How to Tolerate Half Less One Byzantine Nodes in
Practical Distributed Systems

Miguel Correia Nuno Ferreira Neves Paulo Msimo
Faculdade de @ncias da Universidade de Lisboa
Bloco C6, Piso 3, Campo Grande, 1749-016 Lisboa - Portugal
{mpc,nuno,pjy¥@di.fc.ul.pt

Abstract The state machine approacprovides a general solu-
tion for the implementation of distributed fault-tolerant ser-
The application of dependability concepts and tech- vices [21]. The idea is to implement a service using a set
niques to the design of secure distributed systems is raisingof server replicas in such a way that the overall service can
a considerable amount of interest in both communities un- continue to behave as specified even if a number of servers

der the designation ahtrusion toleranceHowever, practi- is faulty. If the service is designed to tolerate arbitrary faults,
cal intrusion-tolerant replicated systems based on the statewhich include attacks and intrusions, then the service can be
machine approach (SMA) can handle at mgsByzan- said to beintrusion-tolerant or Byzantine-resilient, since
tine components out of a total of= 3f + 1, which isthe these faults are often called Byzantine

maximum resilience in asynchronous systems. This paper presents a solution for the implementation of

This paper extends the normal asynchronous sys-state machine replication services (SMR)practical dis-
tem with a special distributed oracle called TTCB. Us- tributed systems. The worgractical is used in this con-
ing this extended system we manage to implement artext to signify open distributed systems with networks that
intrusion-tolerant service based on the SMA with only provide weak quality of service guarantees, like the Inter-
2f 4+ 1 replicas. Albeit a few other papers in the liter- net, Ethernet LANs and other common network technolo-
ature present intrusion-tolerant services with this ap- gies. This kind of systems is often modelled usingdbgn-
proach, this is the first time the number of replicas is chronous modelwhich makes no assumptions about pro-
reduced fronBf + 1 to 2f + 1. Another interesting char- cessing times, communication delays or clock drift rates.
acteristic of the described service is a low time complex- The asynchronous model is extensively used mainly be-
ity. cause it is hard to identify realistic bounds for these delays

in practical systems. Moreover, for intrusion-tolerant sys-

tems, there is an additional motivation: protocols that make

. timing assumptions frequently have subtle vulnerabilities,

1. Introduction which can be exploited in order to cause their failure [3].
We are aware of three asynchronous intrusion-tolerant SMR

The application O,f dependability 'co.ncepts and aP- services in the literature: Rampart [19], BFT [3] and FS-
proaches to the design of secure distributed systems ISNewTOP [17]

raising a considerable amount of interest in both commu-
nities under the designation aftrusion tolerance[24].
The idea is that security concepts like vulnerability, at-
tack and intrusion are contained in the dependability
notion of fault, therefore it is possible to build secure sys-
tems based, to some extent, on dependability mechanism
This idea has been used to design several protocols and s
tems in recentyears [2, 3, 5, 11, 14, 16, 17, 19].

The resilienceof a protocol can be defined as the max-
imum number of faults in the presence of which the pro-
tocol still behaves according to its specification. Notwith-
standing the advantages of the asynchronous model dis-
cussed above, the optimal resilience for an SMR service
$ased on this model is2=1], since the problem essen-
y%i'ally boils down to atomic multicast [19, 3], which is equiv-
alent to consensus [10]. A proof of the maximum resilience

+* This work was partially supported by the FCT through project
POSI/1999/CHS/33996 (DEFEATS), project POSI/CHS/39815/2001 1 Throughout the paper we also use the expressiaticious faultsto
(COPE) and the Large-Scale Informatic Systems Laboratory emphasize that the cause of the fault is an intelligent attacker that has
(LASIGE). the purpose of violating some property of the system.

for asynchronous Byzantine consensus can be found in [1].ing service that allow us to implement an atomic multicast
This means that the service needs- 3f replicas to toler- protocol with a resilience df”* |. This service is the main
ate f faults: four replicas to tolerate one fault, seven to tol- building block of our SMR solution.

erate two faults, etc. Each additional fault the system has The paper provides the following main contributions:

to tolerate has a significative cost since it requires three ad-
ditional machines. Moreover, the whole approach is based
on the assumption that replicas fail independently, but this
is true only if they do not have common vulnerabilities [3].
This involves using different replicas, i.e., different codes e the SMR service has a resilience p?;—lj instead
running in distinct operating systems. To summarize, each of the optimal resilience in asynchronous systems of

e it presents an SMR service implemented mostly on a
Byzantine asynchronous systems, but that uses the ser-
vices provided by a oracle with stronger properties;

additional replica has two costs: (1) the cost of its hardware L”glj;

and software; and (2) the cost of its design, since ithasto o {he SMR service circumvents the FLP impossibility re-
be different from the other replicas. Notice that the number sult without any synchrony assumptions on the asyn-
of faults that can be tolerated can be improved either by de- chronous part of the system; all synchrony necessary
tecting and removing faulty replicas [21], or by proactively to circumvent FLP is in the wormhole oracle:

recovering the state of the replicas [3]. However, in a win-
dow of time between detection and removal or between re-
coveries, the resilience remain8+ |.

This paper presents a solution that reduces the cost of
intrusion-tolerant SMR services by decreasing the numberz' System Model and the TTCB
of replicas required to tolerate a number of faults/intrusions.

More precisely, the presented SMR service has a resiliencet The systtedmbls essemal:zl corﬂ]pé)sed lby 3 sett\zf hl? S;_Sh'.n'
of [2=1], i.e., it requires only a majority of correct repli- o connected by a network, cafled payload network. 1his

cas @2 = 2f servers to tolerat¢ faults). This means a re- environment is asynchronous, i.e., there are no assumptions
' about processing delays or message delivery delays. The

duction from 25% to 33% on the number of machines to hosts h locks but th i ther about
tolerate the same number of faults: three replicas to toler- OStS have Clocks but there are no assumptions, either abou
local clock drift rates, or about the reliability of the read-

ate one fault, five to tolerate two faults, seven to tolerate .

three faults, etc. Detection and removal, or proactive recov-""9S they provide.)))
ery of replicas, can also be used to improve the maximum The asynchronous environment is extended with a TTCB
number of faullty replicas wormhole, a distributed component with local parts in some

How is i ibl . h i frofi— of the hosts (local TTCBs) and its own communication
710w IS It possi 7e1 to Improve t '€ restience “’fT‘— . channel (TTCB control channel). The architecture of the
|"3=] to f = [%5=]? The solution has something in

3 ith th h : s in the li system is depicted in Figure 1. Besides being distributed,
common with the approach several protocols in the liter- i/« TTcB has three important features:

ature use to circumvent the Fischer, Lynch and Paterson
(FLP) impossibility result [9]. FLP says that no determinis- e itis assumed to be secure, i.e., resistant to any possible

¢ the service arguably exhibits good performance since
it has a low time complexity.

tic protocol can solve the problem of consensus in an asyn- attacks; it can only fail by crashing;
chronous system if a single process can crash. One of the j; i real-time, capable of executing certain operations
most common approaches to circumvent this result is to ex- with a bounded delay;

tend the asynchronous system with some kinaratle, like

an unreliable failure detector [14, 12] or an ordering ora-
cle [18]. These oracles allow the protocols to circumvent
FLP because they encompass some degree of synchrony,

e.g., enough synchrony to detect when a process crashed. The TTCB provides a very simple and limited set of
The solution in this paper also relies on an oracle, but this services, so that the security of its implementation can be
particular oracle provides two advantages, instead of a sin-yerified. This paper uses only two of these services. The
gle one: circumventing FLP and increasing the resilience. fjrst is the Local Authentication Service, which establishes
In the past few years, we have been exploring a type a trusted path between the server and its local TTCB, i.e.,
of oracle calledwormholes[22], to deal with the uncer- a channel that guarantees the integrity of their communica-
tainty (or lack of coverage) of assumptions such as timetion [8]. The second is the Trusted Multicast Ordering ser-
bounds [23] or intruder resistance [8, 5]. This paper ex- vice (TMO), which is the core of our solution and will be
tends the asynchronous system with a wormhole oracledescribed in Section 3.
calledTrusted Timely Computing Base (TTCBIready in- In relation to the real-time property mentioned above, it
troduced elsewhere [8]. This oracle provides a novel order-is important to make clear that the single consequence of

e it provides a limited set of services, which cannot be
possibly affected by malicious faults, since the TTCB
is secure.

vate networks over ISDN or Frame Relay. The real-time

o Sii\s/thRS Hostn behavior is ensured by RTAI and by an admiss_ion cont_rol
mechanisms that forces the control channel traffic to be lim-

S, S, ited and the communication delay bounded. This is a very
eee N brief idea and the reader is referred to [8] for a longer dis-

cussion on all these issues.

-};a The SMR service is executed by a setsafrversS =
TTCB TTCB

[I I {s1, $2, ...8,, }. The service can be invoked by a setliénts
TTCB Control Channel TTCB C = {c1,¢a,...cin}. The servers and clients are connected
by a fully connected network, although their communica-
tion can be delayed arbitrarily, e.g., in consequence of an
attack. Every host with a server needs a local TTCB, but
not the hosts with clients (see figure). We use the vpood
cessedo denote both servers and clients. Each sesyés
uniquely identified byeid;, a number obtained by calling
the TTCB Local Authentication Service [8].

A process iscorrect if it follows the protocol it is sup-
posed to execute. We assume that any number of clients
m can fail, but the number of servers that can fail is limited
to f = |251]. The failures can be Byzantine or arbitrary,

meaning that the processes can simply stop, omit messages,

- - send incorrect messages, send several messages with the

CLIENTS same identifier, etc. Faulty processes can pursue their goal
Figure 1. Architecture of the system. of breaking the properties of the protocol alone or in collu-
sion with other corrupt processes. A process is also consid-
ered to be faulty if one of the secret keys discussed below
this property for this paper is that the Trusted Multicast Or- s disclosed, or if it is not able to communicate with the lo-
dering service is not bound by the FLP impossibility result. cal TTCB, (e.g., due to a local denial of service attack).
Otherwise there is no need for the TTCB to be synchronous The communication among clients and servers is done
in the context of this paper: the TMO can be implemented in exclusively through the payload network. The communica-
a non-real-time wormbhole if another solution is used to cir- tjg among servers is also, to most extent, done through the
cumvent FLP, e.g., randomization or failure detectors. payload network. We assume that each client-server pair
_ The approach presented in the paper makes sense only i{ch s;} and each pair of serveriss;, s;} is connected by
itis possible to implement the TTCB. There are several pos-4 rejiable channelith two properties: if the sender and the
sible solutions, which were presented in another paper [8]. recipient of a message are both correct then (1) the message
Moreover, an implementation based on COTS componentsis eventually received and (2) the message is not modified

Payload Network

is currently available for free noncommercial iseet us i the channel. In practice, these properties have to be ob-
describe this implementation briefly for the reader to have aineqd with retransmissions and using cryptography. Mes-
an idea on how it works. sage authentication codes (MACs) are cryptographic check-

The local TTCBs have to be secure and realttime. Tr_\e sums that serve our purpose, and only use symmetric cryp-
current TTCB implementation relies on an real-time engi- tography [15]. The processes have to share symmetric keys
neering of Linux called RTAI [4] and is protected by hard- iy grder to use MACs. In the paper we assume these keys
ening the kernel, since its code is executed inside the kernelgre distributed before the protocol is executed. In practice,
Another solution to protect the local TTCB would be to ex- thjs can be solved using key distribution protocols available

ecute itinside a hardware module inserted in the computer,in the literature [15]. This issue is out of the scope of this pa-
like a PC/104 board. In relation to the control channel, the pe.

current TTCB implementation relies on a Fast-Ethernet net-
work, which is completely independent of the payload net-
work (each host has two network adapters). The control-
channel can be assumed to be secure for an inside premis
system. Wide-area solutions could be based on virtual pri-

Wrapping up, the system is essentially “asynchronous
Byzantine”: there are no bounds on the processing and com-
munication delays; and the processes can fail arbitrarily.

is system is extended with the TTCB wormhole, which is
synchronous and secure, therefore it provides some “well-

behaved” services that the processes can use to perform
2 Available at http://www.navigators.di.fc.ul.pt/software/ttch/ some steps of their protocols.

3. Trusted Multicast Ordering Service putationally infeasible to find two different inputs that hash
to the same output.

The SMR service proposed in the paper uses a new The interface of the TMO service contains three func-
TTCB service calledTrusted Multicast Ordering service tions: TTCBTMO.send, TTCBTMO._receive and
(TMO). This service is implemented inside the TTCB, so TTCB_TMO_decide:
its execution cannot be affected by malicious faults.

The TMO service was designed with the purpose of as-
sisting the execution of an intrusion-tolerant atomic mul-
ticast (or total-order multicast) protocol. The service does error, tag < TTCB_TMO_receive(eid, elist, threshold, msd,
not implement the atomic multicast protocol, but simply Msghash, sendeeid)
assigns an order number to the messages. The messagesyor, ordem, hash, propmask « TTCB.TMO_decide(tag)
however, are sent through the payload network, not through]]]
the TTCB. This is important since the TTCB has limited A Process is said to staan execution of the TMO
processing and communication capacities. Let us introduceS€rvice or simply to starta TMO, when it calls
briefly how an atomic multicast based on the TMO service T 1CB-TMO.send. The parameters of this function
can be implemented (the full protocol is introduced later Nave the following meanings. The firgtid, is the identi-
in Section 4.2.1). When a processvants to send a mes- fier of the §ender.befolrt_-:‘ the TTCB (see Sec_tloneﬂ};t is
sage to a set of recipients, it makes two operations: (1) itan aray wnh the |d'ent|f|ers of gll processes involved in the
gives the TMO a cryptographic hash of the message and (2)5€t Of atomic multicast executions to be orderttiesh-
it multicasts the message through the payload network re-0!d is the number of processes @fist that must give the
liable channels. Then, when another procgssceives the | | CB the correct hash of the messagesghast) for an or-
message, it also gives the TMO a hash of the message it red€r number to be assigned to the message. This parameter
ceived. When a certain number of processes gave the hashill be further discussed in Section 4.2risgid is a mes-
of the message, the TMO service assigns an order numbefad€ number that has to be unique for the semasghash
to the message and gives that number to the processes. TH& & cryptographic hash of the messagghe function re-
processes deliver the messages in that order. Figure 2 illusfU™s atag, which identifies the TMO execution when

error, tag «— TTCB_TMO_send(eid, elist, threshold, msd,
msghash)

trates the procedure. the process later calls TTCBMO_decide, and an er-
ror code.
When a process receives a message it has to call
N e TTCB_TMO_receive. The parameters are the same as
servers, 2 server s, servers,| 2 .
s ‘\%% ,\;o% for TTCB_TMO_send, except for the eid of the sender,
7 \o% tee 3/ \og sendereid. How does the TTCB knows that a call to
NE” J TTCB_TMO_receive corresponds to a certain TMO, which
was started by a call to TTCBMO_send? It knows by
Hash(V)—> " TGB Control Channel : looking at a set of parameters that together uniquely iden-
tify a TMO service execution(elist, threshold, msed,
M—> Payload Network
. .) . sendereid). This last sentence has an important implica-
Figure 2. Atomic multicast using the TTCB tion: if an attacker attempts to break the behavior of the
TMO service. TMO by calling TTCBTMO_receive with any of these pa-

rameters modified, the TTCB will simply consider it to
be a call to a different TMO, so the attack will be ineffec-

The cryptographic hash mentioned above has to be ob-tive' . .
TTCB_TMO_receive returns atag that is used by

tained using ahash functionh defined by the following) . .
; ; - TTCB_.TMO_decide to identify the TMO. When
ties [15]HF1 C nh ut of ar-

properties [15] Ompressiors Mmaps aninput of af TTCB_TMO_receive is called and the local TTCB has

bitrary finite length, to an output(x) of fixed length.HF2 no data about the TMO. a TMONKNOWN error is re
One way:for all pre-specified outputs, it is computation- - ’ X
y pre-sp b P turned. If there is data about the TMO buaisghash

ally infeasible to find an input that hashes to that output. ;= - .
HF3 Weak collision resistancé: is computationally infea- is different from the hash provided by the sender, a
sible to find any second input that has the same output as a
specified input. HF4 Strong collision resistancétis com-

tions. In a practical setting, a hashing function with 128 bits like MD5,
or 160 bits like SHA-1, can be considered secure enough for our pro-
tocol. Nevertheless, we consider HF2, HF3 and HF4 to be assump-

3 A guessing attack is expected to break the property HEB'irhash- tions. . .
ing operations, wherg is the number of bits of the hash. A birthday 4 Later we use a value_ outside the range of valid hashes. A call to

attack can be expected to break property HF2"H2 hashing opera- TTCB.-TMO_send returns an errorifisghasteL.

WRONG_HASH error is returned and the the call does not 4. State Machine Replication

count for the threshold. If there is a TMONKNOWN er-

ror, no tag is returned; on the contrary, if there is a A state machines characterized by a set efate vari-

WRONG HASH error, thetag is returned. ables which define the state of the machine, and a set of
To get the result of the TMO — the order number of the commandshat modify the state variables [21]. Commands

message — a process calls TTEBIO_decide. Ifthreshold have to be atomic in the sense that they cannot interfere

processes did not propose a hash equal to the hash proposéuth other commands. Tr&tate machine approaaonsists

by the sender yet, a THRESHOLROT_REACHED error of replicating a state machineinserverss; € S. The set of

is returned. If there is no error, the function returns the or- serversS implements theservice We assume that no more

der numberorder.n, the hash of the messapashand a thanf = [25%] servers fail. All servers follow the same

mask with one bit per process, indicating the processes thahistory of states if four properties are satisfied:

proposed the correct hagtrop-mask For each TMO exe- e SM1 Initial state All servers start in the same state.

cution, the order number returned to all processes must be

the same, since the TTCB is assumed secure and reliable.
The purpose of the TMO service is to assign consecutive]

numbers (1, 2, 3, ...) to a set of TMO executions. At this ~ ® SM3 Total orderAll servers execute the commands in

stage the reader might ask: does the TTCB ord#rEMO the same order.

executions with a single sequence of numbers? Or can there e SM4 Determinismlhe same command executed in the

be several sets of TMO executions being ordered simultane- same initial state generates the same final state.

ously by the TTCB? The answer is related to the purpose of

the TMO service: to assist the executlon_ of an gtom|c muiti- same initial value in all servers, something that is usually

_castprotocol; there can be several atomic multicast Channel%imple to guarantee. The second and third properties de-

in the system, therefore the TTCB has also to order severalmand that the servers agree in the commands to execute

sets_of TI\éIO extre]cu_'lt_l_lcz(n:SBS|n:juItin%?u?%.cSé), V\(’jhat TN(;O €X" and in their order. This can be guaranteed sending the com-
ecutions does the orders The Oraers Indepen-angs to the servers using an atomic multicast protocol.

dently each set of TMO executions that belong to the sameyyg 6, 14h property is about the semantics of the commands
sequence, defined as fOIIO,WS: atthe application level, so in this paper we simply make the
Two TMO executions, identified respectively by (glist 55qmption that the commands are deterministic.
thre;hold, msg'dﬁ’ sende[e!di) and (elisj, threshold, The system works essentially the following way: (1) a
msgid;, sendereid;), are said to belong to the san®e- (jient sends a command to one of the servers; (2) the server
quence of TMO execution§ elist; = elist;. sends the command to all servers using an atomic multicast

TMO Service Implementation A brief discussion of the ~ protocol; (3) each server executes the command and sends
implementation we envisage for the TMO service can give @ reply to the client; (4) the client waits fgf + 1 identi-

a sense of the semantics of the service. The protocol that imcal replies from different servers; the result in these replies
plements the service is executed by all local TTCBs, which is the result of the issued command. This is a very simpli-
communicate using the TTCB control channel. The pro- fied description of the process, so let us first delve into the
tocol can be simple because the TTCB is real-time, local details of the clients, and later we describe the protocol ex-
TTCBs can only fail by crashing (they are secure) and they ecuted by the servers.

have synchronized clocks. The protocol is implemented on

the top of the (crash-tolerant) reliable broadcast protocol4.1. Clients

presented in [7].)))

The protocol is based on a fixed coordinator. When apro- A client¢; issues a commaraindto the service by send-
cess calls TTCBTMO_send or TTCBTMO receive in a N9 @REQUEST message to one of the servgrsThe mes-
local TTCB, the information about the call is broadcasted S29€ is sent through the payload network, since the only
to all local TTCBs. When the coordinator gets information Communication that is performed inside the TTCB is the
aboutthresholdcalls with the correct hash for a TMO ex- ©ne related to the execution of the TMO service. The for-
ecution, it assigns the next order number to the TMO, de- Mat of the message is:
fines the maslprop_.maskwith the processes that proposed (REQUEST, addr, num, cmd, vec
the correct hash, and broadcasts this information to all lo-where REQUEST is the type of the messa#ris the ad-
cal TTCBs. Then, when a process calls TTCBIO_decide dress of the client (e.g., the IP address and the pautjpis
the order number is returned. If the coordinator crashes, anthe request numbermdis the command to be executed (in-
other local TTCB takes over in a consistent manner, since itcluding its parameters) anaca vector of MACs (see dis-
is aware of the broadcasts made by the coordinator. cussion below). The request number has to be unique, since

e SM2 AgreementAll servers execute the same com-
mands.

The first property states that each state variable has the

the SMR service discards requests from the same client with4.2. Servers
the same number. A solution to generate these numbers is
to use a counter incremented for each sent message. The protocol executed by the servers is a thin layer

If the client and the server are correct, the REQUEST on the top of an atomic multicast protocol. A server
message is eventually received ¥y due to the properties calls atomicmcast(Mkeq) to atomically multicast a re-
of the reliable channels (Section 2). Then, if the server is quest Mrro to all servers, and the atomic multicast pro-
correct it atomically multicasts the message to all servers intocol layer callsatomicdliv(MrEg) to deliver Mggq to a
S, all correct servers execute the command and send a reserver. This protocol is in Algorithm 1.
ply to the client. The format of the reply message is:

(REPLY, addr, num, rés Algorithm 1 SMR protocol (for serves;).

where REPLY is the type of the messagedr is th_e ad- 1: When a request Mzo = (REQUEST, addr, num, cmd, vec
dress of the servenumis the request number, angkis the is received from a client: if there is no messageso’, with

result of the executed command. Mprpo’.addr = M gpo.addrandMpzo’.num = Mz sg.num
This scheme, albeit simple, is vulnerable to some attacks. for which atomicdiv(Mzzo’) has been previously called,
A servers; can be malicious and forward the message only then callatomicmcast(Mk £¢); otherwise discard the request.
to a subset of, or discard it altogether. To solve this prob-
lem, if ¢; does n.ot recgiv¢+1 repligs from differeljt servers Mprso', With Mgso'.addr = M gpo.addr and Mgso’.num
afterT..senq UNits of time read in its local clock, it assumes = M rso.num for whichatomicdiv(Mz o") has been previ-
thats; did not forward the request, so it multicasts the mes- ously called, then executandand send a messagREPLY,
sage to anothef servers. If this happens, it sends the mes- addr, num, reswith the result of the command to the client.
sage to a total of + 1 servers, therefore at least one must
be correct, and the request will be atomically multicasted. The objective of checking in both steps if

Ideally, T houl h h i . .
deally, T'.cseng Should be greater than the maximum atomicdv(Mppe), With Mps'.addr = Mpso.addr

round trip delay between any client and a server. However, nd M Cum = M n has been breviousl
the payload system is assumed to be asynchronous, so thef® REQ -NUM = MpEq.NUM previously
are no bounds on communication delays, and it is not pos-Ca”ed’ is to guarantee that a request from a client is exe-
sible to define an “ideal” value fdf,.....,. Therefore, the cuted only once. Recalllthat a cllen'F, even !f' cor'reclt, can
value 0fT).p.cnq iNVolves a tradeoff: if too high, the client resend a request (Section 4.1). This condition is imple-

can take long to have the command executed: if too low mented using a set that stores the request number and the

the client can resend the command without necessity. Thellient addressNlz p’.num and My pq'.addr) for all re-

value should be selected taking this tradeoff into account. Ifquests for whichatomicdiv(Mrrq) has already been

the command is resent without need, the duplicates are dis—ca”ed' If the server already received the request, the re-

carded using a mechanism discussed in the next section. quest is simply discarded (step 1). If several requests with

A malicous server might attempt & second attack: to 2 S0 BT B e Y ot he
modify the message before multicasting it to the other P » Only

servers. To tolerate this attack, the request message take%?ni]mannci t(Sttip 2I)i. }/&/hen the command is executed, a re-
a vector of MACsvec This vector takes a MAC per server, Py s_se (_) € client. . .
each obtained with the key shared between the client and This ba§|c protocol malfes at least one atomlg multicast
that server. Therefore, each server can test the integrity oi,for each client request. This cost may be excessive depend-

the message by checking if its MAC is valid, and discard ing on the rate of requests being issued. This cost can be
the message otherwfse ’ greatly reduced using batching mechanisyi.e., aggre-

In general, there will be restrictions on the commands gating several requests in a single atomic multicast. The

that each client can execute. For instance, if the commandéjeCiSi,or? about batching requests is left for gach Server to
are queries on a database, probably not all the clients are allak(.a' it it assesses that the rqte of requests is greater than
lowed to query all registers in the same way. This involves a given bound, it starts collecting a number of requests be-

implementing some kind of access control. There are s:ev_fore atomic multicasting them together in a single message.

eral schemes available in the literature and this issue is or-ThIS mechanism introduces some delay in the system, so the

thogonal to the problem we are addressing in the paper, soCI'entSTmsmd has to take this delay into account.
we do not propose any particular scheme.

2: When atomicdiv(Mgre@) is called: if there is no message

4.2.1. Atomic Multicast Protocol The core of the algo-
N _ _ , _ o rithm executed by the servers is the atomic multicast proto-
5 A malicious client might build a vector of MACs with a combination | which ies: all d
of valid and invalid MACs. This attack would be ineffective: if enough 90 » Which guarantees two PrOpert'es' a correcF servers de-
correct servers received the message with the correct MAC the com-liver the same messages in the same order; if the sender
mand would be executed, otherwise it would be discarded. is correct all servers deliver the sent message. A server

is said to (atomically) multicast a message M if it calls
atomicmeast(M) and it is said to (atomically) deliver a Algorithm 2 Atomic multicast protocol (serve;).
message M iitomicdlv(M) is called in the server. The pro-
tocol is more formally defined in terms of four properties:

INITIALIZATION :

1: elist«— {all eid’s of servers ir§ in canonical order

2: msgid_next— 1 {number of next ACAST to serjd
3: threshold— | 25+ | 4 1 {threshold for TMO servicéf + 1)}
4: ordernext« 1 {number of next request to delier
5: Waittmo— () {set w/recvd ACASTs while TMO unknown
6
7
8:

e AM1 Validity.If a correct server multicasts a message
M with a vector with all MACs valid, then some cor-
rect server eventually delivers M.

e AM2 Agreementf a correct server delivers a message
M, then all correct servers eventually deliver M.

e AMS3 Integrity. For any identifier/ D, every correct
server delivers at most one message M with identifier
1D, and ifsender(M)s correct then M was previously
multicast bysender(M§.

e AM4 Total order.If two correct servers deliver two 9: if verify_mac(Mgrrq.vec[s]) then
messages/; andM; then both servers deliverthe two 1. multicast Micasr = (ACAST, addi, Mpro,
messages in the same order. msgid_next, myeid, elist, thresholdto servers S, {s;}

This definition is similar to other definitions found in the 11: err, tag < TTCB.TMO.send(eid, elist, threshold,
literature, e.g., in [10]. However, property AM1 does not msgid_next, Hash(M:zq))
guarantee that the message is delivered in case the message: msgid_next« msgid_next + 1
does not have a vector filled with valid MACs (i.e., MACs 13: Wait thresh— Wait threshU {(M 4c as7,tag)}
properly obtained using the key shared between the client
and each of the servers). Recall that the objective of thiSWHEN M acas7 1S RECEIVED DO
vector of MACs if to prevent a malicious server from atom- 14: wait tmo — Wait tmo U {Mac as7}
ically multicasting a corrupted request (Section 4.1). Albeit
the objective is to deal with malicious servers, if the client Task T1:
itself is malicious and sends a message with some invalid
MACs, the message may not be delivered by the atomic
multicast protocol.

The protocol is shown in Algorithm 2. It has four
parts: initialization (lines 1-8), processing of a call to
atomicmcast(M) (lines 9-13), processing of the recep-
tion of an ACAST message (line 14), and a task that pro-

: Wait_thresh—) {set w/ACASTSs while thresh. not reachied
- Wait_deliv <
activate task(T1)

{set with requests waiting for deliveyy

WHEN ATOMIC _‘MCAST (M rEq) IS CALLED DO

15: loop

16: forall Macasr € Waittmodo {msgs w/unknown TMQ
if verify_-mac(Mrrq.vec[s]) then hash «— Hash(
Macasr.mreq) else hash— L
err, tag <« TTCB_TMO_receive(eid, Macasr.elist,
M acasr.threshold, Micasr.msgid, hash, Micasr.

cesses the messages stored in a number of buffers (lines sendereid)
15-34). A correctness proof can be found in [6]. 19: if err# TMO-UNKNOWN then
The protocol uses a single type of message: 20: Wait tmo — Wait tmo\ {M.acas7}
. . . 21: if (err# WRONG_HASH) or (hash =L) then
(ACAST, addr, mreq, msgd, sendereid, elist, threshold - Wait thresh— Wait threshU {(M acastag)}

whereACASTIs the message typaddr the address of the 23: forall (M.acasr,tag)cWait threshdo {thresh not reachd

sender servemreqthe request messageieq = Mgeg), 24:
msgid a message number unique for the senskemdereid 25:
the eid of the server that atomically multicasted the mes- 5.
sage.elist is the list ofeid's of the processes involved in .
the protocol, andhresholdis the value|25t| + 1 (for 28:
n = 2f + 1, itis f 4+ 1). The identifier of a message in
property AM3 ([D) is: (ACAST, msgd, sendereid, elist,
threshold)

Lines 1-7 initialize several local variables, including
three sets used to store messages in different stages of pro-
cessingWait tmo, Wait threshandWait deliv. Line 8 starts :
task T1.

29:
30:

34:

err, n, hash, promask« TTCB_TMO _decide(tag)
if err2 THRESHOLD.NOT_.REACHEDthen
Wait_thresh— Wait_thresh\ {(M ac as7,tag)
if Hash(Macas7.mreq) = hastthen
Wait_deliv — Wait_delivU {(M ac asr.mreq,n}
if Macasr.addr# addr, then {if not the sendelr
multicast Macast 10 {Vs,es : s; ¢propmask
while I(Mppo.n)eWait_deliv © N = ordernext do
{messages waiting to be delivejed
Wait deliv — Wait deliv \ {(Mreq,n)}
ordernext« ordernext + 1
ATOMIC DLV (M rEQ)

6 The predicatsender(M)ives the sender field of the header of M.

When atomicmecast(M:z) is called, the server calls s inserted inWaitdeliv (lines 27-28). Then, if the server is
verify_macto test if the MAC that corresponds to itsedf not the message sender, it resends the message to the servers
in the vector of MACs is valid (line 9). If itis not, the server that did not ‘contribute’ to the threshold, i.e., to the servers
simply dismisses the message. If the MAC is valid, the re- not in prop_.mask(lines 29-30). The rationale for resending
quest Mg is enveloped in an ACAST message and mul- the message is that a malicious sender can send the mes-
ticasted to all servers except the sender (line 10). Then,sage only to a subset of the servers; therefore, these servers
the server starts the execution of one instance of the TTCBmay not have the message.

TMO service by calling TTCBTMO_send (line 11). Each The setWait deliv keeps messages that already have an
call to atomicmcastcauses at most one execution of the order number assigned by the TMO service, therefore they
TMO service. After starting the TMO service, the server can be delivered. These messages are handled in lines 31-
puts the ACAST message in the $&hit thresh waiting 34. The algorithm keeps a number with the next message to
for the TMO threshold to be achieved (line 13). When an be deliveredprder_next If the next message to be delivered
ACAST message is received by a server, it is simply storedis stored inWait deliv, then task T1 delivers it (lines 31-34).

in Waittmo(line 14). Otherwise, the message has to wait for its turn.

Task T1is permanently checking if the messages in the
three sets can be processed. Messag#@dihtmoare han-
dled in lines 16-22. For each messageViaittmao, task
T1 makes a call to TTCBMO_receive (lines 16-18). If
the MAC corresponding te; is valid, the hash of mes-
sage is given to TTCBMO_receive (lines 17-18). Oth-
erwise, a value out of the range of valid hashes is given
L (lines 17-18). If the local TTCB is still not aware of
that TMO executiofh, then TTCBTMO_receive returns the
error TMO_.UNKNOWN. If the TTCB is aware of the
TMO but the hash of the request is wrong, then an erro
WRONG_HASH is returned. If the TTCB is aware of the
TMO and either the hash is correct, or the hash ifthe
MAC is invalid), the message is removed frédait tmoand
inserted inWait thresh(lines 19-22). If the TTCB is aware
of the TMO but the hash is wrong (but ndf), the mes- 5. Performance
sage is discarded since it has been corrupted at some stage
(lines 19-22).

4.2.2. FLP Impossibility Result The consensus problem
has been proven to be impossible to solve deterministically
in asynchronous systems if a process is allowed to fail, even
if only by crashing [9]. This FLP impossibility result also
applies to the atomic multicast problem since it is essen-
tially equivalent to consensus [10]. Our system is not bound
by FLP, since itis not fully asynchronous: it is mostly asyn-
chronous, but includes the TTCB subsystem, which is syn-
chronous. The problem of atomic multicast is essentially
equivalent to a consensus about the set of messages to de-
Mliver and their order. Our protocol leaves this consensus to
the TTCB TMO service, which is executed in a synchronous
environment, therefore FLP does not apply.

The evaluation of the performance of distributed proto-

Th tWait thresh contai iting for th cols is usually made in terms of time and message complex-
€ setivaitthresh contains messages waiting 1or e 0 1y asynchronous systems, tiftae complexitys usu-

number of calls to their TMO to reach the threshold. These ally measured in terms of the maximum numberas§n-

tmhesst?glz's ?re handlted 'tr;] “trﬁs 23-30. Thel pcl;rp.czjsetc’fdthechronous roundof message exchange. An asynchronous
resholdis to guarantee that the servers only declde 1o de- ., 4 jnvolves a process sending a message and receiv-

liver a message if they eventually become able to deliver it. ing one or more messages in response. For the Byzantine

Ifn ?tlher ;/vords, theytcan onl);] dect:rl]de to dellverTathmgssagefault model, only the number of rounds executed by correct
I rzuit e(? ?f OF (Ia ot 1ser\$<\a/rr asr \? Tﬁ sts ?f?e. kn'sw'str?uarbrocesses matter, since malicious processes can behave ar-
anteed if at leasf + 1 servers prove tha ey Kno € bitrarily. We consider separately the number of rounds of
hash of the message, therefore the threshold is séttd TMO execution
(line 3). Notice that a server that received a message with : ’ o

) . : i The tim mplexity is two roun fm xchan
an invalid MAC does not contribute to the threshold, since e time complexity is two rounds of message exchange

N . . in the payload network, plus one round of TMO executions.
it gives TTCB.TMO_receive the valud. instead of the hash Let us justify this complexity by presenting the worst case.

ofthe message (lines 17-18). W_hen the threshold Is reachedThe client sends a request to a senglethalf round), but
the message is removed fromaitthresh(lines 25-26). If s; is crashed (or is malicious), $9 does not multicast the

the message corresponds to the hash returned, the messa essage to the other servers. This situation forces the client

to resend the request to anothfeservers, which we count

7 The TMO is started in the local TTCB of the server that atomically as another half round. Then, all correct servers that received
multicasts the_ ACAST message, so the |nformat!on about the TMO the request, multicast the request in an ACAST message to
takes a certain time to be broadcasted and received by the other lo-
cal TTCBs. Therefore, it is not possible to guarantee that the TMO all other servers (half round) and start one TMO (one round
information will be available in a local TTCB when the correspond- of TMO executions, since all TMOs are executed in par-

ing ACAST message is received. allel). When the first of these TMOs terminates, the com-

mand is executed and all correct servers send a reply to theesilient state machine replication systems with resilience

client (half round). Therefore, there are two rounds of mes- L%IJ appeared: Rampart and BFT.

sage exchange plus one round of TMO executions. Rampart is an intrusion-tolerant group communication
Themessage complexity measured in number of mes- system. It provides a set of communication primitives and

sages (unicasts) sent. We start by discussing this complexitya membership service, which handles the joining and leav-

when the batching mechanism is disabled. The complexitying of group members [19]. When a message is atomically

of the SMR service can be divided essentially in three casesmulticast to the group, a reliable multicast protocol is used

1. One requestFor each command, a client sends only to send the message. Then, a special process, the sequencer,

one REQUEST message to a single server because thgdefines an order for the messages and also reliably mu_Iti-
client is correct, the server is correct, and the serversC@Sts this order to the group. All these protocols use dig-
answer in less thaffi.....,4 Units of time measured in ital ;ignatures to authenticate some messages [15]. Ram-
the client's clock. A single TMO is executed. part is mostly asynchronous but assumes enough synchrony
. to detect process failures. Replication is implemented by a
2. f + 1 requestsFor each command, a client sends RE-

set of servers, which form a group [19]. Clients send their
QUEST messages {b+ 1 servers because the servers

i requests to a server of their choice, similarly to our algo-
do notrespond beforE, c...q, although both the client i The output of the service has to be voted so that

and the server for which it first sends the request aréhe resyits provided by correct servers prevail over those
correct.f + 1 TMOs are executed. returned by malicious servers. Two solutions were imple-
3. n requests.For each command, a malicious client mented: one very similar to ours, and another one based
sends REQUEST messages torakerversn TMOs on a (k,n)-threshold signature scheme, which has poor per-
are executed. A malicious client can issue any numberformance. Besides Rampart, there are two other intrusion-
of commands but the SMR protocol prevents it from tolerant group communication systems: SecureRing [11]

forcing the execution of more than TMOs by com- and SecureGroup [16]. However, there is no discussion
mand (see Algorithm 1). about their use for the implementation of the state machine
approach. The resilience is the same.
| Requests] Message complexity TMOs | BFT is a Byzantine-resilient state machine replication
1 o(n?) 1 service. The system is optimized for having good perfor-
f+1 O(n?) f+1 mance, therefore, on the contrary to Rampart, most of the
n O(n?) n time it does not use public-key cryptography. In BFT, all
clients send the requests to the same server, the primary.
Table 1. Message complexity and number of Then, the primary atomically multicasts the request to the
TMOs executed (batching disabled). backups (the other servers); all replicas execute the request

and send the result to the client; the client waits fof 1

Table 1 summarizes the message complexities for thereplies with the same result, which is the result of the oper-

three situations. The deduction of these values is straight-2tion- BFT assumes enough synchrony to detect the failure

forward. The table assumes the batching mechanism is dis®f the primary. When it fails, a new primary is elected.

abled. However, the purpose of this mechanism is precisely SINTRA provides a number of group communication
to reduce these values. If we consider that the average numPrimitives that can be used to support SMR [2]. These
ber of requests batched in each atomic multicagt,ishen primitives are based on a randomized Byzantine agreement
the message complexities and the number of TMOs pre_protocol, therefore they are strictly asynchronous. The re-
sented in the table have to be divided By Therefore, the silience is alsd "3+ |.
higher the value of3, the higher the reduction in the com- FS-NewTOP is a recent intrusion-tolerant SMR system
plexity and number of TMOs. Nevertheless, there is a trade-based on fail-signal (FS) processes, i.e., processes that an-
off. To increaseB the algorithm has to delay requests un- nounce when they fail [17]. Each FS process is implemented
til a certain number can be batched in an atomic multicast, by two nodes connected by a synchronous channel. Each
therefore increasing the average latency of the algorithm. node monitors its peer. When one node detects that its peer
has misbehaved in some way, it signals the failure to all pro-
6. Related Work cesses and stops the FS process. The resilience is allegedly
4f + 2, which is sub-optimal. However, the algorithm does
The state machine approach was first introduced by Lam-not tolerate the failure of two nodes, if they are part of the
port for systems in which faults were assumed not to oc- Same FS process.
cur [13]. Later, Schneider generalized the approach for sys- Pedone et al. usedleak ordering oracleto solve crash-
tems with crash faults [20]. More recently, two Byzantine- tolerant agreement problems in asynchronous systems [18].

The oracle gives a hint about the order of the messages, [9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibil-
which may be right or wrong. The hint is simply the or-
der in which the messages are received from the network,

which is often right in a LAN. Our ‘TTCB with TMO’ ora-

cle might be considered to be a perfect ordering oracle.

7. Conclusion

This paper proposes a novel state machine approach
solution. The algorithm is executed in an asynchronous

and Byzantine environment, with the exception of a syn- [12]

chronous and secure distributed subsystem, the Trusted
Timely Computing Base wormhole. The algorithm is based

on a novel TTCB service, the Trusted Multicast Ordering [13]
service, which defines an order for a set of messages repre-

sented by their hashes. Using this service, we managed t
design an atomic multicast protocol with a resilience lower

than the maximum theoretical bound in asynchronous sys-
tems:| 251 | against 2z |. The paper also shows how the

[10]

[11]

Q14

TTCB can be used to circumvent FLP. The performance of [15)
the system was assessed in terms of time and message com-
plexities, and number of TMOs executed. The systemis cur-[16]

rently being implemented.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

[17]

G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols.Journal of the ACM 32(4):824-840,
Oct. 1985.

C. Cachin and J. A. Poritz. Secure intrusion-tolerant replica- [18]

tion on the Internet. IProceedings of the International Con-
ference on Dependable Systems and Netwqriges 167—
176, June 2002.

M. Castro and B. Liskov. Practical Byzantine fault tolerance [19]

and proactive recovernACM Transactions on Computer Sys-
tems 20(4):398-461, Nov. 2002.

P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes,
S. Hughes, and K. Yaghmour. DIAPM-RTAI position paper.
In Real-Time Linux Workshoplov. 2000.

M. Correia, L. C. Lung, N. F. Neves, and P. ¥&imo. Ef-
ficient Byzantine-resilient reliable multicast on a hybrid fail-
ure model. InProceedings of the 21st IEEE Symposium on
Reliable Distributed Systemgages 2—-11, Oct. 2002.

M. Correia, N. F. Neves, and P. \fesimo. How to toler-
ate half less one Byzantine nodes in practical distributed sys-
tems. DI/FCUL TR 04-6, Department of Informatics, Uni-
versity of Lisbon, July 2004.

M. Correia, P. Veissimo, and N. F. Neves. The design of
a COTS real-time distributed security kernel (extended ver-
sion). DI/FCUL TR 01-12, Department of Computer Sci-
ence, University of Lisbon, 2001.

M. Correia, P. Veissimo, and N. F. Neves. The design of a
COTS real-time distributed security kernel. Pnoceedings

of the Fourth European Dependable Computing Conference
pages 234-252, Oct. 2002.

[20]

[22]

[23]

[24]

ity of distributed consensus with one faulty procedsurnal

of the ACM 32(2):374-382, Apr. 1985.

V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcasts and related problems. Technical Report
TR94-1425, Cornell University, Department of Computer
Science, May 1994.

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The
SecureRing group communication systelACM Transac-
tions on Information and System Securit(4):371-406,
Nov. 2001.

K. P. Kihistrom, L. E. Moser, and P. M. Melliar-Smith.
Byzantine fault detectors for solving consensd$fe Com-
puter Journa) 46(1):16—35, Jan. 2003.

L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system.Communications of the ACM1(7):558—
565, July 1978.

D. Malkhi and M. Reiter. Unreliable intrusion detection in
distributed computations. IRroceedings of the 10th Com-
puter Security Foundations Workshqmages 116-124, June
1997.

A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstdtend-
book of Applied CryptographyCRC Press, 1997.

L. E. Moser, P. M. Melliar-Smith, and N. Narasimhan. The
SecureGroup communication system.Rroceedings of the
IEEE Information Survivability Conferencpages 507-516,
Jan. 2000.

D. Mpoeleng, P. Ezhilchelvan, and N. Speirs. From crash
tolerance to authenticated Byzantine tolerance: A structured
approach, the cost and benefits.Arceedings of the Inter-
national Conference on Dependable Systems and Networks
pages 227-236, June 2003.

F. Pedone, A. Schiper, P. Uab, and D. Cavin. Solving
agreement problems with weak ordering oracle®rvceed-
ings of the Fourth European Dependable Computing Confer-
ence pages 44-61, Oct. 2002.

M. K. Reiter. The Rampart toolkit for building high-integrity
services. IfTheory and Practice in Distributed Systemsl-
ume 938 ofLecture Notes in Computer Sciengages 99—
110. Springer-Verlag, 1995.

F. B. Schneider. Synchronization in distributed programs.
ACM Transactions on Programming Languages and Sys-
tems 4(2):179-195, Apr. 1982.

[21] F. B. Schneider. Implementing faul-tolerant services using

the state machine approach: A tutoridCM Computing Sur-
veys 22(4):299-319, Dec. 1990.

P. Veiissimo. Uncertainty and predictability: Can they be
reconciled? IrFuture Directions in Distributed Computing
volume 2584 ofLecture Notes in Computer Sciengages
108-113. Springer-Verlag, 2003.

P. Veiissimo and A. Casimiro. The Timely Computing Base
model and architecturelEEE Transactions on Computers
51(8):916-930, Aug. 2002.

P. Veiissimo, N. F. Neves, and M. Correia. Intrusion-tolerant
architectures: Concepts and design. In R. Lemos, C. Gacek,
and A. Romanovsky, editorgrchitecting Dependable Sys-
tems volume 2677 ofLecture Notes in Computer Science
pages 3-36. Springer-Verlag, 2003.

