
Fuzzing Wi-Fi Drivers to Locate Security Vulnerabilities*

Manuel Mendonça, Nuno Ferreira Neves
University of Lisboa, Portugal

manuelmendonca@msn.com, nuno@di.fc.ul.pt

* This work was partially supported by the EU through project IST-4-027513-STP (CRUTIAL) and NoE IST-4- 026764-NOE (RESIST), and by
the FCT through project POSC/EIA/61643/2004 (AJECT) and the Large- Scale Informatic Systems Laboratory (LASIGE).

Abstract

Wireless LANs (WLAN) are becoming ubiquitous,
as more and more consumer electronic equipments
start to support them. This creates new security
concerns, since hackers no longer need physical
connection to the networks linking the devices, but only
need to be in their proximity, to send malicious data to
exploit some vulnerability. In this paper we present a
fuzzer, called Wdev-Fuzzer, which can be utilized to
locate security vulnerabilities in Wi-Fi device drivers.
Our preliminary experiments with a Windows Mobile 5
device driver indicate that Wdev-Fuzzer can be quite
effective at finding previously unknown problems.

1. Introduction

Wireless LANs give individuals the freedom to
stay connected, while moving from one coverage area
to another. They can be used to extend a wired
infrastructure or to replace existing ones, saving costs
not only due to the declining prices of the wireless
components, but also because they require no (or
simpler) data cable installations. Nowadays WLAN
technologies are becoming ubiquitous, and most
consumer electronic products (such as laptops, PADs,
cellular phones, video game consoles, digital cameras,
printers and video projectors) are equipped with them.

WLAN however introduce newer problems, since
they weaken the security perimeter. In many places,
like airports and shopping malls, there are dozens of
rogue networks just waiting to entrap unsuspecting
travelers. Additionally, it is much easier to compromise
WLAN equipments because attackers only need to be
in proximity of the devices to perform the attack
(physical connection to the network is no longer
necessary).

Although some security failures are due to wrong
system configurations, many result from the
exploitation of implementation bugs in the software
components. In this paper, we are particularly
interested in locating this sort of bugs (or

vulnerabilities) in device drivers (DD) of WLAN, to
allow their removal. These DD are the entry point of
any device, and therefore they are the first software to
process the potentially malicious traffic coming from
an attacker. Moreover, almost any vulnerability in
these DD has a catastrophic impact since they run in
the operating system (OS) kernel.

In general, DD provide an abstraction layer between
the physical details of equipments and the kernel.
Nowadays they are becoming the most dynamic and
largest part of an OS. Their design involves knowledge
from several disparate areas, like OS internals, chipset
details, and synchronization that are not simultaneously
mastered by programmers or designers. Therefore, they
are hard to implement and to maintain, and many times
they end up being deployed with bugs.

The methods for discovering vulnerabilities in DD
depend on the availability of the driver code. If the
code is public, then source code auditing may lead to
good results, as one can read and check for
implementation flaws. However, in the majority of
situations, the code is closed. In this case, black box
testing may be performed, where the functional
behavior of the unit under test (UUT) is verified
(output results) against the input values that are
provided. Reverse engineering may also be employed
to discover vulnerabilities, but it is costly, time
consuming and demands profound knowledge on
system architecture and machine code.

Vulnerabilities can also be discovered by another
black box testing methodology, some times called
fuzzing [1]. Fuzzing consists on presenting malformed
data to the interface of the software component and on
observing the outcomes. This technique may require
further refinements to catch more complex bugs, due to
protocol specificities, but it can be very effective in
locating several kinds of vulnerabilities.

In our work, we have designed a new fuzzer
architecture that can be used to automatically locate
vulnerabilities in WLAN device drivers. The current
implementation of the architecture, called Wdev-
Fuzzer, supports the Wi-Fi protocol and is specialized

to test PDA equipments. In the future, we intend to
extend it to other communication protocols, such as Ird
and Bluetooth.

Figure 1. The process of fuzzing Wi-Fi frames.

2. The Wdev-Fuzzer

The Wdev-Fuzzer utilizes the test infrastructure
represented in Figure 1, which is composed by 4
elements: a Controller Machine, a Mobile Device (or
the UUT), a PC-Cradle, and a Real Access Point. The
Controller Machine is responsible for generating Wi-Fi
packets containing malicious data (e.g., out-of-bound
values, repeated tags) and to send them to the UUT.
This element also monitors the outcomes of the tests,
and saves the collected data in the disk for future
analysis. One of the problems in developing the
Controller is to find a card and a driver that allows the
injection of raw Wi-Fi frames. Currently, we are using
the Linux open source MadWi-Fi [2] driver, together

with the Lorcon [3] generic library for injecting the
frames.

The UUT is the target Wi-Fi device of the
experiments. It runs a Monitor Application that
regularly connects to the Monitor Listener of the
Controller, informing the current list of detected access
points (AP) and the status of any existing connection.
This data is especially useful when testing Beacon and
Probe frames, as the detection of the AP is crucial to
determine the correction of the error handling
mechanisms. The Monitor Listener forwards some of
the data to the Attack Controller to synchronize the
next attack. The Wi-Fi responses transmitted by the
UUT are processed by the Packet Listener of the
Controller. Each incoming packet is carefully
examined to determine any unexpected behavior.

The UUT is physically attached to a Cradle, which
in turn is connected to a PC through an USB port. This
way, the Monitor Application can reach the Controller
through an alternate link, leaving the Wi-Fi medium
completely free for the experiments.

To keep the complexity of the code of the
Controller manageable, a Real AP is utilized to take
the UUT through the various states of the Wi-Fi
protocol. This way, specific frames can be injected in
every state.

3. Experimental Results

At this moment, we are using Wdev-Fuzzer to
locate bugs in the Wi-Fi driver of Windows Mobile 5.
The UUT is a HP iPAQ hw6915 PDA. Our preliminary
results have already uncovered a few mismatches
between the DD implementation and the Wi-Fi
standard. For instance, we have noticed that the
“Duration” field of the Beacon frames is not being
tested properly, since the UUT reports a valid AP even
if the field value is above the maximum acceptable
value. Additionally, we have found a specific Beacon
frame that causes the OS hang of the UUT. We are
currently investigating this bug, to determine if it can
be remotely exploited.

4. References

[1] P. Oehlert, Violating Assumptions with Fuzzing, IEEE
Security & Privacy, pages 58-62, March/April 2005.
[2] Atheros, MadWifi-Multiband Atheros Driver for Wireless
Fidelity, July 2007. http://madwifi.org/
[3] Lorcon Team, LORCON - Loss Of Radio CONnectivity,
July 2007. http://802.11ninja.net/lorcon

Mobile Device
(UUT)

OS

Controller Machine

Attack Controller

Log

OS

Lorcon

MadWi-Fi
Driver

Wi-Fi
NIC

Wi-Fi
NIC

Ethernet
NIC

Monitor Application

Ethernet Driver

USB

Attack

Wi-Fi
Driver

USB
Driver

PC – Cradle

OS

Ethernet
NIC USB

ActiveSync

Ethernet
Driver

USB
Driver

Cradle

Log

Real Access Point
Wi-Fi
 NIC

Wi-Fi Ethernet

Mobile Device connect to
Controller Machine via TCP

TCP
over
USB

Faults

Monitor
Listener

Injector Listener

Wi-Fi

