
 1

PACE Your Network: Fair and Controllable Multi-
Tenant Data Center Networks

Tiago Carvalho
Carnegie Mellon University and

Universidade de Lisboa

Hyong S. Kim
Carnegie Mellon University

Pittsburgh, PA, USA

Nuno Neves
Universidade de Lisboa

Lisbon, Portugal

Abstract—Multi-tenant data centers host a high diversity of
applications with continuously changing demands. Applications
require response times ranging from a few microseconds to
seconds. Therefore, network traffic within the data center needs
to be managed in order to meet the requested SLAs. Current
feedback congestion control protocols may be too slow to
converge to a stable state under high congestion situations.
Sudden bursts of traffic from heterogeneous sources may render
any reactive control inefficient. In this paper, we propose PACE,
a preventive explicit allocation congestion control protocol that
controls resource allocations dynamically and efficiently. PACE
specifically addresses Data Center requirements: efficient
network usage, flow completion time guarantees, fairness in
resource allocation, and scalability to hundreds of concurrent
flows. PACE provides micro-allocation of network resources
within dynamic periods, lossless communication, fine-grained
prioritization of flows, and fast adaptation of allocations to the
arrival of new flows. We simulate PACE and compare it with
recent proposed protocols specially addressed to Data Centers.
We demonstrate that PACE is fairer, in particular for short
flows, flows with different RTTs and a higher number of
concurrent flows. It also maintains high efficiency and controlled
queue usage when exposed to sudden bursts.

Keywords-Data Center; network; protocols; congestion control

I. INTRODUCTION
Commercial Data Centers (DC) host various applications like
storage, financial services, social networking, e-mail, web
hosting, cloud computing, and content delivery servers. These
applications require very different Service Level Agreements
(SLA). Some applications, like online searching require very
low response times. Some other applications may require
constant bandwidth during a variable amount of time. Video
streaming applications have strict requirements in terms of
bandwidth and jitter. On the other hand, fairness is important
to Infrastructure-as-a-Service (IaaS) DCs like Windows Azure
[1], Amazon EC2 [2] and Google Cloud [3]. Typically, these
services are oversubscribed and require resources to be shared
fairly among tenants.

Thus, a Congestion Control Protocol designed for DC
networks should guarantee: efficiency, the protocol should
guarantee that links are fully utilized whenever possible;
fairness, all flows should be able to get access to an equal
amount of resources, or proportional to their importance;

controllability, the protocol should provide an interface
allowing prioritization and differentiation of flows; scalability,
the protocol should scale to a high number of flows without
compromising the remaining properties. The protocol should
achieve these properties independently of the traffic patterns
or flow characteristics (e.g. flow size, RTT, etc.). Thus, it is
very important to guarantee fast convergence to a stable, fair
and efficient state.

Currently, no protocols are able to achieve all these goals for a
wide range of traffic patterns. For instance, feedback-based
protocols like TCP, RCP [4] and DCTCP [5] may be slow to
converge to the fair state and very sensitive to different round-
trip times (RTT). This leads to unfair treatment of short flows
or to situations where fair stable state is not achieved. On the
other hand, recently proposed D3 [6] and PDQ [7] focus on
specific traffic patterns and assume full knowledge of flow
characteristics.

In this paper, we propose PACE, a preventive explicit
allocation congestion control protocol. PACE provides micro-
allocation of network resources within dynamic periods,
lossless communication, fair allocations according to flows
importance, fast adaptation to the arrival of new flows, and
scalability to a large number of competing flows. PACE also
provides administrators with the ability to control how
resources in the network are allocated. PACE’s main
contributions are:

• Strictly lossless communication that combines credit and
rate allocation to avoid congestion in the network core,
and guarantees fast convergence to a fair state.

• PACE provides periodic reallocation and expiration of
credits. This feature allows PACE to quickly adapt to
transient and diverse traffic patterns.

• Dynamic periods of credit allocation that allow PACE to
scale to a large number of competing, without
compromising its fairness and efficiency guarantees.

II. PACE’S DESIGN RATIONALE
Congestion control protocols can be differentiated according
to when they actuate, how they compute desirable
transmission rates and how the transmission rate is mapped to

This work was partially supported by the Multiannual (LASIGE) and by
FCT through the CMU-Portugal program.

 2

the source. These design decisions influence how effectively
they can meet the requirements of DC networks. We describe
PACE’s design rationale from these three perspectives. First,
PACE is a preventive control protocol. It avoids congestion by
controlling queue size and packet transmission from the
source. Most protocols are based on reactive control and they
only actuate when congestion is detected. TCP only reacts
when packets are lost, while DCTCP [5] uses ECN [8] to
signal that queue usage is above a certain threshold. Protocols
like RCP [4] and D3 [6] also adjust their allocations based on
queue usage and link utilization. Preventive protocols have
faster convergence to a stable state than reactive protocols.
Second, PACE computes an absolute value for the
transmission rate. It explicitly states the transmission rate for a
source. Typically, setting an absolute rate allows more
accurate variation of transmission rates and thus faster
adjustment to new traffic scenarios. Third, congestion control
protocols can also be classified into credit-based or rate-based
protocols. Credit-based schemes explicit authorize sources to
transmit a specific amount of data. On the other hand rate-
based schemes authorize sources to transmit at a given speed.
This authorization is valid until a new rate allocation is
received. Credit-based schemes can guarantee lossless
communication while rate-based schemes spread packets
leading to lower queue peaks. PACE takes advantage of both
credit and rate-based approaches by implementing a hybrid
scheme. It authorizes endpoints to transmit a specified amount
of data within a specified period.

A. Key Design Ideas
PACE’s key idea is that one endpoint of a connection issues
credits periodically. These credits allow the peer endpoint to
send a proportional amount of data within a specified period of
time. Credits have been used in prior works [9]. TCP’s
window-based solution is also implicitly based on credits.
However, PACE uses credits in a very different way. First,
PACE allocates credits periodically. This implies that credits
are only valid until new credits are issued. As opposed to the
credit-based solution proposed for ATM [9], PACE does not
require per-flow queues. Second, PACE performs end-to-end
credit allocation instead of hop-by-hop. Nodes along the path
can control the amount of credits. Thus, PACE’s allocation
mechanism has two control variables: the number of credits
and the period of allocation. Both of these variables are
transmitted in control messages. Fig. 1 demonstrates how
nodes can use these two variables to compute an allocation.
Initially, the allocation is controlled by maintaining the size of
the period constant. As congestion arises, the amount of
allocated credits is reduced. Once it gets to a minimum value
(e.g. equivalent to maximum size of an Ethernet packet),
PACE starts increasing the period. The use of two control
variables allows PACE to guarantee the important properties
listed in Section I:

• Credits guarantee that no sender transmits more data than
the core network can support. This ensures that we have
no congestion in the network core, i.e. no data packets are
lost. Rate-based methods rely on the arrival of a new rate

that supersedes the old rate. In case of congestion, the
sender may keep sending packets that can aggravate the
problem. Thus, credits guarantee isolation and that flows
only use the resources that are explicitly allocated. This
improves fairness, especially for short-lived flows.

• The allocation period guarantees that the protocol
operates efficiently. Intuitively, the period is short when
there is no congestion. As the number of concurrent flows
increases, PACE also increases the period of allocation. If
an endpoint does not use its entire allocation, the
allocations are quickly readjusted in the next period. Re-
allocating credits periodically also guarantees fast
convergence to a fair distribution of resources. Increasing
the convergence to the fair state allows the protocol to be
fair even for short flows. Dynamic adjustment of period
allows PACE to scale while maintaining fairness. With
longer periods, there are more credits to allocate and
therefore more flows can be supported.

Another goal of PACE is to provide a mechanism to control
the priority of flows. Thus, the number of credits allocated to a
PACE flow is determined by the relative importance of the
two endpoints. This differentiation is defined by assigning
weights for both endpoints. Controllability is achieved by
setting of weights.

Fig. 1. Allocation by constraining the number of credits and/or

the period as congestion grows.

III. PACE PROTOCOL

A. Entities and Messages
PACE involves three main entities. Senders initiate the
connection and start sending data whenever they receive
credits. Receivers allocate credits periodically to their peer
senders. Forwarders are nodes located along the path
traversed by a flow. These nodes can reduce the number of
credits allocated by receivers. The goal is that forwarders only
allocate credits that they can handle and will not overload their
output queues.

PACE uses four types of messages: request - used by senders
to initiate a connection. It carries the weight of the sender;
allocation - sent by receivers to assign credits to senders. It
carries the allocation fields, the weight of the receiver and the
period of allocations; data - used to send data. The first data
message sent in response to an allocation message provides
feedback on the period and allocation; terminate - used to
terminate the flow, remove state and release any resources
allocated to the flow.

 3

B. Credits and Period of Allocation
As mentioned before, PACE receivers periodically allocates
credits to the senders. The period of allocation (𝑝) plays an
important role. First, it defines the granularity of credit
allocation. The total amount of credits sent by a receiver or a
forwarder corresponds to the link capacity 𝑅, multiplied by the
period p. Second, the period also defines the time credits are
valid. Credits cannot be used indefinitely. PACE defines a
mechanism to expire credits based on logical clocks. The
logical clock is incremented on every period. PACE requires 𝑝
to be greater than one RTT. We define validity of a credit to
be 2 ∙ 𝑝 to allow for all the data packets for one period to
arrive at the receiver with valid credits.

In our implementation, credit allocations are encoded in 2-byte
fields, and 1 credit is equal to 8 bytes. For simplicity, from
now on we refer to allocations in bytes (before conversion to
credits). The period is encoded in a 1-byte field in control
messages. The value is then multiplied by 20µs to obtain the
real period.

C. Receiver Logic
The receiver is responsible for sending allocations for each
flow periodically. The receivers maintain an estimation of how
many credits each flow will be able to transmit in the next
period, i.e. the flow’s demand. This value is sent in the
allocation message to inform forwarders about the flows
resource requirements. Three fields in a credit allocation
message are used to compute the current allocation and
estimate future demand. All fields are initialized by the
receiver and can be changed by forwarders. The allocation
fields are:

• The field potential demand (dp) carries the estimate of the
demand of the flow for the next period. This value is
initialized by the receiver with the maximum possible
allocation (i.e., p ∙ R). The value can be decreased by
forwarders and the sender returns the final value back to
the receiver in the first data message.

• The field demand (d) carries the demand of the flow for
the current interval. This value is initialized with the last
potential demand that the receiver got from the sender.
This field makes sure that all forwarders are informed of
the demand of the flow.

• The field allocation (a) carries the actual allocation for
the current period and it is initialized with the potential
demand received from the sender. This field carries the
actual number of credits that all the forwarders in the path
can allocate for the current interval. For instance, at a
given instant, a forwarder may have all credits allocated.
In this case, the allocation value would be zero.

All nodes use the demand value to compute allocations instead
of the allocation value. This ensures that the flow’s correct
demand will be taken into account when computing future
allocations. Section III.E describes how forwarders compute
the allocations for the flows.

In order to be able to differentiate flows, receivers can have
different weights. The receivers can also combine their weight
to the senders’ weights to differentiate flows.

D. Sender Logic
When the sender receives an allocation message, it starts
sending data. Using the period and the number of credits, the
sender can determine how much data can be sent and at what
rate. In the first data message, the sender includes the received
allocation, potential demand and period back to the receiver.

E. Forwarder Logic
The forwarders need to verify if they have enough capacity to
meet each allocation request. If they do not have enough
capacity they can either reduce the number of credits or
increase the period of allocation. An overview of the
allocation process in forwarder 𝑖 is depicted in Fig. 2. One of
the concerns of our algorithm is to minimize processing delays
of allocation packets. Thus, we split the allocation algorithm
into an offline and an online component. PACE’s offline
component computes two variables periodically: allocation
per weight (𝑎!) and remaining allocation (𝑟). The demand
computed at the previous forwarder, 𝑑!!!, and the weight of
the flow, 𝑤 , are used to feed the offline processing data
structure. The online processing uses the received allocation
fields and the output of the offline processing, to compute the
output allocation fields.

Fig. 2. The allocation algorithm at

the forwarders

Fig. 3. Weighted Max-Min Fair
Allocation given weight and demand.

1) Computing Fair Allocations (Offline)

Credit allocations are determined according to the weighted
Max-Min fairness principle. In a weighted max-min fair
allocation [10], the flows’ fair shares are proportional to their
weights. This policy is exemplified in Fig. 3. The figure
represents four flows, each with a demand and a weight. The
initial fair allocation (solid bar) is a share of the total possible
allocation proportional to the flows weight. No flow receives
more than its demand. If any flow does not use its entire fair
allocation, the remaining credits are proportionally split
among the other flows. Thus, in the figure, flow 1 receives
only its demand despite its fair allocation being four times that
of flows 2 and 3. The credits not used by flow 1 are distributed
among the remaining flows according to their weight. Flow 4
receives twice the number of credits of the other flows’ as its
weight is twice the weight of the other two flows.

Typically, max-min fairness is achieved by using a
progressive filling algorithm [11]. In each round all flows are
assigned the fair share of the total available allocation. In
subsequent rounds, the credits that were not used in the

di�1, w

online

offline
,

Compute Fair
Allocation

once per period

di�1, w

aw

Constrain
Allocations

di, dp,i, ai

dp,i�1, ai�1

r

0

0.25

0.50

0.75

1.00

Flow 1
(w=4)

Flow 2
(w=1)

Flow 3
(w=1)

Flow 4
(w=2)

Allocation with different weights

Allocation Demand Fair Allocation

 4

previous round are distributed among the other flows. This
algorithm has a worst case processing complexity of O n!
whenever a flow is updated. PACE uses a weighted max-min
fairness algorithm based on a B-Tree that allows us to reduce
the processing complexity to O log n , the Max-Min B-Tree.
PACE has a storage complexity of O n .

The rationale of the Max-Min B-Tree data structure is
represented in Fig. 4. Given a set of flows f!, f!,… , f! , each
with demand and weight d!,w! , we maintain a list of flows
sorted according to the demand normalized by the flow’s
weight, d!,! = d! w!. We also maintain a cumulative sum of
the demand and weight D!,W! . To reduce complexity of
computing the allocation, we maintain a set of 𝐿 pointers
k!, k!,… , k! , which we call allocation level pointers. Each

allocation pointer k!, contains variables representing the total
allocation for the level, C!, a fair allocation per weight, a!,!
and the non-allocated credits or remainder, r!. Each allocation
level pointers represents one round of allocation. For instance,
the first pointer (k!) represents the initial allocation obtained
by dividing the maximum allocation by all the flows. In the
example of Fig. 4, the total allocation (C! = 1) is divided by
the total weight, providing an allocation of 0.1 per weight unit.
Thus k! points to f!, which is the last flow requiring less than
its allocation (d!,!! = 0.08 < 0.1). The second pointer (k!)
distributes the remainder of the first level, r!, among the rest
of the flows. As shown in Fig. 4, the flows to the left of an
allocation level pointer are flows whose demand (d!) is
fulfilled by the allocation of the pointer. Consider f! to be the
flow just before allocation level pointer k!. Then the values of
k! are given by:

 w! = W! −W!!! (1)

 C! = r!!! (2)

 a!,! = C! w! + a!,!!! (3)

 r! = min 0, a!,! ∙ W! −W!!! − D! − D!!! (4)

The last pointer has either no credits left (𝑟! = 0) or no more
flows requiring allocations (𝑤! = 0). The allocation values
used in the online processing are 𝑎! = 𝑎!,! and 𝑟 = 𝑟!.

The sorted list is represented as a B-Tree. B-Trees are
hierarchical structures that allow any operation (insert, delete,
search and/or update) in O log n time. Each node in the
B-Tree keeps track of the total demand and weight of its sub-
tree. These variables are updated when inserting or deleting
key without increasing processing complexity. The processing
complexity of updating the levels is O L ∙ log n , where L is
the number of levels and n is the number of flows. Typically,
three to four levels are enough to allocate all the credits.

In our implementation, all demand and allocation values in the
B-Tree are normalized. Each flow has a given demand for a
specified period. The normalized value corresponds to the
demand divided by the total credits that the interface can
transmit within the period of the flow. This normalization

allows a node to vary the period of allocation without
changing the Max-Min B-Tree values (see Section III.E.3).
When the period of the forwarder is larger than the period of
the flow, the forwarder update the period of the flow (in the
allocation message) to match the local period.

Fig. 4. Rationale of the Max-Min B-Tree Data Structure.

2) Constrain Allocations (online)

In the online procedure, the following expressions are used to
compute the output values:

 d! = min 𝐶 𝑝 ∙w ∙ a!, d!!! (5)

 d!,! = min 𝐶 𝑝 ∙w ∙ a! + r, d!,!!! (6)

where 𝐶 𝑝 is the number of credits computed using the
period in the allocation message (𝑝!!! ∙ 𝑅).

As shown in Eq. (5), the output demand only depends of the
fair allocation algorithm. However, the actual allocation for
the current period, 𝑎! depends on the forwarder having enough
free credits to allocate when the allocation message arrives.
The forwarder can allocate a total of credits equivalent to
2 ∙ 𝐶! = 2 ∙ 𝑝 ∙ 𝑅. The forwarder keeps a counter, 𝐴(𝑡), of the
allocated credits. When the forwarder allocates new credits, it
decreases the allocated credits from the counter. When a data
message is received the counter is increased.

The allocation a! is obtained using Eq. (7), where Q! t is the
current usage of the output queue.

 a! = min 2 ∙ 𝐶! − A t − Q! t , d! (7)

In typical rate-based protocols like RCP [6], whenever an
allocation message arrives, the flow immediately receives its
fair allocation. As fair allocation changes with the arrival of
new flows, this may lead to periods of congestion. D3 [8]
avoids this issue by pausing every non-deadline flow for one
RTT. This solution leads to unnecessary latency and under-
allocation. PACE avoids this over-allocation by filtering the
credits based on queue usage and allocation not yet used.

Flows flow 1 flow 2 flow 3 flow 4 flow 5 flow 6

(d, w) (0.08, 1) (0.24, 3) (0.11, 1) (0.12, 2) (0.15, 2) (1.00, 1)

dw 0.08 0.08 0.11 0.06 0.15 1.00

Flows flow 4 flow 2 flow 1 flow 3 flow 5 flow 6

(d, w) (0.12, 2) (0.24, 3) (0.08, 1) (0.11, 1) (0.30, 2) (1.00, 1)

dw 0.06 0.08 0.08 0.11 0.15 1.00

Flows flow 4 flow 2 flow 1 flow 3 flow 5 flow 6

(D, W) (0.12, 2) (0.36, 5) (0.44, 6) (0.55, 7) (0.85, 9) (1.85, 10)

k0

C0 = 1.00
w0 = 10

aw,0 = 0.1
r0 = 0.16

k1

C1 = 0.16
w1 = 4

aw,1 = 0.14
r1 = 0.02

step 1: compute normalized demand

step 2: sort by normalized demand

step 3: compute cumulative demand and weight

D =0.36, W = 7

D = 1.85, W = 10

(0.08, f1)
w=1,

d=0.08

(0.06, f4)
w=2,

d=0.12

(0.08, f2)
w=3,

d=0.24

D = 1.41, W = 4

(0.11, f3)
w=1,

d=0.11

(0.30, f5)
w=2,

d=0.30

(1.00, f6)
w=1,

d=1.00

Allocation Level Pointers

Max-Min B-Tree Nodes

step 4: represent
as B-Tree

step 5: compute
allocation level
pointers

Max-Min B-Tree
k2

C2 = 0.03
w2 = 3

aw,2 = 0.15
r2 = 0

 5

3) Dynamic Periods

The period of allocation influences the performance of PACE.
If we use small periods, the flows’ rates adapt quickly when a
flow starts or ends. However, as the number of concurrent
flows increases, the allocation per flow gets smaller. At some
point, smaller allocations mean shorter packets increasing the
overhead per packet. In order to allow PACE to scale to a
large number of concurrent flows, we increase the period of
allocation.

PACE increases the period when the allocation for level
pointer k! is not enough to transmit two maximum sized
packets. The keys in the B-Tree are normalized with respect to
the total possible allocation. When the period is increased, the
demand of each flow would increase proportionally. Thus, the
only value that needs to be updated is the total allocation, C!.
Also, flows in a forwarding node can have different allocation
periods. For instance, a flow that is experiencing congestion in
some other node will have a higher period. Thus, the
allocation values in equations (5) and (6) are computed using
the period values contained in the received allocation message.

PACE maintains the allocation period as small as possible to
maintain fast convergence. When the number of concurrent
flows decreases and the base fair share increases, we decrease
the period. When reducing the period we only need to
decrease the total allocation, C!. Equation (6) guarantees that
no credits are allocated until old credits are used or expire. If
the first term is negative due to high queue usage or high
number of allocated credits, the filtered allocation will be zero.

IV. EXPERIMENTS
We implemented PACE using NS-3 [12]. We also implement
two recent proposals: DCTCP [5] and D3 [6]. D3 is designed
having deadline-aware flows in mind. Here we evaluate it as a
generic congestion control protocol without the deadline
aware mode. In this case, D3 is similar to an optimized RCP
[4]. We use the parking-lot topology to study how the
protocols behave under two different traffic patterns. To
emulate a DC deployment the simulation network has a very
small RTT (~150µs) and links operate at 1Gbps. An initial
period of 200µs was used in the PACE implementation.

(a)

(b)

Fig. 5. Scenarios: (a) Sequential flows. (b) Composite traffic pattern.

A. Scenario 1: Fairness and RTT
Consider the scenario in Fig. 5(a). We start 10 flows
sequentially, each one separated by an interval of 5ms. Flows
start from different senders, picking a sender from each of the
four groups in a round-robin fashion (i.e. a, b, c, d, a, b, ...).
We then end the flows sequentially in the inverse order using

the same 5ms interval between each termination. The
experiment is run for PACE, D3, DCTCP and TCP.

The rates for each flow are represented in Fig. 6(a-d). The
dashed line represents the total rate at the bottleneck link (F4-
F5). PACE obtains a fair distribution of bandwidth and
converges quickly to a steady state. D3 also distributes
resources fairly but it does not use the channel efficiently. This
is due to two reasons: the low granularity of resource
allocation (units of 1bytes/µs); and convergence to full
utilization is done by adjusting the total allocated capacity,
which takes several RTTs to converge. DCTCP converges
slowly to the fair state and, therefore, flows with lower RTT
are unable to converge to the fair allocation. Finally, TCP does
not converge to the fair state during the time frame of the
experiment. TCP’s additive increase and multiplicative
decrease lead to drastic variations in the bitrate. Also, TCP
adjusts at the cost of packet loss, which does not happen with
the remaining protocols.

(a) PACE flows rate.

(b) D3 flows rate.

(c) DCTCP flows rate.

(d) TCP flows rate.

(e) Fairness (different RTT).

(f) Fairness (equal RTT).

Fig. 6. Results for a sequence of flows sharing a common bottleneck. (a-d)
Throughput of each flow for different protocols. (e) Average fairness with

flows with the different RTT. (f) Average fairness for flows with same RTT.

We repeat the experiment but now all flows start from sender
of group a, i.e. all flows have the same RTT. We also repeat
the two experiments for longer periods between the start and
end of the flow (20ms and 50ms). We then compute the
average Jain’s Fairness Index [13] throughout the experiment.
Fig. 6 (e) and (f) show the average fairness index, for the
scenarios with different RTT and equal RTTs, respectively.
PACE maintains fairness for short flows and different RTTs.
D3 also distributes resources fairly independently of RTT, but
does not achieve the fair state as quickly (~5% drop in fairness
for shorter flows). The results obtained for DCTCP and TCP
demonstrate the sensitiveness of these protocols to the
differences in RTTs.

a
senders

d
senders

F1 F2 F3 F4 F5

r
receivers

b
senders

c
senders

F1 F2 F3 F4 F5

S1 S3 S2

R3 R2 R1

4 flows at t0

1 flow at t1

+ 6 flows at t3

6 flows at t2

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.10

Ra
te

 (G
bp

s)

Simulation Time (sec)

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.10

Ra
te

 (G
bp

s)

Simulation Time (sec)

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.10

Ra
te

 (G
bp

s)

Simulation Time (sec)

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.10

Ra
te

 (G
bp

s)

Simulation Time (sec)

 6

TABLE 1. FAIRNESS AND EFFICIENCY WITH A HIGH NUMBER OF CONCURRENT
FLOWS

Properties
64 Flows 250 Flows

PACE D3 DCTCP PACE DCTCP

Fairness (Jain) 99.2% 98.2% 98.9% 96.3% 39.9%
Efficiency 98.9% 93.1% 99% 98.9% 99.2%

Scalability: We run one more experiment using the same
scenario (Fig. 5(a)). We increase the number of concurrent
flows (all starting from one of the a senders, i.e. same RTT) to
64 and 250 flows. The fairness results are presented in Table
1. D3 has a theoretical limit of 125 flows for 1Gbps link due to
the granularity of allocation. Thus, it is not possible to run the
experiment for 250 flows using D3. All protocols deal
reasonably well with 64 simultaneous flows. D3, however, has
a 7% penalty in utilization. PACE maintains the fairness
guarantees even when we increase the number of flows to 250.
As a reactive protocol DCTCP uses timeouts once the delay
increases. This leads to packet retransmissions, drastic
window adjustments and consequent fairness degradation.

(a) PACE flows rate.

(b) DCTCP flows rate.

(c) D3 flows rate.

(d) Queue usage at F4 (interface to F5).

Fig. 7. Throughput and Queue usage for scenario 2.

B. Scenario 2: Composite Traffic Pattern
The second scenario is depicted in Fig. 5(b). There are 4
phases: at 𝑡! = 0, we start four flows from S1 to R1. At
𝑡! = 2𝑚𝑠, we start one flow from S2 to R2. At 𝑡! = 4𝑚𝑠, we
start 6 more flows from S3 to R3. Finally, at 𝑡! = 20𝑚𝑠, we
start 6 more flows from S2 to R2. In Fig. 7(a-c), we represent
one flow from each group: one flow S1-R1, the first flow S2-
R2, one flow from S3-R3 and one flow from the last group S2-
R2. Once the flows S3-R3 start, S1-R1 throughput is reduced
due to F3. The first flow S2-R2 takes advantage of the extra
free bandwidth. DCTCP reacts quickly to traffic changes.
However, throughput converges to an unfair distribution of
resources. The represented flow from S1-R1 is using more
than its fair share and, starting from t2, the flow S2-R2 starts
using almost 20% more than its fair share. D3, however,
presents more problematic results. In order for the first flow
S2-R2 to use the available capacity, D3 increases the allocation
above the physical link capacity. When the new S2-R2 flows
start, the total allocation largely surpasses the link capacity
leading to queue build up. In Fig. 7(d), we can see the effect
that D3 has on the queue of forwarder F4.

Controllability: To illustrate PACE’s controllability we run
scenario 2 with the following flows: one flow from S1-R1
with weight 2 at 𝑡! = 0; one flow from S2-R2 with weight 1 at
𝑡! = 1.5𝑚𝑠 ; and one flow from S3-R3 with weight 4 at
𝑡! = 3𝑚𝑠. All flows transmit 500KB. The results are shown in
Fig. 8. When flow S2-R2 starts at t1, it is competing with a
flow that has twice its weight. Thus, it gets half of S1-R1
bandwidth. When the flow S3-R3 starts at t2 it uses twice the
bandwith of S1-R1. This in turn frees space for the flow S2-
R2, which increases its throughput. As soon as flow S1-R1
finishes, both flows have the path freed and increase their
throughtput to 100%.

Fig. 8. Example of PACE’s Controllability

V. CONCLUSION
In this paper we present PACE, a preventive explicit allocation
congestion control protocol for Data Center networks. In
multi-tenant Data Centers, as the number of applications rises,
fast convergence to a fair distribution of resources becomes
increasingly important. PACE allows nodes in the network to
determine credit allocation and the period of allocation. These
two variables allow PACE to adapt quickly to transient traffic
patterns. The experiments demonstrate that PACE converges
quickly to nearly perfect fairness with short flows, large
number of concurrent flows, sudden traffic changes and flows
with different weights.

REFERENCES.
[1] “Windows Azure”, http://www.windowsazure.com/en-us/.
[2] “Amazon EC2”, http://aws.amazon.com/ec2/.
[3] “Google Cloud Platform”, http://cloud.google.com/.
[4] N. Dukkipati, “Rate Control Protocol (RCP): Congestion Control to

Make Flows Complete Quickly,”, PhD Thesis, 2007.
[5] M. Alizadeh, A. Greenberg, D. A. Maltz, and J. Padhye, “Data Center

TCP (DCTCP),” in SIGCOMM ’10, 2010.
[6] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better Never

than Late: Meeting Deadlines in Datacenter Networks,” in SIGCOMM
’11, 2011.

[7] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing Flows Quickly
with Preemptive Scheduling,” in SIGCOMM ’12, 2012.

[8] K. Ramakrishnan, S. Floyd, and D. Black, “RFC3168: The Addition of
Explicit Congestion Notification (ECN) to IP,” 2001.

[9] H. T. Kung and K. Chang, “Receiver-Oriented Adaptive Buffer
Allocation in Credit-Based Flow Control for ATM Networks,” in IEEE
INFOCOM 1995.

[10] S. Keshav, An Engineering Approach to Computer Networking.
Addison-Wesley, 1997.

[11] D. Betsekas and R. Gallager, Data Networks. Prentice-Hall, 1992.
[12] Network Simulator 3: http://www.nsam.org.
[13] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of

fairness and discrimination for resource allocation and shared computer
system,” Technical Report DEC-TR-301, Digital Equipment
Corporation, 1984.

0

0.2

0.4

0.6

0.8

1

0 0.005 0.010 0.015 0.020 0.025 0.030

Ra
te

 (G
bp

s)

Simulation Time (sec)

S1-R1 S2-R2 (1st)
S3-R3 S2-R2 (last)

0

0.2

0.4

0.6

0.8

1

0 0.005 0.010 0.015 0.020 0.025 0.030

Ra
te

 (G
bp

s)

Simulation Time (sec)

S1-R1 S2-R2 (1st)
S3-R3 S2-R2 (last)

0

0.2

0.4

0.6

0.8

1

0 0.005 0.010 0.015 0.020 0.025 0.030

Ra
te

 (G
bp

s)

Simulation Time (sec)

S1-R1 S2-R2 (1st)
S3-R3 S2-R2 (last)

0
10,000
20,000
30,000
40,000
50,000
60,000

0 0.005 0.010 0.015 0.020 0.025 0.030

Av
g.

 Q
ue

ue
 S

ize
 (B

yt
es

)

Simulation Time (sec)

PACE
DCTCP
D3

0
0.2
0.4
0.6
0.8

1

0 0.002 0.004 0.006 0.008 0.010 0.012

Ra
te

 (G
bp

s)

Simulation Time (sec)

S1-R1, w=2 S2-R2, w=1 S3-R3, w=4

