
Locating File Processing Vulnerabilities

Nuno Ferreira Neves
Fac. de Ciências da Univ. de Lisboa

nuno@di.fc.ul.pt

Abstract

An application is vulnerable to attacks if it exhibits in-
correct behavior while it reads and processes the contents
of a specially crafted malicious file. These vulnerabilities
are often caused due to programming bugs in the routines
that parse and utilize the fields of a file. In this paper, we
propose a solution for the discovery of this kind of vulnera-
bilities, using an approach that is based on attack injection.

1. Introduction

Computer security is an important research subject due
to our reliance on computer systems for the execution of our
everyday life activities. In the near future, this dependency
will tend to increase as more and more tasks will be done
with the help of computers and through open networks (e.g.,
e-commerce, e-government, e-health). Current experience,
however, shows that it is extremely difficult to build com-
pletely secure general purpose applications. For instance,
the statistics published by CERT for the last two decades in-
dicate an exponential grow on the number of incidents that
have been reported [1].

An attack to be carried out in a successful manner, and
to result in an intrusion, has to be able to explore a vul-
nerability in the computer system. These vulnerabilities are
of different kinds, such as buffer overflow, format strings,
information disclosure, race conditions, and (distributed)
denial of service [2]. They can also be located in distinct
components, ranging from the processor firmware to some
library linked to an application. Many causes can explain
why these flaws end up being inserted, for example an in-
correct configuration parameter, an ill defined relation be-
tween components, or simply bad programming habits.

Traditionally, the most damaging vulnerabilities are the
ones that can be exploited remotely (and that allow immedi-
ate access to an account with administrative privileges). An

This work was partially supported by the EC through project
IST-2004-27513 (CRUTIAL), and by the FCT through projects
POSC/EIA/61643/2004 (AJECT) and the Large-Scale Informatic Systems
Laboratory (LASIGE).

attack normally consists on the transmission of some erro-
neous data, for example, in a specially crafted packet that is
sent by a malicious client to a target server application. The
vulnerability is then activated when the server receives the
packet and processes the data.

In the recent years, a new trend of remotely exploited
vulnerabilities has been observed. In order to compromise
an application, the adversary uses an indirect path to per-
form the attack. First, she or he generates a file of a given
type (e.g., PDF) containing some bad data. Next, this file
is posted in a web site waiting to be downloaded (or is dis-
tributed through email messages or IRC channels). And fi-
nally, the vulnerability is activated when the file is obtained
by the target system, and is read by the flawed application.

Just during this first quarter of the year, several high
profile file processing vulnerabilities have already been
disclosed. They have appeared in a reasonable range of
file types and applications, including Windows Meta Files
(WMF) [8], Image files (TGA, TIFF, GIF, BMP) [5, 7],
Playlist files (PLS or M3U) [9], Excel files (XLS) [6], and
Flash files (SWF) [4]. Two worrying aspects of this kind of
vulnerability are: it is difficult to prevent the attacks with
network perimeter firewalls because malicious files come
through usually open channels (e.g., web); and, they can
be exploited even in the “more protected” machines of the
internal networks.

In our research, we intend to develop tools that can help
to automate the discovery of file processing bugs. The ap-
proach that will be followed is based on emulating the be-
havior of a malicious adversary when it tries to find a vul-
nerability, and that we have generically named as attack
injection [3]. Basically, the tool automatically generates
a large number of attacks that it directs against the target
application. In parallel, it monitors the application, trying
to observe incorrect behavior during the execution. When-
ever such erroneous behavior is seen, it indicates with high
probability that a vulnerability was activated by one of the
attacks. At this point, and in order to determine exactly if
a flaw exists, traditional debugging techniques can be em-
ployed to examine the application code and running envi-
ronment.



OS

Attack
Injection
Tool

Target Application

Data

Mutator

original

file

Monitor

several
malicious files

1
2

3

File Spec

OS

Attack
Injection
Tool

Monitor

Target Application

Data

Mutator

Sys. Call

Interceptor

file

1 2

3

a) Online mutation b) Offline mutation

Figure 1. Attack injector with online and offline malicious file mutation.

2. The Attack Injection Tool

The attack injection tool is run in the same machine as
the target application, and it is composed by two main mod-
ules, the Mutator and the Monitor (see Figure 1). The target
application sees an execution environment that is equivalent
to the normal case, with the exception that a specific file
will contain malicious contents. For example, if one wants
to test the GIF processing routines of an image viewer, then
the GIF file that is read by the application will have some
bad data.

The Mutator is in charge of generating the attacks. To
accomplish this task, it modifies the contents of a valid file
with some erroneous data, and then lets the target applica-
tion read and process the data. In order to discover vulner-
abilities, a large number of tests has to be carried out, each
one corresponding to a malicious data insertion. The Mu-
tator has to alter the various fields of a file in systematic a
way, to ensure that all file processing activities of the target
end up being examined.

We envision two possible ways to implement the Muta-
tor. In the online mutation, the changes are done in real
time, as the application reads the various parts of the file
(see Figure 1 a)). The file related system calls of the lo-
cal operating system (OS) will be intercepted by the tool,
to allow the modification of the data that is read from the
disk. In the offline mutation solution, the mutator receives
as input a correct file, and then it produces a large set of er-
roneous files (see Figure 1 b)). Each one of these files has
a specific change, and is used in a distinct test. To facili-
tate the generation of the data changes, the mutator can use
a specification of the type of file that is being considered
(e.g., the spec of a GIF file).

The Monitor determines if the attacks are successful.
First, it sets up the experimental environment by initiating
the application under the right conditions (e.g., ensures that
the file system is reset and that the correct command line ar-

guments are utilized). Second, it observes the execution of
the application and looks for abnormal use of the system´s
resources, trying to determine if errors are being produced.
These errors would be a sign that a vulnerability was acti-
vated by the current attack. Third, it archives all relevant
data that was collected, so that later an analysis can be per-
formed.

Due to space limitations, it is not possible to describe in
more detail the various mechanisms that are needed to suc-
cessfully implement an efficient Mutator and Monitor. The
interested reader can consult our paper on attack injection
to get some ideas on these mechanisms [3].

References

[1] CERT Coordination Center. Statistics 1988-2005, Dec. 2005.
http://www.cert.org/stats/.

[2] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta,
and R. Hassel. The Shellcoder’s Handbook: Discovering and
Exploiting Security Holes. Wiley Publishing Inc, 2004.

[3] N. Neves, J. Antunes, M. Correia, P. Verı́ssimo, and R. Neves.
Using attack injection to discover new vulnerabilities. In
Proc. of the Int. Conference on Dependable Systems and Net-
works, July 2006.

[4] US-CERT. Adobe Macromedia Flash Products Contain Vul-
nerabilities. Technical Cyber Security Alert TA06-075A, Mar.
2006.

[5] US-CERT. Apple QuickTime Vulnerabilities. Technical Cy-
ber Security Alert TA06-011A, Jan. 2006.

[6] US-CERT. Microsoft Office and Excel Vulnerabilities. Tech-
nical Cyber Security Alert TA06-073A, Mar. 2006.

[7] US-CERT. Microsoft Windows, Windows Media Player, and
Internet Explorer Vulnerabilities. Technical Cyber Security
Alert TA06-045A, Feb. 2006.

[8] US-CERT. Update for Microsoft Windows Metafile Vulnera-
bility. Technical Cyber Security Alert TA06-005A, Jan. 2006.

[9] US-CERT. Winamp Playlist Buffer Overflow. Technical Cy-
ber Security Alert TA06-032A, Feb. 2006.


