
Robustness Testing of the Windows DDK*

* This work was partially supported by the EU through project IST-4-027513-STP (CRUTIAL) and NoE IST-4- 026764-NOE (RESIST), and by
the FCT through project POSC/EIA/61643/2004 (AJECT) and the Large- Scale Informatic Systems Laboratory (LASIGE).

Manuel Mendonça
University of Lisboa, Portugal
manuelmendonca@msn.com

Nuno Neves
University of Lisboa, Portugal

nuno@di.fc.ul.pt

Abstract

Modern computers interact with many kinds of

external devices, which have lead to a state where
device drivers (DD) account for a substantial part of
the operating system (OS) code. Currently, most of the
systems crashes can be attributed to DD because of
flaws contained in their implementation. In this paper,
we evaluate how well Windows protects itself from
erroneous input coming from faulty drivers. Three
Windows versions were considered in this study,
Windows XP and 2003 Server, and the future Windows
release Vista. Our results demonstrate that in general
these OS are reasonably vulnerable, and that a few of
the injected faults cause the system to hang or crash.
Moreover, all of them handle bad inputs in a roughly
equivalent manner, which is worrisome because it
means that no major robustness enhancements are to
be expected in the DD architecture of the next
Windows Vista.

1 Introduction

Personal computers are common tools on today’s
modern life, not only for business, but for leisure and
learning. Currently they interconnect all kinds of
consumer electronic devices (e.g., cameras, MP3
players, printers, cell phones). In order to support the
constant innovation of these products, operating
systems (OS) had also to evolve in their architectures
to become, as much as possible, independent of the
hardware. Their flexibility and extensibility is achieved
by the virtualization offered by device drivers (DD),
which basically act as the interface between the
software and the hardware. Given the typical short life
cycle of chipsets and motherboards, system designers
have to constantly develop new DD and/or update the

existing ones. For these reasons they are the most
dynamic and largest part of today’s OS.

Even tough current DD are mostly written in a high
level language (e.g., C), they continue to be difficult to
build and verify. The development of a driver requires
knowledge from a set of disparate areas, including
chips, OS interfaces, compilers, and timing
requirements, which are often not simultaneously
mastered by the programmers, leading to both design
and implementation errors. Consequently, DD are
becoming one of the most important causes of system
failures. A recent report showed that 89% of the
Windows XP crashes are due to 3rd party DD [21].
Another analysis carried out on Linux demonstrated
that a significant portion of failures can be pointed to
faulty drivers [4].

As a result, commercial and open source OS are
both committed in efforts to deploy more robust
drivers. As an example, Microsoft has several tools to
assist developers that write code in kernel-mode (e.g.,
Driver Verifier [16]). Other projects like [3, 6, 22, 25]
also propose ways to improve the error containment
capabilities of the OS.

In this paper, we want to study the behavior of three
Windows versions, XP, 2003 Server and the future
Windows release Vista, when they receive erroneous
input from a faulty driver. We want to understand for
instance if this input can frequently cause the crash of
the OS, and if most functions process the input in a safe
way or if they are mostly unprotected. We would like
also to know the impact of the file system, FAT32 or
NTFS, on the observed failure modes. This type of data
is important because it helps to understand the extent of
the problem, and what solutions need to be devised and
applied to ameliorate the robustness of current systems.

Additionally, in the past, the origin of the bad input
has been mainly from accidental nature. This situation
will probably change in the future, as DD turn into the
targets of the malicious attacks, especially because the

most common avenues of attack are becoming
increasingly difficult to exploit. If this scenario ever
occurs, one might end up in a position where many
drivers have vulnerabilities, and our only defense is the
OS own abilities to protect itself.

The paper uses robustness testing to measure how
well these OS handle the inputs from a DD [1, 5, 12].
A group of functions from the Windows interface (for
kernel-mode DD, these functions are defined in the
Device Driver Toolkit (DDK)) was selected and
experimentally evaluated. The tests emulated a range of
programming flaws, from missing function
initializations to outside range parameter values.

Our results show that in general the three OS are
relatively vulnerable to erroneous input, and that only a
few routines made an effective checking of the
parameters. A few experiments resulted in an OS hang
and several caused the system to crash. When the OS
installation used the FAT32 file system, some files
ended up being corrupted during the crash. This
problem was not observed with the NTFS file system.
The minidump diagnosis mechanism was also
analyzed, and it provided valuable information in most
cases. Overall, the three OS versions showed a roughly
equivalent behavior.

2 DDK Test Methodology

In a robustness testing campaign one wants to
understand how well a certain interface withstands
erroneous input to its exported functions. Each test
basically consists on calling a function with a
combination of good and bad parameter values, and on
observing its outcome in the system execution. As
expected, these campaigns can easily become too time
consuming and extremely hard to perform, specially if
the interface has a large number of functions with
various parameters, since this leads to an explosion on
the number of tests that have to be carried out. This
kind of problem occurs with the Windows DDK
because it exports more than a thousand functions.
However, from the group of all available functions,
some of them are used more often than others, and
therefore these functions potentially have more impact
in the system. Moreover, in most cases, (good)
parameter values are often restricted to a small subset
of the supported values of a given type.

Based on these observations, we have used the
approach represented in Figure 1 in the tests. The
DevInspect tool performs an automatic analysis of the
target system to obtain a list of available DD. Then, it
measures the use of each imported function from the
DDK by each driver.

Figure 1: Generating the test DD.

Using this data, one can select a group of functions

for testing, the candidate list. A XML file is manually
written to describe the prototype of each function,
which also includes the fault load (e.g., the bad values
that should be tried).

Next, the DevBuilder tool takes as input the
information contained in the XML file, a template of a
device driver code and some compilation definitions,
and generates the workload utilized to exercise the
target system and to observe its behavior. The
workload includes for each function test a distinct DD
that injects the faulty input.

Other approaches could have been employed to
implement the tests (e.g., a single DD injects all faulty
data). This solution was chosen because: First, the
control logic of each driver and management tool
becomes quite simple. Second, the interference
between experiments basically disappears since an OS
reboot is performed after a driver test. Last, one can
determine if the DD loading and unloading
mechanisms are damaged by the injected faults.

2.1 Selecting the Candidate Functions

Windows stores drivers in the portable executable
file format [15], which contains a table with the
functions that are exported and imported. In the case of
drivers, the imported functions are the ones provided
by the DDK. Therefore, one can discover the DD
currently available in a system by looking for .sys
modules placed in \system32\drivers. Then, by
examining the table of imported functions of the
drivers, one can collect statistics about which DDK
functions are utilized in practice.

Device Driver N
Device Driver 2

Device Driver 1

1. Obtain all DD of
 an OS installation

DevInspect List with
all used
DDK

functions

List with
candidate
functions
for testing

2. Select which DDK functions
 should be tested

XML signature
description

DD Template Compilation
definitions

DevBuilder
3. Generate group of
 DD for testing

DD_test K
DD_test 2

DD_test 1

We have installed Windows XP and Server 2003
with FAT32 and NTFS file systems and Windows
Vista with NTFS file system in a DELL Optiplex 170L
computer. Table 1 shows the number of drivers found
in each Windows installation. Each line identifies the
OS name and file system, the number of drivers that
were found and that were running when the boot
sequence completed, and the number of functions
called by these drivers. It is possible to observe, for
instance, that Windows Vista calls many more
functions than Server 2003 for roughly the same
number of drivers (2400 instead of 1463).

From the analysis of these drivers (both total and
running), it was visible that a small group of functions
was called by a majority of the DD, and that most of
the rest of the functions were infrequently utilized (e.g.,
around 900 functions were only called by 1 or 2
drivers). These results indicate that if one of the most
called functions unsafely treats its parameters, then
almost every DD is potentially affected.

For this work, the functions that were chosen for the
candidate list were the ones utilized by the majority of
the drivers. We have established the following
selection criterion: the tested functions had to be
present in at least 95% of all running drivers. Table 2
displays the first group of the most used functions that
satisfied this criterion. In each line, the table presents
our internal identifier, the name of the function and its
alias (to reduce the size of the rest of the tables). We
have found out that this list changes very little when
this criteria is applied to all existing drivers and not
only the running ones. Table 3 displays the driver
coverage by this group of functions in each OS
configuration.

We considered other criteria to select the candidate
list, such as the static or dynamic frequency of function
calls. Static frequency picks functions that appear many
times in the code without taking into account the logic
under it – a function may appear repeatedly in the code
but may never be executed. Dynamic frequency
chooses the functions that are called most often during
the execution of a given workload. Therefore, if the
workload has a high file activity then disk drivers
would run more, and their functions would be selected
for the candidate list. This will bias the analysis
towards the elected workload, which is something we
wanted to avoid in these experiments.

2.2 Tested Faulty Values

The main responsibility of the DevBuilder tool is to

write a number of DD based on the template code, each
one carrying out a distinct function test (see Figure 1).

Table 1: Drivers in a Windows installation.
Drivers

Windows
File

System Total Run
Run Drivers

Functions
FAT32 259 93 1490

XP
NTFS 260 94 1494
FAT32 189 93 1463 Server

2003 NTFS 189 92 1463
Vista NTFS 250 113 2400

Table 2:Top 20 called DDK functions.
ID Name Alias
1 ntoskrnl::RtlInitUnicodeString InitStr
2 ntoskrnl::ExAllocatePoolWithTag AllocPool
3 ntoskrnl::KeBugCheckEx BugCheck
4 ntoskrnl::IofCompleteRequest CompReq
5 ntoskrnl::IoCreateDevice CreateDev
6 ntoskrnl::IoDeleteDevice DeleteDev
7 ntoskrnl::KeInitializeEvent InitEvt
8 ntoskrnl::KeWaitForSingleObject WaitObj
9 ntoskrnl::ZwClose ZwClose

10 ntoskrnl::IofCallDriver CallDrv
11 ntoskrnl::ExFreePoolWithTag FreePool
12 ntoskrnl::KeSetEvent SetEvt
13 ntoskrnl::KeInitializeSpinLock InitLock
14 HAL::KfAcquireSpinLock AcqLock
15 HAL::KfReleaseSpinLock RelLock
16 ntoskrnl::ObfDereferenceObject DerefObj
17 ntoskrnl::ZwOpenKey OpenKey
18 ntoskrnl::ZwQueryValueKey QryKey
19 IoAttachDeviceToStack AttachDev
20 ntoskrnl::memset memset

Table 3: Top 20 Functions Driver coverage.

Windows File System Driver coverage
FAT32 96,7%

XP
NTFS 96,8%
FAT32 96,7% Server

2003 NTFS 96,7%
Vista NTFS 97,3%

To accomplish this task, all relevant data about the

functions is provided in a XML signature file, and the
DD template has special marks that identify where to
place the information translated from XML into code.

The signature file includes the function name,
parameter type and values that should be tried out, and
expected return values. In addition, for certain
functions, it also contains some setup code that is
inserted before the function call, to ensure that all
necessary initializations are performed. Similarly, some
other code can also be included, which is placed after
the function call, for instance to evaluate if some
parameter had its value correctly changed or to check
the returned value.

In order to obtain the relevant data about the
functions, we had to resort to the Windows DDK
documentation. From the point of view of a DD
developer, this documentation corresponds to the
specification of the DDK functions. Therefore, if there
are errors in documentation, then they may be
translated into bugs in the drivers’ implementations and
also in our tests. Nevertheless, in the worst case, if a
problem is observed with a test, at least it indicates that
the function description contains some mistake.

The signature file defines seven types of correct and
faulty inputs. These values emulate the outcomes of
some of the most common programming bugs. They
can be summarized as follows:

Acceptable Value: parameter is initialized with a

correct value.

Missing local variable initialization: parameter with a
random initial value.

Forbidden values: uses values that are explicitly
identified in the DDK documentation as incorrect.

Out of bounds value: parameters that exceed the
expected range of values.

Invalid pointer assignment: invalid memory
locations.

NULL pointer assignment: NULL value passed to a
pointer parameter.

Related function not called: this fault is produced by
deliberately not calling a setup function, contrarily
to what is defined in the DDK documentation.

2.3 Expected Failure Modes

The list displayed in Table 4 represents the possible
scenarios that are expected to occur after a DD injects a
fault into the OS. Initially we started with a much larger
list of failure modes, which was derived from various
sources, such as the available works in the literature
and expert opinion from people that administer
Windows systems. However, as the experiences
progressed, we decided to reduce substantially this list
because several of the original failure modes were not
observed in practice.

Generally speaking there are two major possible
outcome scenarios: either the faulty input produces an
error (e.g., a crash) or it is handled in some manner.
Since the fault handling mechanisms can also have
implementation problems, the FM1 failure mode was
divided in three subcategories. In order to determine
which subcategory applies to a given experiment, the

Table 4: Expected failure modes.
ID Description

FM1
No problems are detected in the system
execution.

FM2 The applications or even the whole system hangs.

FM3
The system crashes and then reboots; the file
system is checked and NO corrupted files are
found.

FM4 Same as FM3, but there are corrupted files.

DD verifies the correctness of the return value (if it was
different from void) and output parameters of the
function.

Returns ERROR (RErr): The return value from the

function call indicates that an error was detected
possibly due to invalid parameters. This means that
the bad input was detected and was handled
properly.

Returns OK (ROk): The return value of the call
indicates a successful execution. This category
includes two cases: even with some erroneous input,
the function executed correctly or did not run but
returned OK; all input was correct, for instance
because only good parameter values were utilized
or the random parameters ended up having
acceptable values.

Invalid return value (RInv): Some times several
values are used to indicate a successful execution (a
calculation result) or an error (reason of failure).
When the return value is outside the range of
possible output values (at least from what is said in
the DDK documentation), this means that either the
documentation or the function implementation has a
problem.

Whenever crash occurs, Windows generates a
minidump file that describes the execution context of
the system when the failure took place. The analysis of
this file is very important because it allows developers
to track the origin of crashes. Although several efforts
have been made to improve the capabilities of crash
origin identification, still some errors remain
untraceable or are detected incorrectly. Whenever an
experiment caused a crash, the minidump files were
inspected to evaluate their identification capabilities.
Four main categories of results were considered:

Identification OK (M1): The minidump file correctly

identifies the faulty driver as the source of the crash.

Identification ERROR (M2): The minidump file

identifies other module as the cause of failure.

Unidentified (M3): The minidump file could not
identify either the driver or other module as the
source of the crash.

Memory Corruption (M4): The minidump file
detected a memory corruption.

2.4 Experimental Setup

Since the experiments were likely to cause system
hangs or crashes, and sometimes these crashes
corrupted files, we had to utilize two machines in order
to automate most of the tasks (see Figure 2). The target
machine hosts the OS under test and the DD workload,
and the controller machine is in charge of selecting
which tests should be carried out, collecting data and
rebooting the target whenever needed.

After booting the targeting machine, DevInject
contacts DevController to find out which driver should
be used in the next experiment. Then, DevInject loads
the driver, triggers the fault, checks the outcome and, if
everything went well, removes the driver.
DevController is informed of each step of the
experiment, so that it can tell DevInject what actions
should be performed. This way, the target file system is
not used to save any intermediate results or keep track
of the experience, since it might end up being
corrupted. The target file system is however utilized to
store the minidump files and the corrupted files that
were found. After a reboot, DevInject transfers to
DevController this information using FTP.

3 Experimental Results

All measurements were taken on a prototype system
composed by two x86 PCs linked by an Ethernet
network. The target machine was a DELL Optiplex
computer with 512Mb and 2 disks. Three OS versions
and two distinct file systems, FAT32 and NTFS, were
evaluated. The outcome was five different
configurations (Vista was not tested with FAT32). The
exact OS versions were: Windows XP Kernel Version
2600 (SP 2), built: 2600.xpsp_sp2_gdr.050301-1519,
Windows Server 2003 Kernel Version 3790 (SP 1),
built: 3790.srv03_sp1_rtm.050324-1447 and Windows
Vista Kernel Version 5600, built:
5600.16384.x86fre.vista_rc1.060829-2230.

Microsoft provides an equivalent Device Driver
Toolkit for all OS. Consequently, the same set of
drivers could be used to test the various OS. In every
target configuration the initial conditions were the
same, the OS were configured to produce similar types

Figure 2: Injecting erroneous input.

of dump files, and the DevInject tool was basically the
only user application running.

We decided to carry out the experiments without
load to ensure that results were highly repeatable, and
therefore to increase the accuracy to the conclusions. In
the near future, we intend to complement our analysis
with loaded systems, by employing some standard
workload.

3.1 Observed Failure Modes

The observed failure modes are displayed in Table
5. The first three columns present the function
identifier ID, its alias name and the number of
experiments carried out with each function. The failure
modes for the various OS configurations are
represented in the next four groups of columns, under
the headings FM1 to FM4. Each column group presents
one value for each OS configuration.

In the 20 functions that were tested, several of them
were able to deal at least with a subset of the erroneous
input. There were however a few cases where results
were extremely bad, indicating a high level of
vulnerability. By computing the formula FM1/#DD for
each FM1 entry, one can have an idea about the
relative robustness of the functions (see Figure 3). Only
two functions were 100% immune to the injected
faults, 9-ZwClose and 18-QryKey. On the other hand,
eight functions had zero or near zero capabilities to
deal with the faults.

One reason for this behavior is that some of these
functions are so efficiency dependent (e.g., 4-CompReq
and 14-AcqLock) that developers have avoided the
implementation of built in checks. Another reason is
related to the nature of the function, which in the case
of 3-BugCheck is to bring down the system in a
controlled manner, when the caller discovers an
unrecoverable inconsistency.

 OS

 DevController
Driver

Fault
OS

DevInject

Trigger

Next DD Log

FTP Client
Script

FTP Server

Instructions
Files

Log

Target Machine Controller Machine

Table 5: Observed failure modes.
FM1: Execution OK FM2: Hangs FM3: Crash FM4: Crash & FCorrupt
XP 2003 V XP 2003 V XP 2003 V XP 2003 V ID Alias #DD

Fat Ntfs Fat Ntfs Ntfs Fat Ntfs Fat Ntfs Ntfs Fat Ntfs Fat Ntfs Ntfs Fat Ntfs Fat Ntfs Ntfs
1 InitStr 12 9 9 9 9 9 0 0 0 0 0 2 3 2 3 3 1 0 1 0 0
2 AllocPool 440 416 416 416 416 420 0 0 0 0 0 14 24 13 24 20 10 0 11 0 0
3 BugCheck 12 0 0 0 0 0 0 0 0 0 0 6 12 3 12 12 6 0 9 0 0
4 CompReq 51 0 0 0 0 0 0 0 0 0 0 0 51 26 51 51 51 0 25 0 0
5 CreateDev 96 48 48 48 48 48 0 0 0 0 0 29 48 8 48 48 19 0 40 0 0
6 DeleteDev 4 0 0 0 0 0 0 0 0 0 0 0 4 2 4 4 4 0 2 0 0
7 InitEvt 18 6 6 6 6 6 0 0 0 0 0 8 12 7 12 12 4 0 5 0 0
8 WaitObj 36 18 18 18 18 18 0 0 0 0 0 15 18 2 18 18 3 0 16 0 0
9 ZwClose 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 CallDrv 9 0 0 0 0 0 0 0 0 0 0 0 9 4 9 9 9 0 5 0 0
11 FreePool 16 1 1 1 1 1 0 0 0 0 0 1 15 8 15 15 14 0 7 0 0
12 SetEvt 24 6 6 18 18 9 0 0 0 0 0 15 18 5 6 15 3 0 1 0 0
13 InitLock 3 2 2 2 2 2 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0
14 AcqLock 8 0 0 0 0 0 2 2 2 2 2 2 6 2 6 6 4 0 4 0 0
15 RelLock 48 3 3 1 1 1 0 0 0 0 0 18 45 12 47 47 27 0 35 0 0
16 DerefObj 3 2 2 2 2 0 0 0 0 0 0 1 1 0 1 3 0 0 1 0 0
17 OpenKey 155 104 104 104 104 104 0 0 0 0 0 25 51 47 51 51 26 0 4 0 0
18 QryKey 315 315 315 315 315 315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 AttachDev 9 0 0 0 0 0 1 1 1 1 1 6 8 2 8 8 2 0 6 0 0
20 memset 48 18 18 27 27 24 0 0 0 0 0 22 30 12 21 24 8 0 9 0 0
Total 1310 951 951 970 970 960 3 3 3 3 3 164 356 155 337 347 192 0 182 0 0
Total / # DD (%) 72,6 72,6 74,0 74,0 73,3 0,2 0,2 0,2 0,2 0,2 12,5 27,2 11,8 25,7 26,5 14,7 0,0 13,9 0,0 0,0

In this case, the developers probably preferred to

reboot the system even if some parameters were
incorrect (but notice that this reboot sometimes was not
done in a completely satisfactory way since files ended
up being corrupted).

From the various functions, only two caused the
system to hang (FM2 ≠ 0). Functions 14-AcqLock and
19-AttachDev caused hangs in all OS configurations,
when an invalid pointer was passed as argument. Most
of the erroneous inputs that caused failures end up
crashing the system (FM3 and FM4). From the various
classes of faults that were injected, the most malicious
were invalid pointer assignments and NULL values
passed in pointer parameters. The first class, invalid
pointers, is sometimes difficult to validate, depending
on the context (e.g., a buffer pointer that was not
properly allocated). On other hand, NULL pointers are
easily tested and for this reason it is difficult to justify
why they are left un-checked, allowing them to cause
so many reliability problems.

In all experiments, we never observed any file
corruption with the NTFS file system after a reboot.
However, the FAT32 file system displayed in many
instances cases of corruption. Traditionally, NTFS has
been considered much more reliable than FAT32, and
our results contribute to confirm this. The reliability
capabilities integrated in NTFS, like transactional

operations and logging, have proven to be quite
effective in protecting the system during abnormal
execution.

The overall comparison of the 3 operating systems,
if we restrict ourselves to NTFS or FAT32, shows a
remarkable resemblance among them. The last two
rows of Table 5 present an average value for the
failure modes and OS configurations. On average, OSs
had an approximately equivalent number of failures in
each mode, with around 73% testes with no problems
detected during the system execution. Hangs were a
rare event in all OSs. If a finer analysis is made on a
function basis (see Figure 3), we observe a similar
behavior for most functions. There were only two
functions where results reasonably differ, 12-SetEvt
and 20-memset. From these results, there is reasonable
indication that the 3 operating systems use comparable
levels of protection from faulty inputs coming from
drives.

These results reinforce the idea that although the
Windows NT system has undergone several name
changes over the past several years, it remains entirely
based on the original Windows NT code base.
However, as time went by, the implementation of many
internal features has changed. We expected that newer
versions of the Windows OS family would become
more robust; in practice we did not see this

improvement at the driver’s interface. Of course, this
conclusion needs to be better verified with further
experiments.

3.2 Return Values from Functions

As explained previously, even when the system
executes without apparent problems, the checking
mechanisms might not validate the faulty arguments in
the most correct manner and produce fail-silent
violations. Therefore, failure mode 1 can be further
divided in three sub-categories to determine how well
the OS handled the inputs.

Table 6 shows the analysis when the function
execution returned a value in the RErr category, i.e., an
error was detected by the function. Since some
functions do not return any values, their corresponding
table entries were filled with “-”. The “# Faulty
Drivers” column refers to the number of drivers
produced by DevBuilder that contained at least one bad
parameter. Comparing this column with the following
five columns, one can realize that only two functions
have a match between the number of faulty drivers and
the number of RErr values. The other functions
revealed a limited parameter checking capability.

To complement this analysis, Table 7 presents the
results for the ROk category (i.e., the return value of
the call is a successful execution). Column “Non Faulty
Drivers” shows the number of drivers with only correct
arguments. Comparing this column with the remaining
ones, it is possible to conclude that functions return a
successful execution more often then the number of
non faulty drivers. However, in some cases this might
not mean that there is a major problem. For instance,
consider function 2-AllocPool that receives three
parameters: the type of pool (P0); the pool size (P1);
and a tag value (P2). Depending on the order of
parameter checking, one can have the following
acceptable outcome: P1 is zero, and 2-AllocPool
returns a pointer to an empty buffer independently of
the other parameters values.

On the other hand, by analyzing the execution log,
we found out that when P1 was less than
100.000*PAGE_SIZE, Windows returned ROk even
when a forbidden value was given in P0 (at least, as
stated in the DDK documentation). This kind of
behavior means that an error was (potentially)
propagated back to the driver, since it will be using a
type of memory pool different from the expected thus
causing a fail silent violation. The table also reveals
another phenomenon -- the three versions of Windows
handle the faulty parameters differently.

Table 6: Return error (RErr) values.
Rerr

XP 2003 V Alias

Faulty
Drivers Fat Ntfs Fat Ntfs Ntfs

InitStr 9 0 0 0 0 0
AllocPool 200 20 20 20 20 12
BugCheck 12 - - - - -
CompReq 51 - - - - -
CreateDev 76 0 0 0 0 0
DeleteDev 4 - - - - -
InitEvt 14 - - - - -
WaitObj 36 0 0 0 0 0
ZwClose 3 3 3 3 3 3
CallDrv 9 0 0 0 0 0
FreePool 15 - - - - -
SetEvt 20 0 0 0 0 0
InitLock 2 - - - - -
AcqLock 8 0 0 0 0 0
RelLock 48 - - - - -
DerefObj 3 - - - - -
OpenKey 155 104 104 104 104 104
QryKey 315 315 315 315 315 315
AttachDev 9 0 0 0 0 0
Memset 39 0 0 0 0 0

Table 7: Return OK (ROk) values.

ROk
XP 2003 V Alias

Non
Faulty
Drivers Fat Ntfs Fat Ntfs Ntfs

InitStr 3 9 9 9 9 9
AllocPool 240 396 396 396 396 408
BugCheck 0 - - - - -
CompReq 0 - - - - -
CreateDev 20 48 48 48 48 48
DeleteDev 0 - - - - -
InitEvt 4 - - - - -
WaitObj 0 18 18 18 18 18
ZwClose 0 0 0 0 0 0
CallDrv 0 0 0 0 0 0
FreePool 1 - - - - -
SetEvt 4 6 6 18 18 9
InitLock 1 - - - - -
AcqLock 0 0 0 0 0 0
RelLock 0 - - - - -
DerefObj 0 - - - - -
OpenKey 0 0 0 0 0 0
QryKey 0 0 0 0 0 0
AttachDev 0 1 1 1 1 1
memset 9 18 18 27 27 22

For example, there were several cases in Vista

where function 2-AllocPool succeeded while in XP and
Server 2003 it caused a crash. In function 12-SetEvt,
Server 2003 does not crash when TRUE was passed in
one of the parameters, while the other did so (the

documentation says that when this value is used, the
function execution is to be followed immediately by a
call to one of the KeWaitXxx routines, which was not
done in either OSs).

In all experiments, we did not observe any return
values belonging to the RInv category (i.e., values
outside the expected return range).

3.3 Corrupted Files

The last group of results in Table 5 corresponding to
FM4, displays the number of times Windows found
corrupted files while booting. The Chkdsk utility is
called during the booting process to detect these files.
Corrupted files were found only in the configurations
that used the FAT32 file system. Using the formula
FM4/FM3 one can have a relative measure of how
sensitive is the file system when a crash occurs. The
results presented in Figure 4 shows that when using
FAT32 in general, Windows Server 2003 is more
sensitive than Windows XP in a majority of the cases.

3.4 Minidump Diagnosis Capabilities

The analysis of the minidump files produced during
a system crash allows us to determine how well they
identify a driver as the culprit of the failure. These files
are fundamental tools for the Windows development
teams because they help to diagnose system problems,
and eventually to correct them. We have used the
Microsoft’s Kernel Debugger (KD) [17] to perform the
analysis of these files, together with a tool, DevDump,
that automates most of this task. DevDump controls the
debugger, passes the minidumps under investigation,
and selects a log where results should be stored. After
processing all files, DevDump generates various
statistics about the detection capabilities of minidumps.

In the experiments, all Windows versions correctly
spotted the faulty DD in the majority of times (see
Figure 5 and compare it with Table 5). The correct
identification of the source of crash (M1) seams to be
independent of the file system used. Only in very few
cases there was a difference between the two file
systems, such as for the 7-InitEvt function where
Server 2003 FAT32 identified a different source of
crash from Server 2003 NTFS.

In general, the results show that Windows XP is
more accurate than the others OS (see 15-RelLock and
20-memset). Still there were cases where other kernel
modules were incorrectly identified (functions 1-
InitStr, 14-AcqLock and 15-RelLock), as displayed in
Figure 6.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Function Identification

R
el

at
iv

e
R
o
b
u
st

n
es

s
(%

)

XP NTFS XP FAT32 2003 FAT32 2003 NTFS Vista NTFS

Figure 3: Relative robustness (FM1/#DD).

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Function Identification

F
ile

 s
ys

te
m

 s
en

si
tiv

en
es

s
(%

)

XP_NTFS XP FAT32 2003 FAT32 2003 NTFS Vista NTFS

Figure 4: FSystem sensitiveness (FM4/FM3).

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Function Identification

M
1

Id
en

tif
ic

at
io

n
O

k

M1-XP NTFS M1-XP FAT32 M1-2003 FAT32 M1-2003 NTFS M1-Vista

Figure 5: Source identification OK (M1).

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Function Identification

M
2

Id
en

ti
fi
ca

ti
o
n
 E

rr
o
r

M2-XP NTFS M2-XP FAT32 M2-2003 FAT32 M2-2003 NTFS M2-Vista

Figure 6: Source identification error (M2).

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Function Identification

M
3

U
n
id

en
ti
fi
ed

M3-XP NTFS M3-XP FAT32 M3-2003 FAT32 M3-2003 NTFS M3-Vista

Figure 7: Source of crash unidentified (M3).

These errors are particularly unpleasant because
they can lead to waist of time while looking for bugs in
the wrong place, and they can reduce the confidence on
the information provided by minidumps. In some other
cases, Windows was unable to discover the cause of
failure. This happened in Vista more frequently than
the other OS configurations, for instance in functions
15-RelLock and 12-SetEvt (see Figure 7). In the last
function, Vista was the only system that could not
diagnose the cause of failure. Only Windows Server
2003 detected memory corruption situations (in
functions 14-AcqLock and 15-RelLock). Windows
Server 2003 (FAT32 and NTFS) located memory
corruptions when faults were injected in functions 14-
AcqLock and 15-RelLock.

4 Related Work

Robustness testing has been successfully applied to

several software components to characterize their
behavior when facing exceptional inputs or stressful
environmental conditions. One of the main targets of
these studies has been general propose OS, with
erroneous inputs being injected at the application
interface. Fifteen OS versions that implement the
POSIX standard, including AIX, Linux, SunOS and
HPUX, were assessed using the Ballista tool [12].
Shelton et al. made a comparative study of six variants
of Windows, from 95 to 2000, by injecting faults at the
Win 32 interface [20]. Several command line utilities
of Windows NT were evaluated by Ghosh et al. [7].
Real time microkernels, such as Chorus and LynxOS,
have also been the target of these studies using the
MAFALDA tool [2]. Application level software can be
tested using robustness techniques by, for instance,
generating exceptions and returning bad values at the
OS interface [8]. Middleware support systems like
CORBA have been examined at the client-side
interface of an ORB [19] and internally at the level of
the Naming and Event services [14]. Dependability
benchmarking has resorted to robustness testing in
order to evaluate systems [18, 23, 24]. For example,
Kalakech et al. proposed an OS benchmark which
provided a comprehensive set of measures, and applied
it to the Windows 2000 [11].

To our knowledge, only a few works have assessed
the robustness of systems at the level of device drivers.
Durães and Madeira described a way to emulate
software faults by mutating the binary code of device
drivers [5]. Basically, the driver executable is scanned
for specific low-level instruction patterns, and
mutations are performed on those patterns to emulate
high-level faults. These ideas were experimented for 4

types of patterns, on 2 drivers of the Windows NT4,
2000 and XP. Albinet et al. conducted a set of
experiments to evaluate the robustness of Linux
systems in face of faulty drivers [1]. They intercepted
the driver calls to the kernel’s DPI (Drivers
Programming Interface) functions, and changed the
parameters on the fly with a few pre-set number faulty
values. Then, the behavior of the system was observed.
Johansson and Suri employed a similar methodology to
evaluate a Windows CE .Net [10]. In their work,
however, they focus on error propagation profiling
measures, as facilitator for the selection of places to put
wrappers.

Our research is complementary to these previous
works, not only because we targeted different OS. The
followed methodology has its roots in the original
Ballista tool [13], where several test drivers are
generated, containing DDK function calls with
erroneous arguments. The argument values were
selected specifically for each function, and they
emulate seven classes of typical programming errors.
Our study has looked in a comparative basis at such
aspects like error containment, influence of the file
system type, and the diagnosis capabilities of
minidump files.

5 Conclusions

The paper describes a robustness testing experiment
that evaluates Windows XP, Windows Server 2003 and
the future Windows release Vista. The main objective
of this study was to determine how well Windows
protects itself from faulty drivers that provide
erroneous input to the DDK routines. Seven classes of
typical programming bugs were simulated.

The analysis of the results shows that most interface
functions are unable to completely check their inputs –
from the 20 selected functions, only 2 were 100%
effective in their defense. We observed a small number
of hangs and a reasonable number of crashes. The main
reason for the crashes was invalid or NULL pointer
values. Corruption of files was only observed with the
FAT32 file system. The analysis of the return values
demonstrates that in some cases Windows completes
without generating an error for function calls with
incorrect parameters; in particular, Windows Server
2003 seams to be the most permissible one. This
behavior suggests a deficient error containment
capability of the OS. In most cases, the examined
minidump files provided valuable information about
the sources of the crashes, something extremely useful
for the development teams. However, Windows Vista

seems to have more troubles in this identification than
the other OS.

The experiments made with Windows Vista reveled
that it behaves in a similar way to Windows XP and
Server 2003. This probably means that Microsoft
intents to continue to use the current DD architecture in
its future OS, which is reasonably worrisome since
Vista will be most likely the most used OS in the years
to come.

6 References

[1] A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of
the Impact of Faulty Drivers on the Robustness of the Linux
Kernel”, Proceedings of the International Conference on
Dependable Systems and Networks, June 2004
[2] J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles,
“Dependability of COTS Microkernel-Based Systems”, IEEE
Transactions on Computers, vol. 51, no. 2, 2002, pp. 138-
163.
[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,
“On u-kernel construction”, Proceedings of the Symposium
on Operating Systems Principles, December 1995, pp. 237–
250.
[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,
“An empirical study of operating system errors”,
Proceedings of the Symposium on Operating Systems
Principles, October 2001, pp. 73–88.
[5] J. Durães and H. Madeira, “Characterization of Operating
Systems Behavior in the Presence of Faulty Drivers through
Software Fault Emulation”, Proceedings of the Pacific Rim
International Symposium. On Dependable Computing,
December 2002, pp. 201-209.
[6] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O.
Shivers, “The Flux OSKit: a substrate for OS language and
resource management”, Proceedings of the Symposium on
Operating Systems Principles, October 1997, pp. 38–51.
[7] A. Ghosh, M. Schmid, and V. Shah, “Testing the
robustness of Windows NT software”, Proceedings of the
Ninth International Symposium on Software Reliability
Engineering, November 1998, pp. 231-235.
[8] A. K. Ghosh, M. Schmid, “An Approach to Testing
COTS Software for Robustness to Operating System
Exceptions and Errors”, Proceedings 10th International
Symposium on Software Reliability Engineering, November
1999, pp. 166-174.
[9] R. Gruber, and M. L. Jiang, “Robustness Testing and
Hardening of CORBA ORB Implementations”, Proceedings
of the International Conference on Dependable Systems and
Networks, June 2001, pp. 141-150.
[10] A. Johansson, and N. Suri, “Error Propagation Profiling
of Operating Systems”, Proceedings of the International
Conference on Dependable Systems and Networks, June
2005.
[11] A. Kalakech, T. Jarboui, J. Arlat, Y. Crouzet, and K.
Kanoun, “Benchmarking Operating System dependability:
Windows 2000 as a Case Study”, Proceedings Pacific Rim

International Symposium on Dependable Computing, March
2004, pp. 261- 270.
[12] P. Koopman, J. DeVale, “The Exception Handling
Effectiveness of POSIX Operating Systems”, IEEE
Transactions on Software Engineering, vol. 26, no. 9,
September 2000, pp. 837-848.
[13] N. Kropp, P. Koopman, and D. Siewiorek, “Automated
Robustness Testing of Off-the-Shelf Software Components”,
Proceedings of the International Symposium on Fault-
Tolerant Computing, June 1998.
[14] E. Marsden, J.-C. Fabre and J. Arlat, “Dependability of
CORBA Systems: Service Characterization by Fault
Injection”, Proceedings of the 21st International Symposium
on Reliable Distributed Systems, June 2002, pp. 276-285.
[15] Microsoft Corporation, “Microsoft Portable Executable
and Common Object File Format Specification”, February
2005.
[16] Microsoft Corporation, “Introducing Static Driver
Verifier”, May 2006.
[17] Microsoft Corporation, “Debugging Tools for Windows
– Overview”, December 2006
http://www.microsoft.com/whdc/devtools/debugging/default.
mspx
[18] A. Mukherjee and D. P. Siewiorek, “Measuring
Software Dependability by Robustness Benchmarking”,
IEEE Transactions of Software Engineering, vol. 23, no. 6,
1997, pp. 366-378.
[19] J. Pan, P. J. Koopman, D. P. Siewiorek, Y. Huang, R.
Gruber and M. L. Jiang, “Robustness Testing and Hardening
of CORBA ORB Implementations”, Proceedings of the
Internatinal Conference on Dependable Systems and
Networks, June 2001, pp. 141-150.
[20] C. Shelton, P. Koopman and K. D. Vale, “Robustness
Testing of the Microsoft Win32 API”, Proceedings of the
International Conference on Dependable Systems and
Networks, June 2000, pp. 261-270.
[21] D. Simpson, “Windows XP Embedded with Service
Pack 1 Reliability”, Tech. rep., Microsoft Corporation,
January 2003.
[22] M. Swift, B. Bershad, and H. Levy, “Improving the
reliability of commodity operating systems”, Proceedings of
the Symposium on Operating Systems Principles, October
2003, pp. 207–222.
[23] T. K. Tsai, R. K. Iyer, and D. Jewitt, “An Approach
Towards Benchmarking of Fault-Tolerant Commercial
Systems”, Proceedings of the 26th International Symposium
on Fault-Tolerant Computing, June 1996, pp. 314-323.
[24] M. Vieira and H. Madeira, “A Dependability
Benchmark for OLTP Application Environments”,
Proceedings of the 29th International Conference on Very
Large Data Bases, 2003, pp. 742-753.
[25] M. Young, M. Accetta, R. Baron, W. Bolosky, D.
Golub, R. Rashid, and A. Tevanian, “Mach: A new kernel
foundation for UNIX development”, Proceedings of the
Summer USENIX Conference, June 1986, pp. 93–113.

