1120

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 12, DECEMBER 2005

Solving Vector Consensus with a Wormhole

Nuno F. Neves, Member, IEEE, Miguel Correia, Member, IEEE, and Paulo Verissimo, Member, IEEE

Abstract—This paper presents a solution to the vector consensus problem for Byzantine asynchronous systems augmented with
wormholes. Wormholes prefigure a hybrid distributed system model, embodying the notion of an enhanced part of the system with
“good” properties otherwise not guaranteed by the “normal” weak environment. A protocol built for this type of system runs in the
asynchronous part, where f out of n > 3f + 1 processes might be corrupted by malicious adversaries. However, sporadically,
processes can rely on the services provided by the wormhole for the correct execution of simple operations. One of the nice features of
this setting is that it is possible to keep the protocol completely time-free and, in addition, to circumvent the FLP impossibility result by
hiding all time-related assumptions in the wormhole. Furthermore, from a performance perspective, it leads to the design of a protocol

with a good time complexity.

Index Terms—Distributed systems, Byzantine asynchronous protocols, consensus.

1 INTRODUCTION

REPLICATION of software components is a well-known
technique for improving the overall dependability of
distributed systems. If one can realistically assume a bound
on the number of failures, it is possible to avert their effect
by voting on the values returned by the replicas. However,
the construction of replicated services is a complex task,
especially if one considers environments where time limits
on the system operations are undefined and where
malicious (or Byzantine) failures can occur. In this setting,
consensus can play an important role because it can be used
in the solution of several problems, such as total order
broadcast or atomic commitment [1].

This paper presents a protocol for the vector consensus
problem in a Byzantine asynchronous system augmented
with a wormhole. Vector consensus is a form of agreement
where processes start with a value and attempt to decide on
a same vector. The main characteristic of this vector is that it
must contain a majority of values proposed by correct
(nonfaulty) processes. Although relatively simple in its
specification, the consensus problem has been shown to be
impossible to solve in a deterministic way in an asynchro-
nous system [2]. The only two solutions for vector
consensus that we are aware of utilize Byzantine failure
detectors to circumvent this impossibility result [3], [4].
Failure detectors were originally proposed to discover if
some processes engaged in a distributed computation had
crashed [5]. Later, they were extended in order to detect
malicious behavior and to support the execution of
Byzantine resilient protocols [6], [7], [8].

Failure detectors are a very elegant concept from both a
theoretical and architectural point of view. They lead to
protocols that are completely asynchronous since all time-
related assumptions can be hidden in their implementation.
On a malicious environment, however, they are relatively

e The authors are with the Departamento de Informdtica, Faculdade de
Ciéncias da Universidade de Lisboa, Bloco C6, Campo Grande, 1749-016
Lisboa, Portugal. E-mail: {nuno, mpc, pjo}@di.fc.ul pt.

Manuscript received 10 Aug. 2004; revised 21 Jan. 2005, accepted 28 Jan.
2005; published online 20 Oct. 2005.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0200-0804.

1045-9219/05/$20.00 © 2005 IEEE

difficult to build. Although recent advances in the area of
intrusion detection have resulted in significant improve-
ments to the existing solutions, there are still many aspects
that need to be addressed. It is inherently difficult to
envision all possible malicious activities and, at the same
time, to separate them from correct actions. Practical
experience demonstrates that is quite easy for a detection
system to generate thousands of alarms per day, most of
which are false alarms (i.e., benign events that are
incorrectly considered attacks) [9]. This problem will tend
to be exacerbated in the future since the hacker community
has been developing tools whose only purpose is to flood
the detection systems with unrelated attacks to prevent
them from carrying on their work (i.e., a denial of service
attack) [10]. Furthermore, it has been argued that Byzantine
consensus cannot be solved with a generic failure detector
and that at least some of its components will have to be
protocol dependent [11].

In this paper, we use a different approach. We begin by
postulating a hybrid distributed system model, foreseeing
the notion of an enhanced part of the system with “good”
properties otherwise not guaranteed by the “normal” weak
environment. Wormbholes are the constructs which materi-
alize this notion, augmenting the asynchronous environ-
ment with the availability of a few services not supported
by the weak environment [12]. For example, they can offer
some secure operations in a system where Byzantine
failures occur. Contrary to “normal” operations, these
operations would always return the expected results or, in
the worst case, they would deliver no data if a crash
occurred. The paper utilizes a specific distributed worm-
hole that offers secure services. Since the wormhole is a
small component and provides limited functionality, it can
be proven correct and constructed with high coverage of its
assumptions.'

The vector consensus protocol is executed by a set of
processes running in the asynchronous part of the system
where they can experience arbitrary failures. One can
assume that an adversary controls the behavior of a

1. An implementation of a wormhole has been built to prove the
concept—for details see [13]. This wormhole, however, has stronger
properties than what we will require in this paper.

Published by the IEEE Computer Society

NEVES ET AL.: SOLVING VECTOR CONSENSUS WITH A WORMHOLE

Process uses the
payload network to
send messages to
other processes

Process calls a
service of the
% local wormhole

Local wormhole
exchanges data
through the secure
control channel

2 o @ .o
o= = B = I =

Fig. 1. Architecture of a system with a distributed wormhole (represented
in dark, the payload system is asynchronous and can have Byzantine
failures; represented in white, the wormhole is partially synchronous and
can only crash).

number of processes (at most f out of a total n > 3f + 1)
and makes them act maliciously. For example, these
processes can transmit bad values and collude with one
another while attempting to violate the protocol properties.
Moreover, the adversary can attack the messages ex-
changed among correct processes when they travel through
the network. Normally, protocols for these environments
would suffer in efficiency and/or determinism. However,
since the wormhole is accessible to all processes, sporadi-
cally they can rely on its services for the correct execution
of (small) crucial operations.

The main contributions of the paper are: 1) It demon-
strates with a new protocol that vector consensus can be
solved with the help of a wormhole. 2) It shows that the
protocol can circumvent the FLP impossibility result with-
out having to explicitly make any time assumptions. The
only hypothesis it needs to make is that the wormhole
services eventually terminate and provide the expected
results. 3) From a performance perspective, the protocol has
good time complexity.

2 SysTEM MODEL

The consensus protocol is run by a finite set P = {py,

..,bn} of n processes. Processes are executed in a system
divided in two parts: the payload system and the wormhole
(see Fig. 1). The payload system corresponds to what is
usually perceived as “the system,” and it includes one node
per process, where computations are carried out, and a
payload network, where messages can be exchanged. A node
contains the expected software, such as the operating
system and middleware components, which offers services
that can be invoked by the processes. Processes can only
send messages through the payload network, which is
assumed to be fully connected.

The wormbhole is a distributed component with local
parts at each node and a private network called the control
channel. The local wormholes can be treated by processes
like any other software component in the node.> They
provide a limited set of services that can be invoked (see

2. For simplicity, we will be assuming throughout the paper that each
node has a process and a local wormhole. In practice, we could have a
process in one node and the local wormhole in another, and they would
communicate with each other using a secure channel on the payload
network.

1121

Section 2.1). In some cases, the implementation of these
services might require the exchange of information among
the local wormholes. Whenever this happens, the control
channel is used to accomplish this communication, and not
the payload network.

Synchrony Assumptions. The payload system, and,
consequently, the execution of the processes, is asynchro-
nous. As a result, there can be no assumptions about the
relative speed of processes and no bounds on message
delivery delays (for messages transmitted through the
payload network). The wormhole is assumed to have
enough synchrony to ensure that its services eventually
terminate and a result is returned to the processes. A
partially synchronous model would be enough to imple-
ment the services considered in this paper [14], [15], [16].

An invocation of a wormhole service is initiated by an
asynchronous process and then is carried out in the
partially synchronous part of the system. From the point
of view of a process, there are no limits on the time a
request takes to reach the wormhole interface (a similar
reasoning can be made for the response). Therefore, this
implies that there are no time bounds on the invocations of
wormhole services (one can only assume that they are
eventually completed).

Failure Assumptions. The payload system can suffer
Byzantine faults. Since processes are executed in this part of
the system, they are allowed to exhibit arbitrary behavior
whenever they fail. This might mean, for instance, that they
can stop working, skip some steps in the protocol, give
invalid information to the wormhole or the other processes,
or start colluding with other malicious processes while
attempting to break the properties of the protocol.

Communication through the payload network and
service calls to the local wormhole can also suffer Byzantine
faults. Messages can, for example, be removed or altered by
an adversary while they are in transit between processes.
Service invocations can be intercepted and modified while
in progress between a process and the local wormhole
interface. It is assumed, however, that communication
channels are fair, which means that if a process sends
infinitely many messages to a single destination, then
infinitely many of those messages are correctly received.
The same type of assumption is also made for the calls to
the local wormhole. If, for some reason, one of these
assumptions is violated for a process, then this process is
considered faulty.

The wormhole, which includes the control channel,
only suffers crash failures. Therefore, a local wormhole
either provides its services as expected or it simply stops
running. This assumption should hold even if malicious
adversaries manage to attack and compromise a node
with a local wormhole (for implementation details, see
Section 5 and [13]).

The protocol presented in the paper requires the
invariant that no more than f processes fail, out of a total
of n>3f+1.

Payload Channel Assumptions. To simplify the com-
munication among processes, it is possible to use secure
cryptographic algorithms (e.g., hash functions) to build
channels with stronger properties. In the rest of the paper, it

1122

TABLE 1
Interface of the Wormhole

Local Authentication:
eid, chlg-sign «— W _local Auth(key, chlg)
Trusted Block Agreement:

error,value, prop-ok «—

— W_TBA(eid, elist, agid, quorum, decision, value)

will be assumed that each pair of processes is connected by
a secure channel on the payload network, with the following
characteristics:

e Eventual reliability: If p; and p;, are correct and p; sends
a message M to py, then p;, eventually receives M.

e Integrity: If p; and p; are correct and pj; receives a
message M with sender(M) = p;, then M was really
sent by p; and M was not modified in the channel.®

These two properties are simple to implement if one

assumes that hash functions cannot be subverted by
malicious entities and that each pair of correct processes
shares a symmetric key only known to them. Eventual
reliability is achieved by retransmitting the messages
periodically until an acknowledgment arrives (do not forget
our previous assumption of fair channels). Integrity is
accomplished with the help of Message Authentication
Codes (MACs), which allow the detection of message
forgeries and modifications [17]. A MAC is a cryptographic
checksum, obtained with a hash function and a symmetric
key. When p; sends a message M to py, it concatenates a
MAC to M. When p;, receives the message, it calculates an
equivalent MAC and compares it with the incoming MAC.
If they are different, then the message is fake or was altered
and, therefore, it is discarded.

2.1 Wormhole Interface

The wormhole provides a small number of services to the
processes. The prototypes for these services are presented in
Table 1. The first service is not directly used by the
consensus protocol, but by the code that will eventually call
the consensus function. The Local Authentication Service
serves to set up the communication between the process
and the local wormhole. It lets the process authenticate the
wormhole (through the exchange of challenges—chlg and
chlg_sign) and establish a shared symmetric key (key) to
protect the data transmitted between the process and the
local wormhole. This service also returns a unique
identifier, called the entity identifier (eid), that should be
used in future interactions with the wormhole.

The only service invoked by the consensus protocol is the
Trusted Block Agreement Service or, simply, TBA Service. In
this service, processes propose a value and then they get a
result. The result is calculated by applying an agreement
function to the proposed values. Values are blocks of data
with a small size (20 bytes). Since wormhole resources are
limited and have to be shared among all applications, this
service should be used only to execute critical steps of

3. The predicate sender(M) returns the sender field of the message header.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 12, DECEMBER 2005

protocols that run mostly in the payload part of the system.*
The service guarantees the following properties:

e Integrity. Every correct process decides at most one
result.

e Agreement. No two correct processes decide
differently.

e Validity. If a correct process decides result, then result
is obtained applying the function decision to the
values proposed.

e Termination. Provided that quorum proposals arrive
by different processes to the wormhole, every correct
process eventually decides a result.

The parameters of the TBA service have the following
meanings (see Table 1): eid is the identifier previously
mentioned, and elist is a list of the eid’s of the processes
involved in the TBA. agid is an unique identifier for the
agreement and this group of processes (agid can be reused
for different instances of elist). The TBA applies the decision
function to at least quorum values. Therefore, quorum defines
the minimum set of values that will be considered in the
agreement. The consensus protocol will use only one
decision function, called the TBA_MAJORITY, which
returns the value proposed by most entities. After the
conclusion of the agreement, the service returns the
following values: 1) an error code, 2) the decided value,
and 3) a mask prop-ok with one bit set for each process that
proposed the value that was decided.

If a process is late and proposes after the TBA has started
to be executed, then its value will probably be disregarded.
Nevertheless, it will be able to collect the decision that was
calculated using the values proposed by the other pro-
cesses. For simplicity, it is assumed throughout the paper
that the wormhole can record the output of a TBA for a long
time. In practice, the wormhole will have to garbage collect
these results, and a delayed process that is unable to obtain
a decision necessary for its correct execution should be
forced to crash and fail. One should notice that this action
will not compromise the safety and liveness properties of
the protocol since it is built to tolerate arbitrary failures (this
behavior simply corresponds to a specific kind of failure).

3 THE PROBLEM

In the consensus problem, a group of processes attempts to
reach agreement on a set of values despite a number of
failures. The decision is calculated using the original values
proposed by the processes. More precisely, the Vector
Consensus problem can be defined as [3]:

e Validity. Every correct process decides on a vector
vect of size n such that:

1. For every 1 <1 < n, if process p; is correct, then
vect]t] is either the initial value of p; or the value
1 and

4. The current implementation uses an admission control mechanism to
prevent processes from causing the exhaustion of the wormhole’s resources.
If processes try to use the wormhole services too much, then they get
delayed. Nevertheless, the correctness of the protocols is always ensured
because they are built for asynchronous systems.

NEVES ET AL.: SOLVING VECTOR CONSENSUS WITH A WORMHOLE

2. atleast f + 1 elements of the vector vect are the
initial values of correct processes.
e Agreement. No two correct processes decide
differently.
o Termination. Every correct process eventually
decides.

Validity and Agreement properties must always be true,
otherwise something bad might occur. The termination
property asserts that something good will eventually
happen.

4 SOLVING VECTOR CONSENSUS

This section presents a protocol for vector consensus on an
asynchronous system augmented with a wormhole. The
system, with the exception of the wormhole, can suffer from
arbitrary failures. The protocol uses the payload channel to
transmit most of the information, which includes the initial
values and the vectors of values. Then, at certain points of
the execution, the protocol relies on the TBA service of the
wormbhole to securely exchange a small amount of data, that
enables it to determine if a decision can be reached.

Before we start a more detailed description of the
protocol, we would like to emphasize that the consensus
problem does not become much easier simply because our
solution utilizes a low level agreement service (the TBA).
First, the difficulties created by the asynchronous setting
continue to exist because any of process execution, com-
munication through the payload channel, and wormhole
service invocations might be delayed by an unknown
amount of time. Second, both the node and the commu-
nication channels might experience Byzantine failures,
which means that wrong, contradictory, or malicious data
can be received by the correct processes.

4.1 The Protocol

Processes can only start running the protocol after they
perform some setup operations, such as calling the
wormhole’s Local Authentication Service to obtain an eid
identifier and selecting the group of processes that will
participate in the consensus. Moreover, they will also need
to get a unique consensus identifier prior to each execution
of the protocol.

A process initiates the protocol when it calls the
consensus function (see Algorithm 1 (Fig. 2)). This function
has three arguments, and the first two should be the same in
all processes, otherwise more than one instance of con-
sensus is started. Argument elist determines the group and
contains the identifiers of all processes involved in the
consensus, cid is the consensus identifier, and value; is the
value being proposed by process p;. value; has an arbitrary
number of bytes, which means that it could have, for
example, one bit or a billion bytes (the first case would
correspond to the problem of binary vector consensus).

The execution of the protocol can be divided into two
phases. In the first phase, a process digitally signs its value
using an asymmetric algorithm (e.g.,, RSA) and then it
broadcasts the signed value through the payload network
(Lines 6 and B-value message in 8). Next, it constructs a
vector with the initial and received values (Lines 7 and
9-13). Process p; stores the vector in the i’s position of array-
of-vectors. This vector has 2f+1 filled entries, which

1123

Algorithm 1 Vector consensus protocol (run by every p;).

function consensus(elist, cid, value;)
round < 0 {round number}
hash-v — L {hash of the decided vector of values}
bag-decide +— 1 {bag of received Decide messages}

array-of-vectors — ((L, ..., L), .., (L, ..., 1)) {array of vectors}

AN W~

6 signed-value; < sign(i, value;)

7 array-of-vectors[i][i] <« signed-value;
8 broadcast(B-value, i, signed-value;)

9 repeat

10 receive(B-value, k, signed-valuey,)
11 if (signed-valuey, is correctly signed) then

12 array-of-vectors[i][k] < signed-valuey, {save py’s value}
13 until (array-of-vectors[i] has 2f + 1 values from different processes)
14 broadcast(B-vector, i, array-of-vectors[i]) {use payload network}
15 activate task(T1, T2) {start two concurrent tasks}

{sign my value}
{save my value in my vector}
{use payload network}

16 Task TI:
17 when (receive(B-vector, k, vectory)) do
18 array-of-vectors[k] + vectory,
19 when (receive(Decide, k, vectory)) do
20 bag-decide < bag-decide U {vectory,}
21 when (hash-v # 1) and
(Elvectorkebagfdecide : Hash(vectory) = hash-v)) do
22 return (vectory,)

23 Task T2:

24 while true do

25 index < (round mod n) + 1

26 round < round+1

27 agid «— cid + 1/round

28 v «— getNextGoodVector(array-of-vectors, index)

29 out «— W_TBA(eid, elist, agid, 2f + 1, TBA_MAJORITY, Hash(v))
30 if (at least f + 1 proposed the same value) then

31 if (out.value = Hash(v)) then

32 if (not all processes proposed the same value) then

33 send (Decide, i, v) to all processes that did not propose v

34 return (v)

35 else

36 hash-v = out.value

37 break () {finish the execution of this task}

Fig. 2. The vector consensus protocol (Algorithm 1).

ensures that at least f+1 of them belong to correct
processes (at most f processes can fail). Moreover, since
processes use secure channels to transmit information (see
Section 2), these f + 1 or more entries contain the originally
proposed values and not some erroneous information that
was replaced in the network by an adversary. The
constructed vectors, however, will possibly be different at
the various processes because B-value messages might
suffer distinct delays, and malicious processes might not
send the same values to all destinations.

In the second phase, the protocol chooses one of the
constructed vectors. A process begins by broadcasting its
vector through the payload network (B-vector message) and
then it initiates two tasks that will run in parallel (Lines 14-
15). Task T1 receives the several types of messages (Lines 17-
20) and terminates the protocol when a decision is attained
(Line 22). The other task ensures that correct processes agree
on the same vector. To achieve this objective, it executes a
round-based procedure where processes try to pick one of
the exchanged vectors. The current round vector is selected if
it collects enough votes. Otherwise, a new round is initiated,
and another vector is considered for approval. A vector
might not be chosen due to two basic reasons: It still has not
arrived at the destinations and, consequently, not enough
processes will give their support to it, or it was sent by an

1124

adversary who is trying to disrupt the protocol, either by
broadcasting bad vectors or by transmitting the vector to a
small subset of the processes.

A process executing task T2 carries out the following
steps. It starts by updating the round counter and the
wormhole agreement identifier agid (Lines 26-27). If one
assumes that cid is an integer, it is possible to determinis-
tically generate distinct agreement identifiers by simply
adding 1/round to cid. Next, it calculates an index based on
the current round number and chooses the vector that will
be proposed (Lines 25 and 28). Below, we explain that the
selection procedure guarantees that the vector contains
good values. Then, the process calls the TBA service of the
wormhole with an hash of the vector (obtained with the
Hash() function) and a quorum of 2f + 1 and waits for the
outcome of the agreement.

Processes can propose distinct hashes; however, they all
get the same result from the TBA. If one of the hashes was
backed up by f+ 1 or more processes, then at least one
correct process has the vector corresponding to this hash.
Therefore, this vector can be selected as the decision of
consensus and the function can return (Lines 30-34).

In some cases, a few correct processes might not have the
decided vector (e.g., an adversary sends a good vector to a
subset of the processes). To ensure that these processes are
also able to terminate, a Decide message containing the
vector is transmitted through the payload network (Lines 32-
33). Although not shown in Algorithm 1, mask out.prop-ok is
used to determine which processes proposed the chosen
hash. A malicious process might also transmit a Decide
message with bad content, attempting to trick processes to
return a wrong value. To prevent this situation, processes
save the hash provided by the TBA before stopping task T2
(Lines 36-37) and, then, they use the hash to find out which
vector should be returned (Lines 19-22).

Algorithm 2. Select the vector to be proposed

1 function getNextGoodVector(array-of-vectors, index)

2 while true do

3 new-vector — (L,..., 1)

4 for (each k nonempty entry of array-of-vectors[index]) do
5 if (array-of-vectors[index][k] is correctly signed) then

6 new-vector[k] «—

array-of-vectors[index][k].value {only save the value}

7 if (new-vector has at least 2f 4+ 1 nonempty entries) then
8 return (new-vector)
9 index «— (index mod n) + 1

4.1.1 Selecting a Good Vector

When a process receives a vector, it has no simple way to
determine if the sender was malicious or not. The process is
only certain of one thing—the vector was not modified from
the source until the arrival because communication chan-
nels are secure. However, if the vector was transmitted by a
malicious process, then it can contain incorrect information
(e.g., it can say that correct process p; proposed value X
when, in fact, it sent Y). To avoid this type of attack, the
getNextGoodVector() function only returns good vectors. A
vector is good if it satisfies the requirements imposed by the
consensus specification (see Section 4), which basically

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16,

NO. 12, DECEMBER 2005

Consensus(elist, cid, value)

B-value B-vector Decide
—_——

P1

P2

P3

P4

(
AN

Sends B-value
to a subset of
processes

Does not send B-vector
and provides wrong
hash to the wormhole

Sends wrong value
in a Decide message

Fig. 3. Example execution of the protocol (with n =4 and f =1).

implies that it has at least 2f 41 filled entries and, from
those entries, f+ 1 or more came from correct processes.

Function getNextGoodVector() goes through the array-of-
vectors in a round-robin fashion (array-of-vectors[index],
array-of-vectors|(index mod n) + 1], ...) until a good vector is
found (see Algorithm 2). A few tests are performed to
accomplish this objective. The first test finds out if the
entries of the vector contain valid values, i.e., the actually
proposed values and not some replacements (Lines 4-6).
Since a value has an associated digital signature that cannot
be forged by an adversary, by verifying its signature one
can be sure of the validity of a value. Next, the function
finds out if the resulting vector has at least 2f + 1 values
(Lines 7-8). Since empty vectors are automatically skipped,
no time is wasted on trying to agree on vectors belonging to
crashed processes, which potentially increases the overall
performance of the protocol.

Since messages can suffer from unknown delays, when a
process calls getNextGoodVector() for the first time, it might
not have received the vectors from the other processes.
However, the process will not be blocked forever in this
function due to the following reasons: First, task T1 runs in
parallel and continues to add vectors to array-of-vectors
(Lines 17-18 of Algorithm 1); second, at least one good
vector always exists—the vector belonging to this process.

4.2 An Example Execution

Fig. 3 contains a space-time diagram with the execution of
four processes and the wormhole. To simplify the diagram,
the wormhole is represented as a single line even though it
is a distributed component. Vertical lines from processes to
the wormhole correspond to wormhole service invocations
that are carried out locally at each node.

The diagram represents three correct processes, pi
through ps, and one malicious process, ps. Correct processes
start by broadcasting their signed values (the B-value
message). In this scenario, process p; did not follow the
protocol and only sent its value to process p; and to itself.
After receiving three (ie., 2f+1 with f=1) values, a
correct process broadcasts a vector containing all the
collected signed values (the B-vector message) and, then,
attempts to propose a hash of a vector to the wormhole.
Processes p; to ps propose, respectively, the vectors of: p;, ps
(since p; vector got delayed, this is the first nonempty

NEVES ET AL.: SOLVING VECTOR CONSENSUS WITH A WORMHOLE

vector in py’s array-of-vectors), and p;. Process p, misbehaves
again and proposes a wrong hash in this round. The TBA
starts running as soon as it gets three (i.e., 2f + 1) hashes,
which means that p3’s proposal is rejected.

The decision of the TBA could either be the hash of p; or
p2’s vectors or the wrong value of p, since all proposals had
one vote. Let us assume that the TBA selected p;’s vector.
Processes p; to ps get this result, but, at the same time, they
notice that only one vote was cast for this proposal.
Therefore, they will continue running the protocol because
the quorum necessary for completion is two (ie., f+1)
votes. Process ps sends a wrong Decide message that is not
accepted by the other processes.

In the second round, the three correct processes propose
the hash of psy’s vector since the index variable is 2 for the
current round. This time, p, chooses again to propose a
value, but also a wrong value. In this round, the TBA ends
up accepting all proposals because they arrive at approxi-
mately the same time. Next, processes determine that the
result of the TBA was the hash of py’s vector and, since there
was a sufficiently large quorum (3), they are able to
terminate with py’s vector as the decision. Before returning,
the correct processes send the decided vector to process p4
(in a Decide message) because it did not propose the hash
of the right vector.

4.3 Implications of the FLP Impossibility Result
Fischer et al. showed that any consensus protocol for
asynchronous systems has the possibility of nontermination
if a single process is allowed to crash [2]. In the past,
basically two solutions have been employed to circumvent
this result. The first resorts to the use of randomization [18],
[19], and the second extends the basic asynchronous model
with some time-related assumptions. These assumptions
can be made explicitly [15], [14] or they can be encapsulated
in some construct such as an unreliable failure detector [5].
Of course, in the implementation of the failure detector
proper, they are necessary to ensure that an expected
behavior is observed (e.g., certain completeness and
accuracy properties are verified).

The consensus protocol described in the paper runs on
the payload part of the system. Therefore, since this part is
asynchronous, the protocol could potentially be bound by
the FLP impossibility result. Now, just like in an architec-
ture with a failure detector, the system is augmented with a
box—the wormhole, that has stronger synchrony assump-
tions and that provides some simple services. These
services can be called by the protocols and, eventually,
they return some interesting results. Furthermore, they are
sufficiently strong to allow FLP to be circumvented.

The appendix of the paper presents the proofs that the
protocol implements all properties of vector consensus,
including termination.

5 EXPECTED PERFORMANCE

This section evaluates the consensus protocol in terms of
message and time complexities. It starts by giving a brief
overview of the implementation of the wormhole and TBA
service and then it analyzes the protocol. For more details on

1125

the assumptions and implementation details of the worm-
hole, we invite the reader to look into the papers [20], [13].

5.1 Wormhole Implementation

The wormhole used in this paper could be constructed in
different ways and with distinct levels of coverage of the
assumptions. For instance, a high coverage wormhole could
be built with dedicated hardware. The implementation of
the local wormhole could be done in a special hardware
board (e.g., a PC/104 board) with a small and well-defined
interface to the rest of the computer. Depending on the
location of the nodes, the control channel could be based on
a separate network, with messages protected with crypto-
graphic operations.

At the moment, however, we have chosen a distinct
approach, which has less coverage, but has the advantage of
allowing the free distribution of the wormhole to the research
community.” The existing prototype is called the Trusted
Timely Computing Base (TTCB) and it is based on COTS
components. The local TTCB resides inside a real-time
kernel, which is hardened in order to be secure, and the
control channel uses a dedicated Ethernet network. In
relation to the system model that we have described
previously, the TTCB offers stronger synchrony properties
than what is required. The current implementation ensures
that the wormhole is synchronous, and we would only need
it to be partially synchronous. Regarding security, the TTCB
was built in such a way that, with reasonable coverage, it only
fails by crashing, which is exactly what we have assumed.

In the current prototype, each node is composed of
standard PC hardware running RTAI, a real-time kernel
based on Linux [21]. Two Ethernet networks connect the
nodes, one for the payload network and another for the
control channel. RTAI modifies the Linux kernel to allow a
real-time executive to take control of the node and to enforce
real-time behavior on some real-time (RT) tasks. RT tasks
are special loadable kernel modules (LKM). Linux executes
as the lowest priority task and its interruption scheme was
changed to be intercepted by RTAI The main components
of the local TTCB are a library, an LKM, and some RT tasks.
The library is linked with the applications and it offers an
interface to the services provided by the wormhole. There
are, at the moment, two versions of the library, one for C
and another for Java applications. RT FIFOs are used to
exchange data between the library and the rest of the TTCB.
All operations with timeliness constraints are executed by
RT tasks. A local TTCB has at least two RT tasks to handle its
communication: one to send messages to the other local
TTCBs and another to receive and process incoming
messages.

From a security perspective, RTAI is quite similar to
Linux. The main problem that has to be addressed is the
(excessive) privileges of the superuser. A superuser
usually has complete control of the node and can change
the behavior of any individual resource. Since it is
relatively simple to become a superuser once a node is
penetrated, some extensions of Linux had to be used to
limit its the power. Linux capabilities [22] are access control

5. The TTCB wormhole is available at http://www.navigators.di.
fc.ul.pt/software/ttcb.

1126

lists associated with processes, allowing a fine grain of
control on how certain objects are utilized. At boot time,
by removing some capabilities of the superuser, it is
possible, for instance, to seal the kernel, i.e., to disable any
changes in the kernel memory or the insertion of new
code in the kernel.

The TTCB control channel must be protected. This
objective is achieved, for instance, by restricting the access
to the control channel device driver only to code running
inside the kernel (the local TTCB).

5.1.1 TBA Service

Since the TBA service is provided by the TTCB, it can be
implemented with a simple agreement protocol tolerant to
crash failures and under the synchronous time model.
TTCB protocols are built on top of an abstract network (AN)
with a number of properties (see [13] for more details). The
AN is implemented with a set of simple adaptation
mechanisms and is used to keep protocols independent of
the control channel network technology. Examples of AN
properties are: bounded message transmission delay,
bounded omission degree (Od)—maximum number of suc-
cessive omissions in an interval of time, and integrity,
confidentiality, and authenticity of transmitted data.

The agreement protocol works in periodic send and
receive rounds. When the local TTCB receives a proposal, it
puts the value and some control information in a table,
awaiting for the beginning of the next send round. In order
to tolerate omissions from the network, the messages are
multicasted Od + 1 times.

The protocol uses a coordinator, typically the local TTCB
corresponding to the first eid in elist, to select which votes
are to be considered. The selection criteria tries to use as
many votes as possible, with a minimum defined by
quorum. Before a decision is taken, the coordinator waits
for at least one message from each local TTCB (if they have
nothing to send, they transmit an empty message). There-
fore, if all processes propose to the TBA at approximately
the same time, then all votes are considered. At the end, the
coordinator distributes the decided value and the mask
prop-ok to the local TTCBs to allow the termination of the
TBA at every node.

5.2 Time Complexity

This section evaluates the performance of the consensus
protocol under two scenarios: failure-free runs and execu-
tions with crash and Byzantine failures.

5.2.1 Performance without Failures

The main factors that influence the time complexity of a
protocol developed for a Byzantine failure model are the
communication delays and the cryptographic calculation
costs. The actual values of these overheads, however, are
highly dependent of the type of network being employed
and on the processing capabilities of the nodes. For
instance, on a LAN environment with common PCs, the
computation of a signature usually takes much more time
than the transmission of a message. On the other hand, the
opposite might occur on a WAN setting because network
delays can be much larger. Cryptographic operations do not
all introduce the same performance penalties—MACs can

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 12, DECEMBER 2005

TABLE 2
Time Complexity Comparison for Best-Case Scenario
| Protocol | LatDeg ‘ MSign | GVer | Artifact |
DS [3] S 5 3 Failure detectors
BHRT [4] 3 3 2 Failure detectors
Our protocol 4 1 1 ‘Wormbhole

be calculated quite efficiently, while signatures with
asymmetric cryptography can introduce significant over-
heads [23]. Therefore, in order to make our evaluation as
technology independent as possible, we have selected for
the analysis a set of metrics that measure the number of
times certain operations are executed. These operations
correspond to the most important sources of overheads that
the protocol will experience.

The metric latency degree was introduced by Schiper to
measure the minimal number of communication steps
needed by a protocol to solve a given problem [24]. The
basic assumptions made by this metric are: Local processing
is negligible (i.e., takes very little time), and message
transmission time is constant and equal to a unit of logical
time. The specification of the metric is relatively simple and
is based on a slight variation of Lamport’s logical clocks [25].
The following rules are used to define the latency degree:

1 Send/broadcast/multicast events and local events on
a process p; do not change p;’s logical clock.

2 Let ts(send(M)) be the timestamp of the send(M)
event; the timestamp carried by message M is
defined as ts(M) = ts(send(M)) + 1.

3 The timestamp of a receive(M) event on a process p;
is the maximum between ¢s(}/) and the timestamp
of the event at p, immediately preceding the
receive(M) event.

Given a run produced by protocol P, the latency of P is
defined as the largest timestamp of all decide events in this
run. The latency degree of protocol P is the minimum latency
of P over all possible runs that can be generated by this
protocol.

In the best case, where all processes are correct and
execute at the same time, the vector consensus protocol has
a latency degree of 2 plus the latency degree of the TBA
service of the wormhole. This corresponds to the following
scenario: All processes start with a timestamp equal to 0;
then, processes broadcast their signed value (carrying a
timestamp of 1) and wait for the arrival of 2f + 1 values;
next, they broadcast their vectors (carrying a timestamp of
2); processes receive the vector of p; and propose a hash of it
to the TBA service (at this moment, the local timestamp of
all processes is 2); the TBA includes every vote in the
decision because processes are proposed at the same
instant; since each process gets the same decision, they
can all terminate immediately, with a timestamp of 2 plus
the latency of the TBA.

If one applies the above rules to the current implementa-
tion of the TBA service, the resulting latency is 2.
Consequently, the overall latency degree of the vector
consensus protocol is 4. Table 2 compares the latency
degree (LatDeg column) of our protocol with the two other

NEVES ET AL.: SOLVING VECTOR CONSENSUS WITH A WORMHOLE

solutions for vector consensus. Both protocols by Doudou
and Schiper (DS) [3] and Baldoni et al. (BHRT) [4] rely on
Byzantine failure detectors. In the calculations, we have
assumed that failure detectors make no mistakes (i.e., they
behave as a perfect failure detector).

The metrics message signature degree and group verification
degree are used to measure the number of times certain
cryptographic operations are executed. These operations
were selected because they are the only ones that introduce
relevant processing delays in the protocols under study.
The following rules define these operations:

e Message signature: The sender process signs a
message or some fields of a message and the receiver
verifies the signature when the message arrives.

e Group verification: At some point during the
execution of a process, the signatures of a group of
(at least 2f 4 1) data elements are verified.

Given the run of protocol P with minimum latency
(which corresponds to the latency degree), the message
signature degree counts the number of message signature
operations executed in the critical path of the run. Likewise,
the group verification degree counts the number of group
verification operations.

Our protocol uses a single message signature when
processes transmit their values in the B-value message.
Messages sent through the payload channel are protected
with MACs that can be efficiently calculated (see Section 2).
A group verification is performed whenever a process
selects a good vector in function getNextGoodVector().

Protocols DS and BHRT sign all messages exchanged
among processes and add to certain messages a certificate.
Certificates are used by the failure detectors to determine if
processes are behaving in a malicious manner. They contain
a number of previously observed messages (at least
[(2n 4+ 1)/3]), whose signatures have to be verified when-
ever certificates are received. Therefore, the arrival of a
certificate corresponds to a group verification operation.

Table 2 also presents the message signature and group
verification degrees of the three protocols (MSign and GVer
columns). If one takes into consideration both the commu-
nication delays and the cryptographic overheads, in a LAN
setting and with the typical processing capabilities of the
current nodes, our protocol will perform better than
previous solutions.

5.2.2 Performance with Failures

The vector consensus protocol was designed to tolerate
intrusions in some processes. Therefore, it is important to
understand the behavior of the protocol in some failure
scenarios. In particular, we will determine the worst
performance of the protocol when there are f failed
processes at the beginning of the run. Throughout the
analysis, we will assume that the network works correctly
and that correct processes start to execute at the same
time. Table 3 presents the performance of our protocol
when the f processes are crashed and when they act in a
Byzantine way.

In the crash failure scenario, our protocol has the same
time complexity as in the best case run. Function getNext-
GoodVector() disregards the empty vectors and processes

1127

TABLE 3
Worst Time Complexity for a Scenario with f Failures

| | Protocol | LatDeg ‘ MSign | GVer | SDeg ‘
DS [3] S+2f | 5+2f | 3+° 0
Crash BHRT [4] 3+f 3+f 2+f 0
Our protocol 4 1 1 0
DS [3] S5+2f | 5+2f | 3+f f
Byzantine | BHRT [4] 3+f 3+f 2+f
Our protocol | 4 + 2f 1 1 +f 0

simply decide on the vector of the first correct process.
Consequently, no performance is lost. Protocols DS and
BHRT have a cost associated with skipping a failed
coordinator. Two or one messages, respectively, for each
protocol, have to be exchanged among correct processes to
ensure that a new round is initiated with a different
coordinator. In the worst case, the first f coordinators have
all crashed, which introduces some overheads.

Since Byzantine processes cannot break the properties of
vector consensus, the worst action they can perform is to
delay (as much as possible) the execution of the protocols
without being discovered. For all three protocols, the most
damaging situation corresponds to a setting where the first
f processes are malicious. In our protocol, each bad process
can postpone the completion of consensus by sending
contradictory vectors to the correct processes, which results
in an inconclusive TBA return value. The cost associated
with trying the vector of the next process is a TBA execution.

The two main overheads that can be introduced by a
malicious process in the DS and BHRT protocols are the
need for extra messages to skip the coordinator and a
suspicion delay. The suspicion delay is defined as the interval
necessary for a failure detector to start suspecting that a
process has failed. A malicious coordinator process can
perform the following simple attack to delay the computa-
tion: It fakes a congested network by stopping message
sends and, then, when enough processes suspect its failure,
it reinitiates communication. With this procedure, the
process forces the execution of a new round, without being
detected as malicious and, at the same time, it maximizes
the duration of the current round. A failure detector that
tries to reduce the number of the false suspicions
necessarily has a suspicion delay (several times) larger
than the typical message transmission interval. Table 3 also
presents a suspicion degree that counts the number of
suspicions delays introduced by malicious processes in
the critical path of the minimum latency run (column SDeg).

5.3 Message Complexity

It is relatively simple to see that, in the best case, the
number of messages transmitted through the payload
network is O(n?) if point-to-point communication is used
and O(n) if broadcast communication is available.

6 RELATED WORK

Throughout the years, several agreement problems have
been proposed and solved in the literature (a few examples

1128

can be found in [26], [5], [27], [28]). These problems
basically allow processes to reach consensus on a value or
set of values despite the existence of a number of faulty
processes. Depending on the system model, in particular on
the synchrony assumptions, it has been shown that, in some
cases, it is impossible to deterministically solve consensus
(see, for instance, [29]). Therefore, several ways have been
proposed to circumvent these impossibility results, such as
randomization [19], [18] and failure detectors [5].

Dwork et al. [14] studied how Byzantine consensus could
be solved in different kinds of partially synchronous
systems. Protocols were based on the rotating coordinator
paradigm, where, in each round, a process attempts to
impose its value as decision. Some of the protocols had to
utilize signatures with asymmetric cryptography.

More recently, a few consensus protocols that rely on
Byzantine failure detectors have been proposed [6], [7], [11],
[3], [4]. All these protocols employ the rotating coordinator
paradigm and use failure detectors to find out if the current
coordinator is preventing progress. If this is the case, then
processes cooperate to initiate a new round with a different
coordinator. Message signatures and certificates help failure
detectors to find out malicious actions during the processes
execution.

Vector consensus has some similarities to the interactive
consistency problem [30] that has been extensively studied
in the literature. The main requirement where they differ is
on the number of initial values of correct processes that the
vector must contain—in one case, it has to include a
majority and, in the other, all values. Most of the work on
interactive consistency was done in synchronous systems,
while vector consensus has been solved in asynchronous
environments.

To our knowledge, only two protocols have been
specifically proposed to solve vector consensus [3], [4].
Doudou and Schiper described a protocol based on two
failure detectors, called Mute and Byzantine, respectively
[3]. The first detector finds out which processes refuse to
send messages either benignly (due to a crash) or mal-
iciously, and the second detector looks for incorrect
behavior during the protocol execution. The protocol is
based on a rotating coordinator scheme where, in each
round, one process proposes a vector that the others
confirm and accept. If the coordinator is suspected, then a
new round is initiated with a different coordinator. Baldoni
et al. described a vector consensus protocol with two failure
detectors that have comparable functions as the ones
mentioned above [4]. The protocol is also based on a
rotating coordinator, but the organization of each round is
quite different both in terms of messages and information
exchanged.

Our architecture for an asynchronous system augmented
with a wormhole was first described when we presented
the Timely Computing Base (TCB) [31]. This wormhole
mainly provided services related to time (e.g., measurement
of durations). Later, we extended the TCB so that it could be
used to support Byzantine resilient applications by provid-
ing a limited number of security related services [13]. This
new wormhole was called Trusted Timely Computing Base.
Recently, we found out about another work that defines an

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 12, DECEMBER 2005

architecture with constructs that are somewhat similar to
our wormholes. Baldoni et al. [32] use a sequencer to solve
an agreement problem on a three tier replicated service. The
architecture basically assumes a crash asynchronous model
with the exception of the sequencer, which is built with
partially synchronous assumptions. Wormholes are a quite
generic concept that could also be applied in a crash failure
scenario to provide either sequencing or failure detection
services, which could be used to circumvent certain
impossibility results, such as FLP.

The protocol presented in this paper uses a wormhole to
solve vector consensus. Instead of relying on failure
detectors to determine which processes are malicious, it
uses a low-level agreement service provided by a wormhole.
Therefore, it does not exclude any processes from the
computation and uses all processes that behave correctly at
any given time (including malicious process that alternate
between bad and good behavior). Furthermore, on Byzan-
tine systems, it is relatively difficult to construct a failure
detector and, in fact, at this moment, it can be considered as
an open problem. On the other hand, it is quite feasible to
implement an agreement protocol in a synchronous secure
system like the TTCB.

7 CONCLUSION

The paper presents a new approach to solve vector
consensus in a Byzantine asynchronous system augmented
with a wormhole. In this approach, the protocol is executed
by a group of processes running in the payload part of the
system, where they might experience undefined delays and
Byzantine failures. During the execution, however, they use
a low-level agreement service provided by a wormhole.
Since the wormhole is both secure and partially synchro-
nous, there is the guarantee that eventually a good result
will be returned by this service.

The proposed protocol has three interesting features.
First, it demonstrates how a wormhole can be used to solve
vector consensus in an asynchronous Byzantine setting.
Second, it shows that it is possible to keep the protocol
completely time-free and circumvent the FLP impossibility
result by moving all synchrony assumptions to the worm-
hole. The only hypothesis one needs to make is to assume
that, eventually, the wormhole services will finish and
return the expected results. Third, the protocol exhibits a
good time complexity if one considers both the commu-
nication delays and cryptographic operations.

APPENDIX
CORRECTNESS PROOFS

This section proves the correctness of the protocol pre-
sented in Algorithms 1 and 2. The protocol is correct if it
satisfies the three properties of the vector consensus
specification—Validity, Agreement, and Termination. We
will consider a system model as defined in Section 2, where
at most there are f malicious processes out of a total
number of n > 3f + 1.

NEVES ET AL.: SOLVING VECTOR CONSENSUS WITH A WORMHOLE

Lemma 1. Correct processes only propose to the TBAs hashs of

vectors v that have at least f + 1 values from correct processes
and, for any correct p;, v[i] = value; or v[i] = L.

Proof. A correct process p; starts by setting all entries of array-

of-vectors to L (Line 5). Next, it signs wvalue; using
asymmetric cryptography (Line 6) and saves the signed
value in the i’s entry of its vector array-of-vectors[i] (Line 7).
Then, it broadcast the signed value using secure channels
(Line 8).

Process p; waits for the arrival of 2f + 1 signed values
from different processes and saves them in its vector
(Lines 10-13). Before inserting an entry in the vector, it
verifies that the signature was correctly made. Therefore,
the vector produced by p; will have 2f + 1 entries filled
with correctly signed values.

Next, the process broadcasts the vector through
secure channels and initiates the two parallel tasks
(Lines 14-15). Task T1 stores the arriving vectors in
array-of-vectors (Lines 17-18). Due to the Integrity
property of secure channels (Section 2), the sender of
the vector is correctly identified and the vector contents
are received without changes. Task T2 calls the getNext-
GoodVector() function to obtain a vector v whose hash is
going to be proposed to the TBA (Lines 28-29).

Function getNextGoodVector() goes through array-of-
vectors until it finds a vector that verifies the following
conditions: 1) Each entry different from L is correctly
signed (Lines 4-5 of Algorithm 2); 2) there are at least
2f+1 of such entries (Line 7 of Algorithm 2). The
returned vector, new-vector, is built by first making all
entries equal to L and then by copying the values from
the selected vector of array-of-vectors (Lines 3 and 6 of
Algorithm 2). Therefore, new-vector will satisfy the
conditions of this lemma because there are at most
f malicious processes and it has 2f + 1 entries filled with
the initial values. The rest of the entries are set to L. O

Lemma 2. All correct processes participate in the same TBAs and

get identical results in each TBA execution.

Proof. Correct processes initiate the consensus protocol

with the same list of processes, elist, and consensus
identifier, cid.

All correct processes broadcast a B-value message
(Line 8) and then they wait for the arrival of 2f +1
B-value messages from different processes (Lines 9-13).
Since there are at least 2f + 1 correct processes and since
messages are transmitted through secure channels (see
Section 2), eventually they will receive enough messages
that will allow them to continue the protocol. Next,
processes broadcast a B-vector message, and they start
the two parallel tasks (Lines 14-15).

The following occurs for every task T2 of any correct
process:

1. In each k execution of the loop (Line 24), task T2
increments the round variable and then it uses a
deterministic function to generate the agreement
identifier, agid (Lines 26-27). Next, it calls W_TBA
with agid and elist (Line 29), which are identical
in all correct processes. Therefore, all correct
processes participate in the same TBA and, due to

1129

the Agreement property of the TBA service, they
also get equivalent results—out.error, out.prop-ok,
and out.value.

2. After collecting the result from W_TBA, task T2
finds out if out.value is supported by f+1
processes using the mask out.prop-ok (Line 30).
In the affirmative case, all T2 tasks stop running,
either in Lines 34 or 37. Otherwise, they initiate
the £+ 1 execution of the loop. Therefore, all
correct processes run the same number of TBAs,
and conclude the execution of the loop in the
same round. 0

Lemma 3. If a correct process decides, then eventually every

correct process will decide.

Proof. Let p; be a correct process deciding at line 34 of

Algorithm 1. This process sends a Decide message
containing the selected vector to all processes that did
not propose the correct hash to the wormhole, using
the prop-ok mask to find out who belongs to this group
(Lines 32-33).

Let pj, be a correct process that has not yet decided.
This process gets the same result from the TBA as
process p; (Lemma 2). Therefore, one of two cases will
occur:

1. pp proposed a hash equal to the one that was
decided by p;. This process will also decide at
Line 34.

2. p; proposed a hash different than the one that
was decided. Process p; saves the hash returned
by the TBA in variable hash-v and terminates task
T2 (Lines 36-37). In parallel, it waits for the
arrival of Decide messages and saves the vectors
in the bag bag-decide (Lines 19-20). Eventually, the
Decide message sent by p; will be received since
it was transmitted through a secure channel (see
Section 2). When this happens, process p;, is able
to decide at Line 22. 0

Theorem 1 (Validity). Every correct process decides on a vector,

vect, of size n, such that:

1. For every 1<i<mn, if process p; is correct, then
vect[i] is either the initial value of p; or the value L
and

2. atleast f + 1 elements of the vector vect are the initial
values of correct processes.

Proof. A correct process only decides on a vector in two

situations. We prove that, in both, the decided vector
satisfies the two properties of the theorem:

1. It proposes a hash of a vector v to the TBA and
this hash is supported by at least f + 1 (malicious
or correct) processes (Lines 29-34). By Lemma 1, a
correct process only proposes to the wormhole
TBA a hash of a vector v satisfying the conditions
of this theorem.

2. It receives a Decide message containing a vector
with the same hash as hash-v (Lines 19-22). Hash

1130

functions satisfy the weak and strong collision
resistance properties.6 It is therefore computa-
tionally infeasible for an adversary to produce a
bad vector with an hash equal to a given hash-v.
Consequently, the adversary cannot send a
Decide message containing a wrong vector and
make the process incorrectly decide on the vector.

Variable hash-v is initialized to | (Line 3) and
is set to out.value if this value was proposed by
more than f 4+ 1 processes in one TBA execution
(Lines 30 and 36). Since there are at most
f malicious processes, then at least one correct
process proposed this value. Due to Lemma 1,
the hash corresponding to this value was
calculated using a vector v satisfying the condi-
tions of this theorem.]

Theorem 2 (Agreement). No two correct processes decide

differently.

Proof. By applying Lemma 2, all correct processes execute
the same TBAs and get identical results. Moreover, once
there is a TBA with a value which has at least f + 1 votes
(Line 30), no more rounds of the loop are executed
because either processes decide (Line 34) or they stop the
task T2 (Line 35). This value, or hash of a vector, was
proposed by at least one correct process since there are at
most f malicious processes.

Now, let p; and p; be two correct processes that decide
vectors v; and v;, and let hashDecision be the value
returned by the TBA with f + 1 or more votes. There are
three cases:

1. Both decide at line 34. In this case, we must have
Hash(v;) = Hash(v;) = hashDecision. Then, v; =
v; due to the collision resistance properties of the
hash function.

2. Both decide at line 22. In this case, we must
have Hash(v;) # hashDecision and Hash(v;) #
hashDecision. Nevertheless, both processes save
hashDecision in variable hash-v (Line 36) and wait
for the arrival of a Decide message carrying a
vector;, whose hash is equal to hash-v (Lines 19-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 12, DECEMBER 2005

Theorem 3 (Termination). Every correct process eventually

decides.

Proof. By applying Lemma 3, once a correct process

decides, the rest will also do the same. Consequently,
we only need to prove that at least one correct process
will decide.

A correct process is able to decide if the hash of its
vector is also proposed by f other (correct or malicious)
processes (Lines 30-34). This condition is satisfied if the
protocol guarantees that a vector will sooner or later get
f+ 1 or more votes in a TBA.

A process starts by constructing a vector with the
digitally signed initial values of 2f + 1 different pro-
cesses. This vector will eventually be built because there
are at least 2f + 1 correct processes and communication
channels are secure (and, therefore, they have the
eventual reliability property) (Lines 6-13). Next, it
broadcasts the vector and initiates tasks T1 and T2
(Lines 14-15).

Task T1 receives the B-vector messages and stores
the arriving vectors in array-of-vectors (Lines 17-18).
Consequently, since all correct processes are doing the
same, there will be a time when array-of-vectors at each
process will contain one vector from every correct
process (plus a few others from malicious processes).
Each of these vectors can potentially be returned by
getNextGoodVector().

Function getNextGoodVector() picks, in a round-robin
fashion, a vector from each process in the system. The
selection criteria is deterministic and is based on the
current round number—the index variable (Line 25 and
Line 4 of Algorithm 2). Therefore, it will eventually
choose a vector from a correct process, and this vector
will be supported by all other correct processes. Since the
TBA quorum is 2f 4+ 1 and there are at most f malicious
processes, this vector will receive f+1 or more
proposals.

The TBA service has the termination property,
which ensures that, sooner or later, a result is returned
and, in this case, it will allow the completion of the
protocol because the hash of the vector will have at

22). Also, due to the collision resistance of the least f+ 1 votes. O
hash function, both processes will return an
equivalent vector.

3. One decides at Line 34 and another at Line 22 ACKNOWLEDGMENTS

(respectively, p; and p; without loss of generality).
In this case, we must have

Hash(v;) = hashDecision

and Hash(v;) # hashDecision. Using arguments
similar to 1 and 2, process p; will decide v; and
process p; will select a vector, with a hash equal
to hashDecision. Both vectors will be identical
due to the collision resistance properties of the
hash functions. O

6. The weak collision resistance property requires that, given X, it is

This work was partially supported by the FCT through
projects POSI/CHS/39815/2001 (COPE) and POSI/EIA/
60334 /2004 (RITAS) and the Large-Scale Informatic Systems
Laboratory (LASIGE).

REFERENCES

(1]

(2]

B3]

R. Guerraoui and A. Schiper, “Consensus Service: A Modular
Approach for Building Fault-Tolerant Agreement Protocols in
Distributed Systems,” Proc. 26th IEEE Int’l Symp. Fault-Tolerant
Computing Systems, pp. 168-177, June 1996.

M.]. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,”]. ACM, vol. 32,
no. 2, pp. 374-382, Apr. 1985.

A. Doudou and A. Schiper, “Muteness Failure Detectors for

computationally infeasible to find a Y such that hash(Y) = hash(X). The
strong collision resistance property says that it is computationally infeasible
to find a pair (X, Y) such that hash(X) = hash(Y) [17].

Consensus with Byzantine Processes,” Technical Report 97/30,
Ecole Polytechnique Fédérale de Lausanne, 1997.

NEVES ET AL.: SOLVING VECTOR CONSENSUS WITH A WORMHOLE

(4

(5]

(o]

(7]

(8]

%]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(7]

(18]

(19]

(20]

(21]

[22]
(23]

(24]

[25]

[26]

[27]

(28]

(29]

(30]

R. Baldoni, J. Helary, M. Raynal, and L. Tanguy, “Consensus in
Byzantine Asynchronous Systems,” Proc. Int’l Colloquium Structur-
al Information and Comm. Complexity, pp. 1-16, June 2000.

T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-
267, Mar. 1996.

D. Malkhi and M. Reiter, “Unreliable Intrusion Detection in
Distributed Computations,” Proc. 10th Computer Security Founda-
tions Workshop, pp. 116-124, June 1997.

K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith, “Byzantine
Fault Detectors for Solving Consensus,” The Computer |., vol. 46,
no. 1, pp. 16-35, Jan. 2003.

A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper, “Mute-
ness Failure Detectors: Specification and Implementation,” Proc.
Third European Dependable Computing Conf., pp. 71-87, Sept. 1999.
K. Julisch and M. Dacier, “Mining Intrusion Detection Alarms for
Actionable Knowledge,” Proc. Eighth ACM Int’l Conf. Knowledge
Discovery and Data Mining, pp. 366-375, July 2002.

H. Debar and A. Wespi, “Aggregation and Correlation of
Intrusion-Detection Alerts,” Proc. Fourth Int’l Symp. Recent
Advances in Intrusion Detection, 2001.

A. Doudou, B. Garbinato, and R. Guerraoui, “Encapsulating
Failure Detection: From Crash-Stop to Byzantine Failures,” Proc.
Int’l Conf. Reliable Software Technologies, pp. 24-50, June 2002.

P. Verissimo, “Uncertainty and Predictability: Can They Be
Reconciled?” Future Directions in Distributed Computing, pp. 108-
113, 2003.

M. Correia, P. Verissimo, and N.F. Neves, “The Design of a COTS
Real-Time Distributed Security Kernel,” Proc. Fourth European
Dependable Computing Conf., pp. 234-252, Oct. 2002.

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
Presence of Partial Synchrony,”]. ACM, vol. 35, no. 2, pp. 288-323,
Apr. 1988.

D. Dolev, C. Dwork, and L. Stockmeyer, “On the Minimal
Synchronism Needed for Distributed Consensus,”]. ACM,
vol. 34, no. 1, pp. 77-97, Jan. 1987.

F. Cristian and C. Fetzer, “The Timed Asynchronous Distributed
System Model,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
no. 6, pp. 642-657, 1999.

AlJ. Menezes, P.C.V. Oorschot, and S.A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1997.

M.O. Rabin, “Randomized Byzantine Generals,” Proc. 24th Ann.
IEEE Symp. Foundations of Computer Science, pp. 403-409, Nov.
1983.

M. Ben-Or, “Another Advantage of Free Choice: Completely
Asynchronous Agreement Protocols,” Proc. Second ACM Symp.
Principles of Distributed Computing, pp. 27-30, Aug. 1983.

A. Casimiro, P. Martins, and P. Verissimo, “How to Build a Timely
Computing Base Using Real-Time Linux,” Proc. IEEE Int’l Work-
shop Factory Comm. Systems, pp. 127-134, Sept. 2000.

P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes, S.
Hughes, and K. Yaghmour, “DIAPM-RTAI Position Paper,” Real-
Time Linux Workshop, Nov. 2000.

B. Tobotras, “Linux Capabilities FAQ 0.2,” 1999.

M. Castro and B. Liskov, “Proactive Recovery in a Byzantine-
Fault-Tolerant System,” Proc. Fourth Symp. Operating Systems
Design and Implementation, pp. 273-288, Oct. 2000.

A. Schiper, “Early Consensus in an Asynchronous System with a
Weak Failure Detector,” Distributed Computing, vol. 10, pp. 149-
157, Oct. 1997.

L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

G. Bracha and S. Toueg, “Asynchronous Consensus and Broadcast
Protocols,” J. ACM, vol. 32, no. 4, pp. 824-840, Oct. 1985.

C. Fetzer and F. Cristian, “On the Possibility of Consensus in
Asynchronous Systems,” Proc. Pacific Rim Int’l Symp. Fault-
Tolerant Systems, Dec. 1995.

A. Mostefaoui, S. Rajsbaum, and M. Raynal, “Conditions on Input
Vectors for Consensus Solvability in Asynchronous Distributed
Systems,” Proc. 33rd ACM Symp. Theory of Computing, pp. 152-162,
July 2001.

N. Lynch, “A Hundred Impossibility Proofs for Distributed
Computing,” Proc. Eighth Ann. ACM Symp. Principles of Distributed
Computing, pp. 1-28, Aug. 1989.

M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in
the Presence of Faults,” J. ACM, vol. 27, no. 2, pp. 228-234, 1980.

(31]

(32]

1131

P. Verissimo, A. Casimiro, and C. Fetzer, “The Timely Computing
Base: Timely Actions in the Presence of Uncertain Timeliness,”
Proc. Int’l Conf. Dependable Systems and Networks, pp. 533-542, June
2000.

R. Baldoni, C. Marchetti, and S. Piergiovanni, “Asynchronous
Active Replication in Three-Tier Distributed Systems,” Proc. Ninth
Pacific Rim Int’l Symp. Dependable Computing, Dec. 2002.

Nuno F. Neves received the PhD degree in
computer science from the University of lllinois
at Urbana-Champaign in 1998. He is an assis-
tant professor of the Department of Informatics,
University of Lisboa. His research interests are
in parallel and distributed systems, in particular

/8 in the areas of security and fault tolerance. His

work has been recognized with a Fulbright
Fellowship during his doctoral studies and with
the William C. Carter Best Student Paper award

at the 1998 IEEE International Fault-Tolerant Computing Symposium.
More information about him is available at http://www.di.fc.ul.pt/~nuno.
He is a member of the IEEE.

www.di.fc.ul.pt/~mpc.

Miguel Correia received the PhD degree in
computer science from the University of Lisboa
in 2003. He is an assistant professor in the
Department of Informatics, University of Lisboa
Faculty of Sciences. He is a member of the
LASIGE laboratory and the Navigators research
group. He was involved in the EC-IST MAFTIA
project and the FCT DeFeATS project, both in
the area of fault and intrusion tolerance. More
information about him is available at http:/
He is a member of the IEEE and the IEEE

Computer Society.

Paulo Verissimo is currently a professor in the
Department of Informatics, University of Lisboa
Faculty of Sciences (http://www.di.fc.ul.pt/~pjv).
He has coordinated the CORTEX IST/FET
project and belonged to the executive board of
the CaberNet European NoE. He is a past chair
of the IEEE Technical Committee on Fault-
Tolerant Computing and of the steering commit-
tee of the DSN Conference and is currently a
member of the European Security and Depend-

ability Task Force Advisory Board. He leads the Navigators research
group of LASIGE and is currently interested in architecture, middleware,
and protocols for distributed, and pervasive and embedded systems,
namely, the facets of adaptive real-time and fault/intrusion tolerance. He
is the author of more than 100 refereed publications in international
scientific conferences and journals in the area and he is a coauthor of four
books. He is a member of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

