
Diverse OS Rejuvenation for Intrusion Tolerance

Miguel Garcia, Alysson Bessani and Nuno Neves
LaSIGE University of Lisbon, Faculty of Sciences – Lisbon, Portugal

Abstract—Proactive recovery is technique that periodically
rejuvenates the components of a replicated system. When used
in the context of intrusion-tolerant systems, in which faulty
replicas may be under control of some adversary, it allows the
removal of intrusions from the compromised replicas. However,
since the set of vulnerabilities remains the same, the adversary
can take advantage of the previously acquired knowledge and
rapidly exploit them to take over the system. To address this
problem, we propose that after each recovery a replica starts
to run a different (or diverse) software. As we will explain,
the selection of the new replica configuration is a non-trivial
problem, since we would like to to maximize the diversity of
the system under the constraint of the available configurations.

Keywords-Diversity, Vulnerabilities, Operating Systems, In-
trusion Tolerance, Proactive Recovery.

I. INTRODUCTION

Byzantine fault-tolerant (BFT) replication is an active
research area that produced a number of results in the last
12 years. The proposed algorithms usually guarantee correct
operation if at most f out-of n replicas deviates from their
expected behavior arbitrarily.

BFT replication is considered to be a fundamental com-
ponent of intrusion-tolerant systems [1], since arbitrary
faults can model malicious behavior in replicas attacked and
intruded by an active adversary.

Despite that, BFT replication alone has strong limitations
once malicious faults are considered. One of the most im-
portant limitations is that given sufficient time, an adversary
that was able to compromise f +1 replicas and then break
the assumption that at most f replicas are faulty, exhausting
the resources of the system [2].

A way to deal with this limitation is to employ periodic
rejuvenations of replicas [2]–[4], a technique commonly
called proactive recovery (PR). The rationale of these re-
juvenations is to clean the state of the system, reboot the
machine with code from a read-only storage (e.g., a CD-
ROM) and validate/fetch the service state from other (cor-
rect) replicas. An intrusion-tolerant system with proactive
recovery decreases the time an adversary has to compromise
f + 1 replicas from the complete system lifetime to a
small window of vulnerability comprising approximately the
period to rejuvenate the whole system.

Although periodic rejuvenations bring benefits in terms
of reliability [5] it has a the following problem: the vul-
nerabilities exploited on previous incarnations of the replica
may still be exploitable after the recovery. This limitation

Figure 1. Architecture of the rejuvenation system.

makes it very easy for a smart adversary to create a script
to automatically compromise the replica again just after the
rejuvenation.

This paper proposes an architecture to exploit the oppor-
tunistic diversity available from COTS (Component of the
Shelf) software such as operating systems, database manage-
ment systems, virtual machines and cryptographic libraries.
The main objective is to change the configuration of a replica
in order to modify its vulnerability set after the recovery. In
particular we extend the PRRW (Proactive-Reactive Recov-
ery Wormhole) architecture [4] with a configuration selector
able to choose system configurations for recovering replicas
preserving some expected fault independence between them.

The problem we address here was also considered in two
previous works. Sousa et al. stated the need for diversity in
time (i.e., changing replicas after a recovery) in a previous
paper [6]. This work also suggested possible sources of
diversity, however, no method for the selection of the new
configurations was proposed and neither concrete results
were presented. A more recent work proposes the use of
program transformations for generating different application
binaries after a recovery [7]. This work does not evaluate
possible options and neither considers changing COTS soft-
ware on a recovery, and thus can be seen as a technique for
improving diversity of the same software component, being
thus complementary to what we are proposing here.

II. SYSTEM ARCHITECTURE

An Intrusion-tolerant (IT) system is typically composed
by n replicated servers 0, ...,n− 1 that implement a given
service, for example, a file system or a database. Users

contact the replicas following the rules of the service –
they send requests to one or all servers, and then select
one of the returned responses (see below the line part of
Figure 1). Servers keep their state consistent by running a
replication protocol that is able to tolerate Byzantine failures.
The system maintains a correct behavior even if there is
an undetermined number of malicious users and/or if an
attacker controls up to f replicas (with n≥ 3 f +1).

The aim of the diversity rejuvenation service is to ensure
that this last invariant continues to be valid throughout the
lifetime of the system. It basically employs two mechanisms.
First, replicas run diverse software to guarantee that vulner-
abilities are not shared. If this is true, then the adversary
would need to spend a considerable time to compromise each
replica, since previously found exploits cannot be re-used
to create intrusions in further servers. Second, periodically
each replica is rejuvenated with a new diverse software,
removing the effects of some prior intrusion, and therefore
making the adversary start over. In order to ensure the
availability of the IT service, rejuvenations occur in a round-
robin fashion every T time units (i.e., at time (t0 +kT) starts
the rejuvenation of replica i, with i = (k mod n) and t0 is
the instant when the system was initialized).

The architecture of the rejuvenation service is depicted in
the part above the line of Figure 1. Virtualization is used
to divide each replica in two logical components, where
the server software is run in a separate virtual machine
and the diversity rejuvenation module (DRM) is executed
in the hypervisor. This setup provides an acceptable level
of protection for the DRM because the hypervisor is iso-
lated from the virtual machines. Therefore, if an adversary
manages to exploit a vulnerability in the OS supporting the
server execution, he or she will not be able to propagate
the intrusion to the hypervisor and affect the correctness
of the DRM. Additionally, replica rejuvenation can also
be performed in an effective manner by carrying out the
following steps:
• DRM starts a new virtual machine with a diverse OS

configuration stored in the local cache. This virtual
machine runs in parallel with the current server replica.

• A new server is initiated in the virtual machine by
running the necessary setup operations, which might
include contacting the other server replicas to obtain
an updated state of the IT service.

• The virtual machine of the current server is shutdown
and discarded, and the new server takes the place of
the old one.

• DRM runs a selection algorithm (see next section) to
find out which OS configuration should be run in the
next rejuvenation.

• DRM fetches from the configuration repository the
chosen OS configuration and stores it in the cache. This
occurs in the background, while the server is processing
the user requests.

An OS configuration basically contains the OS, plus other
auxiliary programs, and a server. They are stored in a virtual
machine disk (i.e., a file) that can be run by the virtualization
solution. System administrators typically create these config-
urations, which should only contain fully patched software
without any known vulnerabilities, and save them in a secure
repository. The access to this repository is protected by
employing a separate LAN (as represented in the figure)
or by using cryptographic mechanisms to safeguard the
communications.

III. DIVERSE REJUVENATION

In this section we present a solution for the problem
of selecting diverse configurations. To our knowledge, this
problem has been mainly overlooked in the past, and it
corresponds to the decision of which configuration should be
run in a replica, given the already running configurations and
a suitable set of candidate diverse configurations. To simplify
our discussion and make it well grounded on the available
results about diverse configurations, we describe our tech-
nique using diverse operating systems configurations, but it
can be easily extended to deal with configurations composed
by a stack of software components.

A. Rational for the solution

Intuitively, the selection algorithm should pick from the
available alternatives the best OS configuration, in the sense
that it should not have common vulnerabilities with the
already running replicas. This would considerably delay
the adversary to compromise more than f replicas1. This
solution however suffers from one difficulty – given two
fully patched configurations, one does not know if they
share some vulnerability (which might be discovered in the
future). Therefore, when designing the selection algorithm,
we should attempt to fulfill the following prepositions:

P1 The new selected OS configuration does not share
vulnerabilities with the configurations already ex-
ecuting in the other replicas.

P2 Given the group of configurations currently run-
ning, the adversary can not predict the configura-
tions that will be selected in the future.

P3 All diverse OS configurations available on the
configuration repository2 for selection are picked
by the algorithm with a reasonable probability.

P4 The algorithm is run individually by each DRM of
the replicas.

As explained, P1 cannot be ensured with absolute cer-
tainty. However, we have found in a recent study about
OS diversity [8] strong empirical evidence for: 1) it is
possible to find OS pairs that have had no (or only a

1Notice that we are working under the assumption that finding and
exploiting new vulnerabilities in mature software takes some time.

2Which is a subset of all available configurations containing the operating
systems that match some performance or dependability criteria.

few) vulnerabilities in common in the past; and 2) if OS
pairs share few vulnerabilities in the past, then with high
probability no (or very few) common vulnerabilities are
found in the future. This study was based on vulnerability
data from the NVD database [9] over a period of 15 years,
and it allowed us to collect information about vulnerabilities
that are present in more than one OS version. For each
OS version pair we can obtain the list of shared vulnera-
bilities and the CVSS score of each vulnerability3. There
are studies that cross-validate our idea, also based on data
from NVD (see [11], [12] for more details). Therefore,
by combining this data we can calculate a rough criteria
for deciding if two OS configurations share vulnerabilities:
score(OSA,OSB) = ∑v∈VA,B

CVSSscorev, where v ∈ VA,B is
the set of past common vulnerabilities of OSA and OSB,
and CVSSscorev is the score of a vulnerability v.

Preposition P2 is necessary to address the following attack
– to increase the available time to find vulnerabilities, the
adversary predicts a system configuration that will be used
some time from now (e.g., in a month); then, he or she starts
to attack the corresponding OS versions, so that when this
configuration is eventually installed, more than f replicas
can be corrupted in a limited amount of time. Since we only
have a limited number of OS configurations, our aim should
be to make the prediction as hard as possible. This means
that selecting an OS configuration from the available ones
should entail some level of randomness, even if this implies
choosing a system configuration that has a somewhat higher
score among some of the executing replicas.

Some OS pairs share much less vulnerabilities than others,
and therefore, there is the risk that some of the available OS
configurations are never selected. To address this problem,
the algorithm should enforce P3. The last preposition is
useful because it simplifies the implementation, since this
allows the DRM to determine which OS configurations
are (and will be) used in replicas without having to com-
municate. This requires that the algorithm executes in a
deterministic way (after some potential initial random setup
step).

B. Selection algorithm

Algorithm 1 is run individually by each replica DRM,
and it provides a solution to the diversity selection problem
fulfilling the above four prepositions. When the system is
initialized, every DRM receives an equal random seed value
and a copy of table OSTable containing a description of
the OS configurations stored at the repository. Among other
things, this table has for each OS configuration pair the score
of vulnerability (as discussed above). The system administra-
tor also indicates in a vulScore configuration variable, what

3The Common Vulnerability Scoring System (CVSS) score provides
an indication of the impact of a vulnerability in a system, and it takes
into consideration aspects like ease of exploitation and the impact on the
integrity/confidentiality/availability [10].

he or she considers as an acceptable maximal score value
between any two OS configurations that are run in the system
(sometimes the algorithm may need to select configurations
higher this value if there are no alternatives).

Algorithm 1: Diverse: A Diversity selector algorithm

Initialization:
re jCount =−1;1
OSCon f = (∗,∗,∗, ...∗);2
initRandom(seed);3

initSelectCandidate():
f irstC = (getRandom() mod size(OSTable));4
nextC = 0;5
score = vulScore;6

selectCandidate():
cand = getOSTable((f irstC +nextC) mod size(OSTable));7
if ((nextC > 0) and (nextC mod size(OSTable) = 0)) then8

score = score+α;9
end10
nextC = nextC +1;11
return cand;12

findNextConfiguration():
re jCount = re jCount +1;13
i = re jCount mod n;14
initSelectCandidate();15
while (true) do16

done = f alse;17
j = 0;18
cand = selectCandidate();19
repeat20

if (getScore(OSCon f (j), cand) > score) then21
done = true;22

end23
j = j +1;24

until ((¬done) and (j < n)) ;25
if (¬done) then26

OSCon f (i) = cand;27
return cand;28

end29
end30

The algorithm starts by doing some global initializations
(Lines 1-3). The number of rejuvenations rejCount is set to
−1 to indicate the no rejuvenation has occurred, and the
local random number generator is initialized with the global
seed. OSconf contains the current OS configuration that is
used at each replica (numbered between 0 and n− 1), and
it is started with some undefined value ∗.

As explained in Section II, in round-robin and in every
T time units, one of the replicas is rejuvenated with a new
OS configuration. Function findNextConfiguration() is called
to determine which OS configuration should be used in that
replica. It is also called n times during the system startup, to
find out the initial configuration of each replica. The function
begins by incrementing the rejuvenation count and by de-
termining which replica will be rejuvenated (Lines 13 and
14). Then, it calls initSelectCandidate(), which randomly

finds the index on the OSTable of the first candidate OS
configuration (size(OSTable) gives the number of elements
of the table) and sets the score level score as vulScore
(Lines 4-6). Next, function findNextConfiguration() enters
in a loop, where it picks a new candidate OS configuration
(Line 19), and then checks if this candidate has few shared
vulnerabilities with the already running replicas (i.e., the
score between any pair of the candidate and running replicas
should be less than score) (Lines 16-28). This procedure
prevents the selection of the same OS configuration that is
currently running, if OSTable is setup in such a way that
getScore(OSA,OSA) = ∞ (Line 21) for any configuration
OSA. In the first n executions getScore(OSConf (j),cand)
returns 0 because OSConf (j) = ∗, which causes cand to be
the selected OS for replica j.

The reader should notice that the algorithm is designed in
such a way that is possible always to find a new candidate
OS configuration. First, it tries all available candidate con-
figurations that are different from the ones currently running
(Line 21 and function selectCandidate()) for a given score
level score. If no configuration is found acceptable, then it
increases the score by an α constant (Line 9) and the whole
process is repeated.

IV. CONCLUSION AND FUTURE WORK

The ideas outlined in previous sections comprise the
current solution to solve a long lasting problem of diversity
configuration on an intrusion tolerant system. Although we
believe the configuration selector can solve the problem
of changing the vulnerability set of a distributed system
during its execution time, our approach still has a number
of limitations that we are currently addressing:

• At startup we must have all virtual machine images
with the different OSs already created. This complicates
the deployment and update of system software. In
particular, it may be difficult or costly to manage and
apply patches on this large base of installed software.

• The OSTable construction is based on results from
empirical studies such as [8], [13], which does not
prove that the software does not have common vul-
nerabilities/bugs, but gives some evidence pointing in
this direction. However, given the inherent complexity
of these studies, defining such table for components not
yet analyzed may be a complex and error-prone task.

• Defining vulScore and α is still an open problem highly
dependent of results of the OSTable.

• We also want to explore other opportunistic diversity
possibilities besides different OS configurations. For
example, the case of memory layout randomization and
code obfuscation to increase heterogeneity across the
replicas using the same software stack and explore other
taxonomies of diversity within the OS [14].

REFERENCES

[1] P. Verissimo, N. F. Neves, and M. P. Correia, “Intrusion-
tolerant architectures: Concepts and design,” in Architecting
Dependable Systems, ser. LNCS, 2003, vol. 2677.

[2] P. Sousa, N. F. Neves, and P. Verissimo, “How resilient are
distributed f fault/intrusion-tolerant systems?” in Proceedings
of the IEEE/IFIP International Conference on Dependable
Systems and Networks, Jun. 2005.

[3] M. Castro and B. Liskov, “Practical Byzantine fault-tolerance
and proactive recovery,” ACM Transactions on Computer
Systems, vol. 20, no. 4, 2002.

[4] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and
P. Verissimo, “Highly available intrusion-tolerant services
with proactive-reactive recovery,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 21, no. 4, 2010.

[5] Y. Huang and C. M. R. Kintala, “Software implemented fault
tolerance: Technologies and experience,” in Proceedings of
the IEEE International Symposium on Fault Tolerant Com-
puting, Jun. 1993.

[6] P. Sousa, A. N. Bessani, and R. R. Obelheiro, “The FOR-
EVER service for fault/intrusion removal,” in Proceedings
of the Workshop on Recent Advances on Intrusion-Tolerant
Systems, Apr. 2008.

[7] T. Roeder and F. Schneider, “Proactive obfuscation,” ACM
Transactions on Computer Systems, vol. 28, Jul 2010.

[8] M. Garcia, A. Bessani, I. Gashi, N. F. Neves, and R. Obel-
heiro, “OS diversity for intrusion tolerance: Myth or reality?”
in Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks, Jun 2011.

[9] “National Vulnerability Database,” http://nvd.nist.gov/.

[10] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnera-
bility scoring system,” IEEE Security & Privacy, vol. 4, no. 6,
Nov–Dec 2006.

[11] O. H. Alhazmi and Y. K. Malayia, “Application of vulner-
ability discovery models to major operating systems,” IEEE
Transactions on Reliability, vol. 57, no. 1, Mar. 2008.

[12] G. Schryen, “Security of open source and closed source soft-
ware: An empirical comparison of published vulnerabilities,”
in Proceedings of the Americas Conference on Information
System, Aug. 2009.

[13] I. Gashi, P. Popov, and L. Strigini, “Fault tolerance via di-
versity for off-the-shelf products: A study with SQL database
servers,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 4, no. 4, Oct.

[14] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia,
“How practical are intrusion-tolerant distributed systems?”
Department of Informatics, University of Lisbon, DI/FCUL
TR 06–15, Sep 2006.

