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Abstract—Cybercrime has steadily increased over the last
years, being nowadays the greatest security concern of most
enterprises. Institutions often protect themselves from attacks
by employing intrusion detection systems (IDS) that analyze
the payload of packets to find matches with rules representing
threats. However, the accuracy of these systems is as good as
the knowledge they have about the threats. Nowadays, with the
continuous flow of novel forms of sophisticated attacks and their
variants, it is a challenge to keep an IDS updated. Open Source
Intelligence (OSINT) could be explored to effectively obtain
this knowledge, by retrieving information from diverse sources.
This paper proposes a fully automated approach to update the
IDS knowledge, covering the full cycle from OSINT data feed
collection until the installation of new rules and blacklists. The
approach was implemented as the IDSoSint system and was
assessed with 49 OSINT feeds and production traffic. It was
able to identify in real time various forms of malicious activities,
including botnet C&C servers communications, remote access
applications, brute-force attacks, and phishing events.

Keywords—Threat detection, Intrusion detection systems, OS-
INT, Threat intelligence, Network security

I. INTRODUCTION

Nowadays, institutions are often being targeted by cyber-
crime groups. Attacks on different hosts (from servers to
devices) are getting increasingly frequent and with a profound
impact, many times taking the form of distributed denial of
service (DDoS), spamming, and malware. For example, it is
estimated that in 2019 the costs associated with these criminal
actions can reach 2 trillion dollars [1]. Therefore, cybersecurity
has become one of the higher concerns and priorities of
institutions, independently of their business areas [2].

Many times attacks are carried out by first infecting the
victims’ hosts with malware or a backdoor, for later remotely
control them to perform malicious actions [3]. Botnet attacks
have increased over the last years. For example, according
to the 2016 and 2017 Akamai reports, such attacks have
risen 129% from year 2015 to 2016 [4], and year 2017
closed with an increase of 10% in web application attacks
and 14% in DDoS attacks [5]. The reason behind the DDoS
attacks growth is in part explained by the larger number
of connected IoT (Internet of Things) devices, which have
reached approximately 3 billions in 2017 [6]. For instance,
Mirai was the first known botnet that used a considerable
number of IoT devices. In 2016, Mirai attacked the Dyn
servers (organization that controls DNS) with 100.000 IoT
devices that generated a traffic volume in order of 1.2 Tbps,
causing Internet unavailability across Europe and USA [7].

Institutions normally protect themselves from attacks by
deploying IDS that monitor the network traffic, analyzing the

payload of the packets to find matches with rules about threats,
identifying anomalies and generating alerts [8]–[10]. The most
common IDSs employ signatures, generating an alert when-
ever the observed traffic is similar to one of the behaviours
represented in a rule [11]. Sometimes IDSs also resort to
machine learning techniques to improve precision [12], [13].
Other approaches just inspect network flows, i.e., they do not
check the payload of the packets, but only their headers [14]–
[16]. In all cases, however, the accuracy of an IDS is as good
as the knowledge it has about the threats. However, it is a
challenge to keep IDSs updated with the continuous emergence
of novel forms of sophisticated attacks. In addition, usually
for each kind of attack, there are many slight variants that
can cause missing detection (false negatives) [10]. Knowledge
about recent attacks might also be hard to obtain because it is
considered a business secret [17].

OSINT could be explored to collect rapidly (and often
affordably) knowledge about threats, by retrieving information
from diverse sources (both public and private). OSINT is
normally composed of shared data provided for instance by the
examination of honeypots and other security event descriptions
about any kind of damage on services and systems, such as
credential theft, phishing or DDoS [11]. Sometimes the data
included in individual events is not enough to characterize real
threats, being useless for detection either by behaviour and by
patterns. However, if the data from multiple events/sources
could be aggregated and complemented with other informa-
tion, it would be possible to create indicators of attacks (IoA)
[18] that could clearly characterize certain threats, allowing
their discovery.

This paper presents an approach to enhance attack dis-
covery capabilities, by automatically updating the IDS threat
knowledge. Our solution covers the full cycle, from collecting
OSINT feeds until installing rules at the intrusion detector.
It involves the processing and correlation of OSINT data in
order to create IoAs, which then support the generation of rules
and blacklists, and their integration in the IDS. The current
prototype is called IDSoSint, and it was assessed with 49
OSINT sources and real traffic. During a period of time it
was used to analyze the traffic of a few of the main network
links of the University of Lisbon, scanning a large amount
of packets. IDSoSint was able to identify in real time
various forms of malicious activities, including botnet C&C
servers communications, remote access applications, brute-
force attacks, and phishing events.

In summary, the main contributions of the paper are: (1) an
approach for improving IDS capabilities by leveraging OSINT;



(2) a process to generate IoAs based on OSINT processing;
(3) a rule and blacklist generator for IDS from IoA’s; (4) a
system, IDSoSint, that implements the approach, and its
experimental evaluation with real traffic, showing the ability
to detect various types of attacks in a (near) production
environment.

II. CONTEXT AND RELATED WORK

A. Botnets, attacks and IDSs

Botnets are networks of vulnerable devices (e.g., computers
and mobile devices) that were compromised, and then con-
trolled by criminal entities – botmasters – through a command
and control center (C&C) [19]. Botnets are one of the main
roots of SPAM, malware propagation, ransomware, phishing,
and DDoS attacks. Botnets C&C are a valuable target, both
for entities who try to detect and destroy them and for other
cybercriminals who attempt to steal them for their benefit.
Botmasters use cryptographic mechanisms to protect the com-
munications within the botnet, and dissimulation mechanisms
to prevent their identification and capture [20] [21]. Therefore,
it is difficult to eliminate such threats because they are getting
more sophisticated, and each day they appear in many variants,
precluding easy forms of detection.

IDS are a huge contribution for the discovery of those
threats. They can analyze the infrastructure of an organization
and identify attack patterns. There are two kinds of IDS,
network-based and host-based. While the former can validate
the network traffic to find malicious communication patterns,
the latter analyzes the system itself (e.g., computer). Both IDS
types can operate by signatures or by behavior, but they are
as good as the knowledge they have about the threats. In this
paper, we will focus on network-based IDSs.

Signature-based IDS use a database where each entry con-
tains a representation of some characteristic of an attack,
which is called a signature. When a packet is processed by
the IDS, its content is compared with the database entries in
order to find a matching signature, detecting in this way the
malicious traffic. This kind of solution only identifies known
threats, i.e., those that have their signatures stored in the
database. For this reason, this solution has the benefit of having
a low number of false positives, and can provide good alert
information about the identified threats. On the other hand,
it can have a high number of false negatives, namely when
”unknown” threats do not appear in the database [10], [11].

Behavior-based IDS are based on the behavior of systems it
knows and monitors. It starts by learning how a system should
behave, and it detects suspicious and incorrect actions when
the monitored system deviates from the expected behavior, and
generates an alarm every time this occurs. These systems are
complex and require an extensive and continuous study about
the system under analysis. Contrarily to signature-based IDS,
this solution can have a lower false negative rate because it
can detect unknown and uncommon behaviors. On the other
hand, it has a high false positive rate because any behavioral
deviation generates an alarm, even if there is no illicit action.

B. Intrusion Detection Tools

Zeng et al. proposed a hybrid architecture to detect botnet
communications by matching network traffic and host infor-
mation. The approach first analyzes network traffic to find
machines that have a different behavior than expected, and
then it inspects those hosts to discover malicious artefacts.
This combination allows better coverage and evaluation of the
monitored systems as it can detect common botnet communi-
cation behaviors and inspect hosts individually [8].

Sperotto et al. [22] proposed an IDS based on inspecting
network traffic packet headers instead of their packet payloads.
This IDS only detects attacks that can be found by header
analysis. On contrast, the approach we present inspects packet
payloads, allowing to detect botnets and other types of anoma-
lies such as phishing.

A survey on botnet detection showed that, despite the
current level of expertise and the technologies used by IDS,
only a few methods are effective, and the better ones are
based on anomaly approaches. Nevertheless, the detection
of botnets remains difficult due to the cloaking techniques
used by botmasters continuously [10]. Aviv et al. proposed
a cooperation of entities, since they have confidential and
private information that, although it can not be shared and
made public, it can be used to mitigate the impact of botnets
by detecting them [17].

FeatureSmith detects malware in android applications based
on knowledge gathered from these applications and employing
data mining techniques. A dataset was obtained from google
scholar scientific papers related to android malware, and the
data mining technique was applied to semantic relationships
and malware behaviour. The system detected 92.5% of mal-
ware and had a false positive rate of 1% [9]. Unlike Fea-
tureSmith, the approach we propose detects threats by using
OSINT data, which is processed to construct IDS rules and
obtain blacklists, and to be integrated in IDS as knowledge.

MISP is a collaborative platform to share information about
security threats. Its architecture is split into organization and
community. These groups allow to share information in a
secure, simple and controlled way at the organization level or
in a given community [23]. MISP follows an approach similar
to ours but does not perform correlations among the collected
OSINT, and the rules it generates when applied to an IDS
decrease performance, turning it unusable.

III. OSINT-BASED IDS APPROACH

Our approach enhances the attack detection capabilities of
an organization by renewing the information about threats
configured in the IDSs, inserting novel rules and blacklists
built automatically from OSINT data. It performs the com-
plete cycle of IDS knowledge update, from collecting threat
intelligence, generating rules, and installing them.

OSINT-based threat events are provided by many feeds
and Internet sources, and they have diverse formats and data
about security related incidents. The rules that we intend to
create vary significantly in terms of complexity depending on
the attack. This means that sometimes a single OSINT event



TaskTaskTaskOSINT
collector

Threat Information
extractor

Threat Information
aggregator

Event generator Rules/blacklist
Generator

OSINT
feeds

Information gathering Knowledge generation

Rules & Blacklist
Manager

Incident detection

IoAs 
DB

Rules/Blacklist 
generated 

Alerts DBIDS

Rules Network
Traffic

Fig. 1: OSINT-based IDS architecture overview.

contains enough data to construct a simple rule. However, in
other cases, the derivation of more complex rules requires
the combination of multiple OSINT events and other external
information. Still, it often happens that these complex rules are
the ones necessary to actually support the detection of more
sophisticated attacks.

Therefore, we process OSINT data with the goal of verify-
ing the interrelation among different security events in order to
complement each other and obtain the relevant and complete
information necessary to describe attacks. Moreover, based on
this information, IDS rules (both simple and complex) are built
automatically, ready to be integrated into an IDS. As OSINT
reports characterize many threat categories, rules for quite
distinct types of attacks are constructed, improving the IDS
capabilities in two directions: the detection of an expressive
number of different attacks, and the robust discovery of
sophisticate attacks.

The approach acts continuously in a loop, updating the IDS
with the knowledge that was acquired through OSINT, in order
to achieve better performance of detection. This means that for
each loop iteration all phases of the approach are executed, as
shown in Fig. 1. These phases are summarized as follows:

1) Information gathering: collects the threat intelligence
provided by OSINT feeds, and aggregates the security
events by threat categories.

2) Knowledge generation: processes the aggregated data,
establishing associations between security events and
other external information, and generating knowledge that
can describe attacks clearly. Based on this knowledge,
IDS rules and IP blacklists are constructed.

3) Incident detection: updates the IDS knowledge database
with the rules and IP blacklists, allowing the system to
remain up to date and able to identify new malicious
activities. Incidents are registered based on matching the
observed traffic with the rules and blacklists.

The first two phases are carried out periodically, within a
predefined time range (e.g., daily) that is dependent on the
availability of OSINT updates, to process event feeds and
generate knowledge, whereas the third phase is always in
execution.

The next sections explain the phases in detail.

A. Information gathering

This phase comprises three steps implemented by the
components: OSINT collector, threat information extractor,

and threat information aggregator. These components are
respectively responsible for gathering the OSINT events from
the pre-configured sources, as indicated by the SOC (Security
Operations Center) analyst; extracting the data from the events;
and aggregating the information from related events.
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Fig. 2: Information gathering data flow in detail.

The data flow of these steps is displayed in Fig. 2. It
starts with several collectors, each associated with a partic-
ular feed (e.g., phishtank, malwaredomainlist), where they
obtain an influx of OSINT events. Multiple collectors can be
configured for the same threat category (phishing, malware
domain) depending on the number of feeds the SOC analyst
wants to gather. Therefore, various events can relate to the
same threat category. However, OSINT data is available on
different formats (e.g., cvs, txt, doc), and thus it is necessary
to harmonize events to a single format before processing. To
do so, the individual parsers analyze each of these events,
classifying them into one of the pre-defined threat categories,
and translating the events into the indicators of compromise
(IoC). IoC are standardized forensic information artifacts used
in the identification of potential malicious activities of a com-
promised system or network [18]. The IoC structure is speci-
fied as a JSON object composed of a set of <key:value>
pairs. Each pair contains data that can characterize malicious
activity, and the set of pairs is the union of data collected
from a part of an event, since an event can contain various
IoCs related with the same security issue. Afterwards, a
deduplicator checks for repeated IoCs by utilizing pattern
matching because feeds from the same category can emit
equal threats, ensuring thus that similar IoCs are erased and
achieving a better performance on all this process. Next, an
extractor examines the IoCs, detecting and extracting relevant
data about threats (e.g, domains, malicious IP for a specific
protocol), and the threat information aggregator groups them
by category of threat.



B. Knowledge generation

This phase builds knowledge that will improve the detection
capability of the IDS. It is composed of two main steps
implemented by the event generator and the rules & blacklist
generator. They are responsible for processing the aggregated
IoCs and creating rules & blacklists based on such data.

1) Event generator: The actions carried out by the event
generator are detailed in Fig. 3. The aggregated IoCs are
processed by the information experts to enhance them with
other external data, not coming from OSINT feeds. Experts
are configured by administrators, for example, to run network
commands to obtain detailed data about the IP provided in the
IoC, such as whois, geo location, and asn source, or to obtain
features about the malware domain, such as the port. Next,
the protocol expert correlates all the information, identifying
interconnection points between them and enhancing them, with
the objective of getting together the most complete description
of an attack. The various data is then merged as an indicator of
attack (IoA). IoAs allow the attacks to be identified on systems
executing at runtime [18], [24]. The IoA structure follows the
structure of an IoC, i.e., a set of <key:value> pairs, where
each pair contains data that characterizes an attack, and the set
of pairs is the union of data collected from the various security
events. In addition, the protocol expert adds to the IoAs the
communication protocol associated with the attack and the
event writer stores the IoAs in a database. The reader should
note that although we create the IoAs mainly to construct the
IDS rules, they are not limited to this task and can be used for
other purposes (e.g., decide to quarantine certain hosts; use of
stronger authentication measures).

The bottom of Fig. 3 shows an example of an IoA. This
IoA describes attacks against the Apache service, namely
DDoS and RFI (remote file inclusion) attacks. To construct

      { 
     "source.ip":"103.205.96.53",
     "classification.taxonomy":"intrusion attempts",
     "event_description.text":"IP reported as having run 
        attacks on the service Apache, Apache-DDoS, RFI-Attacks",
     "source.geolocation.cc":"VN",
     "feed.url":"https://lists.blocklist.de/lists/apache.txt",
     "protocol.application":"http",
     "source.asn":63731,
     "source.network":"103.205.96.0/22",
     "source.registry":"APNIC",
     "time.observation":"2018-04-05T16:21:51+00:00",
     "feed.name":"Blocklist.de Apache"
      }
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Fig. 3: Indicator of attacks (IoA) generation data flow.

this IoA, the data it contains was obtained as follows: a
collector was configured to get OSINT data from feed
https://lists.blocklist.de/lists/apache.txt,
named Blocklist.de Apache, and with a description IP
reported as having run (...) RFI-Attacks.
Notice that this feed only provides a list of IPs that attacked
the Apache service, so all the information contained in this
IoA do not come from it. Next, after the parser extracting
the 103.205.96.53 IP from that list, an IoC is created
to it, and then aggregated with another IoCs associated to
Apache service. In this case, this IoC is unique. However, if
there were another IoCs belonging to the same IP network,
they would be represented (aggregated) as a sub-network or
an IP range. The information experts get external information
about that IP (source fields in the IoA). In addition, the field
protocol.application (sixth pair in the example)
contains the protocol targeted by the attack, which was added
by the protocol expert.
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Fig. 4: Data flow for the rules & blacklist generator.

2) Rules & blacklist generator: This component uses the
data contained in the IoAs to build IDS rules and compose
lists of IP addresses considered malicious (blacklist). Fig. 4
displays this process. To create a rule, first it checks the
protocol indication contained in protocol.application
to determine both the source and destination ports. Next,
it constructs the rule with this data, adding the remaining
information from the IoA to make the rule more specific for a
particular attack. Next, it stores the rule in the rules database.
In parallel, if the IoA only contains IPs tagged as malicious,
the generator creates an IP blacklist with them, and stores the
result in the blacklist database.

In general, an IDS rule is specified as follows:

alert [action][proto][srcIP][srcPort] ->
[destIP][destPort] ([rule options])

where proto indicates the protocol that the rule refers
to, such as TCP, UDP or ICMP; srcIP/destIP and
srcPort/destPort specify the source/destination IP and
port; rule options defines the patterns used to analyze
the packet payload, checking if it matches with some of them
and detecting an attack. If so, the defined action is executed.
In such case, an alert message is emitted stating that the rule
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was triggered, and the packet payload is stored temporarily so
that later it can be analyzed by the SOC team.

For example, from the IoA in Fig. 3 the generated rule is:

alert tcp 103.205.96.53 22 -> $HOME_NET 80

(msg:"Intrusion attempts to Apache; sid 100")

in which it is identified by ID 100 (sid 100) and the mes-
sage Intrusion attempts to Apache being emitted
when TCP traffic coming from 103.205.96.53 machine
through 22 source port tries to reach the Apache service
running on port 80 in the UL network identified by variable
$HOME_NET. Notice that the port 80 is determined based on
the information given by the protocol.application.

C. Incident detection
The detection of malicious activities by the IDS is done with

the help of the rules and blacklists generated by the previous
phase. However, before updating the IDS with this knowledge,
the rules & blacklist manager needs to perform some checks.

This manager (see Fig. 1) administers all rules and blacklists
with the objective of avoiding the duplication of rules in the
IDS, enhancing thus its performance, and handling the IP’s
reputation. The checking task is carried out at each pre-defined
time interval (e.g., daily) before updating the IDS. Afterwards,
the new rules and blacklisted IPs are deployed into the IDS,
and it starts running with them.

For its part, before the IDS analyzes the packet payload,
it first ascertains the IP headers using the blacklists. If no
match occurs, next, it uses the rules. This sequence of analysis
improves the IDS performance, since the validation of packet
headers is faster than looking at the packet contents. The
actions and alerts are triggered if any rule finds illicit activity.
Following the example described above, that rule is inserted
into IDS, and then if the host 103.205.96.53, via a SSH
connection (port 22), tries to communicate with the UL web
server (Apache service) which is running on port 80 in
a host belonging to the $HOME_NET network, an alert will be
emitted and the correspondent packet stored for later analyzes.

IV. IDSOSINT SYSTEM

The approach was implemented in our IDSoSint system,
which is illustrated in its current form in Fig. 5. It is divided

into two parts – knowledge management and incident detection
– where the former implements the first two phases of the
approach and includes three modules we have developed, and
the second component corresponds to the third phase.
IDSoSint uses a few open-source tools and some modules

that we programmed in Python to facilitate the integration with
other software packages. We setup the IntelMQ platform [25]
to collect various OSINT feeds and to produce the IoCs. Then,
the system is composed of three modules: the events correla-
tor, for correlating IoCs in order to get relevant information
that characterizes attacks; the IoA generator, for generating
IoAs based on the correlation results; and the rule & blacklist
generator to get the IDS rules and blacklist based on the IoAs.
In addition, we configured the Pulledpork platform [26] to
manage the rules and blacklists, and the IDS Snort [27] to
process the packets with our rules.

V. EXPERIMENTAL EVALUATION

The objective of the experimental evaluation is to answer the
following questions: (1) Is IDSoSint able to detect attacks
by processing real data? (2) Is IDSoSint able to identify
the type of attacks performed? (3) Is IDSoSint able to
explore OSINT data to generate knowledge that can improve
the detection capabilities of IDSs?

In order to validate our approach, we evaluate IDSoSint
in a production environment, by scanning during 8 days the
traffic of a few of the main network links of the University of
Lisbon (UL), while analyzing a large amount of packets.

The rest of the section is organized as follows: in Sub-
section V-A the system set up is presented, focusing on the
OSINT feeds; and in Subsections V-B and V-C are described
and discussed the results. These last two subsections answer
questions 1 to 3.

A. Setting-up IDSoSint

The IDSoSint system was set up in a HP ProLiant DL360
G6 machine, with 2 Intel Xeon CPU X5550 at 2.67GHz,
12GB of RAM, 165GB hard disk, and 3 network interfaces (a
10Gb/s optic fibre channel and 2 1Gb/s ethernet interfaces).
The installed operating system was the Security Onion Linux
distribution, which is already fully equipped with network
security analysis applications such as Snort. By default Snort
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that were evaluated by IDSoSint.

does not come with rules defined. Although the Talos Cisco
team releases a Snort rule-set, we opted by using only the
rules that IDSoSint generated, since the former are released
once per week and ours are constructed and deployed daily.

TABLE I: Distribution of feeds by OSINT events.
OSINT event Feed OSINT event Feed
Blacklist IP 16 Malicious IP against MAIL server 2
IPs trying remote access 9 Malicious IP against FTP server 1
Malicious domain 9 Malicious IP against SNMP server 1
Malicious IP against VoIP server 4 Phishing or malicious links 7

The IntelMQ threat intelligence platform was installed in
a virtual machine with 4GB of RAM, and 17 GB of hard
disk. IntelMQ was configured to collect 49 OSINT feeds from
different categories, provided by 44 public and open source
repositories belonging to 19 entities.1

Some of these feeds are well known, such as Phishtank [28]
that reports phishing incidents, CINSScore [29] for blacklisted
IPs, and Malware Domain [30] for share malware domains.
Table I distributes the 49 OSINT feeds by our 8 event
categories, which allowed the collection of threat intelligence
information about diverse kinds of security incidents.

As stated, we analyzed a few connection links of the
computer infrastructure of the UL. Fig. 6 gives an overview
of the network, displaying the three links where we deployed
IDSoSint (checkpoints in the figure). The UL central ser-
vices network includes for example the administrative services
and human resources; the data center stores the data of most
of the institution (e.g., websites); and eduroam is the academic
European wireless network. We selected these links because
of their size and characteristics, as they connect parts of the
infrastructure that have distinct purposes, therefore ensuring
that a wider range of traffic is observed.

B. Incident Record

We analyzed the rules and blacklists that were created, and it
was possible to verify that they were correctly constructed by
the rule & blacklist generator, and that they could be imported
by Snort. During the evaluation period, on average, 5.290

18 of them: https://zeustracker.abuse.ch, https://www.openphish.com,
https://www.spamhaus.org, https://reputation.alienvault.com,
https://lists.blocklist.de, https://www.malwaredomainlist.com,
https://www.cinsscore.com, https://www.team-cymru.org.

TABLE II: Number of registered incidents (8 days).
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

410.795 523.005 411.344 505.541 472.309 840.062 605.033 1.683.571
Total: 5.451.660

rules and 14.590 blacklist entries were generated daily, with a
total of 42.320 and 116.720 entries, respectively. IDSoSint
registered an overall 5.5 million incidents when it applied these
rules and blacklists to the observed traffic. For those alerts
triggered by rules, the analyzed packets were stored for later
investigation. However, since the rules used by Snort were
the ones generated by the rule & blacklist generator and are
based on reputational OSINT feeds, all the incidents registered
were effective and most of them regarded access attempts to
unavailable services on UL network.

Table II summarizes the number of incidents detected in
each day. On average, 540.000 alerts were emitted on the
initial 7 days, whilst in the the last day (day 8) there was
an important increase on the alerts. The explanation for this
increase is most probably due to a novel high impact malware
that appeared in that day.

TABLE III: Number of collected OSINT events that belonged to
each of the eight categories used to classify the rules & blacklisted
IPs, and the corresponding incidents that were detected.

Category OSINT event Incident
Blacklist IP 116.313.458 3.779.638
IPs trying remote access 864 1,588,024
Malicious domain 4.223 45.843
Malicious IP against VoIP server 118 23.823
Malicious IP against MAIL server 397 12.005
Malicious IP against FTP server 23 1,536
Malicious IP against SNMP server 48 791
Phishing or malicious links 19.453 0
Total 116.338.584 5.451.660

Table III presents the number of OSINT events that were
collected and processed in each one of our threat categories,
i.e., extracted from the 49 OSINT feeds (column 2). It also
displays how the registered incidents were distributed per
category (column 3). It is possible to observe that the number
of collected OSINT events was much larger than the number
of entries that were set in the IDS, respectively, around 116
million and 160 thousand. This reduction is explained, on
one hand, by an efficient detection of duplicates, and on
the other hand, by the successful aggregation that can be
achieved by representing the threats as IoAs. Recall that an
IoA describes an attack using the information included in a set
of related events. In addition, the table shows the effectiveness
of the rules at producing diverse kinds of alerts, where the
most common incident was related to communications of
blacklisted IP. This gives evidence that OSINT data can
be explored to create knowledge to be used by protection
assets in a network infrastructure, such as an IDS. Moreover,
these numbers demonstrate how cybercrime is well present in
public networks, and that it has to be an actual concern for
organizations.

A more detailed analysis of the rules and registered in-
cidents shows that in some cases, a few rules of certain



TABLE IV: Number of incidents by category.
Event Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Alert
Traffic made by a blacklisted IP 399652 378032 375775 482454 454109 770526 568797 350293 3,779,638
SSH communication by a malicious IP 7928 137997 30030 5788 5076 60203 9091 1319138 1,575,251
Telnet communication by a malicious IP 101 117 136 127 140 173 128 81 1,003
Communication with a malicious domain 663 2476 1564 10533 7008 3492 19726 381 45,843
Web communication by a malicious IP 228 42 58 156 0 0 750 10536 11,770
IMAP communication by a malicious IP 333 220 421 1251 2271 1452 1214 68 7,230
SMTP communication by a malicious IP 64 1597 636 52 125 542 799 960 4,775
FTP communication by a malicious IP 7 14 22 1415 33 0 36 9 1,536
SNMP communication by a malicious IP 171 150 84 85 108 115 58 20 791
SIP OPTIONS request by a malicious IP 1648 2210 2470 3270 3295 2997 4365 1871 22,126
SIP REGISTER request by a malicious IP 0 75 74 410 0 486 69 214 1,328
SIP communication by a malicious IP 0 75 74 0 144 76 0 0 369
Total 410795 523005 411344 505541 472309 840062 605033 1683571 5,451,660

categories, as FTP for example, were sufficient to detect a
considerable number of illicit actions. However, in other cases,
although the rules to detect such actions were correct, no
incidents were recorded (as in the phishing or malicious links
category). This absence is justified by the pre-processing made
by Snort, where the packet headers are checked before the
analysis of their payloads. In that case, if the phishing IP
belongs to the list of malicious IPs, Snort detects the problem
in the pre-processing phase, emits an alert, and ends the
analysis for that packet. In this situation, the associated rules
ended up not being used during the packet validation.

Table IV presents the 5.5 millions of recorded incidents
stratified by category, i.e., by the type of rule that triggered the
incident. The traffic generated by blacklisted IPs is responsible
for approximately 70% of recorded incidents. We recall that
the blacklisted IPs come from feeds that only report malicious
IPs and they are used by Snort pre-processor. Therefore, this
result is justified by the fact that the Snort’s pre-processor stops
any other validation when the IPs of the packets belong to the
blacklists, which is useful from a performance optimization
perspective. The remaining 30% incidents were emitted by
Snort’s rule processor. Here, the most common incidents
were SSH communications from IPs tagged as malicious. In
the communication with malicious domain category, some
of the observed patterns were associated to bots and C&C
communications. Such observations were made based on the
investigation of the analyzed packet that were stored when
rules were triggered. The same observation is also true with
regard to the generated alerts for IMAP, SMTP, and FTP
communications. Some of the SIP OPTIONS requests were
verified, and they mostly came from a known botnet called
Friendly-Scanner [31] which uses the SIPVicious tools [32] to
carry out illicit actions. This sort of behaviour was also seen in
the SIP REGISTER requests. Some SNMP requests were also
manually verified. It was possible to discover some get and
get-next commands, which support reconnaissance maneuvers
to gather information about the infrastructure, facilitating
future intrusions on the scanned devices. It is visible in day
8 the accentuated activity of malicious IPs trying to connect
to the SSH service. Also, there were many attempts to carry
out web communications. The SSH attacks could be caused by
ransomeware, since this malware has as goal the remote access

TABLE V: Number of alerts created due to blacklists, organized
by source and destination ports.

Source port Alert Destination port Alert
0 125324 0 125315

135 1647 22 668036
443 2150 23 689073

5081 3543 25 42086
6000 23225 53 104006
9090 2110 80 108549
9224 4523 123 16392
10000 75759 443 78799

21888 – 48284 54410 1433 672640
50263 – 65535 406591 1900 101632

2323 19761
5060 225279

43526 228788
Total 699282 Total 3080356

of a machine to control its resources, for instance, encrypting
its hard drive and later asking for rescue money.

C. Blacklisted IPs Analysis

To understand what kind of incidents were raised by the
Snort’s pre-processor, we analyzed the alerts generated by the
blacklist entries. Table V shows the number of alerts taking
into account the source and destination ports (and therefore
the associated services).

Source ports (first two columns of the table) are mostly
dynamic (last row), others are not assigned (last row but
one), and the remaining are used by specific services. For
example, port 0 is sometimes maliciously employed to gather
information although it is a forbidden port [33], port 6000 is a
known port used by the X11 system, and port 10000 is utilized
by NDMP. Both ports 6000 and 10000 are also used by some
Trojans [34], therefore this fact can justify why they appear
together with blacklisted IPs. Moreover, the not assigned ports
might have been used by a botnet.

The destination ports (last two columns of the table) show
that the most accessed services by blacklisted IPs were Telnet
(23), Microsoft SQL server (1433), and SSH (22), with a
number of incidents very close to each other. This means
that cybercriminals attempted to connect remotely some UL
machines through the (insecure) telnet protocol and the (se-
cure) SSH protocol, and to access the institution databases,
for instance by executing SQL injection attacks. Curiously,
the forth most accessed port (43526) is assigned dynamically.



Fig. 7: Top 10 countries that produce the most alerts.

This could indicate that a group of machines might have
been compromised and are communicating with a specific
port to blacklisted IPs. The remaining most accessed ports
were VoIP (5060), HTTP (80), DNS (53), SSDP (1900), and
HTTPS (443). These results give evidence that several of the
IPs tagged as malicious (blacklisted) could be blocked at any
institution boarder firewall, as they attempt to access reserved
services such as Telnet.

Finally, the Fig. 7 gives an overview of the 10 countries
most involved in the incidents, where the top 3 rank is: China,
USA, and Netherlands. These results confirm the statistics
included in Akamai’s 2017 report [5].

Based on the results discussed and analyzed in Sections V-B
and V-C, the questions 1 to 3 have a positive answer.

VI. CONCLUSION

The paper presents an approach to improve the detection
capabilities of IDS by resorting to threat intelligence data
gathered from OSINT feeds. Our approach automatically
processes OSINT data, aggregating and correlating it in order
to generate IoAs. Afterwards, these IoAs are used to build
IDS rules and blacklist, which are then installed in the IDS.
We implemented the IDSoSint system and evaluated the
approach with production traffic from a few links of the UL.
The results show that OSINT data is useful to generate new
forms of representing knowledge of threat intelligence and
can be applied in defence mechanisms. IDSoSint is able to
detect illicit activities by employing the generated knowledge,
alerting for problems such as botnet communications and
remote access applications.
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