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Abstract—Multi-tenant data centers host a high diversity of 
applications with continuously changing demands.  Applications 
require response times ranging from a few microseconds to 
seconds. Therefore, network traffic within the data center needs 
to be managed in order to meet the requested SLAs. Current 
feedback congestion control protocols may be too slow to 
converge to a stable state under high congestion situations. 
Sudden bursts of traffic from heterogeneous sources may render 
any reactive control inefficient. In this paper, we propose PACE, 
a preventive explicit allocation congestion control protocol that 
controls resource allocations dynamically and efficiently. PACE 
specifically addresses Data Center requirements: efficient 
network usage, flow completion time guarantees, fairness in 
resource allocation, and scalability to hundreds of concurrent 
flows. PACE provides micro-allocation of network resources 
within dynamic periods, lossless communication, fine-grained 
prioritization of flows, and fast adaptation of allocations to the 
arrival of new flows. We simulate PACE and compare it with 
recent proposed protocols specially addressed to Data Centers. 
We demonstrate that PACE is fairer, in particular for short 
flows, flows with different RTTs and a higher number of 
concurrent flows. It also maintains high efficiency and controlled 
queue usage when exposed to sudden bursts. 
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I. INTRODUCTION 
Commercial Data Centers (DC) host various applications like 
storage, financial services, social networking, e-mail, web 
hosting, cloud computing, and content delivery servers. These 
applications require very different Service Level Agreements 
(SLA). Some applications, like online searching require very 
low response times. Some other applications may require 
constant bandwidth during a variable amount of time. Video 
streaming applications have strict requirements in terms of 
bandwidth and jitter. On the other hand, fairness is important 
to Infrastructure-as-a-Service (IaaS) DCs like Windows Azure 
[1], Amazon EC2 [2] and Google Cloud [3]. Typically, these 
services are oversubscribed and require resources to be shared 
fairly among tenants. 

Thus, a Congestion Control Protocol designed for DC 
networks should guarantee: efficiency, the protocol should 
guarantee that links are fully utilized whenever possible; 
fairness, all flows should be able to get access to an equal 
amount of resources, or proportional to their importance; 

controllability, the protocol should provide an interface 
allowing prioritization and differentiation of flows; scalability, 
the protocol should scale to a high number of flows without 
compromising the remaining properties. The protocol should 
achieve these properties independently of the traffic patterns 
or flow characteristics (e.g. flow size, RTT, etc.). Thus, it is 
very important to guarantee fast convergence to a stable, fair 
and efficient state. 

Currently, no protocols are able to achieve all these goals for a 
wide range of traffic patterns. For instance, feedback-based 
protocols like TCP, RCP [4] and DCTCP [5] may be slow to 
converge to the fair state and very sensitive to different round-
trip times (RTT). This leads to unfair treatment of short flows 
or to situations where fair stable state is not achieved. On the 
other hand, recently proposed D3 [6] and PDQ [7] focus on 
specific traffic patterns and assume full knowledge of flow 
characteristics.  

In this paper, we propose PACE, a preventive explicit 
allocation congestion control protocol. PACE provides micro-
allocation of network resources within dynamic periods, 
lossless communication, fair allocations according to flows 
importance, fast adaptation to the arrival of new flows, and 
scalability to a large number of competing flows. PACE also 
provides administrators with the ability to control how 
resources in the network are allocated. PACE’s main 
contributions are: 

• Strictly lossless communication that combines credit and 
rate allocation to avoid congestion in the network core, 
and guarantees fast convergence to a fair state. 

• PACE provides periodic reallocation and expiration of 
credits. This feature allows PACE to quickly adapt to 
transient and diverse traffic patterns. 

• Dynamic periods of credit allocation that allow PACE to 
scale to a large number of competing, without 
compromising its fairness and efficiency guarantees. 

II. PACE’S DESIGN RATIONALE 
Congestion control protocols can be differentiated according 
to when they actuate, how they compute desirable 
transmission rates and how the transmission rate is mapped to 
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the source. These design decisions influence how effectively 
they can meet the requirements of DC networks. We describe 
PACE’s design rationale from these three perspectives. First, 
PACE is a preventive control protocol. It avoids congestion by 
controlling queue size and packet transmission from the 
source. Most protocols are based on reactive control and they 
only actuate when congestion is detected. TCP only reacts 
when packets are lost, while DCTCP [5] uses ECN [8] to 
signal that queue usage is above a certain threshold. Protocols 
like RCP [4] and D3 [6] also adjust their allocations based on 
queue usage and link utilization. Preventive protocols have 
faster convergence to a stable state than reactive protocols. 
Second, PACE computes an absolute value for the 
transmission rate. It explicitly states the transmission rate for a 
source. Typically, setting an absolute rate allows more 
accurate variation of transmission rates and thus faster 
adjustment to new traffic scenarios. Third, congestion control 
protocols can also be classified into credit-based or rate-based 
protocols. Credit-based schemes explicit authorize sources to 
transmit a specific amount of data. On the other hand rate-
based schemes authorize sources to transmit at a given speed. 
This authorization is valid until a new rate allocation is 
received. Credit-based schemes can guarantee lossless 
communication while rate-based schemes spread packets 
leading to lower queue peaks. PACE takes advantage of both 
credit and rate-based approaches by implementing a hybrid 
scheme. It authorizes endpoints to transmit a specified amount 
of data within a specified period. 

A. Key Design Ideas 
PACE’s key idea is that one endpoint of a connection issues 
credits periodically. These credits allow the peer endpoint to 
send a proportional amount of data within a specified period of 
time. Credits have been used in prior works [9]. TCP’s 
window-based solution is also implicitly based on credits. 
However, PACE uses credits in a very different way. First, 
PACE allocates credits periodically. This implies that credits 
are only valid until new credits are issued. As opposed to the 
credit-based solution proposed for ATM [9], PACE does not 
require per-flow queues. Second, PACE performs end-to-end 
credit allocation instead of hop-by-hop. Nodes along the path 
can control the amount of credits. Thus, PACE’s allocation 
mechanism has two control variables: the number of credits 
and the period of allocation. Both of these variables are 
transmitted in control messages. Fig. 1 demonstrates how 
nodes can use these two variables to compute an allocation. 
Initially, the allocation is controlled by maintaining the size of 
the period constant. As congestion arises, the amount of 
allocated credits is reduced. Once it gets to a minimum value 
(e.g. equivalent to maximum size of an Ethernet packet), 
PACE starts increasing the period. The use of two control 
variables allows PACE to guarantee the important properties 
listed in Section I: 

• Credits guarantee that no sender transmits more data than 
the core network can support.  This ensures that we have 
no congestion in the network core, i.e. no data packets are 
lost. Rate-based methods rely on the arrival of a new rate 

that supersedes the old rate. In case of congestion, the 
sender may keep sending packets that can aggravate the 
problem. Thus, credits guarantee isolation and that flows 
only use the resources that are explicitly allocated. This 
improves fairness, especially for short-lived flows. 

• The allocation period guarantees that the protocol 
operates efficiently. Intuitively, the period is short when 
there is no congestion. As the number of concurrent flows 
increases, PACE also increases the period of allocation. If 
an endpoint does not use its entire allocation, the 
allocations are quickly readjusted in the next period. Re-
allocating credits periodically also guarantees fast 
convergence to a fair distribution of resources. Increasing 
the convergence to the fair state allows the protocol to be 
fair even for short flows. Dynamic adjustment of period 
allows PACE to scale while maintaining fairness. With 
longer periods, there are more credits to allocate and 
therefore more flows can be supported.  

Another goal of PACE is to provide a mechanism to control 
the priority of flows. Thus, the number of credits allocated to a 
PACE flow is determined by the relative importance of the 
two endpoints. This differentiation is defined by assigning 
weights for both endpoints. Controllability is achieved by 
setting of weights.  

 
Fig. 1. Allocation by constraining the number of credits and/or 

the period as congestion grows. 

III. PACE PROTOCOL 

A. Entities and Messages 
PACE involves three main entities. Senders initiate the 
connection and start sending data whenever they receive 
credits. Receivers allocate credits periodically to their peer 
senders. Forwarders are nodes located along the path 
traversed by a flow. These nodes can reduce the number of 
credits allocated by receivers. The goal is that forwarders only 
allocate credits that they can handle and will not overload their 
output queues. 

PACE uses four types of messages: request - used by senders 
to initiate a connection. It carries the weight of the sender; 
allocation - sent by receivers to assign credits to senders. It 
carries the allocation fields, the weight of the receiver and the 
period of allocations; data - used to send data. The first data 
message sent in response to an allocation message provides 
feedback on the period and allocation; terminate - used to 
terminate the flow, remove state and release any resources 
allocated to the flow. 
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B. Credits and Period of Allocation 
As mentioned before, PACE receivers periodically allocates 
credits to the senders. The period of allocation (𝑝) plays an 
important role. First, it defines the granularity of credit 
allocation. The total amount of credits sent by a receiver or a 
forwarder corresponds to the link capacity 𝑅, multiplied by the 
period p. Second, the period also defines the time credits are 
valid. Credits cannot be used indefinitely. PACE defines a 
mechanism to expire credits based on logical clocks. The 
logical clock is incremented on every period. PACE requires 𝑝 
to be greater than one RTT. We define validity of a credit to 
be 2 ∙ 𝑝 to allow for all the data packets for one period to 
arrive at the receiver with valid credits. 

In our implementation, credit allocations are encoded in 2-byte 
fields, and 1 credit is equal to 8 bytes. For simplicity, from 
now on we refer to allocations in bytes (before conversion to 
credits). The period is encoded in a 1-byte field in control 
messages. The value is then multiplied by 20µs to obtain the 
real period.  

C. Receiver Logic 
The receiver is responsible for sending allocations for each 
flow periodically. The receivers maintain an estimation of how 
many credits each flow will be able to transmit in the next 
period, i.e. the flow’s demand. This value is sent in the 
allocation message to inform forwarders about the flows 
resource requirements. Three fields in a credit allocation 
message are used to compute the current allocation and 
estimate future demand. All fields are initialized by the 
receiver and can be changed by forwarders. The allocation 
fields are: 

• The field potential demand (dp) carries the estimate of the 
demand of the flow for the next period. This value is 
initialized by the receiver with the maximum possible 
allocation (i.e.,  p ∙ R). The value can be decreased by 
forwarders and the sender returns the final value back to 
the receiver in the first data message. 

• The field demand (d) carries the demand of the flow for 
the current interval. This value is initialized with the last 
potential demand that the receiver got from the sender. 
This field makes sure that all forwarders are informed of 
the demand of the flow.  

• The field allocation (a) carries the actual allocation for 
the current period and it is initialized with the potential 
demand received from the sender. This field carries the 
actual number of credits that all the forwarders in the path 
can allocate for the current interval. For instance, at a 
given instant, a forwarder may have all credits allocated. 
In this case, the allocation value would be zero. 

All nodes use the demand value to compute allocations instead 
of the allocation value. This ensures that the flow’s correct 
demand will be taken into account when computing future 
allocations. Section III.E describes how forwarders compute 
the allocations for the flows. 

In order to be able to differentiate flows, receivers can have 
different weights. The receivers can also combine their weight 
to the senders’ weights to differentiate flows. 

D. Sender Logic 
When the sender receives an allocation message, it starts 
sending data. Using the period and the number of credits, the 
sender can determine how much data can be sent and at what 
rate. In the first data message, the sender includes the received 
allocation, potential demand and period back to the receiver.  

E. Forwarder Logic 
The forwarders need to verify if they have enough capacity to 
meet each allocation request. If they do not have enough 
capacity they can either reduce the number of credits or 
increase the period of allocation. An overview of the 
allocation process in forwarder 𝑖 is depicted in Fig. 2. One of 
the concerns of our algorithm is to minimize processing delays 
of allocation packets. Thus, we split the allocation algorithm 
into an offline and an online component. PACE’s offline 
component computes two variables periodically: allocation 
per weight (𝑎!) and remaining allocation (𝑟). The demand 
computed at the previous forwarder, 𝑑!!!, and the weight of 
the flow, 𝑤 , are used to feed the offline processing data 
structure. The online processing uses the received allocation 
fields and the output of the offline processing, to compute the 
output allocation fields. 

 
Fig. 2. The allocation algorithm at 

the forwarders 

 

Fig. 3. Weighted Max-Min Fair 
Allocation given weight and demand. 

1) Computing Fair Allocations (Offline) 

Credit allocations are determined according to the weighted 
Max-Min fairness principle. In a weighted max-min fair 
allocation [10], the flows’ fair shares are proportional to their 
weights. This policy is exemplified in Fig. 3. The figure 
represents four flows, each with a demand and a weight. The 
initial fair allocation (solid bar) is a share of the total possible 
allocation proportional to the flows weight.  No flow receives 
more than its demand. If any flow does not use its entire fair 
allocation, the remaining credits are proportionally split 
among the other flows. Thus, in the figure, flow 1 receives 
only its demand despite its fair allocation being four times that 
of flows 2 and 3. The credits not used by flow 1 are distributed 
among the remaining flows according to their weight. Flow 4 
receives twice the number of credits of the other flows’ as its 
weight is twice the weight of the other two flows. 

Typically, max-min fairness is achieved by using a 
progressive filling algorithm [11]. In each round all flows are 
assigned the fair share of the total available allocation. In 
subsequent rounds, the credits that were not used in the 
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previous round are distributed among the other flows. This 
algorithm has a worst case processing complexity of O n!  
whenever a flow is updated. PACE uses a weighted max-min 
fairness algorithm based on a B-Tree that allows us to reduce 
the processing complexity to  O log n , the Max-Min B-Tree. 
PACE has a storage complexity of O n . 

The rationale of the Max-Min B-Tree data structure is 
represented in Fig. 4. Given a set of flows f!, f!,… , f!  , each 
with demand and weight d!,w! , we maintain a list of flows 
sorted according to the demand normalized by the flow’s 
weight, d!,! = d! w!. We also maintain a cumulative sum of 
the demand and weight D!,W! . To reduce complexity of 
computing the allocation, we maintain a set of 𝐿  pointers 
k!, k!,… , k! , which we call allocation level pointers. Each 

allocation pointer k!, contains variables representing the total 
allocation for the level, C!, a fair allocation per weight, a!,! 
and the non-allocated credits or remainder, r!. Each allocation 
level pointers represents one round of allocation. For instance, 
the first pointer (k!) represents the initial allocation obtained 
by dividing the maximum allocation by all the flows. In the 
example of Fig. 4, the total allocation (C! = 1) is divided by 
the total weight, providing an allocation of 0.1 per weight unit. 
Thus k! points to f!, which is the last flow requiring less than 
its allocation (d!,!! = 0.08   < 0.1). The second pointer (k!) 
distributes the remainder of the first level, r!, among the rest 
of the flows. As shown in Fig. 4, the flows to the left of an 
allocation level pointer are flows whose demand (d! ) is 
fulfilled by the allocation of the pointer. Consider f! to be the 
flow just before allocation level pointer k!. Then the values of  
k! are given by: 

 w! = W! −W!!!   (1)  

 C! = r!!!   (2)  

 a!,! = C! w! + a!,!!!   (3)  

 r! = min 0, a!,! ∙ W! −W!!! − D! − D!!!    (4)  

The last pointer has either no credits left (𝑟! = 0) or no more 
flows requiring allocations (𝑤! = 0). The allocation values 
used in the online processing are 𝑎! = 𝑎!,! and 𝑟 = 𝑟!. 

The sorted list is represented as a B-Tree. B-Trees are 
hierarchical structures that allow any operation (insert, delete, 
search and/or update) in O log n  time. Each node in the 
B-Tree keeps track of the total demand and weight of its sub-
tree. These variables are updated when inserting or deleting 
key without increasing processing complexity. The processing 
complexity of updating the levels is O L ∙ log n , where L is 
the number of levels and n is the number of flows. Typically, 
three to four levels are enough to allocate all the credits.  

In our implementation, all demand and allocation values in the 
B-Tree are normalized. Each flow has a given demand for a 
specified period. The normalized value corresponds to the 
demand divided by the total credits that the interface can 
transmit within the period of the flow. This normalization 

allows a node to vary the period of allocation without 
changing the Max-Min B-Tree values (see Section III.E.3). 
When the period of the forwarder is larger than the period of 
the flow, the forwarder update the period of the flow (in the 
allocation message) to match the local period. 

 
Fig. 4. Rationale of the Max-Min B-Tree Data Structure. 

2) Constrain Allocations (online) 

In the online procedure, the following expressions are used to 
compute the output values: 

 d! = min 𝐶 𝑝 ∙w ∙ a!, d!!!    (5)  

 d!,! = min 𝐶 𝑝 ∙w ∙ a! + r, d!,!!!    (6)  

where 𝐶 𝑝  is the number of credits computed using the 
period in the allocation message (𝑝!!! ∙ 𝑅).  

As shown in Eq. (5), the output demand only depends of the 
fair allocation algorithm. However, the actual allocation for 
the current period, 𝑎! depends on the forwarder having enough 
free credits to allocate when the allocation message arrives. 
The forwarder can allocate a total of credits equivalent to 
2 ∙ 𝐶! = 2 ∙ 𝑝 ∙ 𝑅. The forwarder keeps a counter, 𝐴(𝑡), of the 
allocated credits. When the forwarder allocates new credits, it 
decreases the allocated credits from the counter. When a data 
message is received the counter is increased. 

The allocation a! is obtained using Eq. (7), where Q! t  is the 
current usage of the output queue. 

 a! =   min 2 ∙ 𝐶! − A t − Q! t , d!  (7)  

In typical rate-based protocols like RCP [6], whenever an 
allocation message arrives, the flow immediately receives its 
fair allocation. As fair allocation changes with the arrival of 
new flows, this may lead to periods of congestion. D3 [8] 
avoids this issue by pausing every non-deadline flow for one 
RTT. This solution leads to unnecessary latency and under-
allocation. PACE avoids this over-allocation by filtering the 
credits based on queue usage and allocation not yet used. 

Flows flow 1 flow 2 flow 3 flow 4 flow 5 flow 6

(d, w) (0.08, 1) (0.24, 3) (0.11, 1) (0.12, 2) (0.15, 2) (1.00, 1)

dw 0.08 0.08 0.11 0.06 0.15 1.00
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3) Dynamic Periods 

The period of allocation influences the performance of PACE. 
If we use small periods, the flows’ rates adapt quickly when a 
flow starts or ends. However, as the number of concurrent 
flows increases, the allocation per flow gets smaller. At some 
point, smaller allocations mean shorter packets increasing the 
overhead per packet. In order to allow PACE to scale to a 
large number of concurrent flows, we increase the period of 
allocation.  

PACE increases the period when the allocation for level 
pointer k!  is not enough to transmit two maximum sized 
packets. The keys in the B-Tree are normalized with respect to 
the total possible allocation. When the period is increased, the 
demand of each flow would increase proportionally. Thus, the 
only value that needs to be updated is the total allocation, C!. 
Also, flows in a forwarding node can have different allocation 
periods. For instance, a flow that is experiencing congestion in 
some other node will have a higher period. Thus, the 
allocation values in equations (5) and (6) are computed using 
the period values contained in the received allocation message. 

PACE maintains the allocation period as small as possible to 
maintain fast convergence. When the number of concurrent 
flows decreases and the base fair share increases, we decrease 
the period. When reducing the period we only need to 
decrease the total allocation, C!. Equation (6) guarantees that 
no credits are allocated until old credits are used or expire. If 
the first term is negative due to high queue usage or high 
number of allocated credits, the filtered allocation will be zero.  

IV. EXPERIMENTS 
We implemented PACE using NS-3 [12]. We also implement 
two recent proposals: DCTCP [5] and D3 [6]. D3 is designed 
having deadline-aware flows in mind. Here we evaluate it as a 
generic congestion control protocol without the deadline 
aware mode. In this case, D3 is similar to an optimized RCP 
[4]. We use the parking-lot topology to study how the 
protocols behave under two different traffic patterns. To 
emulate a DC deployment the simulation network has a very 
small RTT (~150µs) and links operate at 1Gbps. An initial 
period of 200µs was used in the PACE implementation. 

 
(a) 

 
(b) 

Fig. 5. Scenarios: (a) Sequential flows. (b) Composite traffic pattern. 

A. Scenario 1: Fairness and RTT  
Consider the scenario in Fig. 5(a). We start 10 flows 
sequentially, each one separated by an interval of 5ms. Flows 
start from different senders, picking a sender from each of the 
four groups in a round-robin fashion (i.e. a, b, c, d, a, b, ...). 
We then end the flows sequentially in the inverse order using 

the same 5ms interval between each termination. The 
experiment is run for PACE, D3, DCTCP and TCP. 

The rates for each flow are represented in Fig. 6(a-d). The 
dashed line represents the total rate at the bottleneck link (F4-
F5). PACE obtains a fair distribution of bandwidth and 
converges quickly to a steady state. D3 also distributes 
resources fairly but it does not use the channel efficiently. This 
is due to two reasons: the low granularity of resource 
allocation (units of 1bytes/µs); and convergence to full 
utilization is done by adjusting the total allocated capacity, 
which takes several RTTs to converge. DCTCP converges 
slowly to the fair state and, therefore, flows with lower RTT 
are unable to converge to the fair allocation. Finally, TCP does 
not converge to the fair state during the time frame of the 
experiment. TCP’s additive increase and multiplicative 
decrease lead to drastic variations in the bitrate. Also, TCP 
adjusts at the cost of packet loss, which does not happen with 
the remaining protocols. 

 
(a) PACE flows rate. 

 
(b) D3 flows rate. 

 
(c) DCTCP flows rate. 

 
(d) TCP flows rate. 

 
(e) Fairness (different RTT).    

 
(f) Fairness (equal RTT). 

Fig. 6. Results for a sequence of flows sharing a common bottleneck. (a-d) 
Throughput of each flow for different protocols. (e) Average fairness with 

flows with the different RTT. (f) Average fairness for flows with same RTT. 

We repeat the experiment but now all flows start from sender 
of group a, i.e. all flows have the same RTT. We also repeat 
the two experiments for longer periods between the start and 
end of the flow (20ms and 50ms). We then compute the 
average Jain’s Fairness Index [13] throughout the experiment. 
Fig. 6 (e) and (f) show the average fairness index, for the 
scenarios with different RTT and equal RTTs, respectively. 
PACE maintains fairness for short flows and different RTTs. 
D3 also distributes resources fairly independently of RTT, but 
does not achieve the fair state as quickly (~5% drop in fairness 
for shorter flows). The results obtained for DCTCP and TCP 
demonstrate the sensitiveness of these protocols to the 
differences in RTTs. 
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TABLE 1. FAIRNESS AND EFFICIENCY WITH A HIGH NUMBER OF CONCURRENT 
FLOWS 

Properties 
64 Flows 250 Flows 

PACE D3 DCTCP PACE DCTCP 

Fairness (Jain) 99.2% 98.2% 98.9% 96.3% 39.9% 
Efficiency 98.9% 93.1% 99% 98.9% 99.2% 

Scalability: We run one more experiment using the same 
scenario (Fig. 5(a)). We increase the number of concurrent 
flows (all starting from one of the a senders, i.e. same RTT) to 
64 and 250 flows. The fairness results are presented in Table 
1. D3 has a theoretical limit of 125 flows for 1Gbps link due to 
the granularity of allocation. Thus, it is not possible to run the 
experiment for 250 flows using D3. All protocols deal 
reasonably well with 64 simultaneous flows. D3, however, has 
a 7% penalty in utilization. PACE maintains the fairness 
guarantees even when we increase the number of flows to 250. 
As a reactive protocol DCTCP uses timeouts once the delay 
increases. This leads to packet retransmissions, drastic 
window adjustments and consequent fairness degradation. 

 
(a) PACE flows rate. 

 
(b) DCTCP flows rate. 

 
(c) D3 flows rate. 

 
(d) Queue usage at F4 (interface to F5). 

Fig. 7.  Throughput and Queue usage for scenario 2. 

B. Scenario 2: Composite Traffic Pattern 
The second scenario is depicted in Fig. 5(b). There are 4 
phases: at 𝑡! = 0, we start four flows from S1 to R1. At 
𝑡! = 2𝑚𝑠, we start one flow from S2 to R2. At 𝑡! = 4𝑚𝑠, we 
start 6 more flows from S3 to R3. Finally, at  𝑡! = 20𝑚𝑠, we 
start 6 more flows from S2 to R2. In Fig. 7(a-c), we represent 
one flow from each group: one flow S1-R1, the first flow S2-
R2, one flow from S3-R3 and one flow from the last group S2-
R2. Once the flows S3-R3 start, S1-R1 throughput is reduced 
due to F3. The first flow S2-R2 takes advantage of the extra 
free bandwidth. DCTCP reacts quickly to traffic changes. 
However, throughput converges to an unfair distribution of 
resources. The represented flow from S1-R1 is using more 
than its fair share and, starting from t2, the flow S2-R2 starts 
using almost 20% more than its fair share. D3, however, 
presents more problematic results. In order for the first flow 
S2-R2 to use the available capacity, D3 increases the allocation 
above the physical link capacity. When the new S2-R2 flows 
start, the total allocation largely surpasses the link capacity 
leading to queue build up. In Fig. 7(d), we can see the effect 
that D3 has on the queue of forwarder F4. 

Controllability: To illustrate PACE’s controllability we run 
scenario 2 with the following flows: one flow from S1-R1 
with weight 2 at 𝑡! = 0; one flow from S2-R2 with weight 1 at 
𝑡! = 1.5𝑚𝑠 ; and one flow from S3-R3 with weight 4 at 
𝑡! = 3𝑚𝑠. All flows transmit 500KB. The results are shown in 
Fig. 8. When flow S2-R2 starts at t1, it is competing with a 
flow that has twice its weight. Thus, it gets half of S1-R1 
bandwidth. When the flow S3-R3 starts at t2 it uses twice the 
bandwith of S1-R1. This in turn frees space for the flow S2-
R2, which increases its throughput. As soon as flow S1-R1 
finishes, both flows have the path freed and increase their 
throughtput to 100%. 

 
Fig. 8. Example of PACE’s Controllability 

V. CONCLUSION 
In this paper we present PACE, a preventive explicit allocation 
congestion control protocol for Data Center networks. In 
multi-tenant Data Centers, as the number of applications rises, 
fast convergence to a fair distribution of resources becomes 
increasingly important. PACE allows nodes in the network to 
determine credit allocation and the period of allocation. These 
two variables allow PACE to adapt quickly to transient traffic 
patterns. The experiments demonstrate that PACE converges 
quickly to nearly perfect fairness with short flows, large 
number of concurrent flows, sudden traffic changes and flows 
with different weights.  
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