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Abstract

The Web Server is currently the most widely deployed
type of distributed data server. This paper presents an
intrusion-tolerant web server based on the Deterministic
IntruSion ToleRance ArChiTecture (DISTRACT), which is
also introduced. The objective of this architecture is to
support fault- and intrusion-tolerant services based on the
state machine approach. DISTRACT uses a set of intrusion-
tolerant protocols based on the TTCB, a secure and syn-
chronous distributed component.

This paper reports on the first implementation of an
intrusion-tolerant replicated service based on the TTCB.
The solution proposed requires no modifications ei-
ther on the clients or the servers, which are respectively
web browsers and standard web servers. An evalua-
tion of the performance of the replicated web server is
provided.

1. Introduction

The Web Server is currently the most widely deploy-
ed type of distributed data server. This paper presents an
intrusion-tolerant web server based on theDeterministic
IntruSion ToleRance ArChiTecture (DISTRACT), which is
also introduced. The objective of this architecture is to sup-
port fault- and intrusion-tolerant services based on the state
machine approach [20]. This approach consists in imple-
menting a service as a set of replicas running a determinis-
tic program and starting in the same state. Requests to the
service are issued using an atomic multicast protocol, en-
suring that all replicas execute the same commands in the
same order.

The DISTRACT architecture contains a set of servers (or
replicas) and a set of proxies (see Figure 1). The purpose of
the proxies is to hide the replication from the service clients
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Figure 1. The DISTRACT Architecture

(e.g., the web browsers). A client issues a request to the ser-
vice by sending a message to a proxy. This message is sent
to the skeleton in each server, which calls the original server
and replies to the proxy. When the proxy has a number of
replies, it then replies to the client. The proxy machines can
also include a firewall to provide a first line of defense for
the servers.

DISTRACT supports fault- and intrusion-tolerant ser-
vices, meaning that the services provide correct results de-
spite the failure of some of the replicas. These failures in-
clude not only benign faults, like crashing, but also mali-
cious faults, like a replica sending corrupted messages or
failing to follow the protocol in some way. DISTRACT is
based on an approach to intrusion tolerance [22] that we
have been investigating for some years now. The idea is to
rely on a secure and synchronous (i.e., real-time) distributed
component to execute some “small” but crucial steps of the
protocols. This component is called Trusted Timely Com-
puting Base (TTCB) [9], and this kind of components have
been called generically Wormholes [21]. DISTRACT uses
a set of intrusion-tolerant protocols based on the TTCB.

The paper presents an intrusion-tolerant web server ba-
sed on DISTRACT. Each replica is a PC running a stan-
dard, unmodified, web server. The proxies multicast the



HTTP [10] requests they receive to the servers and reply to
the calling browsers when they get a number of replies. One
common attack to web servers that is tolerated in our sys-
tem, is the defacement of web pages.

This paper reports on the first full implementation of an
intrusion-tolerant replicated service based on a wormhole.
An evaluation of its performance is also provided. There are
three other intrusion-tolerant services based on the state ma-
chine approach in the literature: Rampart [18], BFT [4] and
FS-NewTOP [16]. The system proposed in this paper has
mainly three advantages: (1) the intrusion-tolerance of the
service is transparent to the clients, which are not modified
in any way; (2) the servers can be standard unmodified dif-
ferent servers, which are accessed transparently through a
skeleton; (3) DISTRACT has no notion of a leader/master,
therefore it is not possible to delay the service by causing
successive suspicions on leaders, a problem existing in both
Rampart and BFT.

The support for different servers is important since repli-
cation is useful only if replicas fail independently. With ma-
licious faults, this requires that different servers have differ-
ent vulnerabilities. In practice, this has to be achieved by
using different operating systems, servers and skeletons in
each machine. Distinct versions of the code might be ob-
tained using N-version programming [1].

There are some other related work in intrusion-tolerant
services. PASIS uses quorum systems to support intrusion-
tolerant storage systems that also guarantee confidential-
ity [12]. COCA is a secure and fault-tolerant certifica-
tion authority also based on quorums [23]. AgileFS is an
intrusion-tolerant file system based on secret-sharing [13].
SINTRA is a solution to implement replicated services us-
ing randomized protocols [2].

We have recently shown that using a wormhole it is pos-
sible to toleratef = bn−1

2 c faulty replicas, wheren is
the number of replicas [8]. This paper uses a previous set
of protocols, which tolerate onlyf = bn−1

3 c faulty repli-
cas. However, DISTRACT would support the improved re-
silience with a simple substitution of protocols.

2. System Model

The system architecture is depicted in Figure 1. With the
exception of the TTCB, the system is asynchronous, i.e.,
there are no assumptions about bounds on the communi-
cation or processing delays. The system is also essentially
Byzantine on failure, i.e., the servers and the clients can
fail arbitrarily: they can stop, omit messages, send incor-
rect messages, send several messages with the same iden-
tifier, collude with other malicious processes to break the
protocols, etc. Despite this failure model, we assume that
the number of servers that can fail is limited tof = bn−1

3 c.
Moreover, we assume that the proxies can only fail by

int getTCBGlobalTimestamp(descriptor_t *d,
TCBtimestamp *gts);

void propose(descriptor_t *d, elist_t elist,
TCBtimestamp tstart, decision_t decision,
value_t value, propose_out_t *out);

void decide(descriptor_t *d, tag_t tag,
decide_out_t *out);

Figure 2. Excerpt of the TTCB C-language API

crashing, not arbitrarily. This assumption is reasonable due
to the simplicity of the proxy. We discuss how it can be en-
forced in Section 5. A client, server or proxy that does not
fail during the execution of a protocol is said to becorrect.

Besides the networks and hosts, the system includes the
TTCB wormhole. This component is distributed: it has local
parts in the hosts (local TTCBs) and its own private commu-
nication channel (the TTCB control channel). The TTCB,
both its local parts and control channel, are assumed to be
secure, i.e., resistant to any possible attack. In this short pa-
per we simply consider this to be an assumption. How it can
be enforced in practice, is the matter of another paper [9].

The TTCB provides just a few services. The protocols
used by DISTRACT use mostly two: the Trusted Absolute
Timestamping service and the Trusted Block Agreement
service (TBA). The first provides timestamps, i.e., readings
from the local TTCB clock. The other service, the TBA,
makes agreements among sets of processes. Each process
proposes a value with a limited size (currently 20 bytes),
and the TBA returns a value obtained applying a function
to the values proposed. The protocols in the paper use two
of these functions: one that chooses the value proposed by
the first process; and another one that chooses the most pro-
posed value. The API of the two services is depicted in Fig-
ure 2.

3. DISTRACT

The DISTRACT architecture is presented in Figure 1 and
briefly discussed in the introduction. Here we delve into
some of the details.

A client contacts the service by sending a message with
a request to one of the proxies, using the application proto-
col. The case in which the proxy is unavailable is also han-
dled in an application-dependent way. In Section 4 we dis-
cuss the specific case of the web server.

The proxies and the servers communicate using secure
channels, which ensure that the messages are not corrupted
in the network and are eventually received. The channels



are end-to-end but a multicast can be emulated using one
channel for each recipient. This multicast does not guaran-
tee that all recipients receive the same messages, since a
malicious sender can send different messages for each re-
cipient.

The state machine approach requires that all servers de-
liver the same requests in the same order. These properties
are guaranteed by a protocol similar to theatomic multicast
in [6]. When a proxy receives a requestR, it obtains a times-
tampts from the TTCB, and multicasts(MCAST, R, ts)to
all the servers, using a set of secure channels (MCASTis the
message type). The order of the messages is defined by the
timestampts, but the servers also have to agree on the set of
messages to order and deliver. The protocol is sketched in
Figure 3 for the skeleton in serversi. The protocol has two
states: Normal and Agreement. When the system is idle, it
is in the first state. The second state corresponds to the exe-
cution of the agreement about the delivery of a set of mes-
sages (PICK). This agreement is similar to the consensus
protocol in [7].

A server decides to engage in the PICK protocol using a
combination of two criteria (COLLECT, line 3): when it re-
ceived a number of messagesNa; or when it has at least
one message and an interval of timeTa passed from the
last agreement termination (this condition is tested using the
TTCB timestamping service). We have omitted this second
condition in the protocol for simplicity. The agreement pro-
tocol usually runs a single TBA, although more can be ex-
ecuted until2f + 1 servers engage in the protocol (PICK,
line 2).

When the agreement protocol terminates, each server ex-
ecutes the agreed upon requests in the order of their corre-
sponding timestampsts. When each request is executed by
each server, a reply is returned to the proxy. When a proxy
hasf + 1 identical replies from different servers, it can be
sure that this is the correct reply (at mostf servers can be
malicious), so it forwards the reply to the client.

The service replicas can be standard servers, like the
Apache servers1 used in our intrusion-tolerant web server
prototype. The server side of the protocols is executed by
the skeleton in each host, which locally calls the standard
server.

4. Web Server

The implementation of an intrusion-tolerant web server
using DISTRACT is straight forward. Each server replica is
an Apache web server. Each proxy emulates a web server
for the clients, which are browsers. When a browser sends
a request to the server using the HTTP protocol over TCP,
the proxy receives the request and multicasts it to the skele-

1 http://www.apache.org/

COLLECT

1. When(MCAST, R, ts)is received, multicast(INFO, si, R, ts)
to all servers;

2. Whenf + 1 (INFO, *, R, ts)messages received from differ-
ent servers, ifsi did not multicast(INFO,si, R, ts), multicast
it to all servers;

3. When2f +1 INFO messages received from different servers
for Na requests, if the state is Normal, put the state in Agree-
ment and start the PICK protocol;

4. When protocol PICK terminates, execute all requests in the
order of their timestampsts; Put the state to Normal;

PICK

1. Propose TBA a hash of the requests with2f +1 messages re-
ceived; Wait untildecidereturns the result of the TBA (most
proposed value);

2. Repeat the TBA until at least2f + 1 servers propose;
3. If si proposed the hash that was decided, multicast a mes-

sage with the corresponding requests to all servers; return;
4. Otherwise, wait for a message with the requests correspond-

ing to the hash; return;

Figure 3. Protocols executed by server si

tons in the servers. When it has thef + 1 replies from the
servers, it sends an HTTP reply transparently to the browser.

In the Internet, a service is usually known by its domain
name, which is translated into an IP address by the Do-
main Name System (DNS) [15]. The DNS can have sev-
eral IP addresses associated to a single domain name, re-
turning each IP according to some policy. This is the mecha-
nism that DISTRACT assumes to be used: the domain name
of the service should be associated to the IPs of the prox-
ies in the DNS. If a client obtains from the DNS the IP of a
proxy inaccessible for some reason (e.g., crashed), it has to
ask for another IP and resend the request. This happens fre-
quently in today’s Web, and is done simply by refreshing
the browser.

State machine replication requires that the state ma-
chines are deterministic, i.e., that the same command ex-
ecuted in the same initial state generates the same final state
and returns the same result. For web servers, with static web
pages the first part is obviously true. If the pages are gen-
erated dynamically, they cannot depend on three items that
can generate non-determinism: random data, time and ma-
chine specific information (e.g., IP address or host name).
In relation to the second part, several web servers with the
same pages, usually return slightly different replies to iden-
tical requests. The differences occur in three pieces of data
in the header of the reply [10]: (1) the date stamp (Date); (2)
the entity tag (Etag), which uniquely identifies the entity,
i.e., the HTTP reply; (3) the server identification (Server).
An example header can be found in Figure 4. The prox-



HTTP/1.1 200 OK
Date: Thu, 27 Feb 2003 18:08:30 GMT
Server: Apache/2.0.50 (Unix)
Last-Modified: Thu, 27 Feb 2003 18:08:30 GMT
ETag: W/"144332-65-af1fe480"
Accept-Ranges: bytes
Content-Length: 101
Keep-Alive: timeout=15
Connection: Keep-Alive
Content-Type: text/html; charset=ISO-8859-1

Figure 4. Example HTTP reply header

ies have to wait forf + 1 identical replies from the servers,
as discussed above. To solve this problem of determinism,
the proxies simply discard the three lines of the header, and
compare only the rest of the reply. Notice that the proxy
can be adapted for many different TCP/IP services with mi-
nor changes. The single change in the skeleton would be the
port of the service.

The security of the communication between the clients
and the proxies is not part of DISTRACT, but application-
dependent. In the case of the web server, the communication
with HTTP is not secure. However, there is a standard so-
lution for securing it, which is to use HTTP over TLS [19].
This would involve a proxy that supported this protocol.

5. Implementation

All the system components were implemented in C lan-
guage. The proxies are assumed to be secure but this prop-
erty can be ensured with a high coverage for two reasons:
(1) the software is simple, currently approximately 700 lines
of code; (2) the host with the proxy needs to have only
the TCP port 80 open, since the communication with the
clients and servers is all done using HTTP (HTTP over TLS
was not implemented). This sums up to a component simple
enough to protect using typical techniques: minimizing the
number of operating system components; closing all net-
work services and disabling all ports except TCP/80; patch-
ing known vulnerabilities; and assuring that all inputs are
validated.

The TTCB is also assumed to be secure, therefore it has
to be isolated from the rest of the system [9]. Recall the
TTCB architecture, represented in white in Figure 1. In the
current implementation, the local TTCB resides inside the
kernel, which is hardened in order to be secure. The solu-
tion is essentially to remove some Linux capabilities from
the capability bounding set, thus preventing the superuser
from accessing the kernel memory. This version of the local
subsystem has less coverage than a solution using a hard-
ware appliance, e.g., a PC/104 board with its own proces-

sor and memory, but has the advantage of allowing the free
distribution of the implementation by the research commu-
nity2. The control channel is a Fast-Ethernet LAN, which
can be can be assumed to be secure since it is a short-range
inside-premises closed network. The implementation of the
local TTCB requires a real-time kernel, in order to be syn-
chronous. The current prototype uses RTAI [5]3, a real-time
engineering of Linux that runs on standard PC hardware.
The local TTCB is composed by a set of modules executed
inside this kernel. The control-channel has also to be pre-
dictable in terms of time behavior, something that can be
enforced by controlling the amount of traffic [3].

The DISTRACT protocols are executed on the top of se-
cure channels. In the current implementation these chan-
nels are implemented using the Secure Socket Layer v3
(SSL) [11]. The implementation used is OpenSSL4. The
protocols use the MD5 hash function [14].

6. Performance

The performance was assessed using four replicas (n =
4, f = 1) and a single proxy, each one running on an In-
tel Pentium III 500Mhz PC with 256MB SDRam PC133.
Each PC had two 3Com 10/100 network adapters. The pay-
load network and the TTCB control channel were both Fast-
Ethernet 100Mb switched LANs. The versions of the soft-
ware used were: TTCB 1.11, RTAI 24.1.10, Apache 2.0.50,
OpenSSL 0.9.7d and C compiler gcc 2.96. SSL used 128
bit-keys with stream cipher RC4 and hash function MD5.

The experiments were performed using a pseudo-brow-
ser that we designed with the purpose of sending HTTP re-
quests and receiving replies, while measuring latency and
throughput. Every experiment involved at least 1000 re-
quests. Each request was sent by the pseudo-browser to
the proxy, which multicasted it to the replicas, waited for
f + 1 = 2 identical replies, and finally sent the web
page back to the pseudo-browser. All experiments were per-
formed with no failed replicas, except experiment 4.

Experiment 1 consisted in measuring the throughput of
the service with a single client and a page of 100 bytes (Fig-
ure 5). The requests were sent sequentially by the client.
The parameterNa changed from 1 to 21 requests, i.e.,
the replicas waited for those numbers of requests to start
the PICK protocol. The figure shows that the throughput
slightly improves withNa. This result may seem coun-
terintuitive since, apparently, the higher the value ofNa,
the longer the replicas would have to wait to start PICK.
However, when the rate of requests is high, the time PICK
takes to run is enough to receive more thanNa requests, so

2 Available at: http://www.navigators.di.fc.ul.pt/software/ttcb/
3 http://www.rtai.org/
4 http://www.openssl.org/
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Figure 5. Experiment 1 (100 byte-pages)
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Figure 6. Experiment 2 ( Na = 6)

when PICK terminates another one starts almost immedi-
ately. Therefore, what constrains the throughput is the rate
of requests the proxy can multicast, which is constrained by
the rate of TBAs that can be executed by the TTCB.

Experiment 2 is similar to experiment 1 butNa was set
to 6 and the web page size was varied from 0 to 1500 bytes.
Figure 6 shows that the throughput reduces slightly with the
page size. From 100 to 1500 bytes the size of the page in-
creased 10 times but the impact on the throughput was low.
The reason for this behavior is that the constraint for the
throughput is not the bandwidth or the server processing
power as in typical Internet services, but the rate of TBAs
that the TTCB can execute and the cryptographic operations
(SSL channels and hashes in the multicast and PICK proto-
cols).

Experiment 3 evaluated the average latency of a request
(Figure 7). There was a single client,Na = 6 and the page
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Figure 7. Experiment 3 ( Na = 6)

size varied from 0 to 300 bytes. Once more, the times are
not considerably affected by the page size for the same rea-
sons as in experiment 1.

Experiment 4 measured the average latency and the
throughput when a server is silent, i.e., does not interact
with the protocol either because it crashed or an intrusion
occurred. With a message of 100 bytes andNa = 6, the av-
erage latency was 195 ms, considerably worse than the case
when all servers were correct. The cause of this delay was
the TBA service, that usually runs considerably faster when
all processes propose a value [9]. The throughput was 39.9
requests per second, which is slightly below the value when
all servers are correct.

All these values are considerably worse than the values
we measured for a non-replicated single Apache server with
pages of 100 bytes: 1400 requests per second. This is one of
the costs of making the server intrusion-tolerant, using com-
plex protocols, several servers, a proxy mediating each re-
quest/reply, and cryptographic primitives.

Comparing the performance of different systems is com-
plicated since the test settings are usually different. In this
case, our results can not even be compared directly with oth-
ers in the literature because we have an additional interme-
diary, the proxy, which introduces an additional delay. How-
ever, for the reader to have an idea, the throughput obtained
is better than Rampart’s [17] but worse than BFT’s [4]. Pre-
vious measurements we have made with other prototypes
show us that the current DISTRACT implementation can
still be considerably optimized.

7. Discussion

The paper presents an architecture for intrusion-tole-
rant services based on the state machine approach, DIS-
TRACT. The paper reports on our experience implementing



an intrusion-tolerant web server using this architecture. The
solution shows several interesting benefits: standard clients
and servers can be used without modification; and server di-
versity is supported transparently. The implementation can
be adapted for many TCP/IP services with minor changes.
The current performance results look promising when com-
pared with similar systems.

Future work will be pursuit in implementing more effi-
cient wormholes that can support faster services. The proto-
type will also be made more efficient, by redesigning some
parts of the code.
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[21] P. Veŕıssimo. Uncertainty and predictability: Can they be
reconciled? InFuture Directions in Distributed Computing,
volume 2584 ofLecture Notes in Computer Science, pages
108–113. Springer-Verlag, 2003.
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