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Abstract—Code identity is a fundamental concept for authenti-
cated operations in Trusted Computing. In today’s approach, the
overhead of assigning an identity to a protected service increases
linearly with the service code size. In addition, service code size
continues to grow to accommodate richer services. This trend
negatively impacts either the security or the efficiency of current
protocols for trusted executions.

We present an execution protocol that breaks the dependency
between the code size of the service and the identification
overhead, without affecting security, and that works on different
trusted components. This is achieved by computing an identity
for each of the code modules that are actually executed, and
then building a robust chain of trust that links them together for
efficient verification. We implemented and applied our protocol to
a widely-deployed database engine, improving query-processing
time up to 2× compared to the monolithic execution of the engine.

I. INTRODUCTION

The continuous growth of Cloud Computing today has
increasingly fueled research on new security techniques. In
the past decade, special focus has been given to the protection
of security-sensitive application modules running on untrusted
third-party (UTP) platforms through the use of Trusted Com-
puting Components (TCCs). In the research literature, several
trusted execution architectures have been proposed [13, 42, 33,
21, 32, 8, 23, 31]. In the industry, on the other hand, TCCs
are primarily used for storing cryptographic material, e.g., as
in BitLocker [35] and Amazon CloudHSM [6], but prototypes
are emerging for securing complex software [25, 10].

In the Trusted Computing area, code identification [17] is a
key mechanism for guaranteeing execution integrity. It consists
of: computing and attesting the identity of some code c on the
UTP side; and then verifying both the attestation and the code
identity on the client side. More precisely, the UTP includes a
TCC that computes c’s identity by hashing it. The TCC then
digitally signs c’s identity and sends the signed identity to the
client. This allows the client to verify that the correct code was
executed. By extending the same procedure to the input and
output data, the client is also able to verify that the received
output was obtained by running c with the correct input.

The major challenge with using code identification for
securing increasingly complex software is that the overhead
to compute c’s identity before the execution grows linearly
with c’s size. In particular, the overhead scales with the
size of the code that may be executed, not the size of the
code modules that are actually executed. Consequently, this
becomes a concern when the actively executed code is only a
fraction of the code base. In addition, such overhead should
not be considered as a one-time burden. In fact, frequent code

identification is desirable to refresh the execution integrity
property, which is otherwise guaranteed only at load time.

In this paper we present a protocol for code identification
and execution that breaks the coupling between code size
and cost of identification. The protocol has two key desirable
features. First, the trusted architecture loads, identifies and
runs only modules of the code base that are actually executed.
This provides execution flexibility to the UTP and saves TCC
resources. Second, the correct execution sequence of code
modules is guaranteed by a robust and verifiable execution
chain. Each module secures the application data using a secret
key that depends on its own identity and the identity of the
next module in the correct sequence. These two mechanisms
combined enable a secure and efficient identification.

The protocol further enables efficient verification on the
client side. In fact, the client checks that the correct code was
executed by only verifying a chain endpoint to bootstrap trust
in the whole chain. The client does not need to be aware a
priori of the exact execution order; also, unused code modules
have to be neither loaded nor verified.

Additionally, our protocol is agnostic to the details of
the TCC, which makes our contribution generally applicable.
The protocol performs downcalls (to the TCC) by means
of a simple and generic interface. Five primitives (including
one on the client side for execution verification) represent
the bridge between the protocol and the trusted computing
services provided by the TCC, such as isolated code execution,
attestation and secure storage. These services are available, or
implementable, on different trusted components.

We make the following contributions:

• We design an efficient protocol for the secure execution of
complex software inside a generic trusted component. The cost
of code identification scales with the size of the modules that
are executed, rather than with the size of the service code base.

• We analyze the security of our constructions. Also, we
introduce a novel zero-round key sharing technique for trusted
executions that improves performance with minimal changes.

• We implement the protocol on a hypervisor-based TCC
(XMHF/TrustVisor [32, 46]). We apply it to the widely-
deployed SQLite DB engine [40], formally verify its correct-
ness, and show its performance benefits.

The paper is organized as follows. We elaborate on the
challenges of securing remote code execution and outline our
solution in Section II. We provide background on TCCs in
Section III and define our protocol in Sections IV. We describe
our implementation, formal verification and experimental eval-
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Fig. 1: Trends in Trusted Computing research work show an initial focus on
reducing the Trusted Computing Base (TCB), while recent advances in tech-
nology enable to secure entire unmodified services, thus enlarging the TCB.

uation in Section V. In Section VI we devise and validate a
performance model for code identification. We review related
work and draw conclusions in Section VII and VIII.

II. TOWARDS FLEXIBLE TRUSTED EXECUTIONS

Current trends (Fig. 1) in Trusted Computing (TC) evi-
dence that the code used in trusted executions is growing.
We show that this raises either efficiency or security concerns
in TC architectures, and that this is a result of how code
identification is done today [17]. This helps us defining the
problem statement, goals, and outlining our solution.

A. Previous Work
Early work used trusted hardware to verify the integrity

of a system’s initial state [37, 26]. The mechanism involves
identifying—taking integrity measurements, i.e., hashing—the
software components (e.g., BIOS, boot loader, OS, applica-
tions) that bring the system into an operative state. The identi-
ties are stored on trusted hardware (e.g., a TPM) and conveyed
to a client through an attestation. The client bootstraps trust
in the system’s initial state by verifying the validity of the
attestation and matching the identities with the expected ones.

Preserving trust during the execution is hard. Operating
systems are constantly subject to attacks; vulnerabilities are
discovered on a daily basis [2]; and tools are available to
exploit them [1]. Hence, the guarantee that a system is trusted
at a certain point in time may not hold later—this is also known
as time-of-check-time-of-use (TOCTOU) gap [38, 11].

This gap was reduced through the notion of late launch
[20] to create a Measured Launch Environment on demand.
Flicker [33] shows that the technology can be used to run
a security-sensitive piece of code in isolation. The result is
a dramatic reduction in TCB size and, consequently, of the
attack surface. Subsequently, given the poor performance of the
low-power hardware modules, solutions were devised to speed
up the computation [32, 8]. Instead of relying directly on the
hardware module, trust is extended to a small trusted software
module that enables faster code identification. Recently, faster
trusted hardware has also been proposed [34].

Improvements on TC technology have made it possible to
grow the code base from a few KB to hundreds of MB. In
fact, in order to provide security guarantees to a broader set of
applications, some works have secured entire database engines
[9, 47], and even unmodified Windows binaries such as SQL
Server and Apache HTTP Server [10].

B. Security or Efficiency, But Not Both
There are currently two alternatives to deal with such

large code bases, and both come with big downsides. We dub
the first as measure-once-execute-forever [10]. The integrity
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Fig. 2: Security-sensitive code registration latency in XMHF/TrustVisor. It
shows a linear dependence between code size and protection overhead.

measurement is taken only before the execution of the code,
which then continues in the trusted environment indefinitely.
This approach brings us back to the TOCTOU problem. Since
the integrity measurement of a code base is only taken once, it
will not detect any later successful attack that compromises it.

The second alternative is instead dubbed measure-once-
execute-once. The measurements are repeated before each ex-
ecution (e.g., a Flicker [33] based application). This approach
instead may raise efficiency issues. In fact, in order to assign an
identity to the code, this must be loaded first and then hashed.

As an example, in Fig. 2 we quantify this load-and-hash
cost on XMHF/TrustVisor [32, 46], a recent tool for efficient
and secure code execution. We measured the time to register
different code bases. During this procedure, the memory pages
of the code are isolated and identified. The time scales linearly
with the code size reaching about 37ms for just 1MB of code.

Such a linear dependence holds also for Intel SGX [25,
34], used to build secure Enclaves. In fact, after an En-
clave is created and protected (ENCLS[ECREATE] instruction),
code pages must be added and measured (ENCLS[EADD],
ENCLS[EEXTEND]), before finalizing the Enclave and fix its
identity (ENCLS[EINIT]). Hence, the overhead of creating an
Enclave identity grows with the code size. We lack however
an SGX-enabled platform to measure the (likely lower) slope.

C. Problem Definition
Clearly, the code identification cost has become a bottle-

neck. If the code is identified only once, identity integrity
stales over time; if the code is identified repeatedly, the
overall execution time may increase considerably for large
code bases. The ideal balance is to have non-stale identities
and an execution time less dependent from code base size.

In this paper, we aim at making the secure execution cost
scale with the size of the actually executed code, instead of
the size of the code base as a whole, independently from the
used trusted component. Such generally-applicable method can
balance the cost of re-identifying some code to refresh integrity
guarantees and further reduce the active TCB size.

In summary, we seek to attain the following properties:

1) Secure proof of execution. The proof of execution of the
correct code must be unforgeable, unambiguous, and linked
to the hardware root of trust.

2) Low TCC resource usage. The protocol should achieve
security with minimal resource (code identification, cryp-
tography, storage, etc.) demand on the TCC.

3) Verification efficiency. The overhead for the client should
be constant, independently from the code base—i.e., a fixed
number of hashes and digital signatures.

4) Communication efficiency. The protocol should be ”non-

420



interactive”, requiring only a small additional constant
amount of traffic to enable successful client verification.

5) TCC agnostic execution. The protocol should use any
underlying TC architecture as a black-box, thus allowing
to retrofit existing trusted components.

D. Overview of our Solution
The core of our solution is displayed in Fig. 3. On the

left, the code base is depicted as a set of logically connected
modules (arrows express the control flow graph) stored on the
UTP, working together to provide a service. On the right,
our protocol works as follows. It executes in the sequence on
the TCC 1© the modules of the code base that are necessary
for the requested service (e.g., module C is not loaded).
Given a particular client request, only the modules required to
serve it are considered active (A and B in the figure). Active
modules are loaded and run according to the correct execution
order. Each module secures 2© the intermediate state before
it terminates. The next active module is then executed 3© and
it validates the previous intermediate state 4©. Such state is
passed through modules by means of logical secure channels.

In contrast to having a single identity assigned to the
code base, each module has its own identity. This identity is
calculated as the hash of the code. This allows us to maintain
backward compatibility, so to achieve a general solution that is
implementable on current TCCs. Our protocol builds a robust
execution chain based on the identities of the modules, and
guarantees that the modules are executed in the correct order
with respect to the control flow graph.

Each executing active module has access to data and
resources required for the computation. Before the execution,
each module is expected to receive some input from the client
(e.g., a request) or some intermediate state from other modules.
Similarly, when it terminates, each module is expected to
produce either an output for the client (e.g., a reply) or some
intermediate state to be processed by the next module in the
execution flow. Before and after the execution, every piece
of data to/from any module is handled by the UTP in the
untrusted environment; consequently, it must be secured by
means of the available TCC resources (e.g., secure storage).

An executing active module has access to the Identity
Table (or identity set) of the code base. Such module can thus
leverage TCC-based access control mechanisms to secure data.
Intermediate states are transferred between modules through
logical identity-dependent secure channels, whose security is
enforced by the TCC. Such channels are ”logical” in that
the data is transferred through modules by the UTP (i.e., A
releases data to the UTP and it is unloaded, then B is loaded
and receives data from the UTP). The channel is secure as it
guarantees (1) data integrity, through message authentication
codes, and (2) the authentication of the end points based on
their execution order (i.e., A sends to B and B receives from
A, but B and C will never exchange data). A benefit of these
channels is that they allow to maintain all the data locally
(UTP side) thereby avoiding the interaction with the client
during the execution.

A client reply is authenticated through a TCC attestation,
or through previously established symmetric secret keys. The
client receives and verifies the attestation. The last executed
module (in the control flow graph) calls the TCC attestation

A(){}︎

B(){}︎

Identity Table 
ID(A)︎  A34D39FB︎

ID(B)︎  B71686EC︎

ID(C)︎  E323AFEC︎

CB 
code 
base 

Hardware 

OS 

Apps 
CB 
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componentID-based key 

C(){}︎ secure  

channel 

1�

2�

3�

4�

A(){}︎ B(){}︎

Identity Table 
 ID(A)︎ A34D39FB︎

 ID(B)︎ B71686EC︎

 ID(C)︎ E323AFEC︎

Fig. 3: Sketch of our solution.

service, and the TCC attests the module’s identity. Such last
module includes (the integrity measurement of) some param-
eters in its attestation, such as the client’s initial request, the
identity set of the code modules, and the reply. The attestation,
jointly with the parameters used to generate it, represents a
proof of execution verifiable by the client. By verifying the
module’s identity and the identity set, the client can trust that
the code base correctly served the request.

Note that, by design, the hash chain created by the protocol
enforces the execution order of the modules and guarantees
their integrity by computing their identities. This means that
the client neither has to be aware of the execution order for
any specific execution, a highly desirable feature, nor has to
verify the identity of any modules, except for the last one.

III. MODEL

Threat Model. The UTP platform is untrusted, though
equipped with a trusted component. An adversary may take
control of any software running on the UTP machine, includ-
ing services and the OS. So, he can read/modify any data.

The UTP platform is equipped with a TCC. The TCC is
responsible to provide security guarantees for code and data,
and to link them to the (trusted) TCC manufacturer. The TCC
is trustworthy due to its minimal hardware/software security
perimeter (i.e., it does not include peripherals, such as disk or
network devices, nor the OS). A TPM-based TCC includes
components such as: the CPU, the LPC bus, the memory
modules, the communication bus with the memory. Other
implementations could be based on secure coprocessors [39].

The adversary cannot perform physical attacks but is al-
lowed to use the TCC. Actually, we assume that the TCC
primitives (described below) are always called by an untrusted
principal. Hence, the adversary can tamper with the interme-
diate states of code modules when they are not running in the
trusted environment. It can inject false data as input to a code
module and it can execute tampered modules on the TCC.

DoS and cryptographic attacks are out of scope. The former
are difficult to prevent due to the untrusted OS. The latter are
assumed computationally infeasible for the adversary.

System Model. Code base. Our service is composed by m
modules (or PALs1) p

1
, . . . , p

m
. The control flow is a directed

graph over the PALs describing their execution order. An
execution flow is a sequence of PALs of finite but unknown
length n (e.g., p

1
, p

3
, . . . , p

4
) that respects the control flow. We

1Piece of Application Logic, using the notation of previous works [33, 32].
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refer to a generic execution flow with p
1
, . . . , p

n
. It will be

clear from context the distinction with the code base set.

We assume the service is either originally created or
suitably partitioned into code modules by the service authors.
In Section VII, we briefly discuss how modules can be defined.

UTP-side. The code base is available on the UTP, possibly
outsourced by its (trusted) authors.

Client-side. The client knows the cryptographic hashes of the
attested PALs, and also the hash of the Identity Table (Fig. 3),
which represents the identity set. Ideally, the information could
be provided by the (trusted) authors of the code base and it
requires a constant amount of space.

Additionally, the client knows and trusts the TCC’s public
key K+

TCC. This can be achieved through an initial TCC Verifi-
cation Phase: the client interacts with the UTP to retrieve K+

TCC

and the associated certificate. If the public key is correctly
certified by a trusted Certification Authority (e.g., the TCC
manufacturer), then it can be trusted and used for verification.

TCC Model. The TCC is abstracted through a set of
primitives, derived from the available Trusted Computing
technologies [20, 45]. They can be implemented on a variety
of TC architectures, e.g., Intel TXT-enabled processors and a
TPM. Future implementations may leverage Intel SGX [25].

• out← execute(c, in) It executes some code c in isolation
over some input data in and returns the output out.

• {data}snd−rcv
K ← auth put(rcv, data) and

{data, ∅} ← auth get(snd, {data}snd−rcv
K ) The

primitives for secure storage allow to specify the identity rcv
(resp. snd) of the only recipient (resp. sender) code that can
retrieve (resp. send) some data. Secured data is protected with
key K and stored outside the TCC in untrusted storage.

• report← attest(N, parameters) It accepts a fresh nonce
N and some parameters, typically measurements, and pro-
duces the attestation (report). The attestation binds this
information together with the identity of the executing code,
which is stored in an internal register REG.

• {0, 1}← verify(c, parameters, N, K+
TCC, report) It is im-

plemented on the client, who calls it with the execution in-
formation (such as code identity, input and output parameters,
nonce, TCC public key and report) to be verified.

IV. SECURE IDENTIFICATION OF

ACTIVELY EXECUTED CODE

A. A Naive Solution
A client could verify and establish trust in the execution

of a large code base by iteratively checking that each PAL is
run correctly and respects the control flow graph. A relatively
simple protocol to achieve this is the following: the client
sends a request to the UTP to execute the first PAL p1 on the
TCC, and provides the necessary input values for the service.
When the PAL terminates, the UTP forwards to the client
an attestation returned by p1 that covers its identity (i.e., a
hash of the module), the input and the output data. The output
includes the identity of the next PAL to be run, besides the
result of the execution (i.e., the intermediate state). Using the
TCC primitives, the client can verify that the output is valid,
since it was calculated with the correct code and the proper
input. The same procedure can then be repeated for each PAL

in the execution flow until the final result (i.e., the actual reply
for the client) is produced by pn. The protocol ensures that the
PALs are called in the right order and run over the correct data.
Hence, it offers the required correctness guarantees.

Although the naive approach is secure and only attests the
code modules that are actually executed, it has a number of
drawbacks. First, attestations are expensive, so a large number
of executed modules can consume lots of TCC resources.
Second, it is interactive, since it requires the client to verify
each PAL and to mediate the transfer of the intermediate state
between two module executions. Third, it is not verification
efficient as the client has to check every attestation.

In the rest of the section we eliminate the above drawbacks.
We explain a set of orthogonal techniques that: remove the
interactivity with the client and reduce the TCC attestations
to one (§IV-B), address an issue with identity-based secure
storage (§IV-C), and optimize performance with a novel TCC-
based key sharing solution (§IV-D). Finally, we devised a
flexible and verifiable trusted execution protocol (§IV-E).

B. Reducing Communication
When a trusted execution is requested, the client is only

interested in obtaining the final reply (generated by the last
executed module pn) and in verifying the validity of the whole
execution (i.e., as if the code were executed as one single
module). As a consequence, the intermediate states do not have
to be transmitted to the client as long as the client can check at
a later time that they were handled correctly. Similarly, each
PAL execution does not need to be attested as long as the
client is still able to verify the correctness of the final result.

In the naive protocol, the client is involved in each PAL
execution to ensure that the result of a piece of code pi is
properly provided as input to the next module pi+1. This
is accomplished with two attestations returned to the client.
The first is generated by pi and provides evidence about pi’s
intermediate state and the identity of the PAL that should
be run next. The second is generated by pi+1 and provides
evidence that the PAL received the correct intermediate state.
Therefore, if a malicious UTP tampers with the execution,
e.g., by running pi+1 with some incorrect input data, this can
be detected with the second attestation. Hence, the verification
of these attestations confirms that the intermediate state was
correctly transferred from pi to pi+1.

Attestations are a key mechanism in secure code execution
but the overhead they impose is a concern. Attestations are
essential because they convey the execution integrity properties
to a client. They are however expensive, since they involve
digital signatures. In addition, they are meant to be verified.
Consequently, each one imposes a non-zero overhead on the
client. Verification requires not only the signature check, but
also access to a copy of all data that is attested (i.e., at least
the measurement of the code, the input and the output data).

In our approach, we build a “secure channel” between
PALs without the client’s supervision, thus saving attestation,
communication and verification effort. We leverage the TCC
secure storage capabilities (§III) to protect the data while it is
saved locally in the UTP’s untrusted storage. Recall that the
TCC secure storage is based on code identity to authenticate
the auth put and auth get operations. By ensuring that only
the correct code modules access security-sensitive intermediate
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state results, secure storage can be used as the basis to build a
secure data transmission between PALs, instead of relying on
attestations. Essentially, a mutually-authenticated channel is
created: a PAL pi authenticates the identity of the previous
sender pi−1 when it gets the data from a protected input,
and uses the identity of the next recipient pi+1 to securely
store its results, before releasing them to the UTP’s untrusted
environment. It is because of this construction that the client
only needs to verify the last executed PAL. Consequently, it
is critical to ensure that such single verification can indeed be
utilized to bootstrap trust into an arbitrary number of correct
(though unverified) PALs that were called previously. We now
present the end-to-end scenario for completeness and clarity.

The client first issues a service request and provides the
respective input values in and a fresh nonce N to the UTP. The
UTP calls the first module with the input: execute(p

1
, in||N).

The module carries out the initial part of the service com-
putation and it invokes auth put(p

2
, h(in)||N||out) before

terminating. In other words, it saves a measurement of the
input and any output intermediate state in secure storage,
specifying the identity of the only subsequent PAL that is
allowed to retrieve it (i.e., p

2
in the service execution flow). The

outcome of the call is the protected data {h(in)||N||out}p1−p2
K ,

which is then returned to the UTP. Notice that p
1

is not
attested, so it will not be verified by the client.

The UTP next calls execute(p
2
, {h(in)||N||out}p1−p2

K ) to
run module p

2
. The PAL authenticates the received data

to make sure that it came from trusted source. This is
achieved by calling auth get(p

1
, {h(in)||N||out}p1−p2

K ) with
p

1
’s identity. If the identity is not correct then auth get

fails, otherwise it succeeds and the PAL continues (part of)
the service execution. Before it terminates, the PAL performs
auth put(p

3
, h(in)||N||out) to secure the (updated) output

intermediate state for the subsequent PAL. This procedure is
repeated by all intermediate PALs.

The last PAL is attested and verified by the client. After
p

n
retrieves the result from p

n-1
and runs the service code,

it calls the attestation primitive attest(N, h(in)||h(out)) to
get a proof of execution that covers the input and output
measurements, besides p

n
’s own code. Since the attestation

includes the nonce N, it also gives assurance about the
freshness of the computation. The output with the attesta-
tion and the reply data {report, out} is first released to
the UTP’s untrusted environment, and then forwarded to
the client. The client verifies the execution proof by calling
verify(p

n
, h(in)||h(out), N, K+

TCC, report) and accepts the re-
sult only if the primitive succeeds.

Analysis. The attestation binds together the initial inputs, the
output and the identity of the last PAL. The cryptographic
mutually authenticated chain that links p

n
to the previous PALs

ensures that computation is performed only among correct
PALs: when the verification of the correct execution of p

n

succeeds then, by construction, the client also trusts that p
n

can
only have received data from a valid p

n-1
; the same reasoning

can be repeated up to p
1
, which is the single entry point

to the service and is the PAL that received the initial input
data. Hence, correct intermediate PALs only accept data from
(respectively deliver data to) correct PALs. Furthermore, as
each piece of code specifies the receiver in auth put, the
overall execution order must match a valid control flow.

3. look up
   PAL1‘s id

Taab
PAL ID

1 idPAL1

2 ...

3 idPAL3

4 idPAL4

2. pass 
   data4.

 p
as

s 
da

ta

1. look up
   PAL3’s id

PAL1

next:3

PAL3

next:1

next:4

PAL1

idPAL3

PAL3

idPAL1

idPAL4

Fig. 4: The looping PALs problem (left-side) and our solution of detaching
PALs from identities (right-side).

The only data that is accepted inside the trusted environ-
ment without being initially validated is the client’s input.
Similarly, the only data that is released outside without being
protected in secure storage is the final output. However, their
measurements are included in the last attestation, which allows
the verification of the overall execution chain.

Freshness is guaranteed by the client provided nonce,
which is propagated throughout the full execution. This pre-
vents attacks where a malicious UTP would replace the output
of a PAL p

i
with a value returned by the same PAL in a

previous run of the protocol. Notice however that this attack
could only succeed if the initial client input values (and so
h(in)) were the same in both service executions.

C. Addressing Looping PALs
PALs that exchange their intermediate state through TCC-

based secure storage must have access to each others’ iden-
tities. In auth put, a module must specify the identity of
the next PAL that should be granted access to secured data.
Similarly, in auth get, a PAL must give the identity of the
sender module from which it is supposed to receive the data.

A straightforward approach is to include the identities of
the next PALs statically in the code of a PAL. Unfortunately,
this solution does not work out due to possible loops in
the control flow graph of the service that end up creating
unsolvable hash loops. Consider the example in Fig. 4 (left-
side), where a PAL’s code c has the identities of other PALs
appended to it (e.g., module p

1
’s code c1 contains the identity

of PAL p
3
, namely h(p

3
)). It follows that:

p
1
= c1||h(p3

) = c1||h(c3||h(p1
)||h(p

4
))

p
3
= c3||h(p1

)||h(p
4
)

This example shows that loops in a control flow graph require
a module to depend on a hash of itself. Solving the above
equations cannot be done for cryptographic hashes as it would
require us to violate the properties of these functions. Trapdoor
functions could be used instead but they bring a few draw-
backs. First, they are typically based on asymmetric cryptog-
raphy. Hence, they can be comparatively more expensive and
further introduce the difficulty of protecting the private key.
Second, they do not answer the more fundamental question of
whether these hash loops can be avoided. In the following we
show how to solve this issue without trapdoor functions.

Our approach uses a level of indirection to separate a
PAL’s code from its identity. We replace the critical identity
information, hard-coded inside a PAL, with a lookup operation
in a table Tab. The table contains the set of all PALs’ identities
and is built when the modules are originally created. In
addition, we hard-code inside each PAL the index(es) in Tab
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Ksndr−rcpt =

{
f(K, REG, rcpt) on kget sndr by sndr

f(K, sndr, REG) on kget rcpt by rcpt

Fig. 5: Identity-depend key sharing construction for Secure Storage. rcpt is
the identity of the recipient PAL and sndr is the identity of the sending
PAL. REG is the register inside the TCC that stores the identity of the
currently executing PAL. It is equivalent to a PCR on TPMs [20] or to the
MRENCLAV E register in Intel SGX [34]. f() is a keyed hash function.

of the correct next PAL(s) in the control flow (Fig. 4 right-
side). The identities thus become independent from each other
and each PAL’s hash can be computed despite any loop in the
control flow graph. The chain that binds our PALs together is
now based on Tab, which translates an index into an identity.

Tab is critical to ensure the correct execution flow of the
PALs. Hence, it has to be protected throughout the computation
of all modules and eventually verified as follows. The first
PAL accepts the table as input and propagates it to subsequent
PALs using the TCC-based secure storage. The attestation of
one PAL—the last executed in the control flow—has to cover
the measurement of Tab. In order to eventually verify the
execution, the client needs to be aware of: the last executed
PAL’s identity and the integrity measurement of Tab. Notice
that this imposes only a small additional constant space and
time overhead for any trusted execution.

The service developers should produce Tab together with
the executable modules. Tab and PALs should be deployed on
the UTP. The integrity measurements of (attested) PALs and
Tab should be provided to the client to enable verification.

Analysis. The table Tab fixes the set of identities of the
PALs that are allowed to implement each part of the service
functionality. When the client verifies the correctness of the
last executed PAL, say pn, together with Tab, the client can
trust that only valid PALs were used throughout the execution
process. In fact, Tab ensures that only correct identities are
used for secure storage operations, and only correct PALs have
access to securely stored data that is critical for the execution.

D. Novel Secure Storage Solution
Secure channels to transfer intermediate results across

trusted PAL executions should be available with low overhead.
They should be (1) fast to set up, (2) require minimal TCC
support, and (3) ensure mutual authentication of the end points.

The secure channel design described above can be built
on current trusted components, but it is inefficient because its
implementation provides more guarantees than desired. For ex-
ample, on TPMs v1.2, sealed storage is based on asymmetric
cryptography, which provides non-repudiation unnecessarily.
As another example, while symmetric algorithms are available
on TPMs v2.0, the trusted component still implements and en-
forces data access control (i.e., it checks whether the identified
code is allowed to access the data), besides guaranteeing the
confidentiality or integrity of sealed data. Intel SGX instead
uses a different paradigm. The ENCLU[EGETKEY] instruction
(for sealing) only provides a key to the Enclave based on its
identity. The key is used by the Enclave to protect the data that
can be then released outside its secure execution environment.
Unfortunately, when two Enclaves need a shared secret key,
they have to run an authentication protocol [7] to bootstrap
trust in each other’s attestations and validate public Diffie-
Hellman keys. This involves at least two message exchanges,
besides asymmetric cryptographic operations.

PAL1

next PAL: 2

1. kget_sndr(idPAL2)

PAL2

next PAL: 3

Tab
PAL ID

1 idPAL1

2 idPAL2

3 idPAL3
measurement of PAL2

TCC Reg K
Kp1-p2 

2. kget_rcpt(idPAL1)

Keyed Hash Function

Fig. 6: Identity-based Secure Storage construction. It enables two PALs to
share a mutually authenticated secret key in zero rounds, with no message
exchange. Two PALs can use such key to transfer data with minimal overhead.

We propose a new construction that binds a secret shared
key to the identities of two PALs efficiently. In particular, for
any two PALs, the construction can build a secret key to create
their secure channel. For any such key, only the PALs with the
correct identity can access it. Our construction can be seen
as a generalization of the Intel SGX approach, since a PAL
is allowed to set up a secure channel not only with another
code module but also with itself—e.g., to seal and save data
in external untrusted storage. Last but not least, it is fast and
requires minimal TCC support.

In contrast to TPM sealed storage, in our solution, the TCC
does not make any access control decision on whether to accept
or reject a PAL request, based on its current configuration (e.g.,
the value of the PCR registers) and the information included in
the sealed data. The TCC always generates symmetric keys on-
demand. For example, it is up to a PAL to decide to use the key
to encrypt (or just authenticate) some result values and what
code module can later retrieve this data. If an invalid module
attempts to obtain encrypted data, it simply gets some random
information because the wrong key is used for decryption.
Similarly, if a valid module is run with incorrect data, it is
simply unable to authenticate the initial input. Hence, it is
essential that correct modules have access to correct identities.

Keys are derived from a master key K. This is a secret
symmetric key that the TCC maintains internally for comput-
ing identity-dependent keys. Any PAL p

i
can use an identity-

dependent key to protect data. Any such key depends on: K,
p

i
’s identity and another PAL p

j
’s identity. Also, the key can

only be accessed by p
i

and p
j
.

When module p
i
wants to secure some information, it calls

kget sndr with the identity of the receiver p
j
. The TCC then

performs the operations in Fig. 5 to derive a secret shared
key Kp

i
−p

j
that is then returned to the PAL. To retrieve the

same key at a later moment, p
j

invokes kget rcpt to perform
an equivalent operation. Provided that the source and the
recipient PALs respectively supply each other’s identity (i.e.,
resp. rcpt≡p

j
or sndr≡p

i
) to the TCC, the computed key is

the same in the two cases.

The usage of the shared key for the new secure storage
construction is shown in Fig. 6. It allows the protection of data
to be transmitted between adjacent PALs. PALs can use the
identity table Tab to look up the identity of the next executing
PAL according to the control flow. Next, the sender PAL (resp.
recipient PAL) calls kget sndr (resp. kget rcpt) to obtain the
shared key. The key is then used by a function internal to

424



Entity fvTE Protocol 
1 C � UTP Request service execution with input in and nonce N�
2 UTP Prepare input:   in1 � in || N || Tab�

3 
4 
5 
 
6 

UTP�TCC 

{{out1}Kp1-p2 , Tab[1] ,Tab[2]} � execute(p1, in1)�
Repeat for 2 ≤ i ≤ n-1�
    {{outi}Kpi - pi+1, Tab[i] ,Tab[i+1]} � �
                          execute(pi,  {outi-1 }Kpi-1 – pi  || Tab[i-1])�
{outn ,report} � execute(pn, {outn-1}Kpn-1 – pn || Tab[n-1])�

7 UTP � C Return to client:   {outn , report }�

8 C 
Check execution:   
    verify(h(pn), h(in) || h(Tab) || h(outn), N, K+

TCC, report)�

PAL execute() step 

9 
10 
11 
12 
13 

p1 

Identify p1 in REG�
Execute p1 with in1 and compute out�
out1  � out || h(in) || N || Tab�
{out1}Kp1-p2 � auth_put(Tab[2], out1)�
Return:  {{out1}Kp1-p2 , Tab[1] ,Tab[2]} �

14 
15 
16 
17 
18 
19 

pi 

Identify pi in REG�
ini � auth_get(Tab[i-1], {outi}Kpi -1  - pi)�
Execute pi with ini and compute out�
outi  � out || h(in) || N || Tab�
{outi}Kpi – pi+1 � auth_put(Tab[i+1], outi)�
Return:  {{outi}Kpi – pi+1 , Tab[i] ,Tab[i+1]} �

20 
21 
22 
23 
24 
25 

pn 

Identify pn in REG�
inn � auth_get(Tab[n-1], {outn-1}Kpn -1  - pn)�
Execute pn with inn and compute out�
outn  � out || h(in) || N || Tab�
report � attest(N, h(in) || h(Tab) || h(outn ))�
Return:  {outn , report} �

Fig. 7: fvTE protocol run by client C, the trusted component TCC and the
UTP (above, lines 1-8), and the execute step at the various PALs pi (below,
lines 9-25). A single attestation and verification allows the client to trust the
service execution, despite the number of executed PALs. Also, only PALs that
are necessary to serve a specific request are loaded and executed in the TCC.

the PAL to secure (resp. validate) the data to be released to
(resp. supplied by) the UTP. In order to keep the terminology
simple, we will henceforth reuse the names of the TCC secure
storage primitives — auth put and auth get — to refer to
these internal functions.

Analysis. In the execution of the key derivation function,
the TCC uses the trusted identity of the currently executing
PAL and a possibly untrusted identity provided by the PAL
itself. These are positioned differently by the TCC in the f
function, depending on whether the current PAL is saving or
retrieving data (as in Fig. 5). The presence and the eventual
verification of table Tab ensure that only correct identities
(and thus PALs) are used to call the key derivation function.
Furthermore, since a valid PAL forwards the data to the proper
next PAL in accordance with the control flow, this guarantees
that the right order of execution is followed and that only the
correct next PAL can decrypt/validate the data.

E. A Flexible Trusted Execution Protocol
We now integrate the techniques discussed in the previous

subsections into the Flexible and Verifiable Trusted Execution
(fvTE) protocol detailed in Fig. 7. The protocol ensures all
properties specified in Section II, namely it allows a client to
securely and efficiently check the correctness of an arbitrary
code execution. We now describe the main steps.

The client begins the protocol by submitting a service

request to the UTP. It includes in the request a reference to the
service input in plus a nonce N. The UTP then starts running
the first PAL p1 by providing the client’s input, the nonce
and the identity table, i.e., < in||N||Tab > (Lines 2-3). Notice
that this is the only entry point of non-authenticated (and thus
untrusted) data. However, the correctness of such data will be
eventually verified by the client before accepting the reply.

The first PAL is run with the input and produces an inter-
mediate state out (Lines 9-10). Before returning, it prepares
the data to be forwarded to the next PAL: the output, a hash of
the input, the nonce and the identity table (Line 11). The hash
is used as an optimization to minimize the information to be
transferred to subsequent PALs. This data is secured through
auth put, specifying the identity of the PAL that should follow
in the execution flow (p

2
= Tab[2] 2). The PAL terminates by

providing to the UTP the secured intermediate state, and the
identity of the current and the next PAL (Line 13).

The execution of the subsequent intermediate PALs pro-
ceeds similarly. They use auth get to obtain the previous
intermediate state (Line 15), whose validity derives from the
properties of the secure channel. They execute their service
code and propagate the result according to the expected control
flow (Lines 17-19). Notice that values < h(in)||N||Tab > are
simply left unchanged by each intermediate PAL as a way to
propagate them to the final PAL (p

n
= Tab[n]).

p
n

prepares the output for the client. After it retrieves the
intermediate result from secure storage, it executes the code
(Lines 21-22) and performs an attestation that binds together
p

n
’s identity, the nonce, the client’s request input, the identity

table and the final output (Lines 23-24). When p
n

terminates, it
releases the final output and the report to the UTP (Line 25).

The UTP forwards the output to the client for verification
(Line 7). At this point, the client has the following information:
p

n
’s identity and h(Tab) that were outsourced by the authors of

the code; the originally created request (input) and the fresh
nonce; the final output and the attestation as issued by p

n
;

the trusted TCC’s public key (see assumptions in Section III).
The client can thus verify the attestation, and so the execution
correctness, and trust the service output (Line 8).

Discussion. The protocol ensures that the properties in Sec-
tion II-C are achieved as follows:

1) Secure proof of execution. The proof is unforgeable
because it is conveyed by an attestation, i.e., a digital
signature over the input, the output, the identity table
(over secure hashes of these values). The signature is
linked to the TCC hardware root of trust through a
chain of digital certificates, whose ultimate root is a
Certification Authority trusted by the client. The proof is
unambiguous because of the attested identity of the last
PAL p

n
and Tab, and it is unique due to the inclusion of

the nonce N. The execution flow cannot be tampered with,
since only the correct PAL’s can be run in the expected
order. This last point is ensured through the novel storage
primitive (and the identity table Tab) that prevents invalid
PALs from accessing and tampering with the output of the
intermediate states.

2) Verification efficiency. The client only has to perform

2Notice that ”2” actually corresponds to the index of the next PAL in the
execution flow that is hard-coded in p1. The index is used for the lookup
operation in Tab. We use this simplification in the description for brevity.
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a constant number of hashes and check one digital sig-
nature to validate the result. Such verification effort is
independent from the number of executed PALs.

3) Communication efficiency. The client interacts only
once with the UTP to send the input in and receive the
output out of the service. Also, the client provides and
receives a constant additional amount of data, i.e., the
nonce N and report.

4) Low TCC resource usage. Throughout the protocol,
only the PALs that are required to serve the client request
are loaded, identified and run. Furthermore, public key
cryptography usage is limited to one attestation, while
symmetric cryptography is used for fast key derivation on
the TCC. Hence, the protocol consumes TCC resources
efficiently and proportionally to what is actually executed.

5) TCC-agnostic execution. The execution protocol only
uses the TCC abstraction. As the interface can be imple-
mented on different trusted components, the protocol is
not restricted to any specific architecture, so it is general.
The next section explains one possible implementation.

Amortizing the attestation cost. Reducing the number of
attestations provides benefits both to the UTP and to the client.
However, as we show in our evaluation, a single attestation
can still be computationally expensive when the client has to
verify multiple requests. It is common practice to avoid this
overhead by setting up a secure session, between the trusted
environment and the client, based on a symmetric secret key.
We sketch a possible solution using our protocol.

The code base can be enriched with another PAL, pC,
that establishes the secure channel. pC receives the client’s
fresh public key pkC as input at the beginning of the com-
putation. It assigns the identity idC = h(pkC) to the client; it
uses kget sndr (§IV-D) to retrieve the identity-dependent key
KpC−C (to be) shared with the client; it encrypts KpC−C with
pkC. The attestation of the result and the encrypted data are
sent back to the client. The client verifies the attestation and
retrieves KpC−C. In subsequent requests, the client authenticates
(or encrypts) messages with KpC−C and attaches idC. The
client’s identity allows pC to recompute KpC−C without main-
taining any session state. pC can thus authenticate the message
and forward it to the first PAL in the original execution flow.
Similarly, pC should receive the computed reply from the last
PAL so to build an authenticated message for the client.

V. EXPERIMENTAL ANALYSIS

This section focuses on the implementation and evaluation
of our protocol when applied to a real-world service. The
protocol is used to securely link together code modules of the
widely-deployed SQLite database engine. A formal verification
of the correctness is carried out with Scyther. Our results
show that the code identification overhead can be significantly
reduced without trading off security and functionality.

A. Implementation
Trusted component. We implemented the TCC using
XMHF/TrustVisor [32, 46], which is based on a hardware
TPM, and whose code is open-source and easy to customize.

XMHF/TrustVisor is a security hypervisor that can perform
trusted executions on-demand. Briefly, a trusted execution
involves three steps, all initiated from the untrusted environ-
ment, where the OS and other services run. The hypervisor

performs the following operations: it protects the memory
regions of a PAL from external access and measures its code
(PAL registration step); it executes the PAL and handles the
marshaling of I/O parameters between the trusted and the
untrusted environment (PAL execution and termination step); it
clears the PAL’s state and makes it accessible in the untrusted
environment (PAL unregistration step).

In order to implement our protocol, we modified
XMHF/TrustVisor by adding three hypercalls. The first makes
memory available to a PAL in its address space. This avoids
allocating memory in the untrusted environment, then transfer-
ring it to the trusted environment and making it accessible to a
PAL as dynamic memory. Consequently, such memory space
is neither part of a PAL’s identity, nor of a PAL’s input data,
and it can be provided more efficiently. The second hypercall is
kget sndr, which is used in the auth put primitive to retrieve
a shared key to secure some data for a known receiver PAL. As
the TCC only computes a secret key, this allows a developer
to choose and implement the security technique that is most
suitable for the application (e.g., message authentication codes
or authenticated encryption). The third hypercall is kget rcpt,
which is used in the auth get primitive to retrieve a shared key
to validate some data that was previously secured by a known
sender PAL. The TCC-specific key used for identity-dependent
key derivation is initialized inside XMHF/TrustVisor when the
platform boots.

Platform. We used a Dell PowerEdge R420 Server, with a
2.2GHz Intel Xeon E5-2407 CPU, 3GB of memory, a TPM
v1.2, and running Ubuntu 12.04 with a Linux kernel 3.2.0-27.
The resources were fully dedicated to our experiments.

Application. Our protocol was applied to the SQLite database
engine [40], which has a code base of about 88K lines of
source code. SQLite is open-source and widely deployed, e.g.,
on Android [4], iCloud [5] and other operating systems [3].

A multi-PAL SQLite engine was created with a small per-
operation code footprint. Different PALs were built to handle
specific queries. Each one was handcrafted by trimming the
unused code off the original code base. Then, our protocol is
used to securely link these PALs together.

Our current multi-PAL SQLite engine consists of 4 PALs
that implement some of the most representative SQL op-
erations. We emphasize that additional operations can be
included by following the same approach—see Section VII—
so to match the functionality of the original database engine.
PAL0 is the first one called from the untrusted environment on
the UTP and it receives the input data from the client. PAL0

parses the client’s request to recognize the type of query,
and then forwards it to a specialized PAL for the execution
by means of our secure channels. Select queries are passed
to PALSEL. Insert queries are sent to PALINS . Delete
queries are passed to PALDEL. The last executed PAL builds
the reply that is released to the UTP’s untrusted environment,
from which it is then forwarded to the client.

We compare multi-PAL SQLite against a baseline imple-
mentation of the full SQLite database engine. We implemented
it as a monolithic PALSQLITE that can execute any query.

We perform end-to-end experiments, where a client per-
forms select, insert and delete queries on the server that
maintains a database. Queries are received through a Ze-
roMQ [50] socket at the UTP, and delivered to PAL0 for
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initial processing. The experiments were based on a small
size database because it highlights the overhead due to code
identification, which is the focus of this paper.

Execution Flows. In multi-PAL SQLite, requests from
the client follow the following execution flows: PAL0 →
PALSEL, PAL0→ PALINS , or PAL0→ PALDEL. Any
other query is currently discarded by PAL0 and the trusted
execution terminates. However, additional operations could be
easily using the same procedure.

B. Correctness
We verified the correctness of the fvTE protocol applied

to SQLite using Scyther [14, 15], a public tool for the formal
verification of security protocols. We chose Scyther as it
supports unbounded verification of security properties or their
violation by providing feasible attacks.

Protocol Modeling. The security protocol is performed
among the following entities: the client, the 4 PALs and the
TCC. The UTP is untrusted and it is modeled by Scyther as
an adversary that is able to forge and replay messages. We
describe the execution verification of a select query (but it
will be evident that it can be adapted to other executions in a
straightforward manner).

Messages are exchanged on two channels: one between
the client and the TCC; and another between the TCC and a
PAL that is executing. The first one is modeled as an insecure
channel because the client and the TCC do not share any secret.
The first message is therefore not secured and the last message
is signed by the TCC (i.e., attested through K-

TCC). The second
channel is instead modeled as a secure channel. We let the TCC
and each PAL i share a fresh secret key (e.g., KTCC↔PALi

≡
KPALi↔TCC) to secure their communication. The reason is
that each PAL runs (and terminates) above the TCC when
the execution environment is already isolated. This implies a
secure data/control transfer between the TCC and each PAL.

A logical secure channel is available between pairs of
PALs. The channel is protected with the key (for instance,
KPAL0↔PALSEL

) shared between the indicated PALs. The
TCC essentially forwards messages between the direct chan-
nels that it establishes with each PAL. This is modeled through
message encapsulation: a PAL first secures the message using
the key that it shares with another PAL, and then it secures the
message again using the key shared with the TCC. The security
of the channel derives from our construction in Section IV-D.

Protocol Verification. The execution chain is verified in
three steps. First, the TCC validates that PAL0 successfully
completes an execution on inputs Req,N, Tab and delivers a
response ResPAL0

securely linked to the inputs. This allows
the TCC to trust that ResPAL0

is the correct output of
PAL0. Second, the TCC validates that PALSEL successfully
completes an execution on inputs ResPAL0

, h(Req), N, Tab
and delivers a response ResPALSEL

securely linked to the
inputs. This lets the TCC trust that ResPALSEL

is the correct
output of PALSEL. Third, the client validates that the TCC
successfully completes an execution on inputs Req,N, Tab
and delivers a response ResPALSEL

securely linked to the
inputs. Finally, this allows the client to trust that ResPALSEL

is the valid output.

Scyther verified the protocol execution in about 35 minutes,
on a MacBook Pro with a 2.3GHz Intel i7 CPU.
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Fig. 8: Size of each PAL’s code in our SQLite code base.

Discussion. The reader should note that the successful
verification refers to the fvTE protocol as applied to the
multi-PAL SQLite design and not to the general protocol (in
Fig. 7). However, this verification together with the analysis
performed during the protocol description (Section IV-E) gives
us confidence that our approach is correct. Verifying an actual
implementation is an orthogonal problem that could be ad-
dressed with Ironclad Apps [22].

C. Evaluation
We evaluate the multi-PAL SQLite and compare it against

the full monolithic SQLite. An always-positive speed-up was
observed with our design, which shows that for this setting it
is convenient to load and integrity-measure only the modules
that are executed out of a large code base.

Code Size. The size of the code for each PAL protected
by XMHF/TrustVisor at registration time is shown in Fig. 8.
The size of the full SQLite implementation is about 1MB,
while common operations such as select, insert, delete can
be implemented in as little as 9-15% of the code base.

speed-up W/ ATTESTATION W/O ATTESTATION

INSERT 1.46× 2.14×
DELETE 1.26× 1.63×
SELECT 1.32× 1.73×

TABLE I: Summary of the achieved per-operation speed-up.

End-to-end performance. The performance results for each
execution flow are displayed in Fig. 9, and summarized in
Table I. Each run is one end-to-end query execution, i.e.,
the client sends one request and receives the corresponding
reply. We have included the execution times with and without
attestation. The average of at least 10 runs is displayed with
the 95% confidence interval. XMHF/TrustVisor computes an
attestation using a 2048bit RSA key and, in our testbed, it takes
around 56ms. Such overhead could be reduced by establishing
a secure session with the client (see §IV-E).

Overall, our protocol improves substantially on the pre-
vious approach. For example, insert is about 1.46× faster
than the traditional approach using the monolithic SQLite;
the result could be improved to become up to 2× faster by
considering more efficient attestation mechanisms. Notice that
if the original code base gets larger, then the benefit increases.

At the application level (i.e., without considering the under-
lying TCC overhead), the execution time of SQLite is similar
for queries that are executed in the monolithic PALSQLITE

or in the small PALs. This is expected since they execute
essentially the same code on the same state. Consequently, the
performance differences are mainly the result of the different
size of the code that is loaded in the trusted environment.
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Fig. 9: Performance comparison between the multi-PAL and the monolithic
SQLite databases.

Finally, we measured the overhead of PAL0 in our end-
to-end experiments. PAL0 terminates its execution in about
6ms. Considering attestation, this corresponds to an overhead
of 6.6% for insert, 5.6% for delete, 6.2% for select. Without
attestation, the overhead is 17.1%, 12.7%, 14.6% respectively.

Optimized vs. non-optimized secure channels. We com-
pare our secure storage construction (Section IV-D) with the
original one of XMHF/TrustVisor (i.e., seal and unseal). Both
use symmetric cryptography, but XMHF/TrustVisor’s secure
storage requires more operations for: (i) managing TPM-like
data structures because it implements a software micro-TPM;
(ii) using AES for encryption, in order to guarantee secrecy of
sealed data; (iii) retrieving random numbers for the initializa-
tion vector to guarantee semantic security; (iv) using SHA1-
HMAC for integrity protection. Instead, our construction only
uses SHA1-HMAC, keyed with the TCC secret created at boot
time, to derive identity-dependent keys.

The results of the performance measured inside the hy-
pervisor are: 15μs and 16μs for kget rcpt and kget sndr;
and 122μs and 105μs for seal and unseal respectively. The
operations in our construction are respectively 8.13× and
6.56× faster. In our experiments, using XMHF/TrustVisor’s
native secure storage (recall from Section IV-D that both can
be used to implement secure channels) does not change the
results in Fig. 9 noticeably. The difference in overhead is at
least two orders of magnitude smaller than the end-to-end
execution time. Notice however that in large-scale services of
several interconnected PALs and long execution flows, such
overhead could become non-negligible.

VI. PERFORMANCE MODEL FOR CODE IDENTIFICATION

In this section we devise a performance model for code
identification to study under what circumstances using the fvTE
protocol outperforms the traditional approach of monolithic
trusted executions. For the traditional approach, we can model
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Fig. 10: Breakdown of the code registration costs inside XMHF/TrustVisor.

the costs for code execution as follows:

T = (tis(C) + tid(C) + t1)︸ ︷︷ ︸
code protection cost

+ (tis(in) + tid(in) + t2)︸ ︷︷ ︸
input protection cost

+

(tis(out) + tid(out) + t3)︸ ︷︷ ︸
output protection cost

+ tatt︸︷︷︸
attestation cost︸ ︷︷ ︸

TCC-dependent costs

+ tX︸︷︷︸
execution

cost

We distinguish between TCC-related costs and application-
level costs. The latter (tX ) is invariant with respect to the
trusted execution protocol actually used, and only depends on
the platform where the application runs. The former instead
depends on the TCC and on the implemented protocols for
isolation (is), identification (id) and attestation (att) of a
code base (C) and input/output (in/out) data. As shown later,
identification and isolation costs are linear in the size of the
argument (C, in, or out), while t1, t2, t3 are constant additional
costs—so linear costs are modeled as y = ax+ bx+ c.

The code protection cost thus impacts part of the overall
cost for a trusted execution. Such an impact is less noticeable
when the input/output data protection costs or the execution
cost outweigh the code protection cost. However, the focus of
this paper is on code identification. Therefore, for the sake of
performance modeling, we put emphasis on trusted executions
where the code protection cost outweighs the other terms with
the following approximation

T ≈ tis(C) + tid(C) + t1

The experimental quantification of these costs in
XMHF/TrustVisor is shown in Fig. 10. We built a set
of PALs each having an increasing number of NOP operations.
The times for code isolation and identification grow with code
size. Other operations, including scratch memory allocation,
are code-independent and have constant cost (i.e., t1 overall).

We model the costs of the fvTE protocol in a similar way:

TfvTE =(tis(E) + tid(E) + nt1) + n (tis(in) + tid(in) + t2)+

n (tis(out) + tid(out) + t3) + tatt + tX

Here E is the set of n PALs in an execution flow, and we
define |E| as their aggregated size. Code protection costs are
approximated as—notice the per-PAL constant costs:

TfvTE ≈ tis(E) + tid(E) + nt1

Our protocol is more efficient than the previous approach
when protecting the execution flow is less expensive than
protecting the whole code base. This can be defined as:

efficiency
ratio

T

TfvTE

{
positive, if > 1

negative, if ≤ 1

A positive efficiency ratio indicates that it is worth having
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Fig. 11: Validation of the performance model. The slope of trend line
represents the t1/k constant in the efficiency condition. |C| is the size of
the code base. |E| is the size of the code in an execution flow.

multiple PALs. Instead, a negative efficiency ratio indicates
that it is better to protect the whole code base. The (positive)
efficiency condition can be defined as follows. First, given the
linearity of the code isolation and identification costs, we group
them as tid(C) + tis(C) = k|C|, for some constant k. Then:

k|C|+ t1
k|E|+ nt1

> 1 → |C| − |E|
n− 1

>
t1
k

efficiency
condition

The efficiency ratio depends on both the size of the code
base and the size of the execution flow. However, the efficiency
condition depends only on their difference (in addition to n and
t1/k, the architecture-specific constant discussed later).

We validate the model through an experiment that uses
different sets of PALs with cardinality from 2 to 16. For each
set we varied the aggregated size |E| (i.e., the size of executed
code). We empirically measured the maximum aggregated
size for each set for which the fvTE protocol is faster than
the traditional monolithic approach. This corresponds to the
empirical check in Fig. 11. Notice that the trend of these
empirical measurements is well approximated by a straight line
which divides the plane in two areas: the shaded one where
the efficiency condition is false, and the other area where it is
true. The slope of the line represents the constant t1/k.

Discussion. The constant t1/k depends strongly on the TCC.
In our experiments, it depends on our testbed hardware plat-
form and the software (XMHF/TrustVisor, see Section V-A)
that provides trusted computing services. In Flicker [33] both
terms are larger due to the interaction with the slow TPM,
particularly k for the identification. Instead, future trusted
computing technologies such as Intel SGX [25] are expected to
reduce significantly both t1 and k. However, since the constant
also depends on the software that supports trusted executions,
it is difficult to predict its trend without running experiments
on a real platform.

VII. RELATED WORK

Code identity and trusted executions. Code identity has
been originally defined as the digest of a program’s code
in [30]. The same definition was later borrowed for trusted
hardware-based code executions [17, 18] as a useful mecha-
nism for sealed storage and attestation purposes. Current plat-
forms and CPU extensions such as AEGIS[41], Intel TXT [24],
Intel SGX [25], OASIS [36], TrustLite [28] allow to identify
some code before the execution by hashing its content. Tools
that leverage some of these architectures, such as Flicker [33],
TrustVisor [32], Haven [10] do not address the problem of code
size inside the trusted environment and execute monolithic
applications, whose identity can be verified remotely. In this
paper, we do not change the definition of code identity (i.e.,

the hash of the binary), and we observe that another way for
the client to verify a remote execution is to (be able to) make
trust inferences. Therefore, by building a robust chain of trust
throughout the modules of a large code base, it is sufficient
for the client to verify only part of the chain to infer that the
execution of the whole code base was performed correctly.

OASIS [36] proposes to deal with an application whose
size is greater than the cache by building a Merkle tree over its
code blocks. However, it requires new hardware support, so it
does not provide general solution that retrofits existing trusted
computing components. Our protocol instead could leverage
OASIS by implementing our TCC abstraction (Section III) and,
with minimal modifications, it could also include our novel
secure storage construction (Section IV-D).

The BIND service [38] leverages fine-grained code at-
testation to secure a distributed system. BIND targets small
pieces of code, while our protocol is able to provide exe-
cution integrity guarantees of large code bases. Additionally,
although small modules could use BIND to build a chain
by verifying each other, the resulting construction (similar
to that in Section IV-A) would not be verification efficient
and could incur verification loop issues (Section IV-C). Our
protocol addresses these drawbacks and guarantees integrity
when the client eventually verifies the execution. Finally,
BIND’s security kernel was not implemented [33].

A research work related to ours is the On-board Cre-
dential (ObC) Project [16, 29, 12]. The ObC Project defines
an open architecture based on secure hardware [43, 44] for
the installation and execution of credential mechanisms on
constrained ObC-ready (typically mobile) devices. It enables a
service provider to provision secrets to a family of (installed)
credential programs [29], which are executed slice-wise in a
secure environment [16], possibly using the TPM’s late launch
mechanism [12]. Such credential programs are application
or platform-specific, while our work is concerned about the
efficient verification of executions that are performed on a
generic trusted component. The chain of trust among the slices
is based on the slice endorsement token, containing the family
and program-specific secrets, which is created online on a per-
slice basis. In our case, the chain is explicit in each PAL
through a reference to the previous/next PAL’s identity, and
only needs an offline setup (i.e., the process of making the
code base available on the UTP) performed by the service
authors. Also, access to secured data is controlled by (our)
construction through the trusted component, allowing secure
data exchange among PALs pairwise.

Defining code modules. Making modules/partitions out of
programs is a programming-language problem that has been
widely studied, e.g., in the context of privilege separation
[27], parallel program execution [19, 48] and secure distributed
computation [49]. Defining such a method for PALs is orthogo-
nal to and out of the scope of this paper. We mention however
that we built our SQLite-based prototype (Section V-C) by
using both static and dynamic program analysis to distinguish
the non-active code and remove it, and performing extensive
testing to check the correctness of the resulting active code.
As an additional example, in another application for secure
image filtering, we implemented and protected each filter as
a separate task, and then created a secure and efficiently
verifiable chain using our protocol, though a different TCC.

429



VIII. CONCLUSIONS

In this paper we have shown that current trends in Trusted
Computing create a trade-off between security and efficiency
due to code identity assignment. We presented a general
protocol that enables efficiently verifiable (at the client) and
flexible (at the UTP) trusted executions of arbitrarily sized
code bases by identifying only the actively executed code.
We successfully applied our protocol to a real-world database
engine, showing positive results already with a 1MB code base.
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