
Secure Tera-scale Data Crunching with a Small TCB
Bruno Vavala1,2, Nuno Neves1, Peter Steenkiste2

1LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal 2CSD, Carnegie Mellon University, U.S.

Abstract—Outsourcing services to third-party providers comes
with a high security cost—to fully trust the providers. Us-
ing trusted hardware can help, but current trusted execution
environments do not adequately support services that process
very large scale datasets. We present LASTGT, a system that
bridges this gap by supporting the execution of self-contained
services over a large state, with a small and generic trusted
computing base (TCB). LASTGT uses widely deployed trusted
hardware to guarantee integrity and verifiability of the execution
on a remote platform, and it securely supplies data to the
service through simple techniques based on virtual memory. As
a result, LASTGT is general and applicable to many scenarios
such as computational genomics and databases, as we show
in our experimental evaluation based on an implementation of
LASTGT on a secure hypervisor. We also describe a possible
implementation on Intel SGX.

1. INTRODUCTION

Outsourced applications such as cloud services (databases,
storage, etc.) are widely deployed but strong security guaran-
tees are taken for granted. The de facto security model assumes
that the service provider is fully trusted. In the real world, how-
ever, one third of the top threats listed by the Cloud Security
Alliance [33] concern an attacker tampering with the integrity
of computation or data, namely: (i) service hijacking [38], (ii)
malicious insiders [1], (iii) system vulnerabilities [39], and (iv)
shared technology issues [2]. This can raise suspicions on the
trustworthiness of the results produced by a service.

The above threats stem from at least three issues:
• the lack of strong execution isolation, whereby a sub-

verted OS, or hypervisor, or service application, can make
threats affect other running software.

• a large TCB, which makes systems hard to verify; also,
when it includes the OS—containing millions of lines of
code [35]—a bug in the kernel [34] endangers security of
all the applications and data.

• a complex OS interface—hundreds of system calls—
which is difficult to secure [30] and whose malicious
alteration can subvert an application [3].

Unfortunately, service owners and end-users have little or no
means to distinguish between correct and compromised service
code or input data by just looking at the results received from
the cloud.

Trusted Computing (TC) technology is making progress
towards allowing clients to verify results. The technology (e.g.,
Trusted Platform Modules (TPMs) [4] and Intel SGX [29]) is
available in commodity platforms, and it is tied to a hardware
root of trust certified by the manufacturer. This can be used
by a service provider to isolate the service execution and to
attest the identity of the executed code for remote verification.

Software support for such trusted hardware however is not
(or just partially) suitable for many applications that process
a huge amount of data (e.g., clinical decision support [5],
predictive risk assessment for diseases [6], malware detection
[7], workloads for sensitive financial records outsourced on
public clouds [8], and genome analytics [9]). Previous systems

support the execution of either small pieces of code and data
[10], or large code bases [11], or specific software like database
engines [12] or MapReduce applications [13]. Recent work
[14] has shown how to support unmodified services. However,
since ”the interface between modern applications and operating
systems is so complex” [30], it relies on a considerable TCB
that includes a library OS. In addition, the above systems are
specific for TPMs [10], [15], secure coprocessors [12], or Intel
SGX [13]. Hence, porting them to alternative architectures
(e.g., the upcoming AMD Secure Memory Encryption and
Secure Encrypted Virtualization [36], [37]) requires significant
effort. Clearly, it is desirable to design a generic system “not
relying on idiosyncratic features of the hardware” [16].

We present LASTGT, a system that can handle a LArge
STate on a Generic Trusted component with a small TCB.
LASTGT supports a wide range of applications and hardware
because its design only relies on commonly available hardware
features—mainly paged virtual memory. LASTGT uses mem-
ory maps that allow the application to manage the placement
of data in memory, and authenticated data structures for
efficiently validating the data before it is processed. As most
of the LASTGT’s mechanisms (e.g., data validation and mem-
ory management) are implemented at the application level,
they can be optimized for different application requirements.
LASTGT ultimately delivers the following guarantee: if the
client can verify the results attested by the trusted component
on the service provider platform, then the client request was
processed by the intended code on the intended input state, so
the received response can be trusted.

We provide the following contributions.
• We describe LASTGT’s design, and show how it can

protect large-scale data in memory efficiently and how it
enables a client to verify the correctness of service code,
data and results.

• We detail how LASTGT has been implemented on XMHF-
TrustVisor [10] using a commodity platform equipped
with a TPM. Also, we discuss a possible implementation
using the Intel SGX instruction set. In addition, we high-
light important differences between the two architectures
and how LASTGT deals with them.

• We evaluate our XMHF-TrustVisor-based implementation
for datasets up to one terabyte. We show that LASTGT has
a small TCB compared to state-of-the-art prototypes, and
good performance. We also discuss expected improve-
ments with an SGX-based implementation.

2. RELATED WORK

We describe related work on trusted execution, trusted
execution targeting large-scale data, and other solutions for
ensuring the integrity of computation on large data.

Trusted Execution Environments. TrustVisor [10], Mini-
box [15] and Haven [14] all support secure execution. The
first two focus on keeping the TCB small by removing the
OS from the trust boundaries, thus supporting self-contained
applications (i.e., with statically linked libraries and no OS

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

2158-3927/17 $31.00 © 2017 IEEE

DOI 10.1109/DSN.2017.53

169



dependencies). Haven instead bloats the TCB with a library
OS—a refactored Windows 8—and can therefore run unmod-
ified binaries. Security is achieved through hardware-based
isolation mechanisms and by removing [10] or reducing [15],
[14] the interface with the untrusted environment to protect
against Iago attacks [3] (i.e., system calls that return values
crafted by a malicious kernel).

These systems handle data I/O as follows. TrustVisor [10]
transfers data to/from the secure environment at execution
startup and termination only. The application thus receives all
input data upfront. This can be inefficient if not all data is used,
and the data size is also bounded by the physical memory.
MiniBox [15] and Haven [14] implement additional system
calls for dynamic memory and secure file I/O. Both construct
a hash tree over the data, encrypt the data and handle I/O
through the interface with the untrusted environment for disk
access. However, working with a full hash tree in memory does
not scale for applications that operate on a large state, since the
hash tree itself can consume a large amount of memory. Also,
their design introduces several system calls (thereby enlarging
the interface), though fewer than an OS interface, that must be
secured against Iago attacks.

Trusted execution on large data. M2R [17] and VC3 [13]
were designed for trusted execution of large-scale MapReduce
applications. VC3 leverages Intel SGX for guaranteeing in-
tegrity and confidentiality of map and reduce functions. M2R
improves the level of privacy by hiding the memory access
patterns through a secure data shuffler. Compared with the
earlier platforms, these two systems achieve a small TCB at
the expense of generality, since they only support MapReduce.

Other SGX applications. Graphene-SGX [41] can run un-
modified Linux applications. As it includes a library OS, the
same arguments that we used for Haven apply. Scone [18]
secures Docker container applications while Panoply [19] se-
cures Linux applications. The former supports multi-threaded
container applications and has a larger TCB, mainly due to
the libc library, while the latter is designed for multi-process
applications and has a smaller TCB since it exposes a POSIX-
level interface thus leaving the libc library outside the enclave.
Ryoan [20] secures a distributed sandbox by leveraging SGX
to ensure that possibly untrusted code can use but not leak
sensitive data. These systems are orthogonal to LASTGT since
they focus on secure concurrent/distributed processing, not
large-scale data. In addition, they expose from tens [18][20] to
hundreds [19] of interface calls, many of which are related to
data I/O from/to files. LASTGT complements them with secure
in-memory large-scale data handling that requires no additional
interface, but instead relies on page faults, and handles data
authentication in a scalable fashion.

Additional approaches. SecureMR [21] TrustMR [22] BFT-
MR [23] use different replication technique for MapReduce
computations to provide security guarantees against misbehav-
ing execution replicas. VPR [24] proposes a secure passive
replication scheme based on trusted hardware for improving
the availability of generic services. LASTGT does not use
replication and is orthogonal to VPR.

3. LASTGT OVERVIEW

We give an overview of LASTGT, presenting its key ideas,
benefits and challenges.

access data 
in block bi

handle  
page fault

is bi in 
memory?

load data

validate data

yes

continue execution flow

no

resume
4

1

2

3

application execution flow

 trusted environment 

Fig. 1: Example of a program execution inside a trusted environment that
offloads data I/O from storage or network devices to untrusted code.

Operation. LASTGT allows a client to send requests and
verify the results produced by a large-state service that runs
on an untrusted platform. The execution of the self-contained
service application is secured by means of a trusted hardware
component. This component enables the establishment of an
isolated execution environment, where the trusted code is
identified and later attested. The service executes requests
received from the client by reading and writing local state of
up to a tera-byte (in our implementation) maintained in a set
of files. LASTGT ensures the integrity of the data used during
the secure execution, exploiting the key ideas described below.
Next, the service generates an attested reply for the client. The
reply binds together the identities of the service code, the local
state used by the service, the client’s request, and the reply.
Finally, the client verifies and accepts (if valid) the reply.

Key ideas. The core of LASTGT is a secure and efficient
data loading technique based on paged virtual memory and
asynchronous handlers (Fig. 1). LASTGT presents the large
state to the service code as a memory region in its address
space, thus allowing it to access the data directly (shaded
area, left-side) without requiring explicit calls to privileged
code. Data however is not preloaded for efficiency reasons
and possible memory constraints. Instead, accesses result in
page faults � that LASTGT handles transparently by moving
the data from the untrusted part of the system � into the
secure environment. While the service application remains
interrupted, the data is cryptographically validated � by
a trusted application-level handler (shaded area, right-side)
whose execution is asynchronous (i.e., independent from the
service application). Only if the loaded data is valid, is the
interrupted service allowed to resume �.

Benefits offered by this design include:
• First, it reduces the problem of large-scale data handling to
a virtual memory management problem. As virtual memory
is widely supported, LASTGT can be implemented on pretty
much any TC-capable systems, enabling hardware diversity.
• Second, it keeps the TCB small by not including the OS.
Moreover, it does not involve system calls to privileged or
untrusted code, that may create vulnerabilities.
• Third, it does not need alterations to the service code since
data validation and integrity protection is done transparently.
• Fourth, data validation, integrity protection and (un)loading
are handled by customizable application-level code. This
allows tuning the authenticated data structures to data access
patterns, upgrading deprecated cryptographic algorithms, or
devising application-specific data eviction policies.

170



1. provide state authentication data

2. outsource  
    large state

3. send 
    request

5. receive
    authenticated 

  reply

4. execute
    command

SV

P

Fig. 2: Three-party (Verifier, Prover, Source) system model.

Challenges. Implementing LASTGT has several challenges:
Offloading I/O securely to untrusted code. Transferring data

(e.g., disk I/O) is not useful computation for the application,
but can increase the TCB size and put peripherals in the
trust boundaries. Offloading such operations to untrusted code
reduces the TCB but requires means to validate or protect data
when it crosses the trust boundaries.

Transparency. Services should only have to access data
and perform computation, without dealing with orthogonal
issues such as data loading and state management. Hence,
making such mechanisms fully transparent simplifies service
development and the use of LASTGT.

Securely overcoming memory constraints. Physical memory
is limited, especially for secure executions. For example, on
a recent Dell Optiplex 7040, SGX is constrained to use up to
128MB of memory (out of 32GB). Hence, efficient memory
management is needed for handling a terabyte-scale state and
the associated authenticated data structure in memory.

Dealing with architectural differences. The hardware plat-
forms for secure execution have very different architectures,
making it hard to hide their differences through abstraction. For
example, XMHF-TrustVisor and SGX use completely different
mechanisms for secure execution and for paging. Devising a
single design that works for both platforms is challenging.

4. SYSTEM MODEL

We assume three parties (Fig. 2): a trusted source S pro-
ducing lots of data (user state); an untrusted service provider
P with significant computational resources; a trusted verifier V
that uses P ’s resources. S gives authentication data to V (Step
1) and the user state to P (Step 2). V sends requests to P (Step
3), who applies them to the data (Step 4) and returns replies
(Step 5) that V checks. We focus on a single request/reply
exchange with the client. Extensions can be devised to deal
with subsequent requests and to authenticate state updates.

Assumptions. We make common assumptions [10], [14], [11].

P is untrusted as it may be subject to internal/external
attacks. For example, P ’s system administrator could compro-
mise the software running on the platform, including the OS
and running services/applications.

P is equipped with a trusted component that provides
hardware-based security services such as isolated code exe-
cution, code identification (cryptographic hash of code) and
attestation—a digital signature, computed by the trusted hard-
ware with its embedded (or securely provisioned [31]) keys, of
one or more identities (assertions [31], or cryptographic hash
values). The trusted component is assumed to be robust against
software attacks and free from physical tampering. Also any

OS

Supervisor

                                             Hardware

other 
untrusted 
software

service code 
state handler

SMM  
(state map manager)

run/ 
resume

fault

address  
space
changes

accept
/deny

organize 
state maps

disk/network 
I/O

untrusted application code

SGX/TPM

state maps

trusted application code

untrusted hardwaretrusted hardware

(possibly) 
trusted 
privileged 
code

untrusted 
privileged
code

LaStGT library

Fig. 3: LASTGT’s system architecture.

code, even malicious, is allowed to (be loaded, identified and)
run in the trusted execution environment.

It is up to V to validate replies by verifying the attestation
of the identities of the executed service code and the input
data, which are assumed to be known to V , and of the output
data which is assumed to be ultimately delivered to V . Also, V
is able to determine whether the attestation has been issued by
a trusted component. Under the implementations that we con-
sider, this is equivalent either to knowing the public attestation
key of the trusted component certified by the manufacturer, or
to contacting a trusted Attestation Verification Service [31].
The content of the signed message (which includes the code
identity) is part of LASTGT’s design (§5.4).

DoS attacks are not considered, since untrusted code can
deny the use of the trusted component. The complexity to break
cryptographic algorithms is assumed to exceed the adversary’s
capabilities. Side-channel attacks are not considered. Finally,
the correctness of the executed trusted code is out of scope
and up to the service developers.

5. DESIGN OF LASTGT

We introduce the architecture of LASTGT (§5.1) and de-
scribe how data is protected at the source (§5.2), processed by
the service provider (§5.3), and verified by the client (§5.4).
In §6 we detail implementations on two TC architectures.

5.1 Architecture
In the architecture (Fig. 3), we distinguish between three

types of components, namely from the bottom up: hardware
(CPU, memory, security chips, disk, TC hardware, etc.), priv-
ileged code (OS, drivers, etc.) and user-level (or application-
level, non-privileged) code. We also distinguish between two
types of code execution: trusted code (left) and untrusted code
(right) run respectively inside and outside of the trusted envi-
ronment. Depending on the TC component, the Supervisor’s
privileged code must be trusted (e.g., in XMHF-TrustVisor)
or can be untrusted (e.g., in SGX), as discussed in §6. The
two hardware/software stacks represent the trusted and the
untrusted execution environments. A hardware-based (e.g., a
TPM and Intel TXT, Intel SGX) isolation mechanism prevents
untrusted code from tampering with its trusted counterpart.

User-level code includes both untrusted and trusted code.
The trusted user-level code is transferred and identified at
runtime within the trusted environment. The untrusted code

171



Component Functionality Trusted
TC
arch.

Implem.

service code
self-contained general pur-
pose service

� any
app-level
code

state handler
check modifications to se-
cure address space; data
validation and protection

� any
app-level
code

SMM
organization of state in
memory; proposal of new
memory maps

� any
app-level
code

Supervisor

(un)map pages in trusted
application address space;
switch among components

�
XMHF-

Trust-

Visor

hyper-
visor

proposal of modifications
to secure address space

� SGX
OS-level
driver

TABLE I: LASTGT’s software components.

organizes data and memory for the trusted user-level code,
which validates the data before using it. Table I lists key soft-
ware modules in LASTGT, where they execute, and what im-
plementation they apply to. We discuss how they work together
to bring data securely into the trusted environment in §5.3.

5.2 From User Data to LASTGT-compatible State
The data produced by the data source has to be protected

for client verification and structured for secure and efficient
processing on LASTGT. How data is structured and protected
impacts the efficiency of computing the metadata at the data
source, the performance of verifying the data at the untrusted
provider (e.g., how much data has to be loaded to verify data
that is used) and the verification effort at the client.

This leads to the following requirements for protecting
the data. First, it should be efficient and incremental, so the
metadata can be computed as data is produced. Second, it
should enable piece-wise data validation, so to handle only
subsets of data in memory. Third, it should enable constant
time verification by the client.

LASTGT provides these features by pre-processing the
user data into a LASTGT state hierarchy of sub-components,
consisting of blocks of user data at the leaves and structural
and authentication metadata higher up in the tree (Fig. 5). Each
component has a cryptographic identity that depends on its
sub-components’ identities, and ultimately on the user data.
These identities form a cryptographic hash tree optimized for
a large state, as described in §6.1.1. The structure is built
using an incremental procedure and allows piece-wise data
loading and validation through the concepts of data chunks and
blocks. Also, it enables constant time verification at the client
by checking the state identity, i.e., the identity of the root.

5.3 Data Processing at the Untrusted Provider
We describe how LASTGT manages the service code ex-

ecution (§5.3.1), how data is read from disk (§5.3.2), loaded
into the trusted environment (§5.3.3) and reclaimed (§5.3.4).

5.3.1 Service Execution
A LASTGT execution begins by registering the state root

identity (provided by the data source) with the state handler
in the trusted execution environment (§6.1.3). This is a one-
time procedure that must be secure since the integrity of the

entire state hierarchy, including the user state, depends on the
correctness of the state root identity. It is not necessary to load
the full state upfront, since the root is sufficient to validate any
data loaded during execution. When the service terminates, the
registered (root) identity is also included in the attestation so
that a client can verify it.

The service code is then executed and it uses regular
I/O calls to access user data, though without issuing any
system call. I/O calls use the LASTGT library to get access
to the user data. The library has a memory-mapped view
of the state hierarchy, which it traverses beginning from the
registered state root to access the data. As the data, including
the metadata, is not available upfront in the isolated memory,
its execution is interrupted by page faults, which are handled
by the Supervisor, as described in the next section.

In-Memory Embedded Locators (IMELs). A naive loading
would allocate (for example) 240 virtual addresses upfront for
a state of 1TB, and each page access would trigger a page fault.
This is feasible on 64-bit architectures, but the SMM would
have to ask the OS for many virtual address mappings, most
of which may not be used. Also, the OS may be required to
remap physical pages and maybe do some paging to disk. This
would occur similarly for the Supervisor while managing pages
in the trusted execution environment, thus adding overhead. In
addition, platforms like TrustVisor use 32-bit addresses.

To deal with these overheads and constraints, LASTGT uses
IMELs to reuse addresses and memory. IMELs are memory
pages embedded in the state hierarchy at runtime between
a parent and a child component (e.g., a master-chunk and a
chunk). Specifically, a parent points to an IMEL that contains
the address of its child, rather than pointing to its child directly.
By not loading the IMEL in isolated memory when the parent
component is first loaded, this makes the service code raise a
page fault on a memory page that contains an address, rather
than the child component. So IMELs just provide positions in
memory. They can be filled at runtime and loaded in isolated
memory together with the child components they reference.
Similarly, they can be unloaded together with the component,
so to reuse the allocated memory with other data.

5.3.2 Loading state from disk into untrusted memory
The Supervisor offloads to the untrusted SMM the handling

of page faults related to data that is not yet in main memory.
In particular, it does so by transferring control and providing
the fault address to the SMM (§6.1.5). Offloading such task to
user-level code moves the code out of the Supervisor’s TCB,
which is important in architectures where the Supervisor must
be trusted. The SMM uses the fault address to figure out what
state component (see hierarchy in Fig. 5) should be loaded
from disk. It then loads the component from disk and places it
into untrusted memory. For any component that is in memory
(e.g., chunks, IMELs, etc.), the SMM maintains a map item in
a map list (Fig. 7, §6.1.2). Such list is updated before the SMM
returns control to the Supervisor. These maps will be used by
the Supervisor for moving pages into the trusted environment,
and by the state handler for validation.

5.3.3 Authenticated lazy loading from untrusted memory
LASTGT optimizes loading data from untrusted memory

into the isolated memory using authenticated lazy loading, i.e.,
pages or blocks are loaded on demand (§6.1.4). This is done

172



state 
handler

service 
code

                        SMM 

Hardware

Supervisor OS

loadState, 
storeState

isolateMemory, 
unisolateMemory

createEnvironment, 
runAt, mapIn, mapOut

architecture-adaptation library

memorymanagement

register, 
validate

LaStGT  

lib
exit adaptation

(a) LAST
GT generic implementation.

state 
handler

service 
code

HardwareTPM

Hypervisor

OS

 
SMM

runAt, createEnvironment, mapIn, mapOut

unisolateMemory, isolateMemory

loadState, 
storeStatehyper-call

dispatcher

call

trap-handler

Nested Page  Tables

register, 
validate

LaStGT  

lib

(b) Trustvisor-specific implementation.

state 
handler

service 
code

     SGX / CPU 

SGX Kernel 
Driver 

OS

EENTER,ERESUME

 
SMM

runAt, createEnvironment, mapIn, mapOut

unisolateMemory

loadState, 
storeState

ECREATE, 
EADD, 
EEXTEND, 
EINIT 

EMODT,ETRACK,EREMOVE

EAUGEACCEPT(COPY)

system-call

dispatcher

wrapper
LaStGT  

lib

isolateMemory

EEXIT

trap 
handler

register, 
validate

(c) SGX-specific implementation.

Fig. 4: LASTGT abstraction of non-common mechanisms (4a, black boxes). TC-architecture-specific implementations (4b and 4c).

either after a page fault on data already in untrusted memory
or after data has been fetched from disk. In particular, the
Supervisor handles page faults by simply using the memory
maps to locate the pages and to map them. The state handler
is then invoked to validate them.

Page and data validation are performed within the trusted
environment by the state handler before the service code
can access the data. This ensures that the library (and thus
the service) can only access valid data—so there is no data
validation performed within the service code. The procedure
is performed at the user-level because the Supervisor may be
untrusted depending on the TC-architecture.

5.3.4 Reclaiming memory
The untrusted SMM can reclaim state components from

isolated memory by updating the map list (§6.1.5). The reclaim
is validated and accepted (or denied) by the state handler and,
only when it is accepted, the Supervisor is allowed to withdraw
the reclaimed pages from the trusted execution environment.

5.4 Client Verification of a Remote Execution
The verification of a remote execution is equivalent to veri-

fying a hardware-based execution attestation. It can include the
identities of: 1) the executed code, 2) the input and 3) output
data, 4) a client-provided nonce (§6.1.6). A successful verifi-
cation validates the signature, using a manufacturer-certified
public key (or an Attestation Verification Service [31]), and
makes sure that the attested identities are the intended ones.

Verification of state updates. If the service code modifies the
state, the state handler can update a separate runtime version of
the state root. This represents the output state identity and can
be included in the attestation and returned to the data source
(or the client) so it can verify the modifications.

6. IMPLEMENTATION OF LASTGT

Overview. Fig. 4 zooms into the architecture (Fig. 3) detailing
the implementation of LASTGT. In particular, Fig. 4a abstracts
the details of the hypervisor-based implementation (Fig. 4b)
and of the SGX-based implementation (Fig. 4c). This helps
identifying common parts of LASTGT whose code can be
shared across different TC-architectures.

The primitives in bold are common across implementa-
tions. Inside the SMM, they allow the untrusted user-level
code to set up the environment (createEnvironment) for the
execution of the trusted user-level code, to run it (runAt), to
map state components data and metadata in and out (mapIn,

mapOut) of the the isolated address space—though the state
handler validates them first—and to manage state components
on disk (loadState, storeState) through the untrusted OS.
At the privileged level inside the Supervisor, the primitives
(isolateMemory, unisolateMemory) allow the Supervisor to
provide memory pages to (or to withdraw them from) the
isolated address space of the trusted application code according
to the maps configured by the SMM. The attestation primitive
that is used by the state handler to validate data and metadata
is not shown to simplify the description and figures.

Several primitives need to interact with hardware and soft-
ware that are specific to the used TC-architecture (abstracted
by the black boxes in Fig. 4a). First, the architecture-adaptation
library includes code to execute a hyper-call or a system-
call handled by a dispatcher, or to execute an instruction
wrapper, or a call that traps into a trap-handler. The memory
management and the exit adaptation boxes have very specific
functions. The former touches the state handler due to the
EACCEPT(-COPY) SGX instructions (§6.3) that the state han-
dler runs to accept changes to enclave pages. The latter instead
hides the EEXIT instruction in SGX, or a simple return of
a function in XMHF-TrustVisor, to terminate the execution.
Finally, LASTGT simply uses the OS and standard libraries
for functions such as managing state on disk.

Inside the trusted application code, the LASTGT library
mainly navigates the state hierarchy, while the register (§6.1.3)
and validate (§6.1.4) primitives hide the details of the memory
maps and of the authenticated data structure embedded in
the LASTGT-compatible state. Also, in XMHF-TrustVisor, the
trusted application code just directly calls the hypervisor for
the attestation (not shown). In SGX, instead, it has to run
dedicated instructions to terminate, to accept pages and to
attest, making the code more dependent on the TC architecture.

To summarize, LASTGT can deal with the architectural dif-
ferences between XMHF-TrustVisor and SGX through small
adaptations within a single design. Next, we describe the
architecture-independent components of LASTGT (§6.1), our
implementation for XMHF-TrustVisor (§6.2), and a design for
SGX (§6.3) in more detail.

6.1 TC-architecture-independent Details
6.1.1 Building the state

As discussed in §5.2, the user state and its meta data is
organized in a state hierarchy (Fig. 5). The state root contains
only one hash value. Both the service and client code rely
on it to validate the authenticity of the data. A directory is

173



STATE ROOT

directory

directory master-chunk master-chunk...

chunkchunk

1 0 . . 0 1 1 0 0

block … block

...

......

H ie r a r chy Pr im i t i ves
register 

(handler code)

validate 
(handler code)

read/write 
(service code)

Desc r ip t i on
one-time call,  
constant-time,  

small memory footprint

per-item validation, 
small memory footprint

r/w access to  
in-memory data  
as in original file

chunk
datametadata

directory indicates list of 
files, master-chunk 

indicates a file, both have 
authentication metadata

a file slice

data blocks of file slice,
hash tree of blocks 

a block spans one or 
more pages in memory

Fig. 5: State hierarchy. A directory can contain several master chunks and
(sub-)directories. The relevant primitives (register, validate) build a chain
of trust between the service reads/writes and the state root verified by a client.

a set of (sub-)directories and master chunks. A master chunk
maps one-to-one to a file in the filesystem. Each master chunk
includes a set of chunks, each of which corresponds to a
contiguous sequence of user data in the file. The user data
in a chunk is further logically divided into a set of blocks.
Each chunk also includes metadata, called a chunk descriptor.
It contains a static hash tree built from the chunk’s data. The
leaves of the tree are computed by hashing contiguous bytes
of the block in the chunk. The root of the tree represents the
identity of the chunk. The identities of the chunks are hashed
to form the identity of their parent master-chunk, and so on
up the root, which is the identity of the entire state.

Only a configuration file and two parameters (chunk and
block size) are required to build a LASTGT-compatible state.
This information is defined by the user. The configuration file
is a list of files (each one producing a master chunk) and
directories to be included in the state.

This design of the state hierarchy allows efficient manage-
ment of data in memory. We can load fixed-size chunks from
disk as needed, without dealing with the entire state data at
once. Then we can load blocks from untrusted memory into the
trusted execution environment, possibly batching the transfer
of the pages spanned by a block. Also, as the authentication
metadata is distributed across the state hierarchy, we can easily
and locally validate data blocks in a chunk and update the hash
tree when a block is modified. In fact, the hash trees of other
chunks are not required, so they can remain on disk.

Distributing the authentication data is important for our tar-
get state sizes. A single file-wide (as in Minibox) or disk-wide
(as in Haven) hash tree has several drawbacks in comparison.
First, a single tree can take up to gigabytes (Fig. 6, top-right
of shaded area). Second, this adds complexity to cache it in
secure memory and in untrusted memory. Finally, one could
opt to load a data block together with a short membership
proof (linear in the height h of the tree). However, when using
a single tree for 1TB of user data (240 bytes) and small blocks
(210 bytes), the hash tree is tall h = 31, so the proof is large,
i.e., (h− 1) nodes× 32 bytes/node = 960 bytes or 93% of
block size, and verifying it takes many hashes (i.e., h− 1).

6.1.2 Maps for State Organization and Memory Management
LASTGT uses memory maps for state and memory man-

agement. Fig. 7 shows some entries in an example map list
that the SMM uses to store type, address and size (in pages)
of the memory it allocates. The SMM uses different map types
for metadata and data (15 types, including those for IMELs,

210

220

230

240

220 225 230 235 240 245 250

T
re

e 
si

ze
 (

by
te

s)

State size (bytes)

bytes/block 210

215

220

225

230

Fig. 6: Hash tree size (y) as a function of the state size (x) for different block
sizes, with a 32 bytes hash (e.g., SHA256). Shaded area is our target.

debugging and performance measurements), including a spe-
cial one to reclaim a map. The maps are also shared with the
Supervisor which manages the physical pages (in SGX, or the
memory access permissions in XMHF-TrustVisor), and with
the state handler that validates changes to the address space.

Memory accesses to data that is not in the trusted environ-
ment trigger a page fault and the Supervisor is invoked. The
Supervisor looks up the page fault address into the memory
maps. If the address points to data mapped in memory, this is a
map hit and the Supervisor performs lazy loading in the secure
environment (§6.1.4). It the address instead points to non-
mapped data, this is a map miss and the Supervisor triggers
the procedure for loading state from disk or for shutting down
the execution in the case of an illegal access (§6.1.5).

The state handler uses the maps to locate metadata for
validation and to ensure that pointers to supposedly non-
mapped components do not incorrectly dereference mapped
components—they must produce a fault. Notice that the initial
maps (if any) must be embedded in the trusted user-level code
and so included in the code identity eventually verified by
a client. So, initial and subsequent maps can be trusted. To
avoid tampering by the SMM, who might maliciously swap
map types (e.g., the state root map type for a IMEL type), the
state handler maintains a secure copy of the map list.

map list
type address pages (=length) 

D 0x0b000000 218       (=1GB)
H 0x4b000000 1          (=4KB)
C 0x4b001000 215   (=128MB)

Fig. 7: Example of a map list. Items describe type (D=dynamic memory,
not included in state hierarchy; H=in-memory embedded locator; C=chunk),
location and size of a map. Other types (and entries) are available for: root,
directories, master-chunks, chunk metadata, input and output buffers.

6.1.3 State Registration
State registration is the first code executed in the trusted

environment. It allows the state handler to receive the state root
map. The map contains a single hash value for authenticating
the metadata and data in the state hierarchy. The state handler
uses the register primitive to copy the root hash to a static
variable representing the input state—once set, it cannot be
overwritten nor reset (without beginning a new trusted execu-
tion).

6.1.4 Normal Execution and Lazy Loading
The service execution is triggered by the LASTGT library

that begins the execution in the trusted environment. The
library initializes the state base pointer to the state root map
set up at registration-time. From the state root it then walks
the state hierarchy by following the pointers between parent
and child components.

174



state component 
metadata
child state comp.:
   csc1:0x0900a000

csc2:0x0900b000
csc3:0x0900c000
csc4

csc5

csc6

…

0x0c0df000

0x0d0ab000

page  
delimiter

page  
delimiter

I  n  
Memory  
E mbedded 
L ocator 
   page

child state 
component metadata

…

child state 
component metadata

Fig. 8: IMEL pages contain positions of data in memory. They allow the
LASTGT library to access a child state component (e.g., a chunk, csc2), and
they help the untrusted code to locate such component and load it. Other
IMELs (e.g., at csc1, csc3) that are not accessed are not loaded.

Correct access of a state component. LASTGT has to ensure
that the library: (i) produces a page fault when it accesses a
non-validated state component; (ii) will find valid content in
memory and hence (iii) can be resumed only in this case. The
state handler ensures (i) by peeking into a state component
being loaded to check that it has a pointer to an IMEL page that
is not yet mapped in the isolated memory (e.g., csc3 in Fig. 8).
The handler ensures (ii) by cryptographically validating the
state component using the validate primitive. For example, in
the case of a chunk, the primitive checks the chunk’s hash tree
and whether its root matches that stored in the parent master-
chunk. For an IMEL, instead, the state handler simply checks
that it contains the address of valid state component being
loaded jointly. Ensuring (iii) is TC-architecture-dependent so
deferred to §6.2 and §6.3.

Loading metadata vs. Loading data. Except for the original
user data in a chunk, the rest of the state hierarchy is con-
sidered metadata. Metadata (directories, master chunks, chunk
metadata) and data have different types of maps. This allows
the Supervisor to behave differently when the library produces
a page fault while walking through the state components. If the
fault address is map-hit by a data-typed map (only containing
data), one data block is loaded. In this case, the state handler
just performs cryptographic validation. If the address is instead
map-hit by a metadata-typed map (only containing metadata),
then the entire map is loaded. The rationale is that metadata
is small (compared to data, see evaluation §7) and can best be
validated immediately. This later allows validation of a data
block in constant time—check if a block’s hash matches the
associated hash tree leaf.

6.1.5 Loading Data From Disk and Reclaiming Maps.
If the Supervisor cannot find a map that covers the page

fault address, then that is a map miss. A map miss only occurs
on IMEL pages (§5.3.1) unless bugs result in illegal map
misses. The Supervisor transfers control to the SMM to handle
the map miss. The SMM uses the fault address to locate the
IMEL and needs some metadata in untrusted memory to locate
the data on disk. For this reason the SMM maintains shadow
copies of parent state components—treated later (§6.2, §6.3)
due to architectural differences in the trusted address space
configuration. So the child state component is loaded from
disk into an arbitrary free memory range and the associated
IMEL page is updated. Then the SMM creates map entries for
both the IMEL page and the child component and informs the
Supervisor of the new maps. The Supervisor retries handling
the fault whose address should result now in a map hit.

When a map miss does not reference a IMEL page (e.g., the
null 0×0 address), this is considered a software bug. The SMM
thus triggers an execution shutdown (segmentation fault).

Reclaiming maps. The SMM reclaims a map m =
(type, address, pages) by inserting in the list another entry
m′ = (RECLAIM, address, pages) with a special reclaim-type.
Finally, the handler checks the reclaim and accepts to give the
map back to the SMM.

Reclaiming maps in the presence of modified data. While
there is a modified state component mapped in (e.g., a chunk),
the state handler never accepts the reclaim of any map of
that component’s ancestors (e.g., a master chunk). The hash
tree in fact may not be up to date with the modifications.
If a reclaimed component has no child components in the
secure environment, the state handler updates the hash tree
(if necessary) and accepts the reclaim. At attestation-time, the
state handler similarly updates the hash tree root, so clients can
know the identity and verify the integrity of the output state.

6.1.6 Attestation and Remote Verification
LASTGT combines in the attestation a client-provided

nonce and the identities of the registered state, the output state
(if any), the client request, the reply, the trusted application
code. The state handler initially receives from the SMM
specially-typed maps that contain the request, the reply and the
nonce. It accepts them and, respectively, it hashes the request
map to save the request identity, it saves the nonce, it zeroes
the reply map that is later filled by the service code. After the
service code execution terminates, when the state handler runs
again to perform the attestation, the data in the reply map is
also hashed to get the identity. The state handler then hashes
the identities of the state, the request and the reply together
with the nonce. The resulting hash can be either hash-chained
to the trusted application code identity and attested (in XMHF-
TrustVisor) or provided in input for the cryptographic report (in
SGX) which will include the trusted application code identity.

Assuming that the client receives the reply (and recalling
our model §4), the client knows all the attestation parameters
and can therefore verify the attestation. In particular, the client
establishes trust in the reply only if the identities that are
combined in the attestation match the expected ones.

6.2 Implementation in XMHF-TrustVisor
6.2.1 Background

XMHF-TrustVisor [25], [10] is a hypervisor that provides
efficient isolated execution and attestation of self-contained
code (Fig. 4b). The trusted execution environment is created
by registering the trusted application code in the hypervisor
using a hypercall. Code memory pages are isolated from the
untrusted OS using nested page tables (e.g., Intel EPT) to
forbid access to the physical pages. Any access from untrusted
code traps into the hypervisor. Only when the program counter
points to the registered code’s entry point, the hypervisor
switches to secure mode to execute the registered code. The
code executes until it terminates—it is never preempted and
input data is provided upfront. Termination occurs when the
code attempts to return to code outside the isolated region.
Hence, it traps into the hypervisor which switches to non-
sensitive mode to run (and makes the output available to) the
untrusted application code.

175



At verification time, the client checks the correctness of two
attestations: one from the hardware-TPM (a low-power chip)
that vouches for the correct execution of the hypervisor; and
one from the hypervisor, that vouches for the correct execution
of the registered code. We refer to [25], [10] for further details.

6.2.2 Implementation
The architecture of XMHF-TrustVisor simplifies (w.r.t.

SGX) LASTGT’s implementation in two ways. First, the hy-
pervisor can keep the service interrupted (after a page fault)
until successful validation by the state handler. So the service
accesses valid data when it is resumed. Second, the hypervisor
can modify the trusted application code’s page tables. So it can
be trusted to load (and similarly unload) data at the correct
position in the trusted execution environment.

The extended hypervisor orchestrates a LASTGT execution
based on the feedback received from the application-level. The
hypervisor begins by running the state handler supplying the
maps of the state root, the heap memory, the request, the
reply and the nonce. Feedback from the state handler is a
return value: 0, registration (or validation) unsuccessful; 1,
registration (or validation) successful. If successful, the service
code can be executed until termination, or until a page fault
occurs by accessing a non-isolated state component as shown
in Fig. 9 (left-side). On termination, the hypervisor asks the
state handler to protect the integrity of modified pages in the
state hierarchy up to the root and attest the result.

On page fault, the hypervisor checks the maps. In the map-
hit case, it provides the data and the page fault address to the
state handler for validation and, if successful, it resumes the
service code. In the map-miss case, the hypervisor provides the
page fault address to the SMM. The SMM uses it to locate the
metadata shadow copy of the (isolated) state component, which
is used to load the missing (child) state component in memory.
The SMM then returns the new maps to the hypervisor.

The hypervisor switches control between the service code,
the state handler and the SMM by alternating the execution of
the VM with the untrusted OS and of the VM with the trusted
application code. Namely, it updates the instruction pointer to
one of the entry points (service code, state handler, SMM) or
to the faulted service code instruction. In the case of an entry
point, the hypervisor pushes an instruction pointer on the stack
so the code traps back into the hypervisor when it returns.

The hypervisor isolates a map by ensuring that: the map
pages have been (lazily §6.1.4) inserted in the page tables
of the trusted application code; the nested page tables are
configured to grant trusted application code access to the
associated physical pages, while denying the SMM and OS
access to them. Un-isolating a map works in the opposite way.

6.3 On the feasibility of LASTGT using Intel SGX
6.3.1 Background

Intel SGX [29] is an instruction set extension available
on the Intel Skylake microarchitecture that enables trusted
remote code execution and verification. It uses an area in main
memory, encrypted by the CPU, where secured code and data
reside. It does not require external hardware for attestation. So
the CPU package delimits the physical security boundary.

A secured area called Enclave can be created to set
up an execution environment for trusted application code

shadow copies

initialized uninitialized

shadow copies
transposed 

dataisolated environment

ELRANGE

Fig. 9: In the trusted environment, parent state components can reference
child ones in untrusted main memory either directly using their addresses (in
XMHF-TrustVisor, left-side), or indirectly through their transposed addresses
in uninitialized pages within the enclave’s secure range, where they will
be loaded (in SGX, right-side). Referenced components, that are not yet in
untrusted memory, are located and loaded using metadata shadow copies.

(Fig. 4c). At enclave-creation time, a range of logical addresses
(ELRANGE) defines the enclave secure region. The enclave
can access memory inside and outside the secure region, but
it cannot execute code outside it. The enclave can include
one or more entry points where the execution starts. If the
enclave is interrupted, the sensitive processor state is saved
within the secure region and restored when the enclave is
resumed. Adding and removing enclave memory pages at run-
time requires cooperation between untrusted privileged code
(the Supervisor, i.e., an OS driver) and the enclave’s trusted
application code. We refer to [29], [31] for further details.

6.3.2 Implementation
In SGX, the memory management and the secure control

flow management are slightly more complex (compared with
XMHF-TrustVisor) for three reasons. First, addresses and
content of enclave memory pages to be added or removed at
runtime must be checked and accepted by the enclave at the
application-level, without help from trusted privileged code.
Second, enclave code can access untrusted memory outside
ELRANGE. While this is useful to load (and then validate)
data from untrusted memory, it opens the risk of using incor-
rect data inadvertently. Third, untrusted code can run/resume
enclave code at any time. Hence, concurrency issues may arise
within the enclave, particularly when resolving a page fault or
performing an attestation. LASTGT can deal with these three
challenges as follows.

1. Since untrusted code cannot start the enclave execution
at an arbitrary instruction, we build the enclave with separate
entry points for the service code and the state handler. This
allows running the state handler while the service code is in-
terrupted.

A mechanism is required to ensure that the service code can
only be resumed, and not re-executed, after an interruption. As
untrusted code can behave arbitrarily, it may restart the enclave
at the service code entry point. We thus build the enclave with
a single area to save the processor state on interruption (e.g.,
due to a page fault). As an interruption consumes one such
area and the CPU requires one to be available to start the
enclave, this prevents multiple executions at the service code
entry point, before the service code terminates.

When the state handler is executed, the handler has to
validate the position at which memory pages are supplied, and
the content these pages should have. The position is the address
of the page where the fault occurred during the service code
execution. Such address is found using the CR2 control register
where the CPU stores the fault address. However, reading
CR2 requires privileges, so the application-level enclave code

176



cannot do it. Also, the state handler cannot trust the (untrusted)
SGX driver to supply it correctly, although it expects the driver
to supply the memory pages. Fortunately, the CPU includes
the value of CR2 in the enclave’s secure region when the
execution is interrupted. So the state handler has access to a
trusted address and can check that a map (in the list) covers it.

2. Validating the content of the memory pages is tricky
because they are not available, otherwise the service code
could be resumed. The problem is to enable the resumption of
the service code only after the pages are available with the right
content. This is solved by validating the content elsewhere and
leveraging SGX to fill the pages appropriately as follows. We
include in the enclave (at creation-time) a buffer large enough
(e.g., 4MB) to contain a state component metadata or a data
block. We program the state handler to copy the data from
non-enclave memory to the internal buffer and to validate it.
Besides validating the integrity of the data, the state handler
also checks that any address referencing an IMEL or a child
state component falls within the secure region. This prevents
the service code from accessing untrusted memory. We discuss
later where the data is placed in untrusted memory.

Assuming the data is valid, the next step is placing it
correctly so that the service code can be resumed and access
it. We resort to the EACCEPTCOPY SGX instruction to do
it. The instruction allows to copy an available enclave page
into an uninitialized enclave page and to initialize it. So the
state handler executes the instruction to copy a page of the
buffer containing the data into a still unavailable page that
the interrupted service code cannot access. After this step, the
service code can make progress since the page is available and
contains valid data. The procedure can be easily extended to
batch the validation and acceptance of a set of pages. Similarly,
enclave memory is reclaimed with a two-phase protocol as in
[29, 3.5.9]. We mention that SGX provides another instruction
for accepting memory pages, i.e., EACCEPT. This is useful for
dynamic memory allocations (e.g., our dynamic memory map),
that are supposed not to contain sensitive data initially—in fact
they are zeroed. However, using it in the previous step would
not be secure, because it initializes the memory pages (which
become accessible) before they are filled with valid data.

We explain how our maps are used as the data is to be
transferred from untrusted memory to the trusted buffer and
then copied elsewhere in the enclave’s memory. In XMHF-
TrustVisor, since we can (un)isolate as single memory page,
one map per component is sufficient. In SGX, instead, the
SMM cannot load data directly into the enclave region, and
the state handler should have some means to locate data
in untrusted memory. Our solution is mapping each state
component into two map lists M1,M2, thereby having two
maps. M1 follows our original description: it expresses where
memory and data are or should be placed within the enclave
region—so the addresses belong to the enclave region. M2

is logically derived from M1 by transposing the address of
each map into an address in untrusted memory. So, the SMM
uses M2 to arrange in untrusted memory the state components
loaded from disk, and M1 to arrange them in trusted memory.
Instead, the state handler uses M2 to (un)load to/from untrusted
memory, and uses a private copy of M1 to ensure the correct
position of the maps in the enclave’s secure region.

3. Finally, as the attestation is performed by the state han-

VC3 Haven
LASTGT∗

hypervisor library SQLite

SLoC
×
103

9.2
[13]

23.1+
O(103)#

[14]

15.1 [25]
7.7 92.6

+1.9‡
︸ ︷︷ ︸

24.7
︸ ︷︷ ︸

100.3
* based on XMHF-TrustVisor ‡ LASTGT core code and headers
# LibOS contains millions of lines of code

TABLE II: TCB size breakdown (in source lines of code) and comparison.
SQLite is included as an example real-world application ported to LASTGT.

dler, the handler has to make sure that the service has indeed
terminated and will not modify the state (e.g., if re-executed)
during the attestation. We address this concurrency problem
by synchronizing the service code and the state handler using
shared variables transparently inside our linked library. Notice
that in a multi-core environment, such shared variables can be
managed in transactional regions with Intel TSX (Transactional
Synchronization Extensions), which is available on the Skylake
microarchitecture and compatible with SGX [29, 6.14].

7. EVALUATION

This section analyzes LASTGT’s Trustvisor-based imple-
mentation, quantifying its TCB, comparing it with the original
TrustVisor, and using it to run various application.

Experimental setting. We use a Dell PowerEdge R420 Server
equipped with: a 2.2GHz Intel Xeon E5-2407 CPU; 16GB
of DDR3 memory; a TPM v1.2; a primary 300GB, 15Krpm
hard-disk; a secondary 2TB, 7.2Krpm hard-disk. The server
runs Ubuntu 12.04 32-bit with a Linux kernel 3.2.0-27. The
resources are fully dedicated to our experiments. LASTGT uses
the secondary disk to ensure uniform experimental conditions.

Data is organized in chunks of 128MB and blocks of
256KB. Our micro-benchmarks justify these values for se-
quential workloads (typical of data analytics) and suggest opti-
mizations for random workloads (§7.5). We assume the worst-
case scenario that requires LASTGT to maintain a low memory
footprint. Hence, we set up the SMM to reclaim old chunk
maps when the service code tries to access a new one.

7.1 TCB Size
We quantify LASTGT’s TCB size using the lines of source

code metric (SLoC), as calculated by the SLOCCount tool [32]
and compare it with previous work (Tab. II). At the hypervisor
level, the TCB size increases by 12%. The LASTGT library
adds an additional 7.7 SLoC of user-level code, which is
relatively small. For example, it increases the size of the
SQLite service code by only 8.3%.

The table also compares the TCBs of LASTGT, VC3
and Haven. Haven’s TCB is notably large due to the li-
brary OS. LASTGT’s TCB is larger than that of VC3. However,
LASTGT is not application-specific and can run generic self-
contained applications.

We expect LASTGT’s SGX implementation to have a
smaller TCB than the current one. As SGX keeps privileged
code out of the enclave, the hypervisor functionality—to man-
age the VMs, protect the isolated memory from the untrusted
OS, and schedule the execution of trusted and untrusted

177



0
2
4
6
8
10
12

0
MB

128
MB

256
MB

384
MB

512
MB

se
co
nd
s

TrustVisor
LaSt-GT

begin reading

load state from disk,
encode it in memory,
transfer it in secure memory,
hash it

transfer data backback

transfer block in secure memory,
validate and readvalida

end reading

load chunk from disk

Fig. 10: Comparison between LASTGT and XMHF-TrustVisor.

applications—will be moved out of the TCB and implemented
in untrusted code, while retaining similar security guarantees.

7.2 Comparing LASTGT and TrustVisor
As a baseline experiment, we compare LASTGT with the

original TrustVisor implementation. As displayed in Fig. 10,
LASTGT can be much faster than TrustVisor depending on how
the applications access memory. The experiment uses a 512MB
dataset that fits in memory; TrustVisor cannot scale to larger
sizes. The data is read sequentially, allowing a comparison of
the associated overheads according to the memory accesses.
TrustVisor always exhibits a large startup time (dependent on
the data size) as it reads everything upfront into memory. In
contrast, LASTGT exhibits a performance that is related to the
parts of memory that are actually read/written thanks to its
ability to do incremental data loading and validation. So, in
an execution that only touches half of the dataset, TrustVisor
would roughly end up taking twice as much time as LASTGT.

7.3 Micro-benchmarks
LASTGT incurs overhead when it needs access to addi-

tional data through page faults. The primary sources of over-
head include switching control between software components,
(un)loading maps in isolated memory, and disk accesses by the
SMM. Since the latter is the same for trusted and untrusted
executions, we focus on the quantifying the overhead of the
first two. We also quantify the overhead of preparing the state
hierarchy by the content source. We present results that are the
average of 1000 experiments with a 95% confidence interval.

Context-Switching. We measure the overhead to switch be-
tween the Supervisor, the state handler and the SMM (§5.3.2).

The Supervisor invokes the SMM when data is needed
from disk. This involves switching from the trusted to the
untrusted environment, and back (see table below). This time
is mostly used to transfer the memory map list between the
untrusted and the trusted execution environments. This requires
inspecting the nested page tables of the virtual machine to
check permissions for the data transfer, and then modifying
both the nested page tables with the new permissions and the
sensitive environment page tables to add (or remove) the pages
from the isolated virtual address space (§6.2).

A second source of overhead is that associated with re-
suming the state handler (after some data has been brought
into the secure environment) and the SMM (for disk access).
These resumption times (table below) include the overheads
of the XMHF-TrustVisor software stack1, of virtualization
to resume the trusted VM or the untrusted VM, and of
the VM interruption to return back into the hypervisor. The
slightly higher and more variable overhead for the SMM can

1TrustVisor is an application running within XMHF [25].

μ

μ

μ

μ

μ

μ

Fig. 11: Log-scale average time (bars, left y-axis) and speed (line, right y-axis)
for mapping data (x-axis) inside/outside the isolated trusted environment. The
right y-axis shows the attained speed.

be attributed to scheduling delays (time slicing, preemption)
caused by the OS. This does not occur in the isolated (and
dedicated) execution environment where the state handler runs.

� trusted-untrusted � state handler � SMM
env. switching resumption resumption

191.68μs± 0.12 36.11μs± 0.08 39.93μs± 0.5

This means that the overheads for invoking the SMM and
the state handle from the Supervisor after a page fault are
�+� and �+� respectively, in addition to the cost of the
processing (e.g., accessing disk or validating data).

I/O data mapping overhead. The overhead for transferring
memory maps between the execution environments (§6.2.2) is
shown in Fig. 11. Larger maps can be transferred at higher
speed, suggesting that if the application has to process all data
in a map, it is advantageous to transfer more data per fault to
reach high-speed (e.g., using a 256KB block size as we did).

From user data to LASTGT-compatible state. Fig. 12 shows
the cost of building the state hierarchy (§5.2) for user data sizes
from 1MB to 2GB. This is sufficient since disk bottlenecks (for
reading data and writing back metadata) show up at 64MB. For
larger states, the throughput stabilizes at ≈ 60MB/s.

Fig. 12: Time (bars, left y-axis) and speed (line, right y-axis) to build the
LASTGT-compatible state for different state sizes.

Building the hash tree also incurs a high cryptographic
cost. It needs to hash 29 × 256KB-sized blocks and 210 − 2
tree nodes (i.e., all nodes except the root). The procedure is
optimized to take linear time in the size of the hash tree. We
chose SHA-256 as the hash function and carefully optimized it.

Different applications can leverage the incremental con-
struction and parallelize the operations, particularly consider-
ing that data chunks can be built separately.

7.4 End-to-end Application Performance
We ran experiments with three applications with different

data access patterns. They include: a simple application that
sequentially walks 1TB of data, checking the first page of
each data chunk; a nucleobase search application [26, 3.2] that
accesses data sequentially, requiring all blocks of all chunks;
and SQLite [28], which accesses random blocks of chunks.

178



Tera-scale data processing. We use a synthetic state of 1TB.
The LASTGT-compatible state contains (in addition to the state
root and one directory) one master chunk of 2.5MB that carries
a list of 8192 chunks. This master chunk size is much larger
than the 256KB hash list contained in the master chunk due to
additional metadata (e.g., size and name) relative to the chunks
that we maintain. Each chunk has 33KB of metadata (32KB
due to the static hash tree, so 97%) and 128MB of data.

The execution environment is initially composed by a heap
map of 262K memory pages (1GB) loaded lazily—though
just a few are used in this application—and a state root map
that fits in 1 page. Directory and IMELs are loaded as they
are accessed, and they also fit in 1 page each. The master
chunk instead fits in 641 pages. As chunks are accessed, two
additional maps are included in the environment: the chunk
metadata that fits in 9 pages and is loaded; and the chunk data
that fits in 32768 pages and is lazily loaded. Only about 15
maps are present at a time due to the state hierarchy and the
environment constraints.

Figure 13 provides the progress of the application. It takes
roughly 13 hours to process the terabyte of data, rather steadily
at 23MB/s—the zoom in shows a slight variability.

0.2TB
0.4TB
0.6TB
0.8TB
1.0TB

0h 2h 4h 6h 8h 10h 12h 14h

0.9TB

11h 12h

Fig. 13: Progress in hours to process 1TB of data. In the zoom-in, the black
straight dashed line highlights a negligible variability in processing speed.

We emphasize that the experiment uses a dataset between 1
and 2 orders of magnitude larger than previous work on secure
data analytics [13], [17]. Also, it is unprecedented on the
XMHF-TrustVisor software stack [10], [25], [15]—designed
for small applications—and on a bare-metal hypervisor.

Nucleobase search. This application [26, 3.2] searches for
a nucleobase sequence among the billion-scale reads (i.e.,
fragments obtained from DNA sequencing machines) present
in the FASTQ format2 of the human genome in [40]. The
application is relevant to investigate protein-coding mRNA
sequence or to assemble sequences to reconstruct a contiguous
interval of the genome [27].

Figure 14 show the outcome of our experiment on a
human genome of roughly 0.3TB. The experiment produces
about 1.15 million page faults that are handled directly by
the hypervisor, and about 2.24 thousand are forwarded to the
SMM for grabbing data from disk. The Nucleobase search is
slower than the first application because it uses all the data
and also involves actual processing.

Fig. 14: Progress in hours to process a 0.3TB large human genome.

Database engine. The final application is the full SQLite
(v.3.8.7.2) [28]—a real-world database engine with a non-
trivial code base of 92.6K lines of code—that was executed

2Common text format used for storing sequences and quality score.

on LASTGT without modifying its source code. We compiled
it with a virtual file system module that uses the LASTGT’s
library to access the state, and with an abstraction layer that
uses LASTGT’s functionality for memory management and I/O.
The benchmark measures the time to query key-value stores
of different sizes to get the value associated to a specific key.

Fig. 15: Time (y) to query a SQLite-based key-value store of different sizes (x).
The state is built using 128MB chunk and 256KB block sizes.

The results are shown in Fig. 15. The query time grows
slowly up to x = 128MB due to the larger data that is
loaded in untrusted memory and to the larger hash tree to
be validated in the trusted execution environment. At x =
128MB, 256MB, 512MB the query time stabilizes. This is due
to the data access pattern of SQLite which only involves the
first chunk. At x = 1GB, 2GB, however, SQLite also accesses
the 7th chunk before going back to the first one. This forces
LASTGT to load and validate the metadata of several chunks
and to maintain their data in untrusted memory in the case it
is accessed. This happens similarly with larger databases. For
instance, at x = 0.25TB, SQLite requires to access one more
chunk (the 420th) in addition to those listed before. Hence, the
overhead scales linearly with the number of accessed chunks.

A glimpse of chunk & block size optimization. In order
to show the benefits of optimizing LASTGT for specific appli-
cation requirements, we repeated the previous SQLite-based
experiments by first protecting the database using a smaller
chunk size (1MB) and block size (4KB). The results in Fig. 16
show about an order of magnitude better performance. This is
chiefly due to the smaller chunks read from disk and smaller
data blocks transferred in secure memory whenever the engine
performs a random memory access. The performance with a
terabyte-scale state is in the order of a few seconds. This is
due to a large master-chunk that contains metadata for many
(about 280K) small chunks, in contrast with the few (about
2K) large chunks in the previous experiment.

0.0

0.2

0.4

128
MB

256
MB

512
MB

1
GB

2
GB

... 0.25
TB

3.2

3.4

3.6
seconds

Fig. 16: Time (y) to query a SQLite-based key-value store of different sizes (x).
The state is built using 1MB chunk and 4KB block sizes.

7.5 Discussion
The performance of LASTGT is influenced by different fac-

tors and can be optimized by leveraging from better performing
trusted components. First, the chunk and block sizes that we
fixed for all experiments can instead be tuned for specific
applications. This optimization problem is left for future work.
However, intuitively, smaller chunk and block sizes reduce
unnecessary data validation and data loading. Second, when

179



a memory map is created, LASTGT optimizes for lazy loading
in isolated memory, but XMHF-TrustVisor still requires the
data to be present in untrusted main memory. This means
writing data in memory bypassing critical optimizations such
as lazy loading from disk. In this case, we believe that the
SGX implementation can be beneficial to take advantage of
the highly optimized kernel software stack, in addition to
avoiding expensive virtualization operations such as VMEXITs
and maintaining nested page tables.

8. CONCLUSIONS

We have described the design, implementation and evalu-
ation of LASTGT, showing that it is possible to build a secure
system using a generic trusted component and supporting
generic large-scale data applications. Our experiments with
applications such as databases and genome analytics show
that generic large-scale applications can run on systems with
a small TCB. Overhead is significant, but we also show that
the overhead in XMHF-TrustVisor is mostly due to expensive
data I/O and context switches, which we expect can be heavily
reduced on Intel SGX.

ACKNOWLEDGMENTS

This work was partially supported by the EC through
project H2020-643964 (SUPERCLOUD), by national funds of
Fundação para a Ciência e a Tecnologia (FCT) through project
UID/CEC/00408/2013 (LaSIGE). We thank Vinicius Cogo for
interesting discussions and support with the cluster, and André
Nogueira for fruitful discussions on kernel-level development.

REFERENCES

[1] W. R. Claycomb and A. Nicoll, “Insider Threats to Cloud Computing:
Directions for New Research Challenges,” in Proc. of the 36th Computer
Software and Applications Conf. (COMPSAC), 2012.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proc. of the 16th Conf. on Computer and Communications
Security (CCS), 2009.

[3] S. Checkoway and H. Shacham, “Iago attacks,” in Proc. of the 18th
Conf. on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), vol. 41, no. 1, 2013.

[4] Trusted Computing Group, “TPM Specs v2.0 rev. 00.99,” 2013.
[5] A. F. Simpao, L. M. Ahumada, J. A. Gálvez, and M. A. Rehman, “A

Review of Analytics and Clinical Informatics in Health Care,” Journal
of Medical Systems, vol. 38, no. 4, 2014.

[6] K. Srinivas, B. Rani, and A. Govrdhan, “Applications of Data Mining
Techniques in Healthcare and Prediction of Heart Attacks,” Int. Journal
on Computer Science and Engineering (IJCSE), vol. 02, no. 2, 2010.

[7] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Falout-
sos, “Polonium: Tera-Scale Graph Mining and Inference for Malware
Detection,” in Proc. of the SIAM Conf. on Data Mining (SDM), 2011.

[8] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the Public
Cloud,” IEEE Internet Computing, vol. 16, no. 1, 2012.

[9] P. Muir and Et-al., “The real cost of sequencing: scaling computation
to keep pace with data generation,” Genome Biology, vol. 17.1, 2016.

[10] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB Reduction and Attestation.” in Proc. of the
IEEE Symp. on Security and Privacy (S&P), 2010.

[11] B. Vavala, N. Neves, and P. Steenkiste, “Secure Identification of
Actively Executed Code on a Generic Trusted Component,” in Proc.
of the IEEE Conf. on Dependable Systems and Networks (DSN), 2016.

[12] S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware-Based Database
with Privacy and Data Confidentiality,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 26, no. 3, 2014.

[13] F. Schuster and M. Costa, “VC3: Trustworthy data analytics in the
cloud,” in Proc. of the Symp. on Security and Privacy (S&P), 2015.

[14] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with Haven,” in Proc. of the 11th USENIX Conf. on
Operating Systems Design and Implementation (OSDI), 2014.

[15] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,
“MiniBox: a two-way sandbox for x86 native code,” in Proc. of the
USENIX Annual Technical Conf. (ATC), 2014.

[16] A. S. Tanenbaum, “Lessons learned from 30 years of MINIX,” Com-
munications of the ACM (CACM), vol. 59, no. 3, 2016.

[17] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M
2 R: enabling stronger privacy in mapreduce computation,” in Proc. of
the 24th USENIX Security Symp. (SEC), 2015.

[18] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, M. L. Stillwell, D. Goltzsche, D. Eyers,
P. Pietzuch, and C. Fetzer, “SCONE: Secure Linux Containers with
Intel SGX,” in Proc. of the 12th USENIX Conf. on Operating Systems
Design and Implementation (OSDI), 2016.

[19] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “PANOPLY: Low-
TCB Linux Applications with SGX Enclaves,” in Proc. of the Annual
Network and Distributed System Security Symp. (NDSS), 2017.

[20] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan : A Distributed
Sandbox for Untrusted Computation on Secret Data,” in Proc. of the
12th USENIX Conf. on Operating Systems Design and Implementation
(OSDI), 2016.

[21] W. Wei, J. Du, T. Yu, and X. Gu, “SecureMR: A Service Integrity
Assurance Framework for MapReduce,” in Proc. of the Computer
Security Applications Conf. (ACSAC), 2009.

[22] H. Ulusoy, M. Kantarcioglu, and E. Pattuk, “TrustMR: Computation
integrity assurance system for MapReduce,” in Proc. of the IEEE Conf.
on Big Data (Big Data), 2015.

[23] M. Correia, P. Costa, M. Pasin, A. Bessani, F. Ramos, and P. Verissimo,
“On the Feasibility of Byzantine Fault-Tolerant MapReduce in Clouds-
of-Clouds,” in Proc. of the 31st IEEE Int. Symp. on Reliable Distributed
Systems (SRDS), 2012.

[24] B. Vavala, N. Neves, and P. Steenkiste, “Securing Passive Replication
Through Verification,” in Proc. of the 34st IEEE Symp. on Reliable
Distributed Systems (SRDS), 2015.

[25] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta,
“Design, Implementation and Verification of an eXtensible and Modular
Hypervisor Framework,” in Proc. of the IEEE Symp. on Security and
Privacy (S&P), 2013.

[26] B. Haubold and T. Wiehe, Biological Sequences and the Exact String
Matching Problem. Birkhäuser Verlag, Basel (Switzerland), 2006.

[27] J. C. Venter and Et-al., “The Sequence of the Human Genome,” Science,
vol. 291, no. 5507, 2001.

[28] SQLite. WWW.SQLITE.ORG

[29] Intel. Intel Software Guard Extensions. HTTPS: / /SOFTWARE. INTEL.
COM/SITES/DEFAULT/FILES/MANAGED/48/88/329298-002.PDF

[30] A. Baumann, M. Peinado, G. Hunt, K. Zmudzinski, C. V. Rozas, M.
Hoekstra. “Secure execution of unmodified applications on an untrusted
host”. Poster/Work-in-Progress. SOSP, 2013. HTTP : / / RESEARCH .
MICROSOFT.COM/PUBS/204758/SOSP13- ABSTRACT.PDF

[31] Intel Software Guard Extensions: EPID Provisioning and Attestation
Services. HTTPS : / / SOFTWARE . INTEL . COM / SITES / DEFAULT / FILES /
MANAGED / AC / 40 / 2016 % 20WW10 % 20SGX % 20PROVISIONING %
20AND%20ATTESATATION%20FINAL.PDF

[32] David A. Wheeler. SLOCCount. HTTP : / / WWW. DWHEELER . COM /
SLOCCOUNT/SLOCCOUNT.HTML

[33] Cloud Security Alliance. The Treacherous 12 – Cloud Computing Top
Threats in 2016. HTTPS://DOWNLOADS.CLOUDSECURITYALLIANCE.
ORG / ASSETS / RESEARCH / TOP- THREATS / TREACHEROUS-12
CLOUD-COMPUTING TOP-THREATS.PDF

[34] Common Vulnerabilities and Exposures. CVE-2016-3841. HTTPS : / /
CVE.MITRE.ORG/CGI- BIN/CVENAME.CGI?NAME=CVE-2016-3841

[35] Kernel Statistics. HTTP://LINUXCOUNTER.NET/STATISTICS/KERNEL

[36] AMD. Secure Memory Encryption. HTTP : / / DEVELOPER . AMD .
COM/WORDPRESS/MEDIA/2013/12/AMD MEMORY ENCRYPTION

WHITEPAPER V7-PUBLIC.PDF

[37] AMD. Secure Encrypted Virtualization. HTTP : / / SUPPORT . AMD .
COM / TECHDOCS / 55766 SEV-KM % 20API SPEC . PDF # SEARCH =
SECURE%2520ENCRYPTED%2520VIRTUALIZATION

[38] Amazon. Amazon Linux AMI Security Advisory: ALAS-2016-653.
HTTPS://ALAS.AWS.AMAZON.COM/ALAS-2016-653.HTML

[39] Rackspace. QEMU ”VENOM” Vulnerability (CVE-2015-3456).
HTTPS://COMMUNITY.RACKSPACE.COM/GENERAL/F/53/T/5187

[40] DNAnexus Sequence Read Archive. Homo Sapiens SRR622458-
NA12891. HTTP://SRA.DNANEXUS.COM/RUNS/SRR622458

[41] C. Tsai, D. Porter. “Graphene / Graphene-SGX Library OS - a library
OS for Linux multi-process applications, with Intel SGX support”.
HTTPS://GITHUB.COM/OSCARLAB/GRAPHENE

180


