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Summary. The application of the tolerance paradigm to se-The work reported in the paper comes from a recently fin-
curity —intrusion tolerance- has been raising a reasonable ished project that investigated the application of the fault tol-
amount of attention in the dependability and security commu-erance paradigm to enhance the security of systems [1,36].
nities. In this paper we present a novel approach to intrusiorn the project we explored two recent key ideas on distributed
tolerance. The idea is to use privileged components — genersystems architecture. The firshi®rmholes enhanced com-
cally designated bywormholes- to support the execution of ponents which provide processes with a means to obtain a
intrusion-tolerant protocols, often called Byzantine-resilientfew simple privileged functions and/or channels to other pro-
in the literature. cesses, with “good” properties otherwise not guaranteed by
The paper introduces the design of wormhole-aware inthe “normal” environment [34]. For example, a wormhole
trusion-tolerant protocols using a classical distributed sys+might provide timely or secure functions and communication
tems problem: consensus. The system where the consensis respectively, asynchronous or Byzantine systems. The sec-
protocol runs is mostly asynchronous and can fail in an arond key idea isarchitectural hybridizationa well-founded
bitrary way, except for the wormhole, which is secure andway to substantiate the provisioning of those “good” prop-
synchronous. Using the wormhole to execute a few criticalerties on “weak” environments. For example, if we assume
steps, the protocol manages to have a low time complexity: irthat our system is essentially asynchronous and Byzantine,
the best case, it runs in two rounds, even if some processes avee should not simply (and naively) postulate that parts of
malicious. The protocol also shows how often theoretical parit behave in a timely or secure fashion. Instead, those parts
tial synchrony assumptions can be substantiated in practicalhould be built in a way that our claim is guaranteed with
distributed systems. The paper shows the significance of thbigh confidence.
TTCB as an engineering paradigm, since the protocol man- Consensus is a classical distributed systems problem with
ages to be simple when compared with other protocols in théoth theoretical and practical interest. Over the years, other
literature. problems have been shown to be reducible or equivalent to
consensus, for instance, total order broadcast [20]. Consen-
Key words: Byzantine fault tolerance — intrusion tolerance sus has been applied to various kinds of environments, with
— distributed systems models — distributed algorithms — condistinct time assumptions and different types of failures, rang-
sensus ing from crash to arbitrary (see [17] for a survey of early
work). On asynchronous environments, it was shown to be
constrained by the FLP result, which says that it is impossible
to solve consensus deterministically if failures can occur [18].
Several researchers have proposed ways to circumvent this
limitation, e.g., by using randomization techniques [30, 4, 5],
1 Introduction by using failure detectors [8,25,21], and by using partial-
synchrony, i.e., by making weak synchrony assumptions [16,

Attacks and intrusions perpetrated by hackers are important3]. However, all these approached have practical shortcom-
security problems faced by any computer infrastructure. Thed89s when the objective is to tolerate Byzantine faults. Ran-
malicious actions fall into the category of arbitrary faults, domized protocols usually need a large number of message

which sometimes have been called “Byzantine” faults [23].ounds, failure detectors can detect only a subset of all possi-
ble failures and synchrony assumptions are hard to substanti-

* This work was partially supported by the EC, through project ate.
IST-1999-11583 (MAFTIA), and by the FCT, through the Large- ~ The present paper shows how a wormhole can be utilized
Scale Informatic Systems Laboratory (LASIGE) and projects to support the execution of a Byzantine-resilient (or intrusion-
POSI/1999/CHS/33996 (DEFEATS) and POSI/CHS/39815/2001tolerant) protocol. More specifically, the paper presents a con-
(COPE). sensus protocol based on a specific kind of wormhole, a de-
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Fig. 1. Architecture of a
Payload Network system with a TTCB.

vice calledTrusted Timely Computing BagETCB). Techni- 2 System Model

cally, the TTCB is a secure real-time and fail-silent (crash)

distributed component. Applications implementing the con-2.1 System Architecture
sensus protocol run in a “normal” system, which puts no re-

strictions on the type of failures that might happen and has ng-e grchitecture of the system can be seen as a classical By-

time bounds on the execution of operations or CommuniCay 4ntine asynchronous distributed system (designated here by

tion, i.e., atypical asynchronous Byzantine system. Norma"y'payload systejraugmented with the TTCB wormhole. In Fi-
applications for these environments would suffer in efficiencyg,,re 1 the parts in white constitute the augmented subsystem,
and/or determinism. However, the TTCB is locally acc.ess'blewhich in security terminology would be called a real-time dis-
to any process, and _the touchstone O.f our approach is that Hibuted security kernel. All the applications and protocols are
certain points of their execution applications can rely on it oy acuted in the payload system, except for some calls to the

to execute correctly (small) crucial steps of the protocols. A, 5rmhole.

graphical representation of a networked architecture with a In each host there islacal TTCB which is a small com-

TTCB wormhole can be observed in Figure 1. The reader 'Nbonent conceptually separated and protected from the remain-

trigued by the feasibility of building a wormhole might wish der of the host (the operating system and other software).

to refer to [12,11] for a description of the implementation OfaThe local TTCBs are all interconnected bgeantrol channel

TTCB using architectural hybridizatiénThe consensus pro-  ic'is assumed to be secure. Collectively, the control chan-

tocol relies to most extent on a TTCB service calledsted o 2nd the local TTCBs are calléde TTCB[;LZ]. The pay-

Block Agreement Servi¢@BA), which essentially makes an 54 gystem is composed by the usual software available in

agreement on the values proposed by a set of ProCESSES. Ut (such as the operating system and applications) and the

this paper we also assume that the processors are partialiyyyinad networkthe usual network allowing communication

synchronous, i.e., that the processing delays stabilize after atjy, g the various nodes, e.g., Ethernet/Internet). Through-

unknown interval of time. out the paper we assume that the protocol is executed by pro-
The main contributions of the paper are the following. cesses in the hosts, which communicate through the payload

Firstly, it presents the design of a consensus protocol based afetwork and call the TTCB to execute one of its services.

the TTCB wormhole and, more specifically, on a service that

securely makes agreement on fixed and limited size values

(TBA). Secondly, the paper shows how, often theoretical, par- 2 Fault and Time Models

tial synchrony assumptions can be well substantiated in prac-

tical distributed systems. Thirdly, the protocol presented ha

a low time complexity: in the best case, it runs in two rounds

even if some processes are malicious, mostly due to the stro

Fault-tolerant systems are usually built using either arbitrary
'or controlled failure assumptions. Arbitrary failure assump-

; . : . ns consider that components can fail in any way, although
properties enforceable in acomponent like the TTCB. Fma”y’in practice constraints have to be made (e.g., that less than one
the protocol shows the significance of the TTCB as an en-

. : . ; - third of the processes fail). These assumptions are specially
gineering paradigm, since t.he protocol manages to be S"m'dequate for systems with malicious faults —attacks and intru-
ple when compared_, e.g.,_W|th othe_r protocols based on wea ions [1]- since these faults are induced by intelligent entities,
synchrony assumptions, like those in [16]. whose behavior is hard to restrict or model. Controlled failure
The remainder of the paper is organized as follows: Theassumptions are used for instance in systems where compo-
system model and the TTCB are presented in Section 2. Thaents can only fail by crashindwrchitectural-hybrid failure
TTCB services used by the protocol are introduced in Secassumptiongring together these two worlds: some compo-
tion 3. The consensus problem and the protocol are describagents are constructed to fail in a controlled way, while others
in Section 4. Section 5 evaluates the protocol in terms of thenay fail arbitrarily. In this paper we assume such a hybrid
time and message complexities. Section 6 discusses relatégult model, where all system components are assumed to fail
work and Section 7 concludes the paper. arbitrarily, except for the TTCB that is assumed to fail only
by crashing.

1 A software implementation of the TTCB is available online at 2 There is some research ohnybrid fault models starting
http://www.navigators.di.fc.ul.pt/software/ttcb/. with [27], that assumes different failure type distributions for system
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The payload system iasecureand in essencasynchro- PC
nous In relation to insecurity, this means that processes run-
ning in the payload system — including the processes that TTCBAPI  Process
execute the protocol in this paper — can fail in an arbitrary Library =™,

way due to benign faults or to the action of an attacker. They

can, for instance, give invalid information to the TTCB, stop

communicating, or start colluding with other malicious pro- Interface™ . Local
cesses. The payload system is mostly asynchronous since it Module . TTCB
has unbounded and unknown message delivery delays, and RTAI
unbounded and unknown local clock drift rates. However, we

make a weak synchrony assumption about the delays in the il i
processors: for each execution of the protocol there is an un- ] v
known processors stabilization tim@ST) such that the pro- Hardware
cessing delays are bounded from time PST onward. This syn- l

chrony assumption is weak in the sense that itis about the pro. . =———————"——-—"——

cessors instead of about the network, which is important since
i

the delays inside the processors are much more deterministiga load Network (e.g., Fast Ethernet)
than in a network. This property has to be distinguished from y 9
the typical synchrony assumptions in the literature, like thosg™ig. 2. COTS-based TTCB implementation.
concerning unreliable failure detectors, which can only be im-
plemented in a real system with some synchrony assumptions
about the network. scheduling disciplines. Linux runs as the lowest priority task
The TTCB has two fundamental characteristics: iségs  and its interruption scheme was changed to be intercepted by
cureandsynchronousln relation to security, it is built to fail ~ RTAL.
only by crashing, albeit inserted in a system where arbitrary, ~The local TTCB is implemented by a LKM and by a num-
even malicious faults do occur. The component is expected t§er of RT tasks. This LKM — the TTCB Interface Module —
execute its services reliably, even if malicious hackers manhandles the calls from the processes. It does not provide real-
age to attack the hosts with local TTCBs and the payload nettime guarantees since it is part of the TTCB interface, i.e., it
work. The TTCB is also a synchronous subsystem capable df the border between the asynchronous and the synchronous
timely behavior, in the line of the precursor Timely Comput- parts of the system. All operations with timeliness constrains
ing Base work [35]. In other words, it is possible to determineare executed by RT tasks. A local TTCB always has at least
a (maximum) delay for the execution of the TTCB services.two RT tasks that handle its communication: one to send mes-
The local TTCBs clocks are synchronized (see Section 3). sages to the other local TTCBs and another to receive and
process incoming messages. The API functions are defined
in libraries and communicate with the local TTCB using RT
FIFOs. Currently there are C and Java libraries available.
From the point of view of security, RTAI is very similar to

The TTCB has an abstract specification that can be implel‘mux' Its main “vulnerability” is the ability of the superuser

mented in different ways. The current design, which is based® control any resource in the system. This vulnerability is

on COTS components, was reported elsewhere [11,12] Thigsually reasonably easy to exploit once t.h.e attacker is logged
’ . _ihthe machine, e.g., by using race conditions. Recently, sev-

section briefly discusses this implementation for complete- . ; .
eral Linux extensions appeared that try to compartmentalize
ness. ; vy .
the power of the superuser. Linwapabilities[33], which

o e o e el aeadypat o th kemel, e one ofthose mecanisms

(see Figure 2). The TTCB control channel is implementedtr.hese cgpab|llt|es are pnwleges or access control lists asso-

in one of the LANs and the payload network on the other. ciated with processes, allowing a fine grain control on how
they use certain objects.

PCs run RTAI which is an extension of Linux that supports A TTCB b tructed b forming the fol
the execution of real-time applications [9]. RTAI modifies the A secure T1LB can be constructed by periorming the fol-
lowing steps. First, one needs to protect the operating sys-

Linux kernel in such a way that a real-time executive takes . X .
control of the hardware to enforce the timely behavior of &M and the TTCB binary files executed during the system

Potstrap. This task is accomplished by booting the system

some tasks. These RT tasks are special Linux loadable kern? ;
modules (LKMs), which means that they run inside the kernel fom a read-only device, such as a8 ROM or CD-ROM. After

: kernel boots and the local TTCB starts to run, the ker-
(see figure). The scheduler was changed to handle these tastkhgeI is sealed, L., the possibility of directly modifying the

in a preemptive manner and to be configurable to differen . . oY
P P g ernel memory or inserting code in it, is disabled even for

nodes. These distributions would be hard to predict or constrain ifPf0c€sses with superuser privileges. This is achieved by re-
the presence of malicious failures introduced by, for example, hackInoving some capabilities from theapability bounding set

ers. Our work is not related to that research but to the ideaatii- SO they can never be granted to any process until the next re-
tectural hybridization in the line of works such as [29,37], where boot (see details in [12]).

failure assumptions are in fact enforced by the architecture and the The TTCB control channel must also be protected. Firstly,
construction of the system components, and thus substantiated. we must guarantee that it is not possible to read or to write

RT Tasks

2.3 TTCB Implementation
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the control channel access point in a host. This is forced by8 TTCB Services
removing the access to the device driver so that only code in-

side the kernel (the local TTCB) can use it. Next, the networkThe TTCB provides a limited number of security- and time-
medium has to be secured from physical access. This praelated services [12]. Here we introduce only the three ser-
tection is simply assumed, since we are considering a shorijices used in the protocol presented in the paper.
range, inside-premises closed network, connecting a set of ThelLocal Authentication Servicallows processes to au-
servers inside a single institution, with no other connection thenticate the local TTCB, obtain an unique identifier (called
We assume that the attacker comes from the Internet throughid) and establish a shared symmetric key with it. The ob-
the payload network, without physical access to the servergective of this key is to protect the communication between
or control network hardware. the process and the wormhole. For example, when a result

The real-time behavior of the local TTCB is guaranteedarrives from a TTCB service, the process can use the key to
by RTAI. By protecting the kernel we also prevent attacksyerify the authenticity and integrity of the data. If the key is
against this real-time behavior, since the local TTCB runs in-discovered by an attacker, a personification attack becomes
side the kernel. If the Fast-Ethernet is secured as deSCI’ibqﬁbssime’ and Consequent|y the process has to be considered
above, the bounded delay assumption of the control chanfjled. The process has also to be considered failed if there is
nel can be ensure if: (1) only one host is connected to eacl denial-of-service (DoS) attack in its htsin terms of as-
port to avoid collisions; and (2) the traffic load is controlled sumptions, the local authentication service substantiates the
(see [7] for details). The first requirement is trivial. The sec- assumption that the communication among processes and the
ond is guaranteed by an access control mechanism, that ag-TCB is reliable. We consider that every process executing
cepts or rejects the execution of one service taking in accoury protocol during its initialization called the local authentica-
the availability of resources, i.e., buffers and bandwidth. tion service and obtained amd. The execution of the local

In the future, we envisage other TTCB designs, for in- aythentication service is the only moment when the protocol
stance based on tamperproof hardware (e.g., a PC104 boaides public-key cryptography [12].
with its own processor and memory) and wide-area networks  TheTrusted Absolute Timestamping Sengecevides glo-
such as a virtual private networks (VPN) based on ISDN,pally meaningful timestamps, since the local TTCB clocks
Frame Relay or ATM connections. If we assume that the pubare synchronized (the synchronization protocol runs inside
lic telecommunications network is not eavesdropped then gnhe TTCB). In practice this service provides a clock which
VPN already provides a private channel. Additional securitys available at all hosts with a local TTCB. This clock is also

can be obtained using secure channels, e.g., encrypting th@ccure, i.e., an attacker can not modify it.
TTCB communication.

2 4 Communication Model 3.1 Trusted Block Agreement Service

The protocol relies on channels that abstract some of the comFhe main service used by the consensus protocol i$rhe
munication complexity. Each pair of procesgeandq is in-  ted Block Agreement Servicer simply TBA Service This
terconnected in the payload network bgecure channetle-  service delivers the result obtained from an agreement on the
fined in terms of two properties: values proposed by a set of processes. All payload processes
receive the same result from the TTCB, since the TTCB is
secure. The values are blocks with small size, 20 bytes in the
currentimplementation. Additionally, the TTCB resources are
limited so this service should be used only to execute critical
steps of protocols, which run mostly outside the wormhole.
The TBA service is formally defined in terms of the three
Each pair of correct processes is assumed to share a syrfunctionsTTCB. propose TTCB. decideanddecision A pro-
metric key known only by the two. With this assumption, cessproposes a valugshen it successfully call§TCB. pro-
the two properties above can be easily and efficiently implepose If for some reason the proposal is not accepted, an er-
mented. Eventual reliability is obtained by retransmitting theror is returned by the TTCB (in this case the value was not
messages periodically until an acknowledgment is receivedproposed, e.g., for property TBA4). A procedscides a re-
Message integrity is achieved by detecting the forgery andsult when it callsTTCB. decideand receives back a result
modification of messages through the use of Message AufTTCRB. decideis non-blocking and returns an error if that ex-
thentication Codes (MACs) [26]. A MAC is basically a cryp- ecution of the service did not terminate). The functi®ci-
tographic checksum obtained with a hash function and a symsioncalculates the result in terms of the inputs of the service.
metric key. They are usually considered to be three orders of
magnitude faster to calculate than digital signatures. A pro- * If an attacker manages to log in a host, it can attempt a DoS
cess adds a MAC to each message that it sends, to allow tHitack by calling the TTCB at a fast rate. Some of its requests are
receiver to detect forgeries and modifications. Whenever suchccepted but others are discarded by the access control mechanism
detection is made, the receiver simply discards the messag@,entioned in Section 2.3. Neither the deterministic behavior of the

which will be eventually retransmitted if the sender is correct. T TCB control channel nor the other local TTCBs are affected. How-
ever, a process in that host might not be able to access the TTCB,

% The predicatsender(Myeturns the sender field of the message therefore it has to be considered failed. This case is equivalent to a
header. malicious process consuming all CPU time in the host.

e SC1 Eventual reliabilityif p andq are correct ang sends
a message M tg, thenq eventually receives M.

e SC2 Integritylf p andq are correct ang receives a mes-
sage M withsender(M)= p, then M was sent by and M
was not modified in the channél.
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The resultis composed of a value and some additional in-4 Consensus

formation that will be described below. Formally, the TBA

service is defined by the following properties: This section describes a consensus protocol tolerant to Byzan-
tine faults. For presentation simplicity, we start by explaining

 TBAL TerminationEvery correct process eventually de- NOW to reach consensus on a value with a small number of

cides a result. bytes, and then this result is extended by removing this limi-
e TBA2 IntegrityEvery correct process decides at most onetation. - .

result. The consensus protocol utilizes as building block the TBA
e TBA3 Agreemendlo two correct processes decide differ- service. The reader however, should notice that, as tempting

ently. as it might be, it ismot possible to solve the consensus prob-
o TBAA4 Validity.If a correct process decidessultthenre- €M in the payload system simply by using the TBA service of

sultis obtained applying the functiaiecisionto the val-  the TTCB. In fact, the problem does not become much sim-

ues proposed. pler because the protocol still needs to address most of the dif-

e TBA5 TimelinessGiven an instantstart and a known ficulties created by a Byzantine asynchronous environment.

constantTy 5 4, the result of the service is available on FOr instance, since the protocol runs in the asynchronous part
the TTCB bytstart+Tr 5 4. of the system, it can not assume any bounds on the execution

of the processes, on the observed duration of the TTCB func-
] ] o .. tion calls, or on the message transmission times. Moreover,
_The implementation of the TBA inside the TTCB is brief- gince processes can be malicious, this means that they might
ly introduced later in Section 5.1. Here we present its API,provide incorrect values to the TTCB or other processes, or
which consists of two function calls: they may delay or skip some steps of the protocol. What we
aim to demonstrate is that the ‘wormholes’ model, material-
tag,error—TTCB_propose(eid, elist, tstart, decision, value) ized here by the TTCB, allows simpler solutions to this hard
problem.
value,proposed-ok,proposed-any,eref TCB_decide(tag)

The parameters have the following meaningisis the 4.1 Consensus Problem
identification of a process before the TTCB, provided by the
Local Authentication Serviceelistis an array with the eid’s The consensus protocol is executed by a finite set pfo-
of the processes involved in the TBA tstart is a times-  cesses” = {p1,p2,...pn }. The protocol tolerates up tp =
tamp that indicates the instant when proposals for the TBA| 5] faults. This has been proved to be the maximum num-
are no longer accepted and the TBA can start to run insiddéer of faulty processes for consensus in asynchronous sys-
the TTCB. When the local TTCB receives a proposal, it readdems with Byzantine faults [5].
the clock and compares it with the valuetstfart If the clock The problem of consensus can be stated informally as:
value is later thamstart, it returns an error, otherwise the pro- how do a set of distributed processes achieve agreement on a
posal is processed in the normal way. The objective of thisvalue despite a number of process failures? There are several
test is to prevent malicious processes from postponing TBAglifferent formal definitions of consensus in the literature. In
indefinitely. decisionindicates the decision function used to the context of a Byzantine fault model in asynchronous sys-
calculate the result. There is a set of decision functions butems, a common definition [16,25,21] is:
the protocols in this paper use only one that returns the value o
proposed by more processes, designd@4 MAJORITY If e CS1 Validity.If all correct processes propose the_same
there are several values with the same number of proposals, Valuev, then any correct process that decides, deaides
one is chosenvalueis the value being proposed. The TTCB ® CS2 Agreemenio two correct processes decide differ-
knows that proposals pertain to the same TBA wielist, ently. o
tstart, decisionjre the same. e CS3 TerminationEvery correct process eventually de-
TTCB proposereturns aag, which is used later to iden- cides.
tify the TBA when the process callETCB decide and an
error code. Notice that, even if a process is late and call§y o gtherwise something bad might happen. Termination is
TTCB proposeaftertstart, it gets thetag and_later can get the a property that asserts that something good will eventually
result of the agreement by callifig CB decide This second o561 the case all correct processes propose the same

function(;etllilrvnifgyr thin?S: (r11) the value de(r:]ided; (2)a rgaﬁlﬂ/alue, Validity guarantees that it is the value chosen, even in
proposed-okwith bits set for the processes that proposed they,q presence of alternative malicious proposals. If correct pro-

valufe thr?t was decideﬂ; (3 a mapdroposedl— any/gg bits  cesses propose different values, the consensus protocol is al-
set for the processes that proposed any value (b&@E); 04 to decide on any value, including on a value submitted

and (.4) an error code. N_ot-|(_:e that tm’sglt of the service by a malicious process. In systems with oofgsh faultsthe
mentioned in the TBA definition (properties TBA1-TBA5) is validity property can be stated in a more generic form: “if a
composed byvalue, proposed-ok, proposed-any) correct process decidesthenv was previously proposed by
some process”. However, this definition is not adequate with
5 Notice that we may use “TBA’ to denote “an execution of the Byzantine/arbitrary faults because a failed process does not
TBA service”, not the service itself. just crash, as a matter of fact, usually it can be impersonated.

The Validity and Agreement properties must always be
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Another common definition of consensus for Byzantine set-2. at least2f + 1 processes proposed a value but no subset

tings isvector consensux interactive consistengyn which of processes with the same value has a size larger than
processes agree on a vector of values proposed by a subset of f: this condition implies that some correct processes pro-
the processes involved [15, 3]. posed distinct values. In this case, the protocol can ter-

minate and decide on any value. For example, our im-

plementation will choose the most proposed value, if it
4.2 Block Consensus Protocol exists.

The block consensuprotocol reaches consensus on a value  Both conditions can be tested using the two masks re-
with a limited number of bytes. When compared with other turned byTTCB decide The first one is constructed with the
Byzantine-resilient consensus protocols, block consensus igroposed-oknask and the second one can be evaluated with
quite simple since most of its implementation relies on thethe proposed-okand theproposed-anymasks (Section 3.1).
TBA service of the TTCB, and no information has to be trans-The TBA execution starts in one of two conditions: when
mitted through the payload channel. Nevertheless, it serves tall processes have proposed a value; or when time reaches
illustrate two interesting features of our system model. Firsttstart Block consensus assumes that eventually there is a
it demonstrates that it is possible to construct a consensus proeund wherenoughprocesses manage to propose to the TBA
tocol capable of tolerating arbitrary attacks based on an agredseforetstart ‘Enough’ here is defined in terms of the two
ment protocol that was developed under the crash fault modetonditions that allow the protocol to terminate. The algorithm
Second, it shows how a protocol running under the asynkeeps retrying until this happens (lines 3-10).

chronous model can interact with one running synchronously

(inthe TTCB).
The protocol is presented in Algorithm 1. The argumentsAlgorithm 1 Block consensus protocol.
are the list of the: processes involved in the consenselis(), 1 function consensus(elist, tstart, value)
a timestamp tétart), and the value to be proposeda(ue. 2 round«0; {round numbe¥

tstart has to be the same in all processes. For the partici-3 repeat S
pants, this requirement is similar to what is observed in other4  outprop —TTCB_propose(eid, elist, tstart, TBMAJOR-

consensus protocols where all processes have to know in ad- Y, value);
vance a consensus identifier. However, the identifier conveys®  repeat _ _
a meaningful absolute time to the TTCB: processes despite® outdec«TTCB. decide(ouiprop.tag);

until (outdec.error£2 TBA_RUNNING);
tstart—tstart +7 * func(o, round); {a €[0,1[}
9  round<round+1;

being time-free, can agree on a value obtained from the Trus-/
ted Absolute Timestamping service to synchronize their par-
ticipation to the consensus. The number of bytewvalfie :
should be the same as the size imposed by the TBA servic%O up;ge(sj;; 1rgr%CsZSds)?s proposed the same valuejgr{ 1
(currently 20 bytes). In case it is smaller, padding is done with, ; zecide ourdpec.r\)/alue- '
a known quantity (e.g., with zero). The number of processes :
which can fail isf = | %5 |, as stated above.

The protocol works in rounds until a decision is made.
In every round, each process proposes a value to the TB . ; :
(line 4) and gets the result (lines 5-7). In each round the valuﬁﬁggtltgntg ftLTr?ct? g?;ﬂ?:éﬁfert'ig;ﬁ[lnnpcui;eg ;ﬂggég{g@?ﬁ_
decided by TBAis the value proposed by most processes (d&seaging function ofound, wherea controls the slopey ¢
cision TBAMAJORITY). All correct processes get the same [0, 1[. For example, linearflunc = 1 + a * round), of expo-
result of the TBA since the TTCB is secfrélhe protocol - ' T y

) e ) D g . nential (func = (1 + a)™°""?). Thus, by increasing the pe-
terminates when one of the conditions is satisfied (line 10): ;0 retry upor(1 each)repetition, we will eventually manage

1. at leastf + 1 processes proposed the same valuthis ~ to get enough processes to propose. There is an interesting
condition implies that at least one correct process proiradeoff here: with a largestart the probability of termina-
posedv. Therefore, either (1) all correct processes pro-tion in real systems increases, since more time is given for
posedv or (2) not all correct processes proposed the samgproposals; on the other hand, if one process is malicious and
value. In both cases, the protocol can terminate and deciddoes not propose, then a largstart will delay the execution
V. of the TBA service, and consequently the consensus protocol.

6 ; . - . Incidentally, note that processes, being time-free, are totally
The reader might wonder if a malicious process might break the, 7\ 2 re of the real-time naturetstart, they just determinis-
protocol by callingTTCB. proposein line 4 with a subset oélist, tically i d b hich i | inaful
elist’. Apparently this would give different results of the TBA for ICally Increase an agreed number, which IS only meaningfu

(1) the processes ialist’ and (2) the processes alist but not in to the TTCB' . .

elist'. In reality, this would not happen. The TTCB has the notion of . At this moment, the reader might ask the following ques-

a “TBA execution”, which is uniquely identified by three parame- fions: Why run several agreements inside the TTCB in or-

ters:tstart, elistanddecision(see Section 3.1). Therefore, the effect d€r t0 make a single consensus outside it? Running a sin-

of a malicious process providing a differesiist, is the beginning  9l€ TBA is not enough? The answer has to do with the in-
of a second TBA execution, identified Itstart, elist, decision)  trinsic real-time nature of the TTCB and the TBA service,
completely independent of the first execution, identifiedtsyart, ~ and the asynchrony of the rest of the system. When a pro-
elist, decision) There can be no interference between the two TBA cess call§ TCB. proposet provides astart, i.e., a timestamp
executions. that indicates the TTCB the instant when no more proposals

The tstart of the next round is calculated by adding a
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consensus(elist, tstart, v;)

tstart(1) tstart(2) .
Py -
vy
P, K o
% v
ps — 7 -
v v
. Legend:
P / ] ¥ lTTCB_propose(v‘)
%
v l eTTCB_decide(vi)
TTCEB w TBA TVVY VY TBA Al I - Decide Fig. 3. Block Consensus protocol example
execution (withn=4 andf=1).

are accepted to the TBA identified by the argumeptst, and L is a value outside the range of valid hashes), and then
tstart, decision) The process that callETCB. proposeis in it multicasts the value through secure channels to the other
the asynchronous part of the system therefore we can nevgrrocesses (line 6). Next, the protocol works in two phases,
assume that the process will c3lTCB proposebefore in-  where it runs a minimum of one round in the first phase, but
stanttstart, regardless of the value of this parameter. The con-depending on the values and on the timing of the proposals,
sequence of this to the consensus protocol is that each rouriimay need several rounds in both phases.
any number of processes may not be able to propose before In thefirst phaseprocesses propose to the TBAashof
tstart This is the reason why the protocol may have to runtheir own value (line 11). A secure hash function is a one-way
several rounds and call successive TBAs, until “enough” profunction assumed infeasible to invert, which compresses its
cesses manage to propose befstart, i.e, until the condition  input and produces a fixed sized digest (e.g., algorithm SHA
in line 10 is satisfied. gives a 20 byte output), that we will for simplicity call the
Figure 3 illustrates an execution of the protocol in a sys-hash[26] ’. It is assumed that it is infeasible to find two texts
tem with four processes whepg is malicious. In the exam- that yield the same hash. This phase and the protocol both
ple,p: andp, are able to propose on time for the first TBA.  terminate if f + 1 processes propose the same hash to the
starts on time, but is delayed for some reason (e.g., a schedurBA (line 19). In this case, the value decided is the one that
ing delay) and proposes aftetart(1) Therefore, it will get  corresponds to that hash (lines 20, 23, and 26). Singel
an error from the TBA service, and its value will not be con- proposed the hash, then at least one of the processes has to be
sidered in the agreemeny, is also delayed, and only starts to correct. Consequently, it is safe to use that value as the deci-
execute aftetstart(1) and consequently, its proposal is also sion (the argument is equivalent to the first condition of block
disregarded. When the TBA finishes, all processes get the rezonsensus). Moreover, since a correct process always starts
sult, which in this case will be based on the proposals fpem by multicasting its value through reliable channels, then we
andp.. Sincep; is malicious, it attempts to force an incorrect can be sure that eventually all correct processes will receive
decision by proposing; that is different from the value of the value, and will be able to terminate.
the correct processes (whichi¥ Nevertheless, since none The protocol enters theecond phasehen2f + 1 pro-
of the conditions is satisfied (line 10), another round is execesses proposed a hash but no subset greatey thaposed
cuted. Here, process skips the proposal step, but two cor- the same one (lines 17-18). This situation only happens when
rect processes manage to propose befsdeet(2). Inthe end,  the correct processes do not have the same initial value. In this
all correct processes will be able to decide, since the first concase the definition (Section 4.1) allows any value to be cho-
dition will be true. sen. The simpler solution would be to choose a pre-established
The correctness of the protocol is proved in Appendix A. value, e.g., zero. However, it is more interesting to make the
protocol agree on one of the various proposed values. This is
the purpose of the second phase.
4.3 General Consensus Protocol The second phase uses a rotating coordinator scheme [31].
In each round a different process is the coordinatasi(d =
For presentation simplicity, we first described the block con-round modn), and then its value is selected as the (potential)
sensus protocol, which achieves agreement on a data valugecision. Processes pick the value of the current coordinator
with at most the size of the TBA service block. This sec-to propose it to the TBA. If this value is not available (for
tion presents a consensus protocol without this limitation. Thenstance, because it was delayed or the coordinator crashed),
general consensysotocol makes use of the payload channelthen it is necessary to choose another value. In our case, we
to multicast the values being proposed, and then utilizes theecided to use a simple deterministic algorithm where a pro-
TBA service to choose which value should be decided. Thecess goes through tledistuntil it finds the first process whose
number of processes which can fail is ajse- | “5= |.
The protocol is presented in Algorithm 2. The arguments 7 The size of the value of the TBA service is 20 bytes which is
have the same meaning as in the block consensus. Each prprecisely the size of a currently considered ‘secure’ hash (e.g., SHA
cess starts by initializing some variabl@si§ the empty bag, has 20 bytes).
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Algorithm 2 General consensus protocol. 4.4 FLP Impossibility Result

1 function consensus(elist, tstart, value)

2 hash-v—_; {hash of the value decidgd  Fischer, Lynch and Paterson showed that consensus in an a-

3 bag«0; {bag of received messages synchronous system has the possibility of nontermination if

4 round<o0; {round numbe¥ a single process is allowed to crash [18]. This FLP impossi-

5 phase—1; {protocol phasg  bility result generated research on several technigues to cir-

6 multicast(elist, tstart, value) to processes in elis{send value  cumvent it both in theoretical and in real systems, e.g., ran-
through payload channiel domization [30, 4, 5], unreliable failure detectors [8] and par-

tial synchrony [16]. The precise boundaries in terms of com-

7 loop munication synchrony, hosts synchrony and message delivery

8  repeat {phasel: use myvale  4rger in which this impossibility exists were studied in [13].

9 if (phase = 2jhen {phase 2: choose value from procgss

The purpose of this section is to discuss why FLP does
not apply to our consensus protocol. The first thing to no-
tice is that our system is not asynchronous but a combina-
tion of asynchronous and synchronous subsystems (payload
and TTCB, respectively). Therefore, the FLP result does not

10 value —{M.value : coord = (round mod n) A
M=nextSenderMesg(coord, elist, bag)
11 outprop <—TTCB_propose(eid, elist, tstart, TBMA-
JORITY, Hash(value));

12 repeat .

13 outdec—TTCB_ decide(outprop.tag); affect the protoqol. .Moreo_ver, in thelock consensus proto-

14 until (out dec.error# TBA_RUNNING): col the communication boils down to the execution of TBAs,

15 tstart—tstart +7 % func(a, round); therefore it fits in the following categories of [13]: (1) itis

16 round<«round-+1: synchronous; (2) it can be considered to be by broadcast, in

17 if (2f + 1 processes proposed) and (less tifan 1 pro- the sense that all processes receive the same values; (3) it is
cesses proposed the same vatheh ordered, since the TBAs are executed sequentially; (4) the re-

18 phase—2; ceive and send operations (decide/propose in this case) are

19 until (f + 1 processes proposed the same value); not atomic. The paper by Dolev et al. allow us also to con-

20  hash-v«—outdec.value; clude that FLP does not apply to this protocol. In relation to

the general consensus protogdhe same reasoning applies
21 whenreceive message M to the consensus about thashof the proposed value. The
22 bag«<bagu {M}; transmission of the value through the payload network does

not involve a consensus, therefore FLP does not apply, also
23 when(hash-v# 1) and Grrepag : Hash(M.value) = hash-v)  for the same reason.

24 if (phase = 2Jhen
25 multicast M to processes in elist except those that proposed
Hash(M.value);

26 decide M.value: 5 Protocol Evaluation

This section evaluates the two versions of the consensus pro-
tocol in terms of time and message complexity. Since both
versions use the TBA service in their implementation, we

message has already been received (implemented by fungtart by giving a brief overview of the current implementa-
tion nextSenderMesg(Jine 10). Basically, the process first tion of this service.

tries to see if the message frotnord = elist[k mod n]

has arrived, then it tries fatlist[(k + 1) mod n], next for

elist[(k + 2) mod n], and so on, until a message is found. 5.1 TBA Service

There is the guarantee that at least one message will always

exist because the initial multicast (line 6) immediately putsThe TBA service is imp|emented inside the TTCB by an a-

one message in thieag (we use the word ‘bag’ to denote greement protocol tolerant to crash faults and under the syn-

an unordered set of messages without duplicates). This algGhronous time model. The protocol has been described in [12,

rithm has the interesting characteristic that it skips processesi], but we sketch it here for the reader to have an idea of its

that did not manage to send their value, allowing the consengperation and complexity.

sus to finish faster. The protocol has two layers: a reliable broadcast proto-

go! and the TBA protocol. The reliable broadcast protocol
uarantees two properties: (1) all correct (non-crashed) local
TCBs deliver the same messages; (2) if the sender is correct
en the message is delivered. The TTCB control channel can

could be made (e.gf, processes). Then, the rest of the pro- '0S€ SOME messages due to ag_cidental fqults (e.g., 9Ie.Ctr°mag'
(e.9/ p ) b etical noise), but the probability of accidental omissions in

would never h ided value — they would onl ; s . ;
cesses would never get the decided value — they would o network in an interval of time can be measured and defined

get the corresponding hash. To solve this problem, processes. . - . )

have to retransmit the value to the other processes (lines 24¥¥]'th a high prdobablhty d[lz\;VlhO]. This value is usually c;)al!ced
25). The masks fronTTCB decideare used to determine ¢ teon;Lssmnl egre(:jéo )- etn ?_pfroces? proposest_ € otre
which processes are these. start, the value and some control information are put in a ta-

ble and multicasted to all local TTCRB2d + 1 times, in order
The correctness of the protocol is proven in Appendix A. to tolerate omissions in the control channel. These messages

Since the value being decided might have been propose
by a malicious process, an extra precaution has to be consi
ered. The malicious process might have sent the value just to
sufficiently large subset of processes to ensure that a decisi
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also include information about the last message received fronb. the timestamp associated to a call to a distributed worm-

all local TTCBs. This information is used by the protocol to
assess if all correct local TTCBs will deliver the message.
The TBA protocol uses the reliable broadcast protocol for

communication. A local TTCB can calculate the result of a 6.

TBA if one of two conditions hold: (1) if it has the propos-

hole serviceA is defined ass(A4) = ts(w_send(A)) +

2, wherets(w_send(A)) is the largest timestamp of the
w_send events performed fad;

the timestamp of av_receive(A) event on a process
is the maximum betweets(A) and the timestamp of the

als from all processes iglist, or (2) if t > tstart + Trpa,

wheret is the current instant anfiy s 4 is the maximum du- _ . .
ration for the execution of the protocol (it can be calculated . 1"€se new rules were defined considering the current im-
since the TTCB is synchronoud); 5 4 includes a factor with p]ementatlon of the TBA protocol: The protocol consists ba-
the maximum asynchronism among the local TTCB clocks Sically in every local TTCB sending the value proposed by
since the synchronization protocol can not reduce it to zeroltS local process(es) to the other local TTCBs and waiting
Finally, when a process callETCB decide if one of the two for a message from another local TTCB confirming the re-

conditions is satisfied the TTCB returns the result (value andeption of the same value. Applying the original rules for
masks); otherwise it returns an error. send and receive events (rules 1-3), we derived the rules for

The TBA protocol is an agreement protocol variety that 1 1 CB-proposeandTTCR decide and extrapolated to the ge-

runs in two rounds: one round to get the messages and anothBfIic rules forw_send andw receive (rules 4-6). _

to get messages confirming the reception of the first ones. L€t us now define latency degree. For an execution of a
There is a known theoretical minimum g+ 1 rounds fora  CONSensus algorithitl, thelatencyof C is the largest times-
consensus to toleratg faults in a synchronous system with [@mp of alldecideevents. Theatency degreef C is the min-
crash faults [24]. The TBA protocol manages to improve this/Mum possible latency af over all possible executions [32].
bound by using the omission degree mechanism described Now we calculate the latency degree for both consensus
above and by making an additional assumption: if a broadcadi’0tocols applying the rules above. The logical clocks start
is received by any local TTCB other than the sender, then itVith O at every process.

is received by at leagd local TTCBs [2,11]. This broadcast | giock consensus protocofl) the TBA hasts(A) = 2

degreeBd can easily exceed half of the nodes in a LAN. (rules 1, 4, 5); (2) the call t3TCR decide eventw re-

ceive(A), has a timestamp of 2 at every host (rule 6); (3)
every process decides at line 11 with that logical clock
value so the latency degree of the protocol is 2.

The time complexity of distributed algorithms is usually eval- ® General consensus protocol:

uated in terms of number of rounds or phases. Using this  — All correct processes with same value: (1) multicast at
method, the two versions of the protocol described take one line 6 hasts(M) = 1 (rules 1, 2); (2) the TBA started
round in the best case, i.e., in a run where no failures occur. at line 11 has alses(A) = 2 (rules 1, 4, 5); (3) ifa
However, since these criteria can be ambiguous, Schiper in- process receives a message, the timestamp is 1 (rule

event ap immediately preceding the_receive( A) event.

5.2 Time Complexity

troduced the notion datency degre¢32]. The idea is based
on a variation of Lamport’s logical clocks which assigns a
number to an event [22], with the following rules:

3); (4) all processes decide with a logical clock value
of 2 (rule 6), and therefore the latency degree is 2.
— Correct processes with distinct values: (1) (2) and (3)

are the same; (4) processes enter in phase 2 and exe-
cute another TBA withts(A1) = 4 (rules 4, 5); (5) all
processes decide with a logical clock value of 4 (rule
6), and therefore the latency degree is 4.

1. send/multicast and local events at a process do not change
its logical clock;

2. the timestamp carried by message M is defined @&/) =
ts(send(M)) + 1, wherets(send(M)) is the timestamp
of the send(M) event;

3. the timestamp of aeceive(M) event on a process is
the maximum betweens(M) and the timestamp of the |
event atp immediately preceding theeceive( M) event.

Protocol | Latency degree | Requirements |
Dwork et al. [16] 4 Signed messages
Dwork et al. [16] 7 -

Malkhi & Reiter [25] Signed message
Kihlstrom et al. [21] | 4 Signed message|

The notion has to be extended for systems with a worm-
hole. We have to introduce new rules for the distributed worm-
hole services, i.e., to the services that involve communication | gjock consensus 9 TTCB
in the control channel. A distributed wormhole service can be | general consensus | 2 or 4 TTCB
defined in terms of two events:_send andw _receive. The . -
eventw_send represents the moment when a process calls Jable 1. Latency degrees for some Byzantine-resilient consensus
service to start the communication. The eventeceive rep- protocols.
resents the moment when the process gets the result of the
execution of the distributed service. In relation to the TTCB
TBA service, the event_send corresponds to a call IBTCB.
propose w_receive corresponds to a call t6TCB.decideif
it returns the result of the TBA. The new set of rules is:

(28]

Table 1 compares the latency degrees of both versions of
the protocol with other asynchronous Byzantine-resilient pro-
tocols that solve similar consensus problems. Although this
comparison may seem awkward or unfair, the reader should
notice that comparing protocols based on different system

4. a call to a local wormhole service on@send event at a
process do not change its logical clock value;
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models is a common practice in the distributed systems litvalues proposed by several processes (vector consensus or in-
erature. Just to give one among many possible examples, [1@&ractive consistency). Several Byzantine-resilient consensus
compares consensus protocols: in synchronous vs asynchrprotocols, using different techniques to circumvent FLP, were
nous systems; and with fail-stop vs omission vs Byzantineproposed.
faults (with and without digital signatures). We also argue that  Recently several works applied the idea of Byzantine fail-
this kind of comparison is useful to compare both protocolsure detectors to solve consensus [25,21,15,14,3]. All these
and models, especially in a paper like this that explores a reprotocols use signatures. Any processan generate a sig-
cent system model. nature S(p, v) that cannot be forged, but which other pro-
The table shows that our protocols have good latency deeesses can test. Likewise, they are all based on a rotating
grees. The translation into execution time is far from trivial, leader/coordinator per round. Malkhi and Reiter presented
but in our case we can say that the best case execution timee binary consensus protocol in which the leader waits for a
of the protocols is the minimum time for executing a single number of proposals from the others, chooses a value to be
TBA, which is in the order of 4 ms with the current TTCB broadcasted and then waits for enough acknowledgments to
implementation. decide [25]. If the leader is suspected by the failure detector,
In the presence of process failures, both versions of the new one is chosen and the same procedure is applied. The
protocol also have small latency degrees because they asame paper also described a hybrid protocol combining ran-
mostly decentralized. Block consensus continues to have domization and an unreliable failure detector. The protocol
latency degree of 2, and General consensus has a latency dey Kihlstrom et al. also solves the same type of consensus but
gree of 2 in case all correct processes start with the sameequires weaker communication primitives and uses a failure
value, and a latency degree of 4 otherwise. The other proeetector that detects more Byzantine failures, such as invalid
tocols presented in Table 1 are all based on a (rotating) coand inconsistent messages [21].
ordinator scheme, and therefore, their performance might be Doudou and Schiper present a protocol for vector consen-
affected by the failures (e.g., the first coordinators are all masus based on muteness failure detectowhich detects if a
licious). For instance, the latency of the protocols by Dwork process stops sending messages to another one [15]. This pro-
et al. [16] can be as high & f + 1) for the protocol with  tocol is also based on a rotating coordinator that proposes an
signed messages, af@f + 1) + 1 for the other protocol. estimate that the others broadcast and accept, if the coordina-
tor is not suspected. This muteness failure detector was used
to solve multi-value consensus [14]. Baldoni et al. described a
5.3 Message Complexity vector consensus protocol based on two failure detectors [3].
One failure detector detects if a process stops sending while

The message complexity of a protocol is evaluated in terms of'€ Other detects other Byzantine behavior.
the number of transmissions in the payload channel. Both ver- BYzantine-resilient protocols based on partial synchrony,
sions of the protocol have the additional cost of performingPoth with and without signatures, were described by Dwork
TBAs which use the control channel. Table 2 shows the to-£t @l [16]. The protocols are based on a rotating coordinator.
tal number of messages sent by our protocols in the payloagac_h phaS_e has a coordinator that locks a value and tries to
channel, considering the cases when a multicast is a singldecide on it. The protocols manage to progress and terminate
message (label “multicasts”), or when it(is — 1) “unicasts” when the system becomes stable, i.e., when it starts to behave
(plus a local delivery) of the same message. synchronously.
Other techniques were also used to circumvent FLP in
Byzantine-resilient consensus protocols. Randomized / prob-

[ Protocol [ Multicasts | Unicasts [ TBAs | abilistic protocols can be found in [5,6]. More recently, the
Best case condition-based approach was introduced as another means
Block consensus | O 0 1 to circumvent FLP [28,19]. Protocols based on this approach
General consensus n n(n —1) 1 satisfy the safety properties but termination is guaranteed only
Worst case if the inputs satisfy certain conditions.
Block consensus | 0O 0 no limit The consensus protocol presented in the paper is one of
General consensus 2n n(n — 1)+ no limit the first existing protocols based on the TTCB wormhole. Pre-
+n(n—f—1) viously we designed a Byzantine-resilient reliable multicast

protocol [10]. This protocol uses the TBA to multicast a reli-
able hash of a message. The current paper shows a different
way of using the TTCB TBA service: to make a voting on the
values proposed by the processes, and to decide when enough
processes voted the same, or simply voted something.

Table 2. Message complexities for the consensus protocols.

6 Related Work
7 Conclusion

The past twenty years saw several variations of the consen-

sus problem presented in the literature. Consensus protocolkhe need for more trustworthy systems in a widely connected
can decide on a 0 or 1 bit (binary consensus), on a value witlworld is raising an increasing interest in the development of
undefined size (multi-value consensus), or on a vector wittpractical Byzantine-resilient protocols and applications. In this
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context, we are exploring a secure and real-time wormhole —

the TTCB —to support the execution of this type of protocols.

The objective of the current paper is twofold: (1) to show 12.

the power of the wormhole model; and (2) to show how to de-
velop novel algorithmic solutions in the model. These goals

are pursuit by presenting a consensus protocol. Although this

protocol may seem simple, it requires a new algorithmic per-

spective, since it is based on a dual system, both in terms of
time and security. We are also not aware of any consensus,

protocol executed with the assistance of a “low-level” simple

agreement service. The protocol has low time and message

complexities.
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37. P. Veiissimo, L. Rodrigues, and A. Casimiro. Cesiumspray: a
precise and accurate global clock service for large-scale sysProof. Two correct processes execute the same TBAs, since
tems.Journal of Real-Time Systeni®(3):243-294, May 1997.  they start with the samstart (Section 1) and TBA returns the
same values to all processes (property TBA3). Two correct
processes exit the loop in the same round since they test the
A Correctness Proofs same condition (line 10) with the same results of TBAs. They

. . return the same result for the same reason (line 1M).
This section proves that Protocols 1 and 2 solve consensus as

defined by the properties of Validity, Agreement and Termi- Theorem 3. Every correct process eventually decides (Termi-
nation in Section 4.1, provided that at mgst= | “z* | pro-  nation).
cesses fail. We assume the system model in Section 2 and the
weak synchrony assumption in Section 2.2. We assume eadhroof. The synchrony assumption in Section 2.2 states that
process successfully called the Local Authentication servicghere is an unknowprocessors stabilization tim@ST) such
and established a secure channel with its local TTCB beforg¢hat the processing delays are bounded from time PST on-
the execution of the protocols (Section 3). If an attacker manward. Therefore, eventually there is a round when at least
ages to disclose the pdirid, key) established by this service, 2f + 1 processes manage to call CB proposebefore the
the secure channel is no longer secure so we considered ttigtart > PST deadline. When that happens all correct pro-
process to be failed. We assume the TBA service satisfies itsesses of that subset with at leagt+ 1 eventually decide
specification in terms of properties TBA1 to TBAS5 in Sec- (lines 5-11, given properties TBAL and TBA5). There may
tion 3.1. exist f correct processes which did not manage toTaICB.
proposebefore thatstart However, they will make that call
later, get the result of the TBA (line 6) and terminate (lines
A.1 Block Consensus Correctness Proof 10-11). O

Theorem 1.If all correct processes propose the same value
v, then any correct process that decides, decid@dlidity). A.2 General Consensus Correctness Proof

Proof. The theorem applies only if all correct processes pro-
pose the same value There are at leagtf + 1 correct pro-

cesses since we assurfie< |“z1]. The algorithm is basi-

cally a loop inside lines 3 to 10. All correct processes beginProof. The change to phase 2 is tested in line 12Af+ 1

with the samastart that works as the loop counter. processes proposed then at leist 1 of them are correct.
Each round of the loop, all correct processes TaICB.  Since we are considering that all correct processes proposed

proposeand get the result of the TBAut deccalling TTCB.  the same value, the second part of the condition is not satis-

decide(line 6). outdeccontains the (or one of the) value(s) fied. Therefore, if the first part of the condition in line 17 is

proposed bymore processes befortstart (due to property  satisfied, the second is not, and the protocol does not change
TBA4, with the decision functioTBAMAJORITY and the  to phase 2. O

two masks saying which processes proposed the value de-

cided and which proposed any value befistart Eachround  Theorem 4.If all correct processes propose the same value
can satisfy one of two cases, depending on the number of pro4 then any correct process that decides, decid@dalidity).
cesses that proposed befortstart

Lemma 1.If all correct processes propose the same value
then the protocol does not change to phase 2.

Proof. The theorem applies only when all correct processes
Case 1.(k < 2f + 1): This case can be subdivided in another propose the same value therefore the protocol does not
two. (Case 1a): If ng + 1 processes proposed the value de-change to phase 2 (Lemma 1). The phase 1 of the protocol
cided, then the loop goes to the next round (line 10). (Casés very similar to the Block Consensus protocol, therefore the
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proof that any correct process that decides, decides the sannesearch in fault tolerance, security in distributed systems and mid-
hashH (v) follows from the proof of Theorem 1. If a process dleware. From 1997 to 1998, he was a associate reseach fellow at
is correct then it eventually receives its own message with University of Texas at Austin, working on the Nile Project. From
(lines 6, 21). Therefore, any correct process that decides, de2001 to 2002, he was a postdoctoral research associate in the Com-
cidesv (lines 23, 26). O puter Science Department at University of Lisbon, Portugal. In 2001,
Lau received a PhD from Santa Catarina Federal University - Brazil.
Theorem 5.No two correct processes decide differently (A-
greement).
P aulo Veiissimo is professor of the Department of Informatics, Uni-
Proof. The proof that no two correct processes decide differ-versity of Lisboa Faculty of Sciences (http://www.di.fc.ulppjv).
ent hashes is similar to Theorem 2. If two correct processesie is coordinator of the CORTEX IST/FET project and belongs to
decide the same hash then they decide the same value duett@ Executive Board of the “CaberNet European Network of Ex-
the properties assumed for the hash function (lines 23 and 2@gllence”. He is Chair of the IEEE Technical Committee on Fault
Section 4.3). O Tolerant Computing. Paulo Vissimo leads the Navigators research
group of LASIGE, and is currently interested in: architecture, mid-
Theorem 6. Every correct process eventually decides (Termi-dleware and protocols for dependable distributed systems, namely
nation). the facets of adaptive real-time and fault/intrusion tolerance. He is

) author of more than 100 refereed publications in international sci-
Proof. The proof that either all correct processes eventuallyentific conferences and journals in the area, he is co-author of four

terminate in phase 1 (line 19) or they change to phase 2 (lin@ooks.
17) is similar to the proof of Theorem 3.

Let us now prove that all correct processes in phase 2
eventually decide. All correct processes multicast their val-
ueswv; to all others (line 6). Attending to the communica-
tion model, eventually every correct process receives the mes-
sages with the values; from all correct processes. Line 10
chooses the value; proposed by the process with indéx
mod n) in elistor the next one available. Again using the rea-
soning of the proof of Theorem 3, eventuafly- 1 processes
manage to propose the satf&v;), which is decided by the
TBA. If a process has the valug in bag then it decides im-
mediately (lines 19-20, 23-26). If a procgssloes not have
the valuev; then it will eventually receive it, since at least
one other correct process has (f + 1 processes have it)
and multicasts it (line 24-25). After receiving, p decides it
(lines 21-26). O
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