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Abstract 

 
Modern computers interact with many kinds of 

external devices, which have lead to a state where 
device drivers (DD) account for a substantial part of 
the operating system (OS) code. Currently, most of the 
systems crashes can be attributed to DD because of 
flaws contained in their implementation. In this paper, 
we evaluate how well Windows protects itself from 
erroneous input coming from faulty drivers. Three 
Windows versions were considered in this study, 
Windows XP and 2003 Server, and the future Windows 
release Vista. Our results demonstrate that in general 
these OS are reasonably vulnerable, and that a few of 
the injected faults cause the system to hang or crash. 
Moreover, all of them handle bad inputs in a roughly 
equivalent manner, which is worrisome because it 
means that no major robustness enhancements are to 
be expected in the DD architecture of the next 
Windows Vista. 

 

1 Introduction 
 

Personal computers are common tools on today’s 
modern life, not only for business, but for leisure and 
learning. Currently they interconnect all kinds of 
consumer electronic devices (e.g., cameras, MP3 
players, printers, cell phones). In order to support the 
constant innovation of these products, operating 
systems (OS) had also to evolve in their architectures 
to become, as much as possible, independent of the 
hardware. Their flexibility and extensibility is achieved 
by the virtualization offered by device drivers (DD), 
which basically act as the interface between the 
software and the hardware. Given the typical short life 
cycle of chipsets and motherboards, system designers 
have to constantly develop new DD and/or update the 

existing ones. For these reasons they are the most 
dynamic and largest part of today’s OS. 

Even tough current DD are mostly written in a high 
level language (e.g., C), they continue to be difficult to 
build and verify. The development of a driver requires 
knowledge from a set of disparate areas, including 
chips, OS interfaces, compilers, and timing 
requirements, which are often not simultaneously 
mastered by the programmers, leading to both design 
and implementation errors. Consequently, DD are 
becoming one of the most important causes of system 
failures. A recent report showed that 89% of the 
Windows XP crashes are due to 3rd party DD [21]. 
Another analysis carried out on Linux demonstrated 
that a significant portion of failures can be pointed to 
faulty drivers [4].  

As a result, commercial and open source OS are 
both committed in efforts to deploy more robust 
drivers. As an example, Microsoft has several tools to 
assist developers that write code in kernel-mode (e.g., 
Driver Verifier [16]). Other projects like [3, 6, 22, 25] 
also propose ways to improve the error containment 
capabilities of the OS. 

In this paper, we want to study the behavior of three 
Windows versions, XP, 2003 Server and the future 
Windows release Vista, when they receive erroneous 
input from a faulty driver. We want to understand for 
instance if this input can frequently cause the crash of 
the OS, and if most functions process the input in a safe 
way or if they are mostly unprotected. We would like 
also to know the impact of the file system, FAT32 or 
NTFS, on the observed failure modes. This type of data 
is important because it helps to understand the extent of 
the problem, and what solutions need to be devised and 
applied to ameliorate the robustness of current systems. 

Additionally, in the past, the origin of the bad input 
has been mainly from accidental nature. This situation 
will probably change in the future, as DD turn into the 
targets of the malicious attacks, especially because the 



most common avenues of attack are becoming 
increasingly difficult to exploit. If this scenario ever 
occurs, one might end up in a position where many 
drivers have vulnerabilities, and our only defense is the 
OS own abilities to protect itself. 

The paper uses robustness testing to measure how 
well these OS handle the inputs from a DD [1, 5, 12]. 
A group of functions from the Windows interface (for 
kernel-mode DD, these functions are defined in the 
Device Driver Toolkit (DDK)) was selected and 
experimentally evaluated. The tests emulated a range of 
programming flaws, from missing function 
initializations to outside range parameter values. 

Our results show that in general the three OS are 
relatively vulnerable to erroneous input, and that only a 
few routines made an effective checking of the 
parameters. A few experiments resulted in an OS hang 
and several caused the system to crash. When the OS 
installation used the FAT32 file system, some files 
ended up being corrupted during the crash. This 
problem was not observed with the NTFS file system. 
The minidump diagnosis mechanism was also 
analyzed, and it provided valuable information in most 
cases. Overall, the three OS versions showed a roughly 
equivalent behavior.  

 

2 DDK Test Methodology 
 

In a robustness testing campaign one wants to 
understand how well a certain interface withstands 
erroneous input to its exported functions. Each test 
basically consists on calling a function with a 
combination of good and bad parameter values, and on 
observing its outcome in the system execution. As 
expected, these campaigns can easily become too time 
consuming and extremely hard to perform, specially if 
the interface has a large number of functions with 
various parameters, since this leads to an explosion on 
the number of tests that have to be carried out. This 
kind of problem occurs with the Windows DDK 
because it exports more than a thousand functions. 
However, from the group of all available functions, 
some of them are used more often than others, and 
therefore these functions potentially have more impact 
in the system. Moreover, in most cases, (good) 
parameter values are often restricted to a small subset 
of the supported values of a given type.  

Based on these observations, we have used the 
approach represented in Figure 1 in the tests. The 
DevInspect tool performs an automatic analysis of the 
target system to obtain a list of available DD. Then, it 
measures the use of each imported function from the 
DDK by each driver.  

  
Figure 1: Generating the test DD. 

 
Using this data, one can select a group of functions 

for testing, the candidate list. A XML file is manually 
written to describe the prototype of each function, 
which also includes the fault load (e.g., the bad values 
that should be tried). 

Next, the DevBuilder tool takes as input the 
information contained in the XML file, a template of a 
device driver code and some compilation definitions, 
and generates the workload utilized to exercise the 
target system and to observe its behavior. The 
workload includes for each function test a distinct DD 
that injects the faulty input. 

Other approaches could have been employed to 
implement the tests (e.g., a single DD injects all faulty 
data). This solution was chosen because: First, the 
control logic of each driver and management tool 
becomes quite simple. Second, the interference 
between experiments basically disappears since an OS 
reboot is performed after a driver test. Last, one can 
determine if the DD loading and unloading 
mechanisms are damaged by the injected faults. 

 
2.1 Selecting the Candidate Functions 
 

Windows stores drivers in the portable executable 
file format [15], which contains a table with the 
functions that are exported and imported. In the case of 
drivers, the imported functions are the ones provided 
by the DDK. Therefore, one can discover the DD 
currently available in a system by looking for .sys 
modules placed in \system32\drivers. Then, by 
examining the table of imported functions of the 
drivers, one can collect statistics about which DDK 
functions are utilized in practice. 
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We have installed Windows XP and Server 2003 
with FAT32 and NTFS file systems and Windows 
Vista with NTFS file system in a DELL Optiplex 170L 
computer. Table 1 shows the number of drivers found 
in each Windows installation. Each line identifies the 
OS name and file system, the number of drivers that 
were found and that were running when the boot 
sequence completed, and the number of functions 
called by these drivers. It is possible to observe, for 
instance, that Windows Vista calls many more 
functions than Server 2003 for roughly the same 
number of drivers (2400 instead of 1463).  

From the analysis of these drivers (both total and 
running), it was visible that a small group of functions 
was called by a majority of the DD, and that most of 
the rest of the functions were infrequently utilized (e.g., 
around 900 functions were only called by 1 or 2 
drivers). These results indicate that if one of the most 
called functions unsafely treats its parameters, then 
almost every DD is potentially affected.  

For this work, the functions that were chosen for the 
candidate list were the ones utilized by the majority of 
the drivers. We have established the following 
selection criterion: the tested functions had to be 
present in at least 95% of all running drivers. Table 2 
displays the first group of the most used functions that 
satisfied this criterion. In each line, the table presents 
our internal identifier, the name of the function and its 
alias (to reduce the size of the rest of the tables). We 
have found out that this list changes very little when 
this criteria is applied to all existing drivers and not 
only the running ones. Table 3 displays the driver 
coverage by this group of functions in each OS 
configuration.  

We considered other criteria to select the candidate 
list, such as the static or dynamic frequency of function 
calls. Static frequency picks functions that appear many 
times in the code without taking into account the logic 
under it – a function may appear repeatedly in the code 
but may never be executed. Dynamic frequency 
chooses the functions that are called most often during 
the execution of a given workload. Therefore, if the 
workload has a high file activity then disk drivers 
would run more, and their functions would be selected 
for the candidate list. This will bias the analysis 
towards the elected workload, which is something we 
wanted to avoid in these experiments.  

 
2.2 Tested Faulty Values 

 
The main responsibility of the DevBuilder tool is to 

write a number of DD based on the template code, each 
one carrying out a distinct function test (see Figure 1).  

Table 1: Drivers in a Windows installation. 
Drivers 

Windows 
File  

System Total Run 
Run Drivers 

Functions 
FAT32 259 93 1490 

XP 
NTFS 260 94 1494 
FAT32 189 93 1463 Server 

2003 NTFS 189 92 1463 
Vista NTFS 250 113 2400 
 

Table 2:Top 20 called DDK functions. 
ID Name Alias 
1 ntoskrnl::RtlInitUnicodeString InitStr 
2 ntoskrnl::ExAllocatePoolWithTag AllocPool 
3 ntoskrnl::KeBugCheckEx BugCheck 
4 ntoskrnl::IofCompleteRequest CompReq 
5 ntoskrnl::IoCreateDevice CreateDev 
6 ntoskrnl::IoDeleteDevice DeleteDev 
7 ntoskrnl::KeInitializeEvent InitEvt 
8 ntoskrnl::KeWaitForSingleObject WaitObj 
9 ntoskrnl::ZwClose ZwClose 

10 ntoskrnl::IofCallDriver CallDrv 
11 ntoskrnl::ExFreePoolWithTag FreePool 
12 ntoskrnl::KeSetEvent SetEvt 
13 ntoskrnl::KeInitializeSpinLock InitLock 
14 HAL::KfAcquireSpinLock AcqLock 
15 HAL::KfReleaseSpinLock RelLock 
16 ntoskrnl::ObfDereferenceObject DerefObj 
17 ntoskrnl::ZwOpenKey OpenKey 
18 ntoskrnl::ZwQueryValueKey QryKey 
19 IoAttachDeviceToStack AttachDev 
20 ntoskrnl::memset memset 

 
Table 3: Top 20 Functions Driver coverage. 

Windows File System Driver coverage 
FAT32 96,7% 

XP 
NTFS 96,8% 
FAT32 96,7% Server 

2003 NTFS 96,7% 
Vista NTFS 97,3% 

 
To accomplish this task, all relevant data about the 

functions is provided in a XML signature file, and the 
DD template has special marks that identify where to 
place the information translated from XML into code. 

The signature file includes the function name, 
parameter type and values that should be tried out, and 
expected return values. In addition, for certain 
functions, it also contains some setup code that is 
inserted before the function call, to ensure that all 
necessary initializations are performed. Similarly, some 
other code can also be included, which is placed after 
the function call, for instance to evaluate if some 
parameter had its value correctly changed or to check 
the returned value. 



In order to obtain the relevant data about the 
functions, we had to resort to the Windows DDK 
documentation. From the point of view of a DD 
developer, this documentation corresponds to the 
specification of the DDK functions. Therefore, if there 
are errors in documentation, then they may be 
translated into bugs in the drivers’ implementations and 
also in our tests. Nevertheless, in the worst case, if a 
problem is observed with a test, at least it indicates that 
the function description contains some mistake.  

The signature file defines seven types of correct and 
faulty inputs. These values emulate the outcomes of 
some of the most common programming bugs. They 
can be summarized as follows: 

 
Acceptable Value: parameter is initialized with a 

correct value. 

Missing local variable initialization: parameter with a 
random initial value. 

Forbidden values: uses values that are explicitly 
identified in the DDK documentation as incorrect. 

Out of bounds value: parameters that exceed the 
expected range of values. 

Invalid pointer assignment: invalid memory 
locations. 

NULL pointer assignment: NULL value passed to a 
pointer parameter. 

Related function not called: this fault is produced by 
deliberately not calling a setup function, contrarily 
to what is defined in the DDK documentation. 

 
2.3 Expected Failure Modes 
 

The list displayed in Table 4 represents the possible 
scenarios that are expected to occur after a DD injects a 
fault into the OS. Initially we started with a much larger 
list of failure modes, which was derived from various 
sources, such as the available works in the literature 
and expert opinion from people that administer 
Windows systems. However, as the experiences 
progressed, we decided to reduce substantially this list 
because several of the original failure modes were not 
observed in practice.  

Generally speaking there are two major possible 
outcome scenarios: either the faulty input produces an 
error (e.g., a crash) or it is handled in some manner. 
Since the fault handling mechanisms can also have 
implementation problems, the FM1 failure mode was 
divided in three subcategories. In order to determine 
which subcategory applies to  a  given  experiment,  the 

Table 4: Expected failure modes. 
ID Description 

FM1 
No problems are detected in the system 
execution. 

FM2 The applications or even the whole system hangs. 

FM3 
The system crashes and then reboots; the file 
system is checked and NO corrupted files are 
found. 

FM4 Same as FM3, but there are corrupted files. 
 
DD verifies the correctness of the return value (if it was 
different from void) and output parameters of the 
function. 
 
Returns ERROR (RErr): The return value from the 

function call indicates that an error was detected 
possibly due to invalid parameters. This means that 
the bad input was detected and was handled 
properly. 

Returns OK (ROk): The return value of the call 
indicates a successful execution. This category 
includes two cases: even with some erroneous input, 
the function executed correctly or did not run but 
returned OK; all input was correct, for instance 
because only good parameter values were utilized 
or the random parameters ended up having 
acceptable values. 

Invalid return value (RInv): Some times several 
values are used to indicate a successful execution (a 
calculation result) or an error (reason of failure). 
When the return value is outside the range of 
possible output values (at least from what is said in 
the DDK documentation), this means that either the 
documentation or the function implementation has a 
problem.  

Whenever crash occurs, Windows generates a 
minidump file that describes the execution context of 
the system when the failure took place. The analysis of 
this file is very important because it allows developers 
to track the origin of crashes. Although several efforts 
have been made to improve the capabilities of crash 
origin identification, still some errors remain 
untraceable or are detected incorrectly. Whenever an 
experiment caused a crash, the minidump files were 
inspected to evaluate their identification capabilities. 
Four main categories of results were considered:  

 
Identification OK (M1): The minidump file correctly 

identifies the faulty driver as the source of the crash. 
 
Identification ERROR (M2): The minidump file 

identifies other module as the cause of failure.  



Unidentified (M3): The minidump file could not 
identify either the driver or other module as the 
source of the crash. 

Memory Corruption (M4): The minidump file 
detected a memory corruption. 

2.4 Experimental Setup 
 

Since the experiments were likely to cause system 
hangs or crashes, and sometimes these crashes 
corrupted files, we had to utilize two machines in order 
to automate most of the tasks (see Figure 2). The target 
machine hosts the OS under test and the DD workload, 
and the controller machine is in charge of selecting 
which tests should be carried out, collecting data and 
rebooting the target whenever needed.  

After booting the targeting machine, DevInject 
contacts DevController to find out which driver should 
be used in the next experiment. Then, DevInject loads 
the driver, triggers the fault, checks the outcome and, if 
everything went well, removes the driver. 
DevController is informed of each step of the 
experiment, so that it can tell DevInject what actions 
should be performed. This way, the target file system is 
not used to save any intermediate results or keep track 
of the experience, since it might end up being 
corrupted. The target file system is however utilized to 
store the minidump files and the corrupted files that 
were found. After a reboot, DevInject transfers to 
DevController this information using FTP. 

 
3 Experimental Results 
 

All measurements were taken on a prototype system 
composed by two x86 PCs linked by an Ethernet 
network. The target machine was a DELL Optiplex 
computer with 512Mb and 2 disks. Three OS versions 
and two distinct file systems, FAT32 and NTFS, were 
evaluated. The outcome was five different 
configurations (Vista was not tested with FAT32). The 
exact OS versions were: Windows XP Kernel Version 
2600 (SP 2), built: 2600.xpsp_sp2_gdr.050301-1519, 
Windows Server 2003 Kernel Version 3790 (SP 1), 
built: 3790.srv03_sp1_rtm.050324-1447 and Windows 
Vista Kernel Version 5600, built: 
5600.16384.x86fre.vista_rc1.060829-2230. 

Microsoft provides an equivalent Device Driver 
Toolkit for all OS. Consequently, the same set of 
drivers could be used to test the various OS.  In every 
target configuration the initial conditions were the 
same, the OS were configured to produce similar types  

 

Figure 2: Injecting erroneous input. 
 

of dump files, and the DevInject tool was basically the 
only user application running. 

We decided to carry out the experiments without 
load to ensure that results were highly repeatable, and 
therefore to increase the accuracy to the conclusions. In 
the near future, we intend to complement our analysis 
with loaded systems, by employing some standard 
workload.  

 
3.1 Observed Failure Modes 
 

The observed failure modes are displayed in Table 
5. The first three columns present the function 
identifier ID, its alias name and the number of 
experiments carried out with each function. The failure 
modes for the various OS configurations are 
represented in the next four groups of columns, under 
the headings FM1 to FM4. Each column group presents 
one value for each OS configuration. 

In the 20 functions that were tested, several of them 
were able to deal at least with a subset of the erroneous 
input. There were however a few cases where results 
were extremely bad, indicating a high level of 
vulnerability. By computing the formula FM1/#DD for 
each FM1 entry, one can have an idea about the 
relative robustness of the functions (see Figure 3). Only 
two functions were 100% immune to the injected 
faults, 9-ZwClose and 18-QryKey. On the other hand, 
eight functions had zero or near zero capabilities to 
deal with the faults.  

One reason for this behavior is that some of these 
functions are so efficiency dependent (e.g., 4-CompReq 
and 14-AcqLock) that developers have avoided the 
implementation of built in checks. Another reason is 
related to the nature of the function, which in the case 
of 3-BugCheck is to bring down the system in a 
controlled manner, when the caller discovers an 
unrecoverable inconsistency. 
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Table 5: Observed failure modes. 
FM1: Execution OK FM2: Hangs FM3: Crash FM4: Crash & FCorrupt 
XP 2003 V XP 2003 V XP 2003 V XP 2003 V ID Alias #DD 

Fat Ntfs Fat Ntfs Ntfs Fat Ntfs Fat Ntfs Ntfs Fat Ntfs Fat Ntfs Ntfs Fat Ntfs Fat Ntfs Ntfs 
1 InitStr 12 9 9 9 9 9 0 0 0 0 0 2 3 2 3 3 1 0 1 0 0 
2 AllocPool 440 416 416 416 416 420 0 0 0 0 0 14 24 13 24 20 10 0 11 0 0 
3 BugCheck 12 0 0 0 0 0 0 0 0 0 0 6 12 3 12 12 6 0 9 0 0 
4 CompReq 51 0 0 0 0 0 0 0 0 0 0 0 51 26 51 51 51 0 25 0 0 
5 CreateDev 96 48 48 48 48 48 0 0 0 0 0 29 48 8 48 48 19 0 40 0 0 
6 DeleteDev 4 0 0 0 0 0 0 0 0 0 0 0 4 2 4 4 4 0 2 0 0 
7 InitEvt 18 6 6 6 6 6 0 0 0 0 0 8 12 7 12 12 4 0 5 0 0 
8 WaitObj 36 18 18 18 18 18 0 0 0 0 0 15 18 2 18 18 3 0 16 0 0 
9 ZwClose 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 CallDrv 9 0 0 0 0 0 0 0 0 0 0 0 9 4 9 9 9 0 5 0 0 
11 FreePool 16 1 1 1 1 1 0 0 0 0 0 1 15 8 15 15 14 0 7 0 0 
12 SetEvt 24 6 6 18 18 9 0 0 0 0 0 15 18 5 6 15 3 0 1 0 0 
13 InitLock 3 2 2 2 2 2 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 
14 AcqLock 8 0 0 0 0 0 2 2 2 2 2 2 6 2 6 6 4 0 4 0 0 
15 RelLock 48 3 3 1 1 1 0 0 0 0 0 18 45 12 47 47 27 0 35 0 0 
16 DerefObj 3 2 2 2 2 0 0 0 0 0 0 1 1 0 1 3 0 0 1 0 0 
17 OpenKey 155 104 104 104 104 104 0 0 0 0 0 25 51 47 51 51 26 0 4 0 0 
18 QryKey 315 315 315 315 315 315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
19 AttachDev 9 0 0 0 0 0 1 1 1 1 1 6 8 2 8 8 2 0 6 0 0 
20 memset 48 18 18 27 27 24 0 0 0 0 0 22 30 12 21 24 8 0 9 0 0 
Total 1310 951 951 970 970 960 3 3 3 3 3 164 356 155 337 347 192 0 182 0 0 
Total / # DD  (%) 72,6 72,6 74,0 74,0 73,3 0,2 0,2 0,2 0,2 0,2 12,5 27,2 11,8 25,7 26,5 14,7 0,0 13,9 0,0 0,0 

 
In this case, the developers probably preferred to 

reboot the system even if some parameters were 
incorrect (but notice that this reboot sometimes was not 
done in a completely satisfactory way since files ended 
up being corrupted). 

From the various functions, only two caused the 
system to hang (FM2 ≠ 0). Functions 14-AcqLock and 
19-AttachDev caused hangs in all OS configurations, 
when an invalid pointer was passed as argument. Most 
of the erroneous inputs that caused failures end up 
crashing the system (FM3 and FM4). From the various 
classes of faults that were injected, the most malicious 
were invalid pointer assignments and NULL values 
passed in pointer parameters. The first class, invalid 
pointers, is sometimes difficult to validate, depending 
on the context (e.g., a buffer pointer that was not 
properly allocated). On other hand, NULL pointers are 
easily tested and for this reason it is difficult to justify 
why they are left un-checked, allowing them to cause 
so many reliability problems. 

In all experiments, we never observed any file 
corruption with the NTFS file system after a reboot. 
However, the FAT32 file system displayed in many 
instances cases of corruption. Traditionally, NTFS has 
been considered much more reliable than FAT32, and 
our results contribute to confirm this. The reliability 
capabilities integrated in NTFS, like transactional 

operations and logging, have proven to be quite 
effective in protecting the system during abnormal 
execution.  

The overall comparison of the 3 operating systems, 
if we restrict ourselves to NTFS or FAT32, shows a 
remarkable resemblance among them. The last two 
rows of  Table 5 present an average value for the 
failure modes and OS configurations. On average, OSs 
had an approximately equivalent number of failures in 
each mode, with around 73% testes with no problems 
detected during the system execution.  Hangs were a 
rare event in all OSs. If a finer analysis is made on a 
function basis (see Figure 3), we observe a similar 
behavior for most functions. There were only two 
functions where results reasonably differ, 12-SetEvt 
and 20-memset. From these results, there is reasonable 
indication that the 3 operating systems use comparable 
levels of protection from faulty inputs coming from 
drives.  

These results reinforce the idea that although the 
Windows NT system has undergone several name 
changes over the past several years, it remains entirely 
based on the original Windows NT code base. 
However, as time went by, the implementation of many 
internal features has changed. We expected that newer 
versions of the Windows OS family would become 
more robust; in practice we did not see this 



improvement at the driver’s interface. Of course, this 
conclusion needs to be better verified with further 
experiments.  

 
3.2 Return Values from Functions 
 

As explained previously, even when the system 
executes without apparent problems, the checking 
mechanisms might not validate the faulty arguments in 
the most correct manner and produce fail-silent 
violations. Therefore, failure mode 1 can be further 
divided in three sub-categories to determine how well 
the OS handled the inputs.  

Table 6 shows the analysis when the function 
execution returned a value in the RErr category, i.e., an 
error was detected by the function. Since some 
functions do not return any values, their corresponding 
table entries were filled with “-”. The “# Faulty 
Drivers” column refers to the number of drivers 
produced by DevBuilder that contained at least one bad 
parameter. Comparing this column with the following 
five columns, one can realize that only two functions 
have a match between the number of faulty drivers and 
the number of RErr values. The other functions 
revealed a limited parameter checking capability.  

To complement this analysis, Table 7 presents the 
results for the ROk category (i.e., the return value of 
the call is a successful execution). Column “Non Faulty 
Drivers” shows the number of drivers with only correct 
arguments. Comparing this column with the remaining 
ones, it is possible to conclude that functions return a 
successful execution more often then the number of 
non faulty drivers. However, in some cases this might 
not mean that there is a major problem. For instance, 
consider function 2-AllocPool that receives three 
parameters: the type of pool (P0); the pool size (P1); 
and a tag value (P2). Depending on the order of 
parameter checking, one can have the following 
acceptable outcome: P1 is zero, and 2-AllocPool 
returns a pointer to an empty buffer independently of 
the other parameters values.  

On the other hand, by analyzing the execution log, 
we found out that when P1 was less than 
100.000*PAGE_SIZE, Windows returned ROk even 
when a forbidden value was given in P0 (at least, as 
stated in the DDK documentation). This kind of 
behavior means that an error was (potentially) 
propagated back to the driver, since it will be using a 
type of memory pool different from the expected thus 
causing a fail silent violation. The table also reveals 
another phenomenon -- the three versions of Windows 
handle the faulty parameters differently. 

 

Table 6: Return error (RErr) values. 
Rerr 

XP 2003 V Alias 
# 

Faulty 
Drivers Fat Ntfs Fat Ntfs Ntfs 

InitStr 9 0 0 0 0 0 
AllocPool 200 20 20 20 20 12 
BugCheck 12 - - - - - 
CompReq 51 - - - - - 
CreateDev 76 0 0 0 0 0 
DeleteDev 4 - - - - - 
InitEvt 14 - - - - - 
WaitObj 36 0 0 0 0 0 
ZwClose 3 3 3 3 3 3 
CallDrv 9 0 0 0 0 0 
FreePool 15 - - - - - 
SetEvt 20 0 0 0 0 0 
InitLock 2 - - - - - 
AcqLock 8 0 0 0 0 0 
RelLock 48 - - - - - 
DerefObj 3 - - - - - 
OpenKey 155 104 104 104 104 104 
QryKey 315 315 315 315 315 315 
AttachDev 9 0 0 0 0 0 
Memset 39 0 0 0 0 0 

 
Table 7: Return OK (ROk) values. 

ROk 
XP 2003 V Alias 

Non 
Faulty 
Drivers Fat Ntfs Fat Ntfs Ntfs 

InitStr 3 9 9 9 9 9 
AllocPool 240 396 396 396 396 408 
BugCheck 0 - - - - - 
CompReq 0 - - - - - 
CreateDev 20 48 48 48 48 48 
DeleteDev 0 - - - - - 
InitEvt 4 - - - - - 
WaitObj 0 18 18 18 18 18 
ZwClose 0 0 0 0 0 0 
CallDrv 0 0 0 0 0 0 
FreePool 1 - - - - - 
SetEvt 4 6 6 18 18 9 
InitLock 1 - - - - - 
AcqLock 0 0 0 0 0 0 
RelLock 0 - - - - - 
DerefObj 0 - - - - - 
OpenKey 0 0 0 0 0 0 
QryKey 0 0 0 0 0 0 
AttachDev 0 1 1 1 1 1 
memset 9 18 18 27 27 22 

 
For example, there were several cases in Vista 

where function 2-AllocPool succeeded while in XP and 
Server 2003 it caused a crash. In function 12-SetEvt, 
Server 2003 does not crash when TRUE was passed in 
one of the parameters, while the other did so (the 



documentation says that when this value is used, the 
function execution is to be followed immediately by a 
call to one of the KeWaitXxx routines, which was not 
done in either OSs).  

In all experiments, we did not observe any return 
values belonging to the RInv category (i.e., values 
outside the expected return range).  

 
3.3 Corrupted Files 
 

The last group of results in Table 5 corresponding to 
FM4, displays the number of times Windows found 
corrupted files while booting. The Chkdsk utility is 
called during the booting process to detect these files. 
Corrupted files were found only in the configurations 
that used the FAT32 file system. Using the formula 
FM4/FM3 one can have a relative measure of how 
sensitive is the file system when a crash occurs. The 
results presented in Figure 4 shows that when using 
FAT32 in general, Windows Server 2003 is more 
sensitive than Windows XP in a majority of the cases.  

 
3.4 Minidump Diagnosis Capabilities 
 

The analysis of the minidump files produced during 
a system crash allows us to determine how well they 
identify a driver as the culprit of the failure. These files 
are fundamental tools for the Windows development 
teams because they help to diagnose system problems, 
and eventually to correct them. We have used the 
Microsoft’s Kernel Debugger (KD) [17] to perform the 
analysis of these files, together with a tool, DevDump, 
that automates most of this task. DevDump controls the 
debugger, passes the minidumps under investigation, 
and selects a log where results should be stored. After 
processing all files, DevDump generates various 
statistics about the detection capabilities of minidumps.  

In the experiments, all Windows versions correctly 
spotted the faulty DD in the majority of times (see 
Figure 5 and compare it with Table 5). The correct 
identification of the source of crash (M1) seams to be 
independent of the file system used. Only in very few 
cases there was a difference between the two file 
systems, such as for the 7-InitEvt function where 
Server 2003 FAT32 identified a different source of 
crash from Server 2003 NTFS. 

In general, the results show that Windows XP is 
more accurate than the others OS (see 15-RelLock and 
20-memset). Still there were cases where other kernel 
modules were incorrectly identified (functions 1-
InitStr, 14-AcqLock and 15-RelLock), as displayed in 
Figure 6. 
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Figure 3: Relative robustness (FM1/#DD). 
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Figure 4: FSystem sensitiveness (FM4/FM3). 
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Figure 5: Source identification OK (M1). 
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Figure 6: Source identification error (M2). 
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Figure 7: Source of crash unidentified (M3). 



These errors are particularly unpleasant because 
they can lead to waist of time while looking for bugs in 
the wrong place, and they can reduce the confidence on 
the information provided by minidumps.  In some other 
cases, Windows was unable to discover the cause of 
failure. This happened in Vista more frequently than 
the other OS configurations, for instance in functions 
15-RelLock and 12-SetEvt (see Figure 7). In the last 
function, Vista was the only system that could not 
diagnose the cause of failure. Only Windows Server 
2003 detected memory corruption situations (in 
functions 14-AcqLock and 15-RelLock). Windows 
Server 2003 (FAT32 and NTFS) located memory 
corruptions when faults were injected in functions 14-
AcqLock and 15-RelLock. 
 

4 Related Work 
 
Robustness testing has been successfully applied to 

several software components to characterize their 
behavior when facing exceptional inputs or stressful 
environmental conditions. One of the main targets of 
these studies has been general propose OS, with 
erroneous inputs being injected at the application 
interface. Fifteen OS versions that implement the 
POSIX standard, including AIX, Linux, SunOS and 
HPUX, were assessed using the Ballista tool [12]. 
Shelton et al. made a comparative study of six variants 
of Windows, from 95 to 2000, by injecting faults at the 
Win 32 interface [20]. Several command line utilities 
of Windows NT were evaluated by Ghosh et al. [7]. 
Real time microkernels, such as Chorus and LynxOS, 
have also been the target of these studies using the 
MAFALDA tool [2]. Application level software can be 
tested using robustness techniques by, for instance, 
generating exceptions and returning bad values at the 
OS interface [8]. Middleware support systems like 
CORBA have been examined at the client-side 
interface of an ORB [19] and internally at the level of 
the Naming and Event services [14]. Dependability 
benchmarking has resorted to robustness testing in 
order to evaluate systems [18, 23, 24]. For example, 
Kalakech et al. proposed an OS benchmark which 
provided a comprehensive set of measures, and applied 
it to the Windows 2000 [11]. 

To our knowledge, only a few works have assessed 
the robustness of systems at the level of device drivers. 
Durães and Madeira described a way to emulate 
software faults by mutating the binary code of device 
drivers [5]. Basically, the driver executable is scanned 
for specific low-level instruction patterns, and 
mutations are performed on those patterns to emulate 
high-level faults. These ideas were experimented for 4 

types of patterns, on 2 drivers of the Windows NT4, 
2000 and XP. Albinet et al. conducted a set of 
experiments to evaluate the robustness of Linux 
systems in face of faulty drivers [1]. They intercepted 
the driver calls to the kernel’s DPI (Drivers 
Programming Interface) functions, and changed the 
parameters on the fly with a few pre-set number faulty 
values. Then, the behavior of the system was observed. 
Johansson and Suri employed a similar methodology to 
evaluate a Windows CE .Net [10]. In their work, 
however, they focus on error propagation profiling 
measures, as facilitator for the selection of places to put 
wrappers.   

Our research is complementary to these previous 
works, not only because we targeted different OS. The 
followed methodology has its roots in the original 
Ballista tool [13], where several test drivers are 
generated, containing DDK function calls with 
erroneous arguments. The argument values were 
selected specifically for each function, and they 
emulate seven classes of typical programming errors. 
Our study has looked in a comparative basis at such 
aspects like error containment, influence of the file 
system type, and the diagnosis capabilities of 
minidump files. 

 

5 Conclusions 
 

The paper describes a robustness testing experiment 
that evaluates Windows XP, Windows Server 2003 and 
the future Windows release Vista. The main objective 
of this study was to determine how well Windows 
protects itself from faulty drivers that provide 
erroneous input to the DDK routines. Seven classes of 
typical programming bugs were simulated.  

The analysis of the results shows that most interface 
functions are unable to completely check their inputs – 
from the 20 selected functions, only 2 were 100% 
effective in their defense. We observed a small number 
of hangs and a reasonable number of crashes. The main 
reason for the crashes was invalid or NULL pointer 
values. Corruption of files was only observed with the 
FAT32 file system. The analysis of the return values 
demonstrates that in some cases Windows completes 
without generating an error for function calls with 
incorrect parameters; in particular, Windows Server 
2003 seams to be the most permissible one. This 
behavior suggests a deficient error containment 
capability of the OS. In most cases, the examined 
minidump files provided valuable information about 
the sources of the crashes, something extremely useful 
for the development teams. However, Windows Vista 



seems to have more troubles in this identification than 
the other OS.   

The experiments made with Windows Vista reveled 
that it behaves in a similar way to Windows XP and 
Server 2003. This probably means that Microsoft 
intents to continue to use the current DD architecture in 
its future OS, which is reasonably worrisome since 
Vista will be most likely the most used OS in the years 
to come.   
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