, we have focused on bioinformatics algorithms to generate finite-
state machines that would accept protocol messages. The next step towards the
protocol reverse engineering will be focused on the refining the automaton and
on producing some sort of protocol specification that could be used on other
applications, such as intrusion detection systems or fuzzers. We intend to further
complement our work with other bodies of research, such as automata reduction,
information theory, and formal language theory, to ameliorate and extend the
generation of the automata.
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