
How to Tolerate Half Less One Byzantine Nodes in
Practical Distributed Systems∗

Miguel Correia Nuno Ferreira Neves Paulo Verı́ssimo
Faculdade de Ciências da Universidade de Lisboa

Bloco C6, Piso 3, Campo Grande, 1749-016 Lisboa - Portugal
{mpc,nuno,pjv}@di.fc.ul.pt

Abstract

The application of dependability concepts and tech-
niques to the design of secure distributed systems is raising
a considerable amount of interest in both communities un-
der the designation ofintrusion tolerance. However, practi-
cal intrusion-tolerant replicated systems based on the state
machine approach (SMA) can handle at mostf Byzan-
tine components out of a total ofn = 3f + 1, which is the
maximum resilience in asynchronous systems.

This paper extends the normal asynchronous sys-
tem with a special distributed oracle called TTCB. Us-
ing this extended system we manage to implement an
intrusion-tolerant service based on the SMA with only
2f + 1 replicas. Albeit a few other papers in the liter-
ature present intrusion-tolerant services with this ap-
proach, this is the first time the number of replicas is
reduced from3f + 1 to 2f + 1. Another interesting char-
acteristic of the described service is a low time complex-
ity.

1. Introduction

The application of dependability concepts and ap-
proaches to the design of secure distributed systems is
raising a considerable amount of interest in both commu-
nities under the designation ofintrusion tolerance[24].
The idea is that security concepts like vulnerability, at-
tack and intrusion are contained in the dependability
notion of fault, therefore it is possible to build secure sys-
tems based, to some extent, on dependability mechanisms.
This idea has been used to design several protocols and sys-
tems in recent years [2, 3, 5, 11, 14, 16, 17, 19].

∗ This work was partially supported by the FCT through project
POSI/1999/CHS/33996 (DEFEATS), project POSI/CHS/39815/2001
(COPE) and the Large-Scale Informatic Systems Laboratory
(LASIGE).

The state machine approachprovides a general solu-
tion for the implementation of distributed fault-tolerant ser-
vices [21]. The idea is to implement a service using a set
of server replicas in such a way that the overall service can
continue to behave as specified even if a number of servers
is faulty. If the service is designed to tolerate arbitrary faults,
which include attacks and intrusions, then the service can be
said to beintrusion-tolerant, or Byzantine-resilient, since
these faults are often called Byzantine1.

This paper presents a solution for the implementation of
state machine replication services (SMR)in practical dis-
tributed systems. The wordpractical is used in this con-
text to signify open distributed systems with networks that
provide weak quality of service guarantees, like the Inter-
net, Ethernet LANs and other common network technolo-
gies. This kind of systems is often modelled using theasyn-
chronous model, which makes no assumptions about pro-
cessing times, communication delays or clock drift rates.
The asynchronous model is extensively used mainly be-
cause it is hard to identify realistic bounds for these delays
in practical systems. Moreover, for intrusion-tolerant sys-
tems, there is an additional motivation: protocols that make
timing assumptions frequently have subtle vulnerabilities,
which can be exploited in order to cause their failure [3].
We are aware of three asynchronous intrusion-tolerant SMR
services in the literature: Rampart [19], BFT [3] and FS-
NewTOP [17].

The resilienceof a protocol can be defined as the max-
imum number of faults in the presence of which the pro-
tocol still behaves according to its specification. Notwith-
standing the advantages of the asynchronous model dis-
cussed above, the optimal resilience for an SMR service
based on this model isbn−1

3 c, since the problem essen-
tially boils down to atomic multicast [19, 3], which is equiv-
alent to consensus [10]. A proof of the maximum resilience

1 Throughout the paper we also use the expressionmalicious faultsto
emphasize that the cause of the fault is an intelligent attacker that has
the purpose of violating some property of the system.

for asynchronous Byzantine consensus can be found in [1].
This means that the service needsn > 3f replicas to toler-
atef faults: four replicas to tolerate one fault, seven to tol-
erate two faults, etc. Each additional fault the system has
to tolerate has a significative cost since it requires three ad-
ditional machines. Moreover, the whole approach is based
on the assumption that replicas fail independently, but this
is true only if they do not have common vulnerabilities [3].
This involves using different replicas, i.e., different codes
running in distinct operating systems. To summarize, each
additional replica has two costs: (1) the cost of its hardware
and software; and (2) the cost of its design, since it has to
be different from the other replicas. Notice that the number
of faults that can be tolerated can be improved either by de-
tecting and removing faulty replicas [21], or by proactively
recovering the state of the replicas [3]. However, in a win-
dow of time between detection and removal or between re-
coveries, the resilience remainsbn−1

3 c.
This paper presents a solution that reduces the cost of

intrusion-tolerant SMR services by decreasing the number
of replicas required to tolerate a number of faults/intrusions.
More precisely, the presented SMR service has a resilience
of bn−1

2 c, i.e., it requires only a majority of correct repli-
cas (n > 2f servers to toleratef faults). This means a re-
duction from 25% to 33% on the number of machines to
tolerate the same number of faults: three replicas to toler-
ate one fault, five to tolerate two faults, seven to tolerate
three faults, etc. Detection and removal, or proactive recov-
ery of replicas, can also be used to improve the maximum
number of faulty replicas.

How is it possible to improve the resilience fromf =
bn−1

3 c to f = bn−1
2 c? The solution has something in

common with the approach several protocols in the liter-
ature use to circumvent the Fischer, Lynch and Paterson
(FLP) impossibility result [9]. FLP says that no determinis-
tic protocol can solve the problem of consensus in an asyn-
chronous system if a single process can crash. One of the
most common approaches to circumvent this result is to ex-
tend the asynchronous system with some kind oforacle, like
an unreliable failure detector [14, 12] or an ordering ora-
cle [18]. These oracles allow the protocols to circumvent
FLP because they encompass some degree of synchrony,
e.g., enough synchrony to detect when a process crashed.
The solution in this paper also relies on an oracle, but this
particular oracle provides two advantages, instead of a sin-
gle one: circumventing FLP and increasing the resilience.

In the past few years, we have been exploring a type
of oracle calledwormholes[22], to deal with the uncer-
tainty (or lack of coverage) of assumptions such as time
bounds [23] or intruder resistance [8, 5]. This paper ex-
tends the asynchronous system with a wormhole oracle
calledTrusted Timely Computing Base (TTCB), already in-
troduced elsewhere [8]. This oracle provides a novel order-

ing service that allow us to implement an atomic multicast
protocol with a resilience ofbn−1

2 c. This service is the main
building block of our SMR solution.

The paper provides the following main contributions:

• it presents an SMR service implemented mostly on a
Byzantine asynchronous systems, but that uses the ser-
vices provided by a oracle with stronger properties;

• the SMR service has a resilience ofbn−1
2 c instead

of the optimal resilience in asynchronous systems of
bn−1

3 c;
• the SMR service circumvents the FLP impossibility re-

sult without any synchrony assumptions on the asyn-
chronous part of the system; all synchrony necessary
to circumvent FLP is in the wormhole oracle;

• the service arguably exhibits good performance since
it has a low time complexity.

2. System Model and the TTCB

The system is essentially composed by a set of hosts in-
terconnected by a network, called payload network. This
environment is asynchronous, i.e., there are no assumptions
about processing delays or message delivery delays. The
hosts have clocks but there are no assumptions, either about
local clock drift rates, or about the reliability of the read-
ings they provide.

The asynchronous environment is extended with a TTCB
wormhole, a distributed component with local parts in some
of the hosts (local TTCBs) and its own communication
channel (TTCB control channel). The architecture of the
system is depicted in Figure 1. Besides being distributed,
the TTCB has three important features:

• it is assumed to be secure, i.e., resistant to any possible
attacks; it can only fail by crashing;

• it is real-time, capable of executing certain operations
with a bounded delay;

• it provides a limited set of services, which cannot be
possibly affected by malicious faults, since the TTCB
is secure.

The TTCB provides a very simple and limited set of
services, so that the security of its implementation can be
verified. This paper uses only two of these services. The
first is the Local Authentication Service, which establishes
a trusted path between the server and its local TTCB, i.e.,
a channel that guarantees the integrity of their communica-
tion [8]. The second is the Trusted Multicast Ordering ser-
vice (TMO), which is the core of our solution and will be
described in Section 3.

In relation to the real-time property mentioned above, it
is important to make clear that the single consequence of

H o s t 2H o s t 1

O S

s 1

O S

H o s t n

O S

s 2 s n

O S

c 1

O S

c m

C L I E N T S

S E R V E R S

L o c a l
T T C B

 T T C B C o n t r o l C h a n n e l T T C B

L o c a l
T T C B

P a y l o a d N e t w o r k

L o c a l
T T C B

Figure 1. Architecture of the system.

this property for this paper is that the Trusted Multicast Or-
dering service is not bound by the FLP impossibility result.
Otherwise there is no need for the TTCB to be synchronous
in the context of this paper: the TMO can be implemented in
a non-real-time wormhole if another solution is used to cir-
cumvent FLP, e.g., randomization or failure detectors.

The approach presented in the paper makes sense only if
it is possible to implement the TTCB. There are several pos-
sible solutions, which were presented in another paper [8].
Moreover, an implementation based on COTS components
is currently available for free noncommercial use2. Let us
describe this implementation briefly for the reader to have
an idea on how it works.

The local TTCBs have to be secure and real-time. The
current TTCB implementation relies on an real-time engi-
neering of Linux called RTAI [4] and is protected by hard-
ening the kernel, since its code is executed inside the kernel.
Another solution to protect the local TTCB would be to ex-
ecute it inside a hardware module inserted in the computer,
like a PC/104 board. In relation to the control channel, the
current TTCB implementation relies on a Fast-Ethernet net-
work, which is completely independent of the payload net-
work (each host has two network adapters). The control-
channel can be assumed to be secure for an inside premises
system. Wide-area solutions could be based on virtual pri-

2 Available at http://www.navigators.di.fc.ul.pt/software/ttcb/

vate networks over ISDN or Frame Relay. The real-time
behavior is ensured by RTAI and by an admission control
mechanisms that forces the control channel traffic to be lim-
ited and the communication delay bounded. This is a very
brief idea and the reader is referred to [8] for a longer dis-
cussion on all these issues.

The SMR service is executed by a set ofserversS =
{s1, s2, ...sn}. The service can be invoked by a set ofclients
C = {c1, c2, ...cm}. The servers and clients are connected
by a fully connected network, although their communica-
tion can be delayed arbitrarily, e.g., in consequence of an
attack. Every host with a server needs a local TTCB, but
not the hosts with clients (see figure). We use the wordpro-
cessesto denote both servers and clients. Each serversi is
uniquely identified byeidi, a number obtained by calling
the TTCB Local Authentication Service [8].

A process iscorrect if it follows the protocol it is sup-
posed to execute. We assume that any number of clients
can fail, but the number of servers that can fail is limited
to f = bn−1

2 c. The failures can be Byzantine or arbitrary,
meaning that the processes can simply stop, omit messages,
send incorrect messages, send several messages with the
same identifier, etc. Faulty processes can pursue their goal
of breaking the properties of the protocol alone or in collu-
sion with other corrupt processes. A process is also consid-
ered to be faulty if one of the secret keys discussed below
is disclosed, or if it is not able to communicate with the lo-
cal TTCB, (e.g., due to a local denial of service attack).

The communication among clients and servers is done
exclusively through the payload network. The communica-
tion among servers is also, to most extent, done through the
payload network. We assume that each client-server pair
{ci, sj} and each pair of servers{si, sj} is connected by
a reliable channelwith two properties: if the sender and the
recipient of a message are both correct then (1) the message
is eventually received and (2) the message is not modified
in the channel. In practice, these properties have to be ob-
tained with retransmissions and using cryptography. Mes-
sage authentication codes (MACs) are cryptographic check-
sums that serve our purpose, and only use symmetric cryp-
tography [15]. The processes have to share symmetric keys
in order to use MACs. In the paper we assume these keys
are distributed before the protocol is executed. In practice,
this can be solved using key distribution protocols available
in the literature [15]. This issue is out of the scope of this pa-
per.

Wrapping up, the system is essentially “asynchronous
Byzantine”: there are no bounds on the processing and com-
munication delays; and the processes can fail arbitrarily.
This system is extended with the TTCB wormhole, which is
synchronous and secure, therefore it provides some “well-
behaved” services that the processes can use to perform
some steps of their protocols.

3. Trusted Multicast Ordering Service

The SMR service proposed in the paper uses a new
TTCB service calledTrusted Multicast Ordering service
(TMO). This service is implemented inside the TTCB, so
its execution cannot be affected by malicious faults.

The TMO service was designed with the purpose of as-
sisting the execution of an intrusion-tolerant atomic mul-
ticast (or total-order multicast) protocol. The service does
not implement the atomic multicast protocol, but simply
assigns an order number to the messages. The messages,
however, are sent through the payload network, not through
the TTCB. This is important since the TTCB has limited
processing and communication capacities. Let us introduce
briefly how an atomic multicast based on the TMO service
can be implemented (the full protocol is introduced later
in Section 4.2.1). When a processp wants to send a mes-
sage to a set of recipients, it makes two operations: (1) it
gives the TMO a cryptographic hash of the message and (2)
it multicasts the message through the payload network re-
liable channels. Then, when another processq receives the
message, it also gives the TMO a hash of the message it re-
ceived. When a certain number of processes gave the hash
of the message, the TMO service assigns an order number
to the message and gives that number to the processes. The
processes deliver the messages in that order. Figure 2 illus-
trates the procedure.

 T T C B C o n t r o l C h a n n e l
P a y l o a d N e t w o r k

H o s t 2H o s t 1

O S

s e r v e r s 1

H o s t n

O S L o c a l
T T C B

M

T M O _ r e c e i v e

T M O _ d e l i v e r

L o c a l
T T C B

s e r v e r s 2 s e r v e r s n

m u
l t i c

a s
t M

T M O _ s e n d

T M O _ d e l i v e r O S L o c a l
T T C B

T M O _ r e c e i v e

T M O _ d e l i v e r

M

M
H a s h (M)

Figure 2. Atomic multicast using the TTCB
TMO service.

The cryptographic hash mentioned above has to be ob-
tained using ahash functionh defined by the following
properties [15]:HF1 Compression:h maps an inputx of ar-
bitrary finite length, to an outputh(x) of fixed length.HF2
One way:for all pre-specified outputs, it is computation-
ally infeasible to find an input that hashes to that output.
HF3 Weak collision resistance:it is computationally infea-
sible to find any second input that has the same output as a
specified input3. HF4 Strong collision resistance:it is com-

3 A guessing attack is expected to break the property HF3 in2m hash-
ing operations, wherem is the number of bits of the hash. A birthday
attack can be expected to break property HF4 in2m/2 hashing opera-

putationally infeasible to find two different inputs that hash
to the same output.

The interface of the TMO service contains three func-
tions: TTCB TMO send, TTCBTMO receive and
TTCB TMO decide:

error, tag ← TTCB TMO send(eid, elist, threshold, msgid,
msghash)

error, tag ← TTCB TMO receive(eid, elist, threshold, msgid,
msghash, sendereid)

error, ordern, hash, propmask ← TTCB TMO decide(tag)

A process is said to startan execution of the TMO
service, or simply to start a TMO, when it calls
TTCB TMO send. The parameters of this function
have the following meanings. The first,eid, is the identi-
fier of the sender before the TTCB (see Section 2).elist is
an array with the identifiers of all processes involved in the
set of atomic multicast executions to be ordered.thresh-
old is the number of processes inelist that must give the
TTCB the correct hash of the message (msghash) for an or-
der number to be assigned to the message. This parameter
will be further discussed in Section 4.2.1.msgid is a mes-
sage number that has to be unique for the sender.msghash
is a cryptographic hash of the message4. The function re-
turns a tag, which identifies the TMO execution when
the process later calls TTCBTMO decide, and an er-
ror code.

When a process receives a message it has to call
TTCB TMO receive. The parameters are the same as
for TTCB TMO send, except for the eid of the sender,
sendereid. How does the TTCB knows that a call to
TTCB TMO receive corresponds to a certain TMO, which
was started by a call to TTCBTMO send? It knows by
looking at a set of parameters that together uniquely iden-
tify a TMO service execution:(elist, threshold, msgid,
sendereid). This last sentence has an important implica-
tion: if an attacker attempts to break the behavior of the
TMO by calling TTCBTMO receive with any of these pa-
rameters modified, the TTCB will simply consider it to
be a call to a different TMO, so the attack will be ineffec-
tive.

TTCB TMO receive returns atag that is used by
TTCB TMO decide to identify the TMO. When
TTCB TMO receive is called and the local TTCB has
no data about the TMO, a TMOUNKNOWN error is re-
turned. If there is data about the TMO butmsghash
is different from the hash provided by the sender, a

tions. In a practical setting, a hashing function with 128 bits like MD5,
or 160 bits like SHA-1, can be considered secure enough for our pro-
tocol. Nevertheless, we consider HF2, HF3 and HF4 to be assump-
tions.

4 Later we use a value⊥ outside the range of valid hashes. A call to
TTCB TMO send returns an error ifmsghash=⊥.

WRONG HASH error is returned and the the call does not
count for the threshold. If there is a TMOUNKNOWN er-
ror, no tag is returned; on the contrary, if there is a
WRONG HASH error, thetag is returned.

To get the result of the TMO – the order number of the
message – a process calls TTCBTMO decide. Ifthreshold
processes did not propose a hash equal to the hash proposed
by the sender yet, a THRESHOLDNOT REACHED error
is returned. If there is no error, the function returns the or-
der numberorder n, the hash of the messagehashand a
mask with one bit per process, indicating the processes that
proposed the correct hash,prop mask. For each TMO exe-
cution, the order number returned to all processes must be
the same, since the TTCB is assumed secure and reliable.

The purpose of the TMO service is to assign consecutive
numbers (1, 2, 3, . . .) to a set of TMO executions. At this
stage the reader might ask: does the TTCB ordersall TMO
executions with a single sequence of numbers? Or can there
be several sets of TMO executions being ordered simultane-
ously by the TTCB? The answer is related to the purpose of
the TMO service: to assist the execution of an atomic multi-
cast protocol; there can be several atomic multicast channels
in the system, therefore the TTCB has also to order several
sets of TMO executions simultaneously. So, what TMO ex-
ecutions does the TTCB order? The TTCB orders indepen-
dently each set of TMO executions that belong to the same
sequence, defined as follows:

Two TMO executions, identified respectively by (elisti,
thresholdi, msgidi, sendereidi) and (elistj , thresholdj ,
msgidj , sendereidj), are said to belong to the samese-
quence of TMO executionsiff elisti = elistj .

TMO Service Implementation A brief discussion of the
implementation we envisage for the TMO service can give
a sense of the semantics of the service. The protocol that im-
plements the service is executed by all local TTCBs, which
communicate using the TTCB control channel. The pro-
tocol can be simple because the TTCB is real-time, local
TTCBs can only fail by crashing (they are secure) and they
have synchronized clocks. The protocol is implemented on
the top of the (crash-tolerant) reliable broadcast protocol
presented in [7].

The protocol is based on a fixed coordinator. When a pro-
cess calls TTCBTMO send or TTCBTMO receive in a
local TTCB, the information about the call is broadcasted
to all local TTCBs. When the coordinator gets information
aboutthresholdcalls with the correct hash for a TMO ex-
ecution, it assigns the next order number to the TMO, de-
fines the maskprop maskwith the processes that proposed
the correct hash, and broadcasts this information to all lo-
cal TTCBs. Then, when a process calls TTCBTMO decide
the order number is returned. If the coordinator crashes, an-
other local TTCB takes over in a consistent manner, since it
is aware of the broadcasts made by the coordinator.

4. State Machine Replication

A state machineis characterized by a set ofstate vari-
ables, which define the state of the machine, and a set of
commandsthat modify the state variables [21]. Commands
have to be atomic in the sense that they cannot interfere
with other commands. Thestate machine approachconsists
of replicating a state machine inn serverssi ∈ S. The set of
serversS implements theservice. We assume that no more
thanf = bn−1

2 c servers fail. All servers follow the same
history of states if four properties are satisfied:

• SM1 Initial state.All servers start in the same state.

• SM2 Agreement.All servers execute the same com-
mands.

• SM3 Total order.All servers execute the commands in
the same order.

• SM4 Determinism.The same command executed in the
same initial state generates the same final state.

The first property states that each state variable has the
same initial value in all servers, something that is usually
simple to guarantee. The second and third properties de-
mand that the servers agree in the commands to execute
and in their order. This can be guaranteed sending the com-
mands to the servers using an atomic multicast protocol.
The fourth property is about the semantics of the commands
at the application level, so in this paper we simply make the
assumption that the commands are deterministic.

The system works essentially the following way: (1) a
client sends a command to one of the servers; (2) the server
sends the command to all servers using an atomic multicast
protocol; (3) each server executes the command and sends
a reply to the client; (4) the client waits forf + 1 identi-
cal replies from different servers; the result in these replies
is the result of the issued command. This is a very simpli-
fied description of the process, so let us first delve into the
details of the clients, and later we describe the protocol ex-
ecuted by the servers.

4.1. Clients

A client ci issues a commandcmdto the service by send-
ing a REQUEST message to one of the servers,sj . The mes-
sage is sent through the payload network, since the only
communication that is performed inside the TTCB is the
one related to the execution of the TMO service. The for-
mat of the message is:

〈REQUEST, addr, num, cmd, vec〉
where REQUEST is the type of the message,addr is the ad-
dress of the client (e.g., the IP address and the port),numis
the request number,cmdis the command to be executed (in-
cluding its parameters) andveca vector of MACs (see dis-
cussion below). The request number has to be unique, since

the SMR service discards requests from the same client with
the same number. A solution to generate these numbers is
to use a counter incremented for each sent message.

If the client and the server are correct, the REQUEST
message is eventually received bysj , due to the properties
of the reliable channels (Section 2). Then, if the server is
correct it atomically multicasts the message to all servers in
S, all correct servers execute the command and send a re-
ply to the client. The format of the reply message is:

〈REPLY, addr, num, res〉
where REPLY is the type of the message,addr is the ad-
dress of the server,numis the request number, andresis the
result of the executed command.

This scheme, albeit simple, is vulnerable to some attacks.
A serversj can be malicious and forward the message only
to a subset ofS, or discard it altogether. To solve this prob-
lem, if ci does not receivef+1 replies from different servers
afterTresend units of time read in its local clock, it assumes
thatsj did not forward the request, so it multicasts the mes-
sage to anotherf servers. If this happens, it sends the mes-
sage to a total off + 1 servers, therefore at least one must
be correct, and the request will be atomically multicasted.

Ideally, Tresend should be greater than the maximum
round trip delay between any client and a server. However,
the payload system is assumed to be asynchronous, so there
are no bounds on communication delays, and it is not pos-
sible to define an “ideal” value forTresend. Therefore, the
value ofTresend involves a tradeoff: if too high, the client
can take long to have the command executed; if too low,
the client can resend the command without necessity. The
value should be selected taking this tradeoff into account. If
the command is resent without need, the duplicates are dis-
carded using a mechanism discussed in the next section.

A malicious server might attempt a second attack: to
modify the message before multicasting it to the other
servers. To tolerate this attack, the request message takes
a vector of MACsvec. This vector takes a MAC per server,
each obtained with the key shared between the client and
that server. Therefore, each server can test the integrity of
the message by checking if its MAC is valid, and discard
the message otherwise5.

In general, there will be restrictions on the commands
that each client can execute. For instance, if the commands
are queries on a database, probably not all the clients are al-
lowed to query all registers in the same way. This involves
implementing some kind of access control. There are sev-
eral schemes available in the literature and this issue is or-
thogonal to the problem we are addressing in the paper, so
we do not propose any particular scheme.

5 A malicious client might build a vector of MACs with a combination
of valid and invalid MACs. This attack would be ineffective: if enough
correct servers received the message with the correct MAC the com-
mand would be executed, otherwise it would be discarded.

4.2. Servers

The protocol executed by the servers is a thin layer
on the top of an atomic multicast protocol. A server
calls atomicmcast(MREQ) to atomically multicast a re-
quest MREQ to all servers, and the atomic multicast pro-
tocol layer callsatomicdlv(MREQ) to deliver MREQ to a
server. This protocol is in Algorithm 1.

Algorithm 1 SMR protocol (for serversi).

1: When a request MREQ = 〈REQUEST, addr, num, cmd, vec〉
is received from a client: if there is no messageMREQ’ , with
MREQ’.addr = MREQ.addr andMREQ’.num = MREQ.num,
for which atomicdlv(MREQ’) has been previously called,
then callatomicmcast(MREQ); otherwise discard the request.

2: When atomicdlv(MREQ) is called: if there is no message
MREQ’ , with MREQ’.addr = MREQ.addr andMREQ’.num
= MREQ.num, for whichatomicdlv(MREQ’) has been previ-
ously called, then executecmdand send a message〈REPLY,
addr, num, res〉 with the result of the command to the client.

The objective of checking in both steps if
atomicdlv(MREQ’) , with MREQ’.addr = MREQ.addr
and MREQ’.num = MREQ.num, has been previously
called, is to guarantee that a request from a client is exe-
cuted only once. Recall that a client, even if correct, can
resend a request (Section 4.1). This condition is imple-
mented using a set that stores the request number and the
client address (MREQ’.num and MREQ’.addr) for all re-
quests for whichatomicdlv(MREQ’) has already been
called. If the server already received the request, the re-
quest is simply discarded (step 1). If several requests with
the same command are delivered by the atomic multi-
cast protocol, only the first one causes the execution of the
command (step 2). When the command is executed, a re-
ply is sent to the client.

This basic protocol makes at least one atomic multicast
for each client request. This cost may be excessive depend-
ing on the rate of requests being issued. This cost can be
greatly reduced using abatching mechanism, i.e., aggre-
gating several requests in a single atomic multicast. The
decision about batching requests is left for each server to
take; if it assesses that the rate of requests is greater than
a given bound, it starts collecting a number of requests be-
fore atomic multicasting them together in a single message.
This mechanism introduces some delay in the system, so the
client’sTresend has to take this delay into account.

4.2.1. Atomic Multicast Protocol The core of the algo-
rithm executed by the servers is the atomic multicast proto-
col, which guarantees two properties: all correct servers de-
liver the same messages in the same order; if the sender
is correct all servers deliver the sent message. A server

is said to (atomically) multicast a message M if it calls
atomicmcast(M), and it is said to (atomically) deliver a
message M ifatomicdlv(M) is called in the server. The pro-
tocol is more formally defined in terms of four properties:

• AM1 Validity. If a correct server multicasts a message
M with a vector with all MACs valid, then some cor-
rect server eventually delivers M.

• AM2 Agreement.If a correct server delivers a message
M, then all correct servers eventually deliver M.

• AM3 Integrity. For any identifierID, every correct
server delivers at most one message M with identifier
ID, and ifsender(M)is correct then M was previously
multicast bysender(M)6.

• AM4 Total order.If two correct servers deliver two
messagesM1 andM2 then both servers deliver the two
messages in the same order.

This definition is similar to other definitions found in the
literature, e.g., in [10]. However, property AM1 does not
guarantee that the message is delivered in case the message
does not have a vector filled with valid MACs (i.e., MACs
properly obtained using the key shared between the client
and each of the servers). Recall that the objective of this
vector of MACs if to prevent a malicious server from atom-
ically multicasting a corrupted request (Section 4.1). Albeit
the objective is to deal with malicious servers, if the client
itself is malicious and sends a message with some invalid
MACs, the message may not be delivered by the atomic
multicast protocol.

The protocol is shown in Algorithm 2. It has four
parts: initialization (lines 1-8), processing of a call to
atomicmcast(M) (lines 9-13), processing of the recep-
tion of an ACAST message (line 14), and a task that pro-
cesses the messages stored in a number of buffers (lines
15-34). A correctness proof can be found in [6].

The protocol uses a single type of message:

〈ACAST, addr, mreq, msgid, sendereid, elist, threshold〉
whereACASTis the message type,addr the address of the
sender server,mreq the request message (mreq = MREQ),
msgid a message number unique for the sender,sendereid
the eid of the server that atomically multicasted the mes-
sage,elist is the list of eid’s of the processes involved in
the protocol, andthreshold is the valuebn−1

2 c + 1 (for
n = 2f + 1, it is f + 1). The identifier of a message in
property AM3 (ID) is: (ACAST, msgid, sendereid, elist,
threshold).

Lines 1-7 initialize several local variables, including
three sets used to store messages in different stages of pro-
cessing:Wait tmo, Wait threshandWait deliv. Line 8 starts
task T1.

6 The predicatesender(M)gives the sender field of the header of M.

Algorithm 2 Atomic multicast protocol (serversi).

INITIALIZATION :

1: elist←{all eid’s of servers inS in canonical order}
2: msg id next← 1 {number of next ACAST to send}
3: threshold←bn−1

2
c+1 {threshold for TMO service(f +1)}

4: ordernext← 1 {number of next request to deliver}
5: Wait tmo←∅ {set w/recvd ACASTs while TMO unknown}
6: Wait thresh←∅ {set w/ACASTs while thresh. not reached}
7: Wait deliv←∅ {set with requests waiting for delivery}
8: activate task(T1)

WHEN ATOMIC MCAST (M REQ) IS CALLED DO

9: if verify mac(MREQ.vec[si]) then
10: multicast MACAST = 〈ACAST, addri, MREQ,

msg id next, myeid, elist, threshold〉 to servers S\ {si}
11: err, tag ←TTCB TMO send(eidi, elist, threshold,

msg id next, Hash(MREQ))

12: msg id next←msg id next + 1

13: Wait thresh←Wait thresh∪ {(MACAST ,tag)}

WHEN MACAST IS RECEIVED DO

14: Wait tmo←Wait tmo∪ {MACAST }

TASK T1:

15: loop
16: for all MACAST ∈Wait tmodo{msgs w/unknown TMO}
17: if verify mac(MREQ.vec[si]) then hash ←Hash(

MACAST .mreq) else hash←⊥
18: err, tag ←TTCB TMO receive(eidi, MACAST .elist,

MACAST .threshold, MACAST .msgid, hash, MACAST .

sendereid)

19: if err 6= TMO UNKNOWN then
20: Wait tmo←Wait tmo\ {MACAST }
21: if (err 6= WRONG HASH) or (hash =⊥) then
22: Wait thresh←Wait thresh∪ {(MACAST ,tag)}
23: for all (MACAST ,tag)∈Wait threshdo{thresh not reachd}
24: err, n, hash, propmask←TTCB TMO decide(tag)

25: if err 6= THRESHOLD NOT REACHED then
26: Wait thresh←Wait thresh\ {(MACAST ,tag)}
27: if Hash(MACAST .mreq) = hashthen
28: Wait deliv←Wait deliv∪ {(MACAST .mreq,n)}
29: if MACAST .addr6= addri then {if not the sender}
30: multicast MACAST to {∀sj∈S : sj /∈prop mask}
31: while ∃(MREQ,n)∈Wait deliv : n = ordernext do

{messages waiting to be delivered}
32: Wait deliv←Wait deliv \ {(MREQ,n)}
33: ordernext← ordernext + 1

34: ATOMIC DLV (M REQ)

When atomicmcast(MREQ) is called, the server calls
verify macto test if the MAC that corresponds to itself (si)
in the vector of MACs is valid (line 9). If it is not, the server
simply dismisses the message. If the MAC is valid, the re-
quest MREQ is enveloped in an ACAST message and mul-
ticasted to all servers except the sender (line 10). Then,
the server starts the execution of one instance of the TTCB
TMO service by calling TTCBTMO send (line 11). Each
call to atomicmcastcauses at most one execution of the
TMO service. After starting the TMO service, the server
puts the ACAST message in the setWait thresh, waiting
for the TMO threshold to be achieved (line 13). When an
ACAST message is received by a server, it is simply stored
in Wait tmo(line 14).

Task T1is permanently checking if the messages in the
three sets can be processed. Messages inWait tmoare han-
dled in lines 16-22. For each message inWait tmo, task
T1 makes a call to TTCBTMO receive (lines 16-18). If
the MAC corresponding tosi is valid, the hash of mes-
sage is given to TTCBTMO receive (lines 17-18). Oth-
erwise, a value out of the range of valid hashes is given,
⊥ (lines 17-18). If the local TTCB is still not aware of
that TMO execution7, then TTCBTMO receive returns the
error TMO UNKNOWN. If the TTCB is aware of the
TMO but the hash of the request is wrong, then an error
WRONG HASH is returned. If the TTCB is aware of the
TMO and either the hash is correct, or the hash is⊥ (the
MAC is invalid), the message is removed fromWait tmoand
inserted inWait thresh(lines 19-22). If the TTCB is aware
of the TMO but the hash is wrong (but not⊥), the mes-
sage is discarded since it has been corrupted at some stage
(lines 19-22).

The setWait threshcontains messages waiting for the
number of calls to their TMO to reach the threshold. These
messages are handled in lines 23-30. The purpose of the
thresholdis to guarantee that the servers only decide to de-
liver a message if they eventually become able to deliver it.
In other words, they can only decide to deliver a message
if at least one correct server has the message. This is guar-
anteed if at leastf + 1 servers prove that they know the
hash of the message, therefore the threshold is set tof + 1
(line 3). Notice that a server that received a message with
an invalid MAC does not contribute to the threshold, since
it gives TTCBTMO receive the value⊥ instead of the hash
of the message (lines 17-18). When the threshold is reached,
the message is removed fromWait thresh(lines 25-26). If
the message corresponds to the hash returned, the message

7 The TMO is started in the local TTCB of the server that atomically
multicasts the ACAST message, so the information about the TMO
takes a certain time to be broadcasted and received by the other lo-
cal TTCBs. Therefore, it is not possible to guarantee that the TMO
information will be available in a local TTCB when the correspond-
ing ACAST message is received.

is inserted inWait deliv (lines 27-28). Then, if the server is
not the message sender, it resends the message to the servers
that did not ‘contribute’ to the threshold, i.e., to the servers
not in prop mask(lines 29-30). The rationale for resending
the message is that a malicious sender can send the mes-
sage only to a subset of the servers; therefore, these servers
may not have the message.

The setWait deliv keeps messages that already have an
order number assigned by the TMO service, therefore they
can be delivered. These messages are handled in lines 31-
34. The algorithm keeps a number with the next message to
be delivered,order next. If the next message to be delivered
is stored inWait deliv, then task T1 delivers it (lines 31-34).
Otherwise, the message has to wait for its turn.

4.2.2. FLP Impossibility Result The consensus problem
has been proven to be impossible to solve deterministically
in asynchronous systems if a process is allowed to fail, even
if only by crashing [9]. This FLP impossibility result also
applies to the atomic multicast problem since it is essen-
tially equivalent to consensus [10]. Our system is not bound
by FLP, since it is not fully asynchronous: it is mostly asyn-
chronous, but includes the TTCB subsystem, which is syn-
chronous. The problem of atomic multicast is essentially
equivalent to a consensus about the set of messages to de-
liver and their order. Our protocol leaves this consensus to
the TTCB TMO service, which is executed in a synchronous
environment, therefore FLP does not apply.

5. Performance

The evaluation of the performance of distributed proto-
cols is usually made in terms of time and message complex-
ities. In asynchronous systems, thetime complexityis usu-
ally measured in terms of the maximum number ofasyn-
chronous roundsof message exchange. An asynchronous
round involves a process sending a message and receiv-
ing one or more messages in response. For the Byzantine
fault model, only the number of rounds executed by correct
processes matter, since malicious processes can behave ar-
bitrarily. We consider separately the number of rounds of
TMO execution.

The time complexity is two rounds of message exchange
in the payload network, plus one round of TMO executions.
Let us justify this complexity by presenting the worst case.
The client sends a request to a sendersj (half round), but
sj is crashed (or is malicious), sosj does not multicast the
message to the other servers. This situation forces the client
to resend the request to anotherf servers, which we count
as another half round. Then, all correct servers that received
the request, multicast the request in an ACAST message to
all other servers (half round) and start one TMO (one round
of TMO executions, since all TMOs are executed in par-
allel). When the first of these TMOs terminates, the com-

mand is executed and all correct servers send a reply to the
client (half round). Therefore, there are two rounds of mes-
sage exchange plus one round of TMO executions.

Themessage complexityis measured in number of mes-
sages (unicasts) sent. We start by discussing this complexity
when the batching mechanism is disabled. The complexity
of the SMR service can be divided essentially in three cases:

1. One request.For each command, a client sends only
one REQUEST message to a single server because the
client is correct, the server is correct, and the servers
answer in less thanTresend units of time measured in
the client’s clock. A single TMO is executed.

2. f + 1 requests.For each command, a client sends RE-
QUEST messages tof + 1 servers because the servers
do not respond beforeTresend, although both the client
and the server for which it first sends the request are
correct.f + 1 TMOs are executed.

3. n requests.For each command, a malicious client
sends REQUEST messages to alln servers.n TMOs
are executed. A malicious client can issue any number
of commands but the SMR protocol prevents it from
forcing the execution of more thann TMOs by com-
mand (see Algorithm 1).

Requests Message complexity TMOs

1 O(n2) 1
f + 1 O(n3) f + 1
n O(n3) n

Table 1. Message complexity and number of
TMOs executed (batching disabled).

Table 1 summarizes the message complexities for the
three situations. The deduction of these values is straight-
forward. The table assumes the batching mechanism is dis-
abled. However, the purpose of this mechanism is precisely
to reduce these values. If we consider that the average num-
ber of requests batched in each atomic multicast isB, then
the message complexities and the number of TMOs pre-
sented in the table have to be divided byB. Therefore, the
higher the value ofB, the higher the reduction in the com-
plexity and number of TMOs. Nevertheless, there is a trade-
off. To increaseB the algorithm has to delay requests un-
til a certain number can be batched in an atomic multicast,
therefore increasing the average latency of the algorithm.

6. Related Work

The state machine approach was first introduced by Lam-
port for systems in which faults were assumed not to oc-
cur [13]. Later, Schneider generalized the approach for sys-
tems with crash faults [20]. More recently, two Byzantine-

resilient state machine replication systems with resilience
bn−1

3 c appeared: Rampart and BFT.
Rampart is an intrusion-tolerant group communication

system. It provides a set of communication primitives and
a membership service, which handles the joining and leav-
ing of group members [19]. When a message is atomically
multicast to the group, a reliable multicast protocol is used
to send the message. Then, a special process, the sequencer,
defines an order for the messages and also reliably multi-
casts this order to the group. All these protocols use dig-
ital signatures to authenticate some messages [15]. Ram-
part is mostly asynchronous but assumes enough synchrony
to detect process failures. Replication is implemented by a
set of servers, which form a group [19]. Clients send their
requests to a server of their choice, similarly to our algo-
rithm. The output of the service has to be voted so that
the results provided by correct servers prevail over those
returned by malicious servers. Two solutions were imple-
mented: one very similar to ours, and another one based
on a (k,n)-threshold signature scheme, which has poor per-
formance. Besides Rampart, there are two other intrusion-
tolerant group communication systems: SecureRing [11]
and SecureGroup [16]. However, there is no discussion
about their use for the implementation of the state machine
approach. The resilience is the same.

BFT is a Byzantine-resilient state machine replication
service. The system is optimized for having good perfor-
mance, therefore, on the contrary to Rampart, most of the
time it does not use public-key cryptography. In BFT, all
clients send the requests to the same server, the primary.
Then, the primary atomically multicasts the request to the
backups (the other servers); all replicas execute the request
and send the result to the client; the client waits forf + 1
replies with the same result, which is the result of the oper-
ation. BFT assumes enough synchrony to detect the failure
of the primary. When it fails, a new primary is elected.

SINTRA provides a number of group communication
primitives that can be used to support SMR [2]. These
primitives are based on a randomized Byzantine agreement
protocol, therefore they are strictly asynchronous. The re-
silience is alsobn−1

3 c.
FS-NewTOP is a recent intrusion-tolerant SMR system

based on fail-signal (FS) processes, i.e., processes that an-
nounce when they fail [17]. Each FS process is implemented
by two nodes connected by a synchronous channel. Each
node monitors its peer. When one node detects that its peer
has misbehaved in some way, it signals the failure to all pro-
cesses and stops the FS process. The resilience is allegedly
4f + 2, which is sub-optimal. However, the algorithm does
not tolerate the failure of two nodes, if they are part of the
same FS process.

Pedone et al. usedweak ordering oraclesto solve crash-
tolerant agreement problems in asynchronous systems [18].

The oracle gives a hint about the order of the messages,
which may be right or wrong. The hint is simply the or-
der in which the messages are received from the network,
which is often right in a LAN. Our ‘TTCB with TMO’ ora-
cle might be considered to be a perfect ordering oracle.

7. Conclusion

This paper proposes a novel state machine approach
solution. The algorithm is executed in an asynchronous
and Byzantine environment, with the exception of a syn-
chronous and secure distributed subsystem, the Trusted
Timely Computing Base wormhole. The algorithm is based
on a novel TTCB service, the Trusted Multicast Ordering
service, which defines an order for a set of messages repre-
sented by their hashes. Using this service, we managed to
design an atomic multicast protocol with a resilience lower
than the maximum theoretical bound in asynchronous sys-
tems:bn−1

2 c againstbn−1
3 c. The paper also shows how the

TTCB can be used to circumvent FLP. The performance of
the system was assessed in terms of time and message com-
plexities, and number of TMOs executed. The system is cur-
rently being implemented.

References

[1] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols.Journal of the ACM, 32(4):824–840,
Oct. 1985.

[2] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replica-
tion on the Internet. InProceedings of the International Con-
ference on Dependable Systems and Networks, pages 167–
176, June 2002.

[3] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery.ACM Transactions on Computer Sys-
tems, 20(4):398–461, Nov. 2002.

[4] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes,
S. Hughes, and K. Yaghmour. DIAPM-RTAI position paper.
In Real-Time Linux Workshop, Nov. 2000.

[5] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo. Ef-
ficient Byzantine-resilient reliable multicast on a hybrid fail-
ure model. InProceedings of the 21st IEEE Symposium on
Reliable Distributed Systems, pages 2–11, Oct. 2002.

[6] M. Correia, N. F. Neves, and P. Verı́ssimo. How to toler-
ate half less one Byzantine nodes in practical distributed sys-
tems. DI/FCUL TR 04–6, Department of Informatics, Uni-
versity of Lisbon, July 2004.

[7] M. Correia, P. Veŕıssimo, and N. F. Neves. The design of
a COTS real-time distributed security kernel (extended ver-
sion). DI/FCUL TR 01–12, Department of Computer Sci-
ence, University of Lisbon, 2001.

[8] M. Correia, P. Veŕıssimo, and N. F. Neves. The design of a
COTS real-time distributed security kernel. InProceedings
of the Fourth European Dependable Computing Conference,
pages 234–252, Oct. 2002.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibil-
ity of distributed consensus with one faulty process.Journal
of the ACM, 32(2):374–382, Apr. 1985.

[10] V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcasts and related problems. Technical Report
TR94-1425, Cornell University, Department of Computer
Science, May 1994.

[11] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The
SecureRing group communication system.ACM Transac-
tions on Information and System Security, 4(4):371–406,
Nov. 2001.

[12] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith.
Byzantine fault detectors for solving consensus.The Com-
puter Journal, 46(1):16–35, Jan. 2003.

[13] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system.Communications of the ACM, 21(7):558–
565, July 1978.

[14] D. Malkhi and M. Reiter. Unreliable intrusion detection in
distributed computations. InProceedings of the 10th Com-
puter Security Foundations Workshop, pages 116–124, June
1997.

[15] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone.Hand-
book of Applied Cryptography. CRC Press, 1997.

[16] L. E. Moser, P. M. Melliar-Smith, and N. Narasimhan. The
SecureGroup communication system. InProceedings of the
IEEE Information Survivability Conference, pages 507–516,
Jan. 2000.

[17] D. Mpoeleng, P. Ezhilchelvan, and N. Speirs. From crash
tolerance to authenticated Byzantine tolerance: A structured
approach, the cost and benefits. InProceedings of the Inter-
national Conference on Dependable Systems and Networks,
pages 227–236, June 2003.

[18] F. Pedone, A. Schiper, P. Urbán, and D. Cavin. Solving
agreement problems with weak ordering oracles. InProceed-
ings of the Fourth European Dependable Computing Confer-
ence, pages 44–61, Oct. 2002.

[19] M. K. Reiter. The Rampart toolkit for building high-integrity
services. InTheory and Practice in Distributed Systems, vol-
ume 938 ofLecture Notes in Computer Science, pages 99–
110. Springer-Verlag, 1995.

[20] F. B. Schneider. Synchronization in distributed programs.
ACM Transactions on Programming Languages and Sys-
tems, 4(2):179–195, Apr. 1982.

[21] F. B. Schneider. Implementing faul-tolerant services using
the state machine approach: A tutorial.ACM Computing Sur-
veys, 22(4):299–319, Dec. 1990.

[22] P. Veŕıssimo. Uncertainty and predictability: Can they be
reconciled? InFuture Directions in Distributed Computing,
volume 2584 ofLecture Notes in Computer Science, pages
108–113. Springer-Verlag, 2003.

[23] P. Veŕıssimo and A. Casimiro. The Timely Computing Base
model and architecture.IEEE Transactions on Computers,
51(8):916–930, Aug. 2002.

[24] P. Veŕıssimo, N. F. Neves, and M. Correia. Intrusion-tolerant
architectures: Concepts and design. In R. Lemos, C. Gacek,
and A. Romanovsky, editors,Architecting Dependable Sys-
tems, volume 2677 ofLecture Notes in Computer Science,
pages 3–36. Springer-Verlag, 2003.

