
Byzantine-Resistant Consensus based on a Novel Approach to
Intrusion Tolerance∗

Miguel Correia1 Nuno Ferreira Neves1 Lau Cheuk Lung2 Paulo Veŕıssimo1

1Faculdade de Cîencias da Universidade de Lisboa
Campo Grande, Bloco C5, 1749-016 Lisboa, Portugal

2Pontif́ıcia Universidade Cat́olica do Parańa
R. Imaculada Conceiç̃ao, 1155, Prado Velho, Brasil, CEP: 80215-901

{mpc,nuno,pjv}@di.fc.ul.pt lau@ppgia.pucpr.br

1 Introduction

Intrusion tolerance has been raising a good deal of inter-
est in the security and dependability communities [6]. It
is a sad but daily fact that networked computer systems
often have vulnerabilities that can be exploited by ma-
licious hackers. The idea of intrusion tolerance is to
acknowledge this fact and to build systems that tolerate
a number of faults, including attacks and intrusions. In
other words, an intrusion-tolerant (IT) system has to de-
liver its service according to its specification despite the
failure of some of its components.

We have been exploring a new approach to build
IT distributed systems. We consider a hybrid archi-
tecture: most of the systems is assumed to be time-
free (asynchronous) and vulnerable to attacks and intru-
sions; however, there is a subsystem with stronger prop-
erties, which can be used to assist the execution of the
applications and protocols. This subsystem is called the
Trusted Timely Computing Base (TTCB). It has been
designed to execute a small number of simple low-level
services in a secure and timely way [3]. Therefore, we
have a system that is basically asynchronous and in-
secure, with a ‘small’ subsystem that is synchronous
(real-time) and secure. The TTCB is an example of a
secure and timelywormhole[5].

The objective of this abstract is to show some of the
benefits of our approach by presenting a simple IT con-
sensus protocol. Consensus is known to be a fundamen-
tal problem in distributed systems. Using our approach
we manage to implement a consensus protocol with in-
teresting properties. The protocol is a simplified version
of the protocol presented in a recent report [2].

∗This work was partially supported by the FCT through the
LASIGE Laboratory and projects POSI/1999/CHS/33996 (DE-
FEATS) and POSI/CHS/39815/2001 (COPE).

2 The Consensus Protocol

The consensus protocol is executed by a number of pro-
cesses running in different machines. Processes com-
municate mostly using the ‘normal’ asynchronous and
insecure network, called payload network. Processes
can be attacked and fail, by stopping to interact or by
trying to break the protocol, alone or in collusion with
other failed processes. Nevertheless, we assume that at
most one third of the processes less one can fail, i.e.,
f = bn−1

3 c (n is the total number of processes,f is
the number of failed processes). The communication
between correct (i.e., not failed) processes is assumed
to be secure (this is simple to enforce with symmetric
cryptography; see [2] for details).

Processes use only one of the TTCB services in run-
time: the Trusted Block Agreement service (TBA). This
service executes securely ‘agreement’ operations in a
broad sense. In this paper, TBA makes a vote on the
values given by the processes and returns three items:
the value proposed by most processes, the list of the
processes that proposed that value, and the list of the
processes that proposed any value. The proposed values
have a limited size of 160 bits.

The consensus protocol is defined in terms of three
properties:

• Validity. If all correct processes propose the same
valuev, then any correct process that decides, de-
cidesv.

• Agreement.No two correct processes decide dif-
ferently.

• Termination.Every correct process eventually de-
cides.

The protocol is presented in Algorithm 1. A process
is identified before the TTCB by aneid identifier. Each



process engages in an execution of the protocol by call-
ing the functionconsensuswith three parameters: the
value it proposes, a listelist with the eidsof the pro-
cesses involved, and atstartpassed to the first execution
of the TBA (line 7).

The protocol executes basically the following way (a
more detailed description can be found in [2]). Each
process starts by sending its value to all other processes
(line 5). Then it enters a loop that calls TBA once per
round (lines 6-15). Each (correct) process gives TBA
a ‘hash’ of its value. A hash is the result of a crypto-
graphic hash function, a one-way function that obtains
a fixed-size digest of its input, with the property that it
is computationally infeasible to find two inputs that give
the same output.

The protocol can terminate in two situations. Iff +
1 processes propose the same hash for the TBA (line
15) then the value decided is the value corresponding
to this hash. This is the valued proposed by the correct
processes in case all proposed the same. The second
termination situation is when2f +1 processes managed
to propose for the TBA but nof + 1 proposed the same
(line 13). In this case the protocol can be sure that the
correct processes did not propose the same so it decides
on a default value (line 14).

3 Benefits

This simple IT consensus protocol uses the TTCB TBA
service to execute securely an agreement step of the
protocol. Besides its simplicity, the first benefit of the
protocol is to have low time and message complexi-
ties [2]. In the best case, the protocol runs in a single
round. The number of messages sent is clearly low.

The second benefit of the protocol is not relying on
public-key cryptography, usually three orders of mag-
nitude slower than symmetric cryptography. This has
been shown to be an important bottleneck in many IT
protocols [1].

It has been shown that no deterministic algorithm can
solve consensus in an asynchronous system if a single
process can crash [4]. Our protocol is not bound by this
result since our system is not fully asynchronous (the
TTCB is synchronous). However, termination depends
on a weak synchrony assumption on the local behavior
of correct processes: we have to assume that eventually
2f + 1 processes manage to propose to the TBA (lines
12-13).

These benefits of the protocol can give the reader an
intuition about the practical interest of our approach to
intrusion tolerance. Besides consensus, we have been
designing a suite of efficient IT protocols, including re-
liable multicast, membership and atomic multicast.

Algorithm 1 Consensus protocol
1 function consensus(elist, tstart, value)
2 hv←⊥; {hash of the value decided}
3 bag←∅; {bag of received messages}
4 round←0; {round number}
5 multicast(elist, tstart, value) to processes in elist;

6 repeat
7 outp ←TTCB propose(eid, elist, tstart,

TBA MAJORITY, Hash(value));
8 repeat
9 outd←TTCB decide(outp.tag);

10 until (outd.error6= TBA RUNNING);
11 tstart←tstart +T ∗ func(α, round);
12 round←round+1;
13 if (2f + 1 processes proposed) and (less thanf + 1

processes proposed the same hash)then
14 decide default-value;
15 until (f + 1 processes proposed the same hash);
16 hv←outd.value;

17 when receive message M
18 bag←bag∪ {M};

19 when (hv 6= ⊥) and (∃M∈bag : Hash(M.value) = hv)
20 decide M.value;

References

[1] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. InProceedings of the Third Symposium on Operat-
ing Systems Design and Implementation, pages 173–186,
Feb. 1999.

[2] M. Correia, N. F. Neves, L. C. Lung, and P. Verı́ssimo.
Low complexity Byzantine-resilient consensus.
DI/FCUL TR 03–25, Department of Informatics,
University of Lisbon, August 2003.

[3] M. Correia, P. Veŕıssimo, and N. F. Neves. The design
of a COTS real-time distributed security kernel. InPro-
ceedings of the Fourth European Dependable Computing
Conference, pages 234–252, Oct. 2002.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, Apr. 1985.

[5] P. Veŕıssimo. Uncertainty and predictability: Can they be
reconciled? InFuture Directions in Distributed Comput-
ing, volume 2584 ofLecture Notes in Computer Science,
pages 108–113. Springer-Verlag, 2003.

[6] P. E. Veŕıssimo, N. F. Neves, and M. P. Correia. Intrusion-
tolerant architectures: Concepts and design. In R. Lemos,
C. Gacek, and A. Romanovsky, editors,Architecting
Dependable Systems, volume 2677 ofLecture Notes in
Computer Science, pages 3–36. Springer-Verlag, 2003.


