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Abstract. Device drivers account for a substantial part of the operating system 

(OS), since they implement the code that interfaces the components connected 

to a computer system. Unfortunately, in the large majority of cases, hardware 

vendors do not release their code, making the analysis of failures attributed to 

device drivers extremely difficult. Although several instrumentation tools exist, 

most of them are useless to study device drivers as they work at user level. This 

paper presents Intercept, a tool that profiles Windows Device Drivers (WDD) 

and logs the driver interactions with the OS core at function level. The tool 

helps to understand how a WDD works and can provide support for several ac-

tivities, such as debugging, robustness testing, or reverse engineering. Experi-

ments using Ethernet, Wi-Fi and Bluetooth device drivers show that Intercept is 

able to record function calls, parameters and return values, with small over-

heads even when the device driver under test is subject to a heavy workload.   
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1 Introduction 

Device drivers (DD) play an important role in the computer industry as they are re-

sponsible for interfacing the multitude of devices that can be connected to a system. 

Therefore, their aggregated size can be a substantial part of modern operating sys-

tems. Nevertheless, most system administrators, users, and programmers still view 

them as an obscure and complex section of the operating system, which in part can be 

explained due to the DD necessity of addressing low level hardware details and OS 

internals. In the past, DD misbehavior has been pointed out as a prime cause for sys-

tem crashes [3], and some researchers have showed that faults in DD can have a 

strong impact in the overall system dependability [4,5,6,7]. 

The recognized complexity associated with DD is aggravated as most vendors do 

not release openly the code, or even the hardware specifications. Therefore, the de-

velopment, testing and analysis of DD becomes a complex task, and typically can 

only be achieved through the use of reverse engineering techniques and other forms of 

instrumentation. Although several instrumentation tools exist, most of them work at 

user level, making them useless to study the device drivers’ behavior. 
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In the paper we present Intercept, a tool that instruments Windows Device Drivers 

(WDD) by logging data about the interactions with the OS core. It operates without 

access to the driver's source code and with no changes to the driver’s binary file. As 

its name indicates, the tool intercepts all function calls between the DD and the OS 

core, ensuring that various data can be collected, such as the name of the functions 

that are invoked, their parameters and return values, and the content of particular are-

as of memory. Although simple in concept, it enables the users to expose a DD behav-

ior and data structures, which provide a practical approach towards its understanding.  

In the case of DD involved with communications, which are the focus of the paper, 

Intercept can be used as a building block of other tools by providing the contents of 

packets and the context of their arrival/departure. For this purpose, Intercept can log 

the network traffic information in the format used by Libpcap [17], which can then be 

analyzed by popular tools such as WireShark [18]. Intercept can be very helpful in 

debugging processes since it gives a higher level vision of what is happening between 

the OS core and the driver, and at the same time offering information on the parame-

ter contents and address locations. Combined with debugging tools from Microsoft, 

such as WinDbg [20], this data is useful to reduce the time for locating functions, OS 

resources and global variables. Currently, we are using Intercept as a component of a 

testing tool for DD. Some preliminary results are presented at the end of the paper. 

2 Related Work 

In the past, several tools have been proposed for various types of code analysis. For 

example, CodeSurfer [11] can perform program slicing to support a better understand-

ing of the code behavior.  BitBlaze [10] combines dynamic and static analysis com-

ponents to extract information from malware. Other tools like Coverity [12], Path 

Finder [14] or CoreDet [13] rely either on C or Java language constructs and LLVM 

compilers [15] to transform the source code to their analysis format. Unfortunately, 

these tools depend on the existence of the source code. Binary programs have been 

addressed by RevGen [16], which translates them to LLVM intermediate representa-

tions, enabling the code to be checked with off-the-shelf analysis tools.  

These tools, although producing valuable information, only reveal a part of the 

scope of the analysis, which is the static organization of the software. To obtain a 

vision over the dynamic behavior of the component, it is usually necessary to resort to 

debuggers or instrumentation tools that are able to trace the execution and record the 

instructions that were run. SytemTap [21] and Ftrace [22] are examples of existing 

tracing tools, but they only support the Linux OS. 

Detours [1] is a library for intercepting arbitrary Win32 binary functions on x86 

machines. The interception code is applied dynamically at runtime by replacing the 

first few instructions of the target function with an unconditional jump to a user-

provided detour function.  The removed instructions from the target function are pre-

served in a trampoline function, which also has an unconditional branch to the re-

mainder of the target function.  The detour function can either completely replace the 

target function or extend its semantics by invoking the target function as a subroutine 



through the trampoline. Detours experiments were based on Windows applications 

and DLLs, but were not applied to device drivers.  

PIN [2] is a software system that performs run-time binary instrumentation of 

Windows applications. PIN collects data by running the applications in a process-

level virtual machine. It intercepts the process execution at the beginning and injects a 

runtime agent that is similar to a dynamic binary translator. To use PIN, a developer 

writes a “Pintool” application in C++ using the PIN API consisting of instrumenta-

tion, analysis and callback routines. The “Pintool” describes where to insert instru-

mentation and what it should do. Instrumentation routines walk over the instructions 

of an application and insert calls to analysis routines. Analysis routines are called 

when the program executes an instrumented instruction, collecting data about the 

instruction or analyzing its behavior. Callbacks are invoked when an event occurs, 

such as a program exit. Several applications were instrumented using PIN, such as 

Excel and Illustrator. PIN executes in user level ring3, and therefore can only capture 

user-level code. DynamoRio [24] is an example of dynamic binary translation tech-

nique similar to the one used by PIN [2]. 

NTrace [23] is a dynamic tracing tool for the Windows kernel capable of tracing 

system calls, including the ones involving drivers. The used technique is based on 

code modification and injection of branch instructions to jump to tracing functions. It 

relies on the properties introduced by the Microsoft Hot patching infrastructure, 

which by definition start with a mov edi, edi instruction. NTrace replaces this 

instruction with a two-byte jump instruction.  However, due to the space constraints, 

the jump cannot direct control into the instrumentation routine. It rather redirects to 

the padding area preceding the function. The padding area is used as a trampoline into 

the instrumentation proxy routine.  

Intercept uses an alternative approach to instrument device drivers in Windows, 

which requires no changes to the binary code and supports callbacks. It uses a DD 

loader to point all imported functions from a driver to its own interception layer. 

Callback functions registered by the driver are also captured and directed to the inter-

ception layer. No extra code needs to be developed for normal operation --- a com-

plete log is generated describing how the driver behaves as a result of the experi-

ments. However, extensibility is achieved by changing the actions performed by the 

interception layer, allowing more complex operations to be carried out. 

3 Device Drivers 

DD are extensible parts of the OS, exporting interfaces that support the interactions 

with the hardware devices. They are called when either the OS requires some action 

to be carried out by the device or the other way around. Depending on the type of 

device, the DD can operate in two different ways. In the first one, the DD accesses the 

device in a periodic fashion (pooling) --- the DD programs a timer with a certain val-

ue and whenever the timer expires the device is checked to see if it needs servicing 

(and proceeds accordingly). In the second way, the device triggers an interrupt to 

request the processor’s attention. Each interrupting device is assigned an identifier 



called the interrupt request (IRQ) number. When the processor detects that an inter-

rupt has been generated on an IRQ, it stops the current execution and invokes an in-

terrupt service routine (ISR) registered for the corresponding IRQ to attend to the 

request of the device. In either case, these critical pieces of code must be quickly exe-

cuted to prevent the whole system from being stopped. 

The rest of this section provides context on the operation of WDD. Some of this in-

formation was obtained by reading available literature, while other had to be discov-

ered by reverse engineering the operation of Windows.  

3.1 Windows device drivers 

The Windows Driver Model (WDM) defines a unified approach for all kernel-mode 

drivers. It supports a layered driver architecture in which every device is serviced by a 

driver stack. Each driver in this chain isolates some hardware-independent features 

from the drivers above and beneath it avoiding the need for the drivers to interact 

directly with each other. The WDM has three types of DD, but only a few driver 

stacks contain all kinds of drivers: 

 Bus driver – There is one bus driver for each type of bus in a machine (such as 

PCI, PnP and USB). Its primary responsibilities include: the identification of all 

devices connected to the bus; respond to plug and play events; and generically 

administer the devices on the bus. Typically, these DD are given by Microsoft; 

 Function driver – It is the main driver for a device. Provides the operational in-

terface for the device, handling the read and write operations. Function drivers 

are typically written by the device vendor, and they usually depend on a specific 

bus driver to interact with the hardware; 

 Filter drivers – It is an optional driver that modifies the behavior of a device. 

There are several kinds of filter drivers such as: lower-level and upper-level filter 

drivers that can change input/output requests to a particular device.  

The WDM specifies an architecture and design procedures for several types of de-

vices, like display, printers, and interactive input. For network drivers, the Network 

Driver Interface Specification (NDIS) defines the standard interface between the lay-

ered network drivers, thereby abstracting lower-level drivers that manage hardware 

from upper-level drivers implementing standard network transports (e.g., the TCP 

protocol). Three types of kernel-mode network drivers are supported in Windows: 

 Miniport drivers - A Network Interface Card (NIC) is normally supported by a 

miniport driver that has two basic functions: manage the NIC hardware, including 

the transmission and reception of data; interface with higher-level drivers, such as 

protocol drivers through the NDIS library. The NDIS library encapsulates all op-

erating system routines that a miniport driver must call (functions NdisMXxx() 

and NdisXxx()). The miniport driver, in turn, exports a set of entry points 

(MPXxx() routines) that NDIS calls for its own purposes or on behalf of higher-

level drivers to send packets. 

 Protocol Drivers - A transport protocol (e.g. TCP or IP) is implemented as a 

protocol driver. At its upper edge, a protocol driver usually exports a private in-

terface to its higher-level drivers in the protocol stack. At its lower edge, a proto-



col driver interfaces with miniport drivers or intermediate network drivers. A pro-

tocol driver initializes packets, copies data from the application into the packets, 

and sends the packets to its lower-level drivers by calling NdisXxx() functions. 

It also exports a set of entry points (ProtocolXxx() routines) that NDIS calls 

for its own purposes or on behalf of lower-level drivers to give received packets. 

 Intermediate Drivers - These drivers are layered between miniport and protocol 

drivers, and they are used for instance to translate between different network me-

dia. An intermediate driver exports one or more virtual miniports at its upper 

edge. A protocol driver sends packets to a virtual miniport, which the intermedi-

ate driver propagates to an underlying miniport driver. At its lower edge, the in-

termediate driver appears to be a protocol driver to an underlying miniport driver. 

When the miniport driver indicates the arrival of packets, the intermediate driver 

forwards the packets up to the protocol drivers that are bound to its miniport. 

Windows drivers expose functions that provide services to the OS. However, only 

one function is directly known by the OS, as it is the only one that is retrieved from 

the binary file when the driver is loaded. By convention, the function name is Driv-

erEntry(). This function is called when the OS finishes loading the binary code of 

the driver, and its role is to initialize all internal structures of the driver and hardware, 

and indicate to the OS the exported driver functions by calling NdisMRegister-

MiniportDriver(). Example exported miniport driver functions to NDIS are: 

MPInitialize() and MPSendPackets(). 

Generically, a packet transmission is accomplished in a few steps with NDIS. The 

protocol driver sends the packet by calling NDIS function NdisSendPackets(), 

which in turn passes the packet to the miniport driver by invoking  MPSendPack-

ets()exported by the miniport driver. The miniport driver then forwards the packet 

to the NIC for transmission by calling the associated NdisSendPackets(). On 

the other way around, when a NIC receives a packet, it can post a hardware interrupt 

that is handled by NDIS or the NIC's miniport driver. NDIS notifies the NIC's mini-

port driver by calling the appropriate MPXxx() function. The miniport driver sets up 

the data transfer from the NIC and then indicates the presence of the received packet 

to higher-level drivers by calling the NdisMIndicateReceivePacket(). The 

upper level protocol driver then calls NdisReturnPacket() to retrieve the pack-

et. 

3.2 Windows device drivers file structure 

Windows normally organizes the information about a DD in several files. Files 

with the extension “.inf” contain plain text and are divided in several sections. They 

have relevant context data such as the vendor of the driver, the type and the compati-

bility with devices, and startup parameter values. They are used during driver installa-

tion to match devices with drivers and to find the associated “.sys” files. Files with the 

extension “.sys” are the binary executable images of the DD, and they are loaded to 

memory to provide services to the OS. The binary files follow the PEF file format [8], 

the same format used to represent applications and DLLs.  



Fig. 1. Intercept architecture. 

 
 

The PEF file structure contains binary code and dependencies from other software 

modules (organized as tables). The binary code is mostly ready to be loaded into 

memory and run. However, since it can be placed anywhere in memory, there is the 

need to fix up the relative addresses of the function calls. Functions that refer to ex-

ternal modules are located in the imported functions table. This table contains the 

names of the external modules (DLLs, .sys, .exe), the function names and the address 

location in the memory of the running system. The addresses are resolved by the 

Windows Driver Manager when it loads the driver for execution. 

The driver is placed in execution by calling the DriverEntry() function. The 

address of this function is also obtained from the PEF file, and is located in the Ad-

dressOfEntryPoint field of the Optional Header section. 

4 Intercept 

Intercept logs information about the interactions between the OS core and the device 

driver under test (DUT). The data is collected during the whole period of execution, 

starting when the driver is loaded and ending when it is uninstalled. It includes among 

others, the list of functions that are used, the order by which they are called, and pa-

rameter and return values. This information is quite comprehensive, and it helps not 

only to understand the driver-OS core interactions, but also to realize how drivers deal 

with the hardware in terms of programming and access to specific storage areas.  

4.1 Architecture 

The architecture of Intercept is represented in Fig. 1. It can be divided in two main 

components: the Intercept Windows Device Driver (IWDD) and the Intercept User 

Interface (IUI). The first is a Windows driver that provides all the necessary functions 
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to load, execute and intercept the DUT. The second is an application that allows users 

to setup the interception process and control the IWDD activity. 

The components of IWDD are the following. The Controller provides an interface 

for the IUI application to control the behavior of the IWDD, allowing for instance the 

definition of the level of detail of logging and the selection of which functions should 

be logged. The Loader & Connector (LC) is responsible for loading the “DUT.sys” 

file into the memory space of IWDD. It also links all functions that the DUT calls 

from external modules to the functions offered by the Interception layer. The Inter-

ception Layer provides the environment for the DUT to run, and intercepts all calls 

performed by the OS to the DUT and the other way around. The Log Unit (LGU) 

receives the log entries from the Interception layer and saves them to a file. This is 

performed in a separate task to decouple the write delays from the remaining pro-

cessing, and therefore increase the system performance. 

Intercept is installed by replacing in the system the DUT with its own driver (the 

IWDD). When the OS attempts to load the DUT, in fact it ends up loading IWDD. 

Later on, IWDD brings to memory the DUT for execution. Setting up the interception 

of a DUT involves the following steps:  

1. The user indicates the DUT of interest through the IUI interface, where a list of de-

vices present in the OS is displayed;  

2. The IUI locates the “DUT.inf” and “DUT.sys” files, and makes a copy of them to a 

predefined folder. A copy of the “IWDD.sys” file is also placed in the same folder; 

3. The IUI replaces in the “DUT.inf” file all references to “DUT.sys” with 

“IWDD.sys”. The IUI also removes references to the security catalogue, since 

IWDD is not currently digitally signed. This way, when the OS interprets the 

“DUT.inf” file, it will install “IWDD.sys” instead; 

4. The Windows Device Manager (WDM) is used to uninstall the “DUT.sys”, and 

then it is asked to check for new hardware, to detect that there is a device without a 

driver. At that time, the location of the predefined folder is provided, and Windows 

interprets the modified “DUT.inf” file. Since there is a match with the hardware 

identification of the device, it proceeds to load “IWDD.sys”. 

4.2 Start up process for interception 

After “IWDD.sys” is loaded, the following sequence of actions occurs: 

1. The WDM calls the DriverEntry(DriverObject *drvObj, 

PUNICODE_STRING RegPath) function of IWDD, so that it can initialize and 

register the callback functions. Parameter *drvObj is a complex structure where 

some of the exported callback functions can be registered. Parameter RegPath is 

the path of the Windows Register location where the driver should store infor-

mation. Since the DD functionality is to be provided by the original DUT imple-

mentation, at this stage the control is given to the LC unit to load the DUT’s code; 

2. The LC unit interprets the “DUT.sys” file contents, relocates the addresses, and 

goes through the table of imported functions to link them to the Interception layer. 

Technically this is achieved by having in the Interception layer a table containing 



entries with a “name” and an “address” for each function. The “name” is the Win-

dows function name that can be found in the imported table of the DUT and the 

“address” is a pointer to the code of the function. The address of the function in the 

Interception layer is placed in the imported function table of the DUT's. In the end, 

all imported functions of the DUT point to functions in the IWDD.  

3. Next, the “DUT.sys” binary is merged and linked to the IWDD. The LC unit also 

finds the address of the DUT’s  DriverEntry(), which is then executed.  As 

with any other driver, the DUT has to perform all initializations within this func-

tion, including running NdisMRegisterMiniportDriver() to register its 

exported functions to handle packets. However, since the DUT's imported func-

tions were substituted by IWDD functions, a call to NdisMRegisterMini-

portDriver() in fact corresponds to a call to 

_IWDD_NdisMRegisterMiniportDriver()
1
. In the particular case of this 

function, the DUT gives as parameters the callback functions to be registered in the 

NDIS library. In the Interception layer, the implementation of this function swaps 

the function addresses with its own functions, making the interception effective al-

so for functions that will be called by the OS to the DUT. 

4. When the DUT's DriverEntry()finishes, it returns a drvObj parameter con-

taining potentially also some pointers to callback functions. Therefore, before giv-

ing control back to the OS, IWDD replaces all callback entries in drvObj with its 

own intercept functions, which in turn will call the DUT’s routines. This way this 

type of callback function is also intercepted. 

4.3 Tracing the execution of the DUT 

The DUT starts to operate normally, but every call performed by the OS to the 

DUT, and vice versa, is intercepted. The Interception layer traces all execution of the 

DUT, recording information about which and when functions are called, what param-

eter values are passed, which return values are produced and when the function exits. 

The log uses a plain text format and data is recorded to a file.  

All functions implemented in the Interception layer make use of routines 

_IWDD_DbgPrint() and _IWDD_Dump(char *addr, long size). The 

first works like the C language printf() function, and is used to write formatted 

data to the log file, such as strings and other information types. The second function is 

used to dump into the log file the contents of memory of a certain range of bytes start-

ing at a given memory addresses. Together, these two functions can give a clear in-

sight of the DUT’s and OS’s interaction. 

Typically, the Interception layer creates a log entry both when entering and leaving 

a function. Whenever input parameter values are involved, they are also logged before 

calling the intended function, either in the DUT’s code or in the OS. Output parame-

ters and return values are saved before the function ends execution. Complex struc-

tures, such as NetBuffers, NetBufferLists or MDLs [9], are decomposed by 

specific routines so that the values in each field of the structure can be stored. 

                                                           
1 The prefix _IWDD_ is used to identify a function provided by the IWDD. 



The interception of functions and the trace of its related information is a time con-

suming activity that may interfere with the DUT and the overall system performance. 

To reduce overheads, the storage process is handled by a separate thread. During the 

IWDD startup process, the LGU unit creates a queue and a dedicated thread 

(DThread), whose task is to take elements from the queue and write them into the 

log file. The queue acts as a buffer to adapt to the various speeds at which information 

is produced and consumed by the thread. The access to the queue is protected by a 

lock mechanism to avoid race conditions. A call to _IWDD_DbgPrint() or 

_IWDD_Dump() copies the contents of the memory to the queue, and signals the 

thread to wake up and store the information. 

In the standard mode of operation, the log file is created when the thread is initiat-

ed. Each time the thread awakes, the data is removed from the queue and written to 

the file. When the file reaches a pre-determined value, it is closed and a new one is 

created. However, in case of a crash, the information in cache can be lost. To cope 

with this situation, the thread can also be configured to open, write synchronously and 

close the file each time it consumes data from the queue. However, this comes at the 

expense of a higher overhead. 

5 Experimental Results 

The objective of the experiments is twofold. First, we want to get some insights in-

to the overheads introduced by Intercept, while a DD executes a common network 

task --- a file transfer by FTP. Second, we want to show some of the usage scenarios 

of the tool, such as determining which functions are imported by the drivers and what 

interactions occur while a driver runs. 

5.1 Test environment 

The experiments were performed with three standard drivers, implementing differ-

ent network protocols, namely Ethernet, Wi-Fi and Bluetooth. Table 1 summarizes 

the installation files for each DUT. 

Table 1. Device drivers under test. 

Driver  Type Files 

Ethernet netrtx32.inf, rtlh.sys 

Wi-Fi netathr.inf, atrh.sys 

Bluetooth  netbt.inf, btnetdrv.sys 

 

The corresponding hardware devices were connected to a Toshiba Satellite A200-

263 Laptop computer. The Ethernet and Wi-Fi cards were built-in into the computer, 

while the Bluetooth device was a SWEEX Micro Class II Bluetooth peripheral [19] 

linked by USB. In the tests, we have used Intercept both with Windows Vista and 

Windows 8. 



The overhead experiments were based on the transmission of a file through FTP. 

The FTP server run in an HP 6730b computer. The FTP client was the Microsoft FTP 

client application, which was executed in the laptop together with Intercept. Different 

network connections were established depending on the DUT in use. For the Ethernet 

driver an Ethernet network of 100Mbps using a TP-Link 8 port 10/100Mbps switch 

was setup to connect the two systems. For the Wi-Fi and Bluetooth drivers an ad-hoc 

connection was established. 

5.2  Overhead of Intercept 

To evaluate the overheads introduced by Intercept, we have run a set of experi-

ments consisting on the transfer of a file of 853548 bytes length between a FTP server 

and a client. Any file could have been used for the transfer. We selected this file be-

cause it was the first log produced by Intercept during the experiments.  

For each driver five FTP transfers were performed, and the average results are pre-

sented in the tables. Table 2 summarizes the results for the execution time and transfer 

speeds. Column “Driver ID” represents the DUT, either in Windows Vista (xx_Vista) 

or in Windows 8 (xx_Win8). The columns under the label “Intercept off” display the 

average transfer time and average speed when the Intercept tool is not installed in the 

client system. The columns under label “Intercept on” correspond to the case when 

the Intercept tool is being used. 

The results between Intercept off and on show a performance degradation, which 

was expected as Intercept records all the activity of the drivers, and performs tasks 

such as decoding parameter structures and return values of all functions. Nevertheless, 

these overheads are relatively small: between 2% and 7% for the Ethernet driver, 2% 

to 3% for the Bluetooth driver and 14% to 15% for the Wi-Fi driver. These observa-

tions were more or less expected since the Wi-Fi drivers have more imported func-

tions, are longer in size and require more processing when compared with the other 

drivers. The same Bluetooth driver was used in both OS which can explain the simi-

larity of the degradation. The differences between the overheads on the Ethernet and 

Wi-Fi networks can be related to changes in the drivers, since we have used the 

standard drivers that came with the Windows installation. 

Table 2. FTP file transfer time and speed values (Time in seconds; Speed in Kbytes/second) 

Driver  

ID 

FTP Transfer 

Intercept off (average) Intercept on (average) Time 

Overhead Time Speed Time Speed 

Eth_Vista 0,198 6238 0,202 6204 2% 

Eth_Win8 0,136 6503 0,146 5963 7% 

WiFi_Vista 9,300 97 10,650 84 15% 

WiFi_Win8 0,276 3076 0,314 2872 14% 

Bth_Vista 5,890 145 6,012 142 2% 

Bth_Win8 5,612 152 5,760 148 3% 

 

During the experiments we saw that for each transmitted byte, Intercept generated 

between 9 to 23Kbytes of data. Not surprisingly the Wi-Fi driver was the one that 



generated a higher amount of data, which can be interpreted as a synonymous of in-

creased complexity. 

Table 3. Top 5 most used functions by each driver. 

Function Eth 

Vista 

WiFi 

Vista 

Bth 

Vista 

NdisMSynchronizeWithInterruptEx - 69301 - 

InterruptHandler 880 33931 - 

MiniportInterruptDpc - 32774 - 

NdisAcquireReadWriteLock - 6345 - 

NdisReleaseReadWriteLock - 6345 - 

NdisMIndicateReceiveNetBufferLists - - 1032 

NdisAllocateMdl 1096 - - 

NdisFreeMdl 1096 - - 

NdisAllocateNetBufferAndNetBufferList 1024 - - 

NdisFreeNetBufferList 1024 - - 

NdisAllocateMemoryWithTagPriority - - 520 

NdisFreeMemory - - 520 

MPSendNetBufferLists - - 503 

NdisMSendNetBufferListsComplete - - 503 

5.3 Understanding the dynamics of function calls 

The dynamics of function calls during a driver’s execution is determined by its 

work load. Intercept can support various kinds of profiling analysis about the usage of 

functions by a certain device driver under a specific load. For example, in our FTP 

transfer scenario, Table 3 represents the top 5 most called functions by each DUT 

from installation and until deactivation (in Windows Vista). Based on the number of 

function calls it becomes clear that the Wi-Fi driver is the one that shows more activi-

ty in the system. Focusing on the top 3 functions from this driver, the NdisMSyn-

chronizeWithInterruptEx is the most used function. Drivers must call this 

function whenever two threads share resources that can be accessed at the same time. 

On a uniprocessor computer, if one driver function is accessing a shared resource and 

is interrupted, to allow the execution of another function that runs at a higher priority, 

the shared resource must be protected to prevent race conditions. On an SMP comput-

er, two threads could be running simultaneously on different processors and attempt-

ing to modify the same data. Such accesses must be synchronized.  

InterruptHandler is the second most executed function. This function runs 

whenever the hardware interrupts the system execution to notify that attention is re-

quired. From the 33931 interrupts, 32774 calls were deferred for later execution with 

MiniportInterruptDpc. By inspecting the remaining functions used by the Wi-

Fi driver, which are lock related, it becomes evident that the driver is relying heavily 

on multithreading and synchronization operations.  

Several other metrics can be obtained with Intercept, such as the minimum, aver-

age and maximum usage of each individual resource, DMA transfers, restarts, pauses, 

most used sections of the code, to name only a few. Intercept can also be employed 

when particular information needs to be collected. As an example, we wanted to find 

out what data is returned by the FTP server after the client connects. Fig. 2 shows a 



call performed by the DUT to the OS notifying NDIS that a new frame has just ar-

rived. In this case it is possible to observe the banner received from the FTP server, 

i.e., “220-Welcome to Cerberus FTP Server”.  

Fig. 2. Looking in detail at a particular packet (excerpt). 

 

5.4 Understanding how drivers interact with the hardware 

Intercept can also help to understand how specific hardware interactions are per-

formed.  The NDIS Library provides a set of I/O functions that a miniport driver calls 

to access I/O ports. These calls provide a standard portable interface that supports the 

various operating environments for NDIS drivers. For instance, functions are offered 

for mapping ports, for claiming I/O resources, and for reading from and writing to the 

mapped and unmapped I/O ports. Taking the Wi-Fi driver as an example, one can use 

Intercept to learn how the hardware initialization process happens. It starts when the 

OS invokes the drivers’ callback function MPInitializeEx (see Fig. 3).  

Fig. 3. Call to MPInitializeEx to initialize the hardware (excerpt). 

 



The OS passes several parameters to this function. One of them is the Mini-

portAdapterHandle so that whenever there is the need for the driver to call for 

some function, the OS is able to know which hardware the driver is referencing to (in 

this case, the reference is 0x8a16b0e8). All subsequent functions related with this 

driver will use this reference. 

Another parameter is the resources allocated for the hardware. This allocation was 

performed automatically by the system according to the PCI standard, which releases 

the programmers from doing it. However, the driver only gets to know it when this 

function is called. In this example some of resources assigned to the Wi-Fi hardware 

were: Memory start: 0xd4000000 and Memory length: 0x00010000. 

5.5 Understanding particular (complex) interactions with the OS 

Intercept can be used to comprehend how certain complex operations are per-

formed by the driver.  For example, in Windows, a driver can remain installed but 

disabled. By analyzing the log produced by Intercept during the disabling process, it 

is possible to observe that the OS first calls the drivers’ MiniportPause to stop the 

flow of data through the device. Second, the OS calls MiniportHalt to obtain the 

resources that were being utilized. Both these two functions were registered during 

the initialization process, at the time using the NdisMRegisterMiniportDriv-

er function. Finally, the OS calls the Unload function to notify the driver that is 

about to be unload. The Unload function was also registered by the driver in the OS 

when the DriverEntry routine returned, by setting the address of this function in 

the DriverUnload field of the Driver_Object structure. As soon as the Un-

load function starts it is possible to observe in the log that the driver calls the 

MPDriverUnload callback function. When this function ends the unload process 

ends and the driver is disabled. 

Another example corresponds to uninstalling the driver. With the information 

logged by Intercept, it was found that there is no difference between disabling and 

uninstalling a driver, except from the fact that uninstalling the driver removes it from 

the system.  

The detailed information stored by Intercept in the log also helps to determine if all 

resources allocated by the driver are returned to the OS core. This can assist for in-

stance to detect drivers with bugs. Table 4 represents the use of five resources utilized 

by the Wi-Fi driver. It is possible to observe a match between the number of resource 

allocations and releases, which gives evidence that the driver released all those allo-

cated resources. 

Table 4. Top 5 allocation/release resources functions. 

Allocation function #Calls Release function #Calls 

_IWDD_NdisFreeIoWorkItem 1158 _IWDD_NdisAllocateIoWorkItem 1158 

_IWDD_NdisMAllocateNetBufferSGList 1041 _IWDD_NdisMFreeNetBufferSGList 1041 

_IWDD_NdisMAllocateSharedMemory 803 _IWDD_NdisMFreeSharedMemory 803 

_IWDD_NdisAllocateNetBuffer 256 _IWDD_NdisFreeNetBuffer 256 

_IWDD_NdisAllocateNetBufferList 256 _IWDD_NdisFreeNetBufferList 256 



6 Using Intercept as a Component of a Testing Tool 

Currently, we are developing a testing tool that uses Intercept as a building block. 

Due to its detailed logs, the tester can fully understand the driver’s dynamics, and thus 

plan and design tests that target specific and elaborate conditions. The new tool uses a 

file that describes the test pattern. Whenever a function is intercepted by the Intercep-

tion Layer, it calls the _Inject_decison function to evaluate the conditions and 

execute the test accordingly. 

As a demonstration of the results of this ongoing work, an experiment was per-

formed during the initialization of the Wi-Fi driver in Windows 8. The test targeted 

the NdisMMapIoSpace function that maps a given bus-relative "physical" range of 

device RAM. When successful, this function returns NDIS_STATUS_SUCCESS and 

the value of the output parameter VirtualAddress contains the start of the 

memory map. Other outcomes are exceptions that should be handled quietly. 

Four test scenarios were planned by returning to the driver three possible excep-

tional values (as described in the Microsoft documentation) 

NDIS_STATUS_RESOURCE_CONFLICT, NDIS_STATUS_RESOURCES, 

NDIS_STATUS_FAILURE and one unspecified value 

(NDIS_STATUS_FAILURE+1), while maintaining VirtualAddress equal 

to NULL. The DUT handled correctly the tests and ended quietly, and appropriately 

deallocated all resources, as confirmed by the Intercept logs.  

Four additional test scenarios were performed with the same return values but as-

signing a specific value to VirtualAddress. These tests all resulted in a crash 

with the DUT being the culprit. It was concluded that the driver is using the value of 

VirtualAddress before checking the return value, which is worrisome in case 

Windows does not clear the VirtualAddressis field.  

7 Conclusions 

The paper presents Intercept, a tool that instruments WDD by logging the driver in-

teractions with the OS at function level. It uses an approach where the WDD binary is 

in full control and the execution traced to a file recording all function calls, parameter 

and return values. The trace is directly generated in clear text with all the involved 

data structures.  

An experiment with three network drivers was used to demonstrate some of the in-

strumentation capabilities of Intercept. The performance of the tool was also evaluat-

ed in a FTP file transfer scenario, and the observed overheads were small given the 

amount of information that is logged, all below 15%. 

As is, Intercept gives a clear picture of the dynamics of the driver, which can help 

in debugging and reverse engineering processes with low performance degradation. 

Intercept is also currently being used as a building block of a testing tool. Preliminary 

results show the ability to identify bugs in drivers, by executing tests based on the 

knowledge obtained from the driver’s dynamics. 
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