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Summary. The application of the tolerance paradigm to se-
curity – intrusion tolerance– has been raising a reasonable
amount of attention in the dependability and security commu-
nities. In this paper we present a novel approach to intrusion
tolerance. The idea is to use privileged components – generi-
cally designated bywormholes– to support the execution of
intrusion-tolerant protocols, often called Byzantine-resilient
in the literature.

The paper introduces the design of wormhole-aware in-
trusion-tolerant protocols using a classical distributed sys-
tems problem: consensus. The system where the consensus
protocol runs is mostly asynchronous and can fail in an ar-
bitrary way, except for the wormhole, which is secure and
synchronous. Using the wormhole to execute a few critical
steps, the protocol manages to have a low time complexity: in
the best case, it runs in two rounds, even if some processes are
malicious. The protocol also shows how often theoretical par-
tial synchrony assumptions can be substantiated in practical
distributed systems. The paper shows the significance of the
TTCB as an engineering paradigm, since the protocol man-
ages to be simple when compared with other protocols in the
literature.

Key words: Byzantine fault tolerance – intrusion tolerance
– distributed systems models – distributed algorithms – con-
sensus

1 Introduction

Attacks and intrusions perpetrated by hackers are important
security problems faced by any computer infrastructure. These
malicious actions fall into the category of arbitrary faults,
which sometimes have been called “Byzantine” faults [23].

? This work was partially supported by the EC, through project
IST-1999-11583 (MAFTIA), and by the FCT, through the Large-
Scale Informatic Systems Laboratory (LASIGE) and projects
POSI/1999/CHS/33996 (DEFEATS) and POSI/CHS/39815/2001
(COPE).

The work reported in the paper comes from a recently fin-
ished project that investigated the application of the fault tol-
erance paradigm to enhance the security of systems [1,36].
In the project we explored two recent key ideas on distributed
systems architecture. The first iswormholes, enhanced com-
ponents which provide processes with a means to obtain a
few simple privileged functions and/or channels to other pro-
cesses, with “good” properties otherwise not guaranteed by
the “normal” environment [34]. For example, a wormhole
might provide timely or secure functions and communication
in, respectively, asynchronous or Byzantine systems. The sec-
ond key idea isarchitectural hybridization, a well-founded
way to substantiate the provisioning of those “good” prop-
erties on “weak” environments. For example, if we assume
that our system is essentially asynchronous and Byzantine,
we should not simply (and naively) postulate that parts of
it behave in a timely or secure fashion. Instead, those parts
should be built in a way that our claim is guaranteed with
high confidence.

Consensus is a classical distributed systems problem with
both theoretical and practical interest. Over the years, other
problems have been shown to be reducible or equivalent to
consensus, for instance, total order broadcast [20]. Consen-
sus has been applied to various kinds of environments, with
distinct time assumptions and different types of failures, rang-
ing from crash to arbitrary (see [17] for a survey of early
work). On asynchronous environments, it was shown to be
constrained by the FLP result, which says that it is impossible
to solve consensus deterministically if failures can occur [18].
Several researchers have proposed ways to circumvent this
limitation, e.g., by using randomization techniques [30,4,5],
by using failure detectors [8,25,21], and by using partial-
synchrony, i.e., by making weak synchrony assumptions [16,
13]. However, all these approached have practical shortcom-
ings when the objective is to tolerate Byzantine faults. Ran-
domized protocols usually need a large number of message
rounds, failure detectors can detect only a subset of all possi-
ble failures and synchrony assumptions are hard to substanti-
ate.

The present paper shows how a wormhole can be utilized
to support the execution of a Byzantine-resilient (or intrusion-
tolerant) protocol. More specifically, the paper presents a con-
sensus protocol based on a specific kind of wormhole, a de-
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Fig. 1. Architecture of a
system with a TTCB.

vice calledTrusted Timely Computing Base(TTCB). Techni-
cally, the TTCB is a secure real-time and fail-silent (crash)
distributed component. Applications implementing the con-
sensus protocol run in a “normal” system, which puts no re-
strictions on the type of failures that might happen and has no
time bounds on the execution of operations or communica-
tion, i.e., a typical asynchronous Byzantine system. Normally,
applications for these environments would suffer in efficiency
and/or determinism. However, the TTCB is locally accessible
to any process, and the touchstone of our approach is that at
certain points of their execution applications can rely on it
to execute correctly (small) crucial steps of the protocols. A
graphical representation of a networked architecture with a
TTCB wormhole can be observed in Figure 1. The reader in-
trigued by the feasibility of building a wormhole might wish
to refer to [12,11] for a description of the implementation of a
TTCB using architectural hybridization1. The consensus pro-
tocol relies to most extent on a TTCB service calledTrusted
Block Agreement Service(TBA), which essentially makes an
agreement on the values proposed by a set of processes. In
this paper we also assume that the processors are partially
synchronous, i.e., that the processing delays stabilize after an
unknown interval of time.

The main contributions of the paper are the following.
Firstly, it presents the design of a consensus protocol based on
the TTCB wormhole and, more specifically, on a service that
securely makes agreement on fixed and limited size values
(TBA). Secondly, the paper shows how, often theoretical, par-
tial synchrony assumptions can be well substantiated in prac-
tical distributed systems. Thirdly, the protocol presented has
a low time complexity: in the best case, it runs in two rounds,
even if some processes are malicious, mostly due to the strong
properties enforceable in a component like the TTCB. Finally,
the protocol shows the significance of the TTCB as an en-
gineering paradigm, since the protocol manages to be sim-
ple when compared, e.g., with other protocols based on weak
synchrony assumptions, like those in [16].

The remainder of the paper is organized as follows: The
system model and the TTCB are presented in Section 2. The
TTCB services used by the protocol are introduced in Sec-
tion 3. The consensus problem and the protocol are described
in Section 4. Section 5 evaluates the protocol in terms of the
time and message complexities. Section 6 discusses related
work and Section 7 concludes the paper.

1 A software implementation of the TTCB is available online at
http://www.navigators.di.fc.ul.pt/software/ttcb/.

2 System Model

2.1 System Architecture

The architecture of the system can be seen as a classical By-
zantine asynchronous distributed system (designated here by
payload system) augmented with the TTCB wormhole. In Fi-
gure 1, the parts in white constitute the augmented subsystem,
which in security terminology would be called a real-time dis-
tributed security kernel. All the applications and protocols are
executed in the payload system, except for some calls to the
wormhole.

In each host there is alocal TTCB, which is a small com-
ponent conceptually separated and protected from the remain-
der of the host (the operating system and other software).
The local TTCBs are all interconnected by acontrol channel
which is assumed to be secure. Collectively, the control chan-
nel and the local TTCBs are calledthe TTCB[12]. The pay-
load system is composed by the usual software available in
hosts (such as the operating system and applications) and the
payload network(the usual network allowing communication
among the various nodes, e.g., Ethernet/Internet). Through-
out the paper we assume that the protocol is executed by pro-
cesses in the hosts, which communicate through the payload
network and call the TTCB to execute one of its services.

2.2 Fault and Time Models

Fault-tolerant systems are usually built using either arbitrary
or controlled failure assumptions. Arbitrary failure assump-
tions consider that components can fail in any way, although
in practice constraints have to be made (e.g., that less than one
third of the processes fail). These assumptions are specially
adequate for systems with malicious faults –attacks and intru-
sions [1]– since these faults are induced by intelligent entities,
whose behavior is hard to restrict or model. Controlled failure
assumptions are used for instance in systems where compo-
nents can only fail by crashing.Architectural-hybrid failure
assumptionsbring together these two worlds: some compo-
nents are constructed to fail in a controlled way, while others
may fail arbitrarily. In this paper we assume such a hybrid
fault model, where all system components are assumed to fail
arbitrarily, except for the TTCB that is assumed to fail only
by crashing2.

2 There is some research onhybrid fault models, starting
with [27], that assumes different failure type distributions for system
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The payload system isinsecureand in essenceasynchro-
nous. In relation to insecurity, this means that processes run-
ning in the payload system – including the processes that
execute the protocol in this paper – can fail in an arbitrary
way due to benign faults or to the action of an attacker. They
can, for instance, give invalid information to the TTCB, stop
communicating, or start colluding with other malicious pro-
cesses. The payload system is mostly asynchronous since it
has unbounded and unknown message delivery delays, and
unbounded and unknown local clock drift rates. However, we
make a weak synchrony assumption about the delays in the
processors: for each execution of the protocol there is an un-
knownprocessors stabilization time(PST) such that the pro-
cessing delays are bounded from time PST onward. This syn-
chrony assumption is weak in the sense that it is about the pro-
cessors instead of about the network, which is important since
the delays inside the processors are much more deterministic
than in a network. This property has to be distinguished from
the typical synchrony assumptions in the literature, like those
concerning unreliable failure detectors, which can only be im-
plemented in a real system with some synchrony assumptions
about the network.

The TTCB has two fundamental characteristics: it isse-
cureandsynchronous. In relation to security, it is built to fail
only by crashing, albeit inserted in a system where arbitrary,
even malicious faults do occur. The component is expected to
execute its services reliably, even if malicious hackers man-
age to attack the hosts with local TTCBs and the payload net-
work. The TTCB is also a synchronous subsystem capable of
timely behavior, in the line of the precursor Timely Comput-
ing Base work [35]. In other words, it is possible to determine
a (maximum) delay for the execution of the TTCB services.
The local TTCBs clocks are synchronized (see Section 3).

2.3 TTCB Implementation

The TTCB has an abstract specification that can be imple-
mented in different ways. The current design, which is based
on COTS components, was reported elsewhere [11,12]. This
section briefly discusses this implementation for complete-
ness.

The system is composed by a set of standard PCs, each
one with two independent LAN adapters for Fast-Ethernet
(see Figure 2). The TTCB control channel is implemented
in one of the LANs and the payload network on the other.
PCs run RTAI which is an extension of Linux that supports
the execution of real-time applications [9]. RTAI modifies the
Linux kernel in such a way that a real-time executive takes
control of the hardware to enforce the timely behavior of
some tasks. These RT tasks are special Linux loadable kernel
modules (LKMs), which means that they run inside the kernel
(see figure). The scheduler was changed to handle these tasks
in a preemptive manner and to be configurable to different

nodes. These distributions would be hard to predict or constrain in
the presence of malicious failures introduced by, for example, hack-
ers. Our work is not related to that research but to the idea ofarchi-
tectural hybridization, in the line of works such as [29,37], where
failure assumptions are in fact enforced by the architecture and the
construction of the system components, and thus substantiated.
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Fig. 2. COTS-based TTCB implementation.

scheduling disciplines. Linux runs as the lowest priority task
and its interruption scheme was changed to be intercepted by
RTAI.

The local TTCB is implemented by a LKM and by a num-
ber of RT tasks. This LKM – the TTCB Interface Module –
handles the calls from the processes. It does not provide real-
time guarantees since it is part of the TTCB interface, i.e., it
is the border between the asynchronous and the synchronous
parts of the system. All operations with timeliness constrains
are executed by RT tasks. A local TTCB always has at least
two RT tasks that handle its communication: one to send mes-
sages to the other local TTCBs and another to receive and
process incoming messages. The API functions are defined
in libraries and communicate with the local TTCB using RT
FIFOs. Currently there are C and Java libraries available.

From the point of view of security, RTAI is very similar to
Linux. Its main “vulnerability” is the ability of the superuser
to control any resource in the system. This vulnerability is
usually reasonably easy to exploit once the attacker is logged
in the machine, e.g., by using race conditions. Recently, sev-
eral Linux extensions appeared that try to compartmentalize
the power of the superuser. Linuxcapabilities [33], which
are already part of the kernel, are one of those mechanisms.
These capabilities are privileges or access control lists asso-
ciated with processes, allowing a fine grain control on how
they use certain objects.

A secure TTCB can be constructed by performing the fol-
lowing steps. First, one needs to protect the operating sys-
tem and the TTCB binary files executed during the system
bootstrap. This task is accomplished by booting the system
from a read-only device, such as a ROM or CD-ROM. After
the kernel boots and the local TTCB starts to run, the ker-
nel is sealed, i.e., the possibility of directly modifying the
kernel memory or inserting code in it, is disabled even for
processes with superuser privileges. This is achieved by re-
moving some capabilities from thecapability bounding set,
so they can never be granted to any process until the next re-
boot (see details in [12]).

The TTCB control channel must also be protected. Firstly,
we must guarantee that it is not possible to read or to write
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the control channel access point in a host. This is forced by
removing the access to the device driver so that only code in-
side the kernel (the local TTCB) can use it. Next, the network
medium has to be secured from physical access. This pro-
tection is simply assumed, since we are considering a short-
range, inside-premises closed network, connecting a set of
servers inside a single institution, with no other connection.
We assume that the attacker comes from the Internet through
the payload network, without physical access to the servers
or control network hardware.

The real-time behavior of the local TTCB is guaranteed
by RTAI. By protecting the kernel we also prevent attacks
against this real-time behavior, since the local TTCB runs in-
side the kernel. If the Fast-Ethernet is secured as described
above, the bounded delay assumption of the control chan-
nel can be ensure if: (1) only one host is connected to each
port to avoid collisions; and (2) the traffic load is controlled
(see [7] for details). The first requirement is trivial. The sec-
ond is guaranteed by an access control mechanism, that ac-
cepts or rejects the execution of one service taking in account
the availability of resources, i.e., buffers and bandwidth.

In the future, we envisage other TTCB designs, for in-
stance based on tamperproof hardware (e.g., a PC104 board
with its own processor and memory) and wide-area networks
such as a virtual private networks (VPN) based on ISDN,
Frame Relay or ATM connections. If we assume that the pub-
lic telecommunications network is not eavesdropped then a
VPN already provides a private channel. Additional security
can be obtained using secure channels, e.g., encrypting the
TTCB communication.

2.4 Communication Model

The protocol relies on channels that abstract some of the com-
munication complexity. Each pair of processesp andq is in-
terconnected in the payload network by asecure channel, de-
fined in terms of two properties:

• SC1 Eventual reliability.If p andq are correct andp sends
a message M toq, thenq eventually receives M.

• SC2 Integrity.If p andq are correct andq receives a mes-
sage M withsender(M)= p, then M was sent byp and M
was not modified in the channel.3

Each pair of correct processes is assumed to share a sym-
metric key known only by the two. With this assumption,
the two properties above can be easily and efficiently imple-
mented. Eventual reliability is obtained by retransmitting the
messages periodically until an acknowledgment is received.
Message integrity is achieved by detecting the forgery and
modification of messages through the use of Message Au-
thentication Codes (MACs) [26]. A MAC is basically a cryp-
tographic checksum obtained with a hash function and a sym-
metric key. They are usually considered to be three orders of
magnitude faster to calculate than digital signatures. A pro-
cess adds a MAC to each message that it sends, to allow the
receiver to detect forgeries and modifications. Whenever such
detection is made, the receiver simply discards the message,
which will be eventually retransmitted if the sender is correct.

3 The predicatesender(M)returns the sender field of the message
header.

3 TTCB Services

The TTCB provides a limited number of security- and time-
related services [12]. Here we introduce only the three ser-
vices used in the protocol presented in the paper.

TheLocal Authentication Serviceallows processes to au-
thenticate the local TTCB, obtain an unique identifier (called
eid) and establish a shared symmetric key with it. The ob-
jective of this key is to protect the communication between
the process and the wormhole. For example, when a result
arrives from a TTCB service, the process can use the key to
verify the authenticity and integrity of the data. If the key is
discovered by an attacker, a personification attack becomes
possible, and consequently the process has to be considered
failed. The process has also to be considered failed if there is
a denial-of-service (DoS) attack in its host4. In terms of as-
sumptions, the local authentication service substantiates the
assumption that the communication among processes and the
TTCB is reliable. We consider that every process executing
a protocol during its initialization called the local authentica-
tion service and obtained aneid. The execution of the local
authentication service is the only moment when the protocol
uses public-key cryptography [12].

TheTrusted Absolute Timestamping Serviceprovides glo-
bally meaningful timestamps, since the local TTCB clocks
are synchronized (the synchronization protocol runs inside
the TTCB). In practice this service provides a clock which
is available at all hosts with a local TTCB. This clock is also
secure, i.e., an attacker can not modify it.

3.1 Trusted Block Agreement Service

The main service used by the consensus protocol is theTrus-
ted Block Agreement Service, or simply TBA Service. This
service delivers the result obtained from an agreement on the
values proposed by a set of processes. All payload processes
receive the same result from the TTCB, since the TTCB is
secure. The values are blocks with small size, 20 bytes in the
current implementation. Additionally, the TTCB resources are
limited so this service should be used only to execute critical
steps of protocols, which run mostly outside the wormhole.

The TBA service is formally defined in terms of the three
functionsTTCB propose, TTCB decideanddecision. A pro-
cessproposes a valuewhen it successfully callsTTCB pro-
pose. If for some reason the proposal is not accepted, an er-
ror is returned by the TTCB (in this case the value was not
proposed, e.g., for property TBA4). A processdecides a re-
sult when it callsTTCB decideand receives back a result
(TTCB decideis non-blocking and returns an error if that ex-
ecution of the service did not terminate). The functiondeci-
sioncalculates the result in terms of the inputs of the service.

4 If an attacker manages to log in a host, it can attempt a DoS
attack by calling the TTCB at a fast rate. Some of its requests are
accepted but others are discarded by the access control mechanism
mentioned in Section 2.3. Neither the deterministic behavior of the
TTCB control channel nor the other local TTCBs are affected. How-
ever, a process in that host might not be able to access the TTCB,
therefore it has to be considered failed. This case is equivalent to a
malicious process consuming all CPU time in the host.
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The result is composed of a value and some additional in-
formation that will be described below. Formally, the TBA
service is defined by the following properties:

• TBA1 Termination.Every correct process eventually de-
cides a result.

• TBA2 Integrity.Every correct process decides at most one
result.

• TBA3 Agreement.No two correct processes decide differ-
ently.

• TBA4 Validity.If a correct process decidesresult thenre-
sult is obtained applying the functiondecisionto the val-
ues proposed.

• TBA5 Timeliness.Given an instanttstart and a known
constantTTBA, the result of the service is available on
the TTCB bytstart+TTBA.

The implementation of the TBA inside the TTCB is brief-
ly introduced later in Section 5.1. Here we present its API,
which consists of two function calls:

tag,error←TTCB propose(eid, elist, tstart, decision, value)

value,proposed-ok,proposed-any,error←TTCB decide(tag)

The parameters have the following meanings.eid is the
identification of a process before the TTCB, provided by the
Local Authentication Service.elist is an array with the eid’s
of the processes involved in the TBA5. tstart is a times-
tamp that indicates the instant when proposals for the TBA
are no longer accepted and the TBA can start to run inside
the TTCB. When the local TTCB receives a proposal, it reads
the clock and compares it with the value oftstart. If the clock
value is later thantstart, it returns an error, otherwise the pro-
posal is processed in the normal way. The objective of this
test is to prevent malicious processes from postponing TBAs
indefinitely.decisionindicates the decision function used to
calculate the result. There is a set of decision functions but
the protocols in this paper use only one that returns the value
proposed by more processes, designatedTBA MAJORITY. If
there are several values with the same number of proposals,
one is chosen.valueis the value being proposed. The TTCB
knows that proposals pertain to the same TBA when(elist,
tstart, decision)are the same.

TTCB proposereturns atag, which is used later to iden-
tify the TBA when the process callsTTCB decide, and an
error code. Notice that, even if a process is late and calls
TTCB proposeaftertstart, it gets thetagand later can get the
result of the agreement by callingTTCB decide. This second
function returns four things: (1) the value decided; (2) a mask
proposed-okwith bits set for the processes that proposed the
value that was decided; (3) a maskproposed-anywith bits
set for the processes that proposed any value (beforetstart);
and (4) an error code. Notice that theresult of the service
mentioned in the TBA definition (properties TBA1-TBA5) is
composed by(value, proposed-ok, proposed-any).

5 Notice that we may use “TBA” to denote “an execution of the
TBA service”, not the service itself.

4 Consensus

This section describes a consensus protocol tolerant to Byzan-
tine faults. For presentation simplicity, we start by explaining
how to reach consensus on a value with a small number of
bytes, and then this result is extended by removing this limi-
tation.

The consensus protocol utilizes as building block the TBA
service. The reader however, should notice that, as tempting
as it might be, it isnot possible to solve the consensus prob-
lem in the payload system simply by using the TBA service of
the TTCB. In fact, the problem does not become much sim-
pler because the protocol still needs to address most of the dif-
ficulties created by a Byzantine asynchronous environment.
For instance, since the protocol runs in the asynchronous part
of the system, it can not assume any bounds on the execution
of the processes, on the observed duration of the TTCB func-
tion calls, or on the message transmission times. Moreover,
since processes can be malicious, this means that they might
provide incorrect values to the TTCB or other processes, or
they may delay or skip some steps of the protocol. What we
aim to demonstrate is that the ‘wormholes’ model, material-
ized here by the TTCB, allows simpler solutions to this hard
problem.

4.1 Consensus Problem

The consensus protocol is executed by a finite set ofn pro-
cessesP = {p1, p2, ...pn}. The protocol tolerates up tof =
bn−1

3 c faults. This has been proved to be the maximum num-
ber of faulty processes for consensus in asynchronous sys-
tems with Byzantine faults [5].

The problem of consensus can be stated informally as:
how do a set of distributed processes achieve agreement on a
value despite a number of process failures? There are several
different formal definitions of consensus in the literature. In
the context of a Byzantine fault model in asynchronous sys-
tems, a common definition [16,25,21] is:

• CS1 Validity.If all correct processes propose the same
valuev, then any correct process that decides, decidesv.

• CS2 Agreement.No two correct processes decide differ-
ently.

• CS3 Termination.Every correct process eventually de-
cides.

The Validity and Agreement properties must always be
true otherwise something bad might happen. Termination is
a property that asserts that something good will eventually
happen. In the case all correct processes propose the same
value, Validity guarantees that it is the value chosen, even in
the presence of alternative malicious proposals. If correct pro-
cesses propose different values, the consensus protocol is al-
lowed to decide on any value, including on a value submitted
by a malicious process. In systems with onlycrash faults, the
Validity property can be stated in a more generic form: “if a
correct process decidesv, thenv was previously proposed by
some process”. However, this definition is not adequate with
Byzantine/arbitrary faults because a failed process does not
just crash, as a matter of fact, usually it can be impersonated.
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Another common definition of consensus for Byzantine set-
tings isvector consensusor interactive consistency, in which
processes agree on a vector of values proposed by a subset of
the processes involved [15,3].

4.2 Block Consensus Protocol

The block consensusprotocol reaches consensus on a value
with a limited number of bytes. When compared with other
Byzantine-resilient consensus protocols, block consensus is
quite simple since most of its implementation relies on the
TBA service of the TTCB, and no information has to be trans-
mitted through the payload channel. Nevertheless, it serves to
illustrate two interesting features of our system model. First,
it demonstrates that it is possible to construct a consensus pro-
tocol capable of tolerating arbitrary attacks based on an agree-
ment protocol that was developed under the crash fault model.
Second, it shows how a protocol running under the asyn-
chronous model can interact with one running synchronously
(in the TTCB).

The protocol is presented in Algorithm 1. The arguments
are the list of then processes involved in the consensus (elist),
a timestamp (tstart), and the value to be proposed (value).
tstart has to be the same in all processes. For the partici-
pants, this requirement is similar to what is observed in other
consensus protocols where all processes have to know in ad-
vance a consensus identifier. However, the identifier conveys
a meaningful absolute time to the TTCB: processes despite
being time-free, can agree on a value obtained from the Trus-
ted Absolute Timestamping service to synchronize their par-
ticipation to the consensus. The number of bytes ofvalue
should be the same as the size imposed by the TBA service
(currently 20 bytes). In case it is smaller, padding is done with
a known quantity (e.g., with zero). The number of processes
which can fail isf = bn−1

3 c, as stated above.
The protocol works in rounds until a decision is made.

In every round, each process proposes a value to the TBA
(line 4) and gets the result (lines 5-7). In each round the value
decided by TBA is the value proposed by most processes (de-
cision TBA MAJORITY). All correct processes get the same
result of the TBA since the TTCB is secure6. The protocol
terminates when one of the conditions is satisfied (line 10):

1. at leastf + 1 processes proposed the same valuev: this
condition implies that at least one correct process pro-
posedv. Therefore, either (1) all correct processes pro-
posedv or (2) not all correct processes proposed the same
value. In both cases, the protocol can terminate and decide
v.

6 The reader might wonder if a malicious process might break the
protocol by callingTTCB proposein line 4 with a subset ofelist,
elist’. Apparently this would give different results of the TBA for
(1) the processes inelist’ and (2) the processes inelist but not in
elist’. In reality, this would not happen. The TTCB has the notion of
a “TBA execution”, which is uniquely identified by three parame-
ters:tstart, elist anddecision(see Section 3.1). Therefore, the effect
of a malicious process providing a differentelist, is the beginning
of a second TBA execution, identified by(tstart, elist’, decision),
completely independent of the first execution, identified by(tstart,
elist, decision). There can be no interference between the two TBA
executions.

2. at least2f + 1 processes proposed a value but no subset
of processes with the same value has a size larger than
f : this condition implies that some correct processes pro-
posed distinct values. In this case, the protocol can ter-
minate and decide on any value. For example, our im-
plementation will choose the most proposed value, if it
exists.

Both conditions can be tested using the two masks re-
turned byTTCB decide. The first one is constructed with the
proposed-okmask and the second one can be evaluated with
the proposed-okand theproposed-anymasks (Section 3.1).
The TBA execution starts in one of two conditions: when
all processes have proposed a value; or when time reaches
tstart. Block consensus assumes that eventually there is a
round whenenoughprocesses manage to propose to the TBA
before tstart. ‘Enough’ here is defined in terms of the two
conditions that allow the protocol to terminate. The algorithm
keeps retrying until this happens (lines 3-10).

Algorithm 1 Block consensus protocol.
1 function consensus(elist, tstart, value)
2 round←0; {round number}
3 repeat
4 out prop←TTCB propose(eid, elist, tstart, TBAMAJOR-

ITY, value);
5 repeat
6 out dec←TTCB decide(outprop.tag);
7 until (out dec.error6= TBA RUNNING);
8 tstart←tstart +T ∗ func(α, round); {α ∈ [0, 1[}
9 round←round+1;

10 until (f + 1 processes proposed the same value) or (2f + 1
processes proposed);

11 decide outdec.value;

The tstart of the next round is calculated by adding a
quantity to the previouststart, computed using constantsT
andα, and functionfunc(line 8): func is a monotonically in-
creasing function ofround, whereα controls the slope,α ∈
[0, 1[. For example, linear (func ≡ 1 + α ∗ round), or expo-
nential (func ≡ (1 + α)round). Thus, by increasing the pe-
riod of retry upon each repetition, we will eventually manage
to get enough processes to propose. There is an interesting
tradeoff here: with a largertstart the probability of termina-
tion in real systems increases, since more time is given for
proposals; on the other hand, if one process is malicious and
does not propose, then a largertstart will delay the execution
of the TBA service, and consequently the consensus protocol.
Incidentally, note that processes, being time-free, are totally
unaware of the real-time nature oftstart, they just determinis-
tically increase an agreed number, which is only meaningful
to the TTCB.

At this moment, the reader might ask the following ques-
tions: Why run several agreements inside the TTCB in or-
der to make a single consensus outside it? Running a sin-
gle TBA is not enough? The answer has to do with the in-
trinsic real-time nature of the TTCB and the TBA service,
and the asynchrony of the rest of the system. When a pro-
cess callsTTCB proposeit provides atstart, i.e., a timestamp
that indicates the TTCB the instant when no more proposals
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Fig. 3.Block Consensus protocol example
execution (withn=4 andf=1).

are accepted to the TBA identified by the arguments(elist,
tstart, decision). The process that callsTTCB proposeis in
the asynchronous part of the system therefore we can never
assume that the process will callTTCB proposebefore in-
stanttstart, regardless of the value of this parameter. The con-
sequence of this to the consensus protocol is that each round
any number of processes may not be able to propose before
tstart. This is the reason why the protocol may have to run
several rounds and call successive TBAs, until “enough” pro-
cesses manage to propose beforetstart, i.e, until the condition
in line 10 is satisfied.

Figure 3 illustrates an execution of the protocol in a sys-
tem with four processes wherep1 is malicious. In the exam-
ple,p1 andp2 are able to propose on time for the first TBA.p4

starts on time, but is delayed for some reason (e.g., a schedul-
ing delay) and proposes aftertstart(1). Therefore, it will get
an error from the TBA service, and its value will not be con-
sidered in the agreement.p3 is also delayed, and only starts to
execute aftertstart(1), and consequently, its proposal is also
disregarded. When the TBA finishes, all processes get the re-
sult, which in this case will be based on the proposals fromp1

andp2. Sincep1 is malicious, it attempts to force an incorrect
decision by proposingv1 that is different from the value of
the correct processes (which isv). Nevertheless, since none
of the conditions is satisfied (line 10), another round is exe-
cuted. Here, processp1 skips the proposal step, but two cor-
rect processes manage to propose beforetstart(2). In the end,
all correct processes will be able to decide, since the first con-
dition will be true.

The correctness of the protocol is proved in Appendix A.

4.3 General Consensus Protocol

For presentation simplicity, we first described the block con-
sensus protocol, which achieves agreement on a data value
with at most the size of the TBA service block. This sec-
tion presents a consensus protocol without this limitation. The
general consensusprotocol makes use of the payload channel
to multicast the values being proposed, and then utilizes the
TBA service to choose which value should be decided. The
number of processes which can fail is alsof = bn−1

3 c.
The protocol is presented in Algorithm 2. The arguments

have the same meaning as in the block consensus. Each pro-
cess starts by initializing some variables (∅ is the empty bag,

and⊥ is a value outside the range of valid hashes), and then
it multicasts the value through secure channels to the other
processes (line 6). Next, the protocol works in two phases,
where it runs a minimum of one round in the first phase, but
depending on the values and on the timing of the proposals,
it may need several rounds in both phases.

In thefirst phaseprocesses propose to the TBA ahashof
their own value (line 11). A secure hash function is a one-way
function assumed infeasible to invert, which compresses its
input and produces a fixed sized digest (e.g., algorithm SHA
gives a 20 byte output), that we will for simplicity call the
hash[26] 7. It is assumed that it is infeasible to find two texts
that yield the same hash. This phase and the protocol both
terminate iff + 1 processes propose the same hash to the
TBA (line 19). In this case, the value decided is the one that
corresponds to that hash (lines 20, 23, and 26). Sincef + 1
proposed the hash, then at least one of the processes has to be
correct. Consequently, it is safe to use that value as the deci-
sion (the argument is equivalent to the first condition of block
consensus). Moreover, since a correct process always starts
by multicasting its value through reliable channels, then we
can be sure that eventually all correct processes will receive
the value, and will be able to terminate.

The protocol enters thesecond phasewhen2f + 1 pro-
cesses proposed a hash but no subset greater thanf proposed
the same one (lines 17-18). This situation only happens when
the correct processes do not have the same initial value. In this
case the definition (Section 4.1) allows any value to be cho-
sen. The simpler solution would be to choose a pre-established
value, e.g., zero. However, it is more interesting to make the
protocol agree on one of the various proposed values. This is
the purpose of the second phase.

The second phase uses a rotating coordinator scheme [31].
In each round a different process is the coordinator (coord =
round modn), and then its value is selected as the (potential)
decision. Processes pick the value of the current coordinator
to propose it to the TBA. If this value is not available (for
instance, because it was delayed or the coordinator crashed),
then it is necessary to choose another value. In our case, we
decided to use a simple deterministic algorithm where a pro-
cess goes through theelistuntil it finds the first process whose

7 The size of the value of the TBA service is 20 bytes which is
precisely the size of a currently considered ‘secure’ hash (e.g., SHA
has 20 bytes).
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Algorithm 2 General consensus protocol.
1 function consensus(elist, tstart, value)
2 hash-v←⊥; {hash of the value decided}
3 bag←∅; {bag of received messages}
4 round←0; {round number}
5 phase←1; {protocol phase}
6 multicast(elist, tstart, value) to processes in elist;{send value

through payload channel}

7 loop
8 repeat {phase1: use my value}
9 if (phase = 2)then {phase 2: choose value from process}

10 value ←{M.value : coord = (round mod n) ∧
M=nextSenderMesg(coord, elist, bag)};

11 out prop ←TTCB propose(eid, elist, tstart, TBAMA-
JORITY, Hash(value));

12 repeat
13 outdec←TTCB decide(outprop.tag);
14 until (out dec.error6= TBA RUNNING);
15 tstart←tstart +T ∗ func(α, round);
16 round←round+1;
17 if (2f + 1 processes proposed) and (less thanf + 1 pro-

cesses proposed the same value)then
18 phase←2;
19 until (f + 1 processes proposed the same value);
20 hash-v←out dec.value;

21 when receive message M
22 bag←bag∪ {M};

23 when (hash-v6= ⊥) and (∃M∈bag : Hash(M.value) = hash-v)
24 if (phase = 2)then
25 multicast M to processes in elist except those that proposed

Hash(M.value);
26 decide M.value;

message has already been received (implemented by func-
tion nextSenderMesg(), line 10). Basically, the process first
tries to see if the message fromcoord = elist[k mod n]
has arrived, then it tries forelist[(k + 1) mod n], next for
elist[(k + 2) mod n], and so on, until a message is found.
There is the guarantee that at least one message will always
exist because the initial multicast (line 6) immediately puts
one message in thebag (we use the word ‘bag’ to denote
an unordered set of messages without duplicates). This algo-
rithm has the interesting characteristic that it skips processes
that did not manage to send their value, allowing the consen-
sus to finish faster.

Since the value being decided might have been proposed
by a malicious process, an extra precaution has to be consid-
ered. The malicious process might have sent the value just to a
sufficiently large subset of processes to ensure that a decision
could be made (e.g.,f processes). Then, the rest of the pro-
cesses would never get the decided value – they would only
get the corresponding hash. To solve this problem, processes
have to retransmit the value to the other processes (lines 24-
25). The masks fromTTCB decideare used to determine
which processes are these.

The correctness of the protocol is proven in Appendix A.

4.4 FLP Impossibility Result

Fischer, Lynch and Paterson showed that consensus in an a-
synchronous system has the possibility of nontermination if
a single process is allowed to crash [18]. This FLP impossi-
bility result generated research on several techniques to cir-
cumvent it both in theoretical and in real systems, e.g., ran-
domization [30,4,5], unreliable failure detectors [8] and par-
tial synchrony [16]. The precise boundaries in terms of com-
munication synchrony, hosts synchrony and message delivery
order in which this impossibility exists were studied in [13].

The purpose of this section is to discuss why FLP does
not apply to our consensus protocol. The first thing to no-
tice is that our system is not asynchronous but a combina-
tion of asynchronous and synchronous subsystems (payload
and TTCB, respectively). Therefore, the FLP result does not
affect the protocol. Moreover, in theblock consensus proto-
col the communication boils down to the execution of TBAs,
therefore it fits in the following categories of [13]: (1) it is
synchronous; (2) it can be considered to be by broadcast, in
the sense that all processes receive the same values; (3) it is
ordered, since the TBAs are executed sequentially; (4) the re-
ceive and send operations (decide/propose in this case) are
not atomic. The paper by Dolev et al. allow us also to con-
clude that FLP does not apply to this protocol. In relation to
the general consensus protocol, the same reasoning applies
to the consensus about thehashof the proposed value. The
transmission of the value through the payload network does
not involve a consensus, therefore FLP does not apply, also
for the same reason.

5 Protocol Evaluation

This section evaluates the two versions of the consensus pro-
tocol in terms of time and message complexity. Since both
versions use the TBA service in their implementation, we
start by giving a brief overview of the current implementa-
tion of this service.

5.1 TBA Service

The TBA service is implemented inside the TTCB by an a-
greement protocol tolerant to crash faults and under the syn-
chronous time model. The protocol has been described in [12,
11], but we sketch it here for the reader to have an idea of its
operation and complexity.

The protocol has two layers: a reliable broadcast proto-
col and the TBA protocol. The reliable broadcast protocol
guarantees two properties: (1) all correct (non-crashed) local
TTCBs deliver the same messages; (2) if the sender is correct
then the message is delivered. The TTCB control channel can
lose some messages due to accidental faults (e.g., electromag-
netical noise), but the probability of accidental omissions in
a network in an interval of time can be measured and defined
with a high probability [12,10]. This value is usually called
the omission degree(Od). When a process proposes before
tstart, the value and some control information are put in a ta-
ble and multicasted to all local TTCBsOd+1 times, in order
to tolerate omissions in the control channel. These messages
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also include information about the last message received from
all local TTCBs. This information is used by the protocol to
assess if all correct local TTCBs will deliver the message.

The TBA protocol uses the reliable broadcast protocol for
communication. A local TTCB can calculate the result of a
TBA if one of two conditions hold: (1) if it has the propos-
als from all processes inelist, or (2) if t ≥ tstart + TTBA,
wheret is the current instant andTTBA is the maximum du-
ration for the execution of the protocol (it can be calculated
since the TTCB is synchronous).TTBA includes a factor with
the maximum asynchronism among the local TTCB clocks,
since the synchronization protocol can not reduce it to zero.
Finally, when a process callsTTCB decide, if one of the two
conditions is satisfied the TTCB returns the result (value and
masks); otherwise it returns an error.

The TBA protocol is an agreement protocol variety that
runs in two rounds: one round to get the messages and another
to get messages confirming the reception of the first ones.
There is a known theoretical minimum off + 1 rounds for a
consensus to toleratef faults in a synchronous system with
crash faults [24]. The TBA protocol manages to improve this
bound by using the omission degree mechanism described
above and by making an additional assumption: if a broadcast
is received by any local TTCB other than the sender, then it
is received by at leastBd local TTCBs [2,11]. This broadcast
degreeBd can easily exceed half of the nodes in a LAN.

5.2 Time Complexity

The time complexity of distributed algorithms is usually eval-
uated in terms of number of rounds or phases. Using this
method, the two versions of the protocol described take one
round in the best case, i.e., in a run where no failures occur.
However, since these criteria can be ambiguous, Schiper in-
troduced the notion oflatency degree[32]. The idea is based
on a variation of Lamport’s logical clocks which assigns a
number to an event [22], with the following rules:

1. send/multicast and local events at a process do not change
its logical clock;

2. the timestamp carried by message M is defined asts(M) =
ts(send(M)) + 1, wherets(send(M)) is the timestamp
of thesend(M) event;

3. the timestamp of areceive(M) event on a processp is
the maximum betweents(M) and the timestamp of the
event atp immediately preceding thereceive(M) event.

The notion has to be extended for systems with a worm-
hole. We have to introduce new rules for the distributed worm-
hole services, i.e., to the services that involve communication
in the control channel. A distributed wormhole service can be
defined in terms of two events:w send andw receive. The
eventw send represents the moment when a process calls a
service to start the communication. The eventw receive rep-
resents the moment when the process gets the result of the
execution of the distributed service. In relation to the TTCB
TBA service, the eventw send corresponds to a call toTTCB
propose; w receive corresponds to a call toTTCB decideif
it returns the result of the TBA. The new set of rules is:

4. a call to a local wormhole service or aw send event at a
process do not change its logical clock value;

5. the timestamp associated to a call to a distributed worm-
hole serviceA is defined asts(A) = ts(w send(A)) +
2, wherets(w send(A)) is the largest timestamp of the
w send events performed forA;

6. the timestamp of aw receive(A) event on a processp
is the maximum betweents(A) and the timestamp of the
event atp immediately preceding thew receive(A) event.

These new rules were defined considering the current im-
plementation of the TBA protocol. The protocol consists ba-
sically in every local TTCB sending the value proposed by
its local process(es) to the other local TTCBs and waiting
for a message from another local TTCB confirming the re-
ception of the same value. Applying the original rules for
send and receive events (rules 1-3), we derived the rules for
TTCB proposeandTTCB decide, and extrapolated to the ge-
neric rules forw send andw receive (rules 4-6).

Let us now define latency degree. For an execution of a
consensus algorithmC, the latencyof C is the largest times-
tamp of alldecideevents. Thelatency degreeof C is the min-
imum possible latency ofC over all possible executions [32].

Now we calculate the latency degree for both consensus
protocols applying the rules above. The logical clocks start
with 0 at every process.

• Block consensus protocol:(1) the TBA hasts(A) = 2
(rules 1, 4, 5); (2) the call toTTCB decide, eventw re-
ceive(A), has a timestamp of 2 at every host (rule 6); (3)
every process decides at line 11 with that logical clock
value so the latency degree of the protocol is 2.

• General consensus protocol:
– All correct processes with same value: (1) multicast at

line 6 hasts(M) = 1 (rules 1, 2); (2) the TBA started
at line 11 has alsots(A) = 2 (rules 1, 4, 5); (3) if a
process receives a message, the timestamp is 1 (rule
3); (4) all processes decide with a logical clock value
of 2 (rule 6), and therefore the latency degree is 2.

– Correct processes with distinct values: (1) (2) and (3)
are the same; (4) processes enter in phase 2 and exe-
cute another TBA withts(A1) = 4 (rules 4, 5); (5) all
processes decide with a logical clock value of 4 (rule
6), and therefore the latency degree is 4.

Protocol Latency degree Requirements

Dwork et al. [16] 4 Signed messages
Dwork et al. [16] 7 –
Malkhi & Reiter [25] 9 or 6 Signed messages
Kihlstrom et al. [21] 4 Signed messages
Block consensus 2 TTCB
General consensus 2 or 4 TTCB

Table 1. Latency degrees for some Byzantine-resilient consensus
protocols.

Table 1 compares the latency degrees of both versions of
the protocol with other asynchronous Byzantine-resilient pro-
tocols that solve similar consensus problems. Although this
comparison may seem awkward or unfair, the reader should
notice that comparing protocols based on different system
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models is a common practice in the distributed systems lit-
erature. Just to give one among many possible examples, [16]
compares consensus protocols: in synchronous vs asynchro-
nous systems; and with fail-stop vs omission vs Byzantine
faults (with and without digital signatures). We also argue that
this kind of comparison is useful to compare both protocols
and models, especially in a paper like this that explores a re-
cent system model.

The table shows that our protocols have good latency de-
grees. The translation into execution time is far from trivial,
but in our case we can say that the best case execution time
of the protocols is the minimum time for executing a single
TBA, which is in the order of 4 ms with the current TTCB
implementation.

In the presence of process failures, both versions of the
protocol also have small latency degrees because they are
mostly decentralized. Block consensus continues to have a
latency degree of 2, and General consensus has a latency de-
gree of 2 in case all correct processes start with the same
value, and a latency degree of 4 otherwise. The other pro-
tocols presented in Table 1 are all based on a (rotating) co-
ordinator scheme, and therefore, their performance might be
affected by the failures (e.g., the first coordinators are all ma-
licious). For instance, the latency of the protocols by Dwork
et al. [16] can be as high as4(f + 1) for the protocol with
signed messages, and6(f + 1) + 1 for the other protocol.

5.3 Message Complexity

The message complexity of a protocol is evaluated in terms of
the number of transmissions in the payload channel. Both ver-
sions of the protocol have the additional cost of performing
TBAs which use the control channel. Table 2 shows the to-
tal number of messages sent by our protocols in the payload
channel, considering the cases when a multicast is a single
message (label “multicasts”), or when it is(n− 1) “unicasts”
(plus a local delivery) of the same message.

Protocol Multicasts Unicasts TBAs

Best case
Block consensus 0 0 1
General consensus n n(n− 1) 1

Worst case
Block consensus 0 0 no limit
General consensus 2n n(n− 1)+ no limit

+n(n− f − 1)

Table 2.Message complexities for the consensus protocols.

6 Related Work

The past twenty years saw several variations of the consen-
sus problem presented in the literature. Consensus protocols
can decide on a 0 or 1 bit (binary consensus), on a value with
undefined size (multi-value consensus), or on a vector with

values proposed by several processes (vector consensus or in-
teractive consistency). Several Byzantine-resilient consensus
protocols, using different techniques to circumvent FLP, were
proposed.

Recently several works applied the idea of Byzantine fail-
ure detectors to solve consensus [25,21,15,14,3]. All these
protocols use signatures. Any processp can generate a sig-
natureS(p, v) that cannot be forged, but which other pro-
cesses can test. Likewise, they are all based on a rotating
leader/coordinator per round. Malkhi and Reiter presented
a binary consensus protocol in which the leader waits for a
number of proposals from the others, chooses a value to be
broadcasted and then waits for enough acknowledgments to
decide [25]. If the leader is suspected by the failure detector,
a new one is chosen and the same procedure is applied. The
same paper also described a hybrid protocol combining ran-
domization and an unreliable failure detector. The protocol
by Kihlstrom et al. also solves the same type of consensus but
requires weaker communication primitives and uses a failure
detector that detects more Byzantine failures, such as invalid
and inconsistent messages [21].

Doudou and Schiper present a protocol for vector consen-
sus based on amuteness failure detector, which detects if a
process stops sending messages to another one [15]. This pro-
tocol is also based on a rotating coordinator that proposes an
estimate that the others broadcast and accept, if the coordina-
tor is not suspected. This muteness failure detector was used
to solve multi-value consensus [14]. Baldoni et al. described a
vector consensus protocol based on two failure detectors [3].
One failure detector detects if a process stops sending while
the other detects other Byzantine behavior.

Byzantine-resilient protocols based on partial synchrony,
both with and without signatures, were described by Dwork
et al. [16]. The protocols are based on a rotating coordinator.
Each phase has a coordinator that locks a value and tries to
decide on it. The protocols manage to progress and terminate
when the system becomes stable, i.e., when it starts to behave
synchronously.

Other techniques were also used to circumvent FLP in
Byzantine-resilient consensus protocols. Randomized / prob-
abilistic protocols can be found in [5,6]. More recently, the
condition-based approach was introduced as another means
to circumvent FLP [28,19]. Protocols based on this approach
satisfy the safety properties but termination is guaranteed only
if the inputs satisfy certain conditions.

The consensus protocol presented in the paper is one of
the first existing protocols based on the TTCB wormhole. Pre-
viously we designed a Byzantine-resilient reliable multicast
protocol [10]. This protocol uses the TBA to multicast a reli-
able hash of a message. The current paper shows a different
way of using the TTCB TBA service: to make a voting on the
values proposed by the processes, and to decide when enough
processes voted the same, or simply voted something.

7 Conclusion

The need for more trustworthy systems in a widely connected
world is raising an increasing interest in the development of
practical Byzantine-resilient protocols and applications. In this
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context, we are exploring a secure and real-time wormhole –
the TTCB – to support the execution of this type of protocols.

The objective of the current paper is twofold: (1) to show
the power of the wormhole model; and (2) to show how to de-
velop novel algorithmic solutions in the model. These goals
are pursuit by presenting a consensus protocol. Although this
protocol may seem simple, it requires a new algorithmic per-
spective, since it is based on a dual system, both in terms of
time and security. We are also not aware of any consensus
protocol executed with the assistance of a “low-level” simple
agreement service. The protocol has low time and message
complexities.
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raoui, Andŕe Schiper, the anonymous reviewers and the handling ed-
itor, Dahlia Malkhi, for their comments that greatly assisted us in
improving the paper.

References

1. A. Adelsbach, D. Alessandri, C. Cachin, S. Creese, Y. Deswarte,
K. Kursawe, J. C. Laprie, D. Powell, B. Randell, J. Riordan,
P. Ryan, W. Simmonds, R. Stroud, P. Verı́ssimo, M. Waid-
ner, and A. Wespi. Conceptual Model and Architecture of
MAFTIA. Project MAFTIA deliverable D21. January 2002.
http://www.research.ec.org/maftia/deliverables/D21.pdf.
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A Correctness Proofs

This section proves that Protocols 1 and 2 solve consensus as
defined by the properties of Validity, Agreement and Termi-
nation in Section 4.1, provided that at mostf = bn−1

3 c pro-
cesses fail. We assume the system model in Section 2 and the
weak synchrony assumption in Section 2.2. We assume each
process successfully called the Local Authentication service
and established a secure channel with its local TTCB before
the execution of the protocols (Section 3). If an attacker man-
ages to disclose the pair(eid, key) established by this service,
the secure channel is no longer secure so we considered the
process to be failed. We assume the TBA service satisfies its
specification in terms of properties TBA1 to TBA5 in Sec-
tion 3.1.

A.1 Block Consensus Correctness Proof

Theorem 1. If all correct processes propose the same value
v, then any correct process that decides, decidesv (Validity).

Proof. The theorem applies only if all correct processes pro-
pose the same valuev. There are at least2f + 1 correct pro-
cesses since we assumef ≤ bn−1

3 c. The algorithm is basi-
cally a loop inside lines 3 to 10. All correct processes begin
with the sametstart that works as the loop counter.

Each round of the loop, all correct processes callTTCB
proposeand get the result of the TBAout deccalling TTCB
decide(line 6). out deccontains the (or one of the) value(s)
proposed bymore processes beforetstart (due to property
TBA4, with the decision functionTBA MAJORITY) and the
two masks saying which processes proposed the value de-
cided and which proposed any value beforetstart. Each round
can satisfy one of two cases, depending on the number of pro-
cessesk that proposed beforetstart:

Case 1.(k < 2f +1): This case can be subdivided in another
two. (Case 1a): If nof + 1 processes proposed the value de-
cided, then the loop goes to the next round (line 10). (Case

1b): If f + 1 processes proposed the value decided then this
value is necessarilyv, since there are at mostf failed pro-
cesses (the theorem assumes all correct processes proposev).
In the end of the round, the loop terminates sincef + 1 pro-
posed the same value (line 10). The valuev is decided (line
11).

Case 2.(k ≥ 2f + 1): In this case, at leastf + 1 of the pro-
cesses that proposed are correct and they are the majority,
since at mostf can be failed. Therefore, the value decided by
the TBA is v (line 6), the loop terminates (line 10) andv is
decided by the protocol (line 11).

Any correct process that decides, decides in cases (1b) or
(2), therefore it decidesv. ut
Theorem 2.No two correct processes decide differently (A-
greement).

Proof. Two correct processes execute the same TBAs, since
they start with the sametstart (Section 1) and TBA returns the
same values to all processes (property TBA3). Two correct
processes exit the loop in the same round since they test the
same condition (line 10) with the same results of TBA’s. They
return the same result for the same reason (line 11).ut
Theorem 3.Every correct process eventually decides (Termi-
nation).

Proof. The synchrony assumption in Section 2.2 states that
there is an unknownprocessors stabilization time(PST) such
that the processing delays are bounded from time PST on-
ward. Therefore, eventually there is a round when at least
2f + 1 processes manage to callTTCB proposebefore the
tstart > PST deadline. When that happens all correct pro-
cesses of that subset with at least2f + 1 eventually decide
(lines 5-11, given properties TBA1 and TBA5). There may
existf correct processes which did not manage to callTTCB
proposebefore thattstart. However, they will make that call
later, get the result of the TBA (line 6) and terminate (lines
10-11). ut

A.2 General Consensus Correctness Proof

Lemma 1. If all correct processes propose the same value
then the protocol does not change to phase 2.

Proof. The change to phase 2 is tested in line 17. If2f + 1
processes proposed then at leastf + 1 of them are correct.
Since we are considering that all correct processes proposed
the same value, the second part of the condition is not satis-
fied. Therefore, if the first part of the condition in line 17 is
satisfied, the second is not, and the protocol does not change
to phase 2. ut
Theorem 4. If all correct processes propose the same value
v, then any correct process that decides, decidesv (Validity).

Proof. The theorem applies only when all correct processes
propose the same valuev, therefore the protocol does not
change to phase 2 (Lemma 1). The phase 1 of the protocol
is very similar to the Block Consensus protocol, therefore the
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proof that any correct process that decides, decides the same
hashH(v) follows from the proof of Theorem 1. If a process
is correct then it eventually receives its own message withv
(lines 6, 21). Therefore, any correct process that decides, de-
cidesv (lines 23, 26). ut
Theorem 5.No two correct processes decide differently (A-
greement).

Proof. The proof that no two correct processes decide differ-
ent hashes is similar to Theorem 2. If two correct processes
decide the same hash then they decide the same value due to
the properties assumed for the hash function (lines 23 and 26,
Section 4.3). ut
Theorem 6.Every correct process eventually decides (Termi-
nation).

Proof. The proof that either all correct processes eventually
terminate in phase 1 (line 19) or they change to phase 2 (line
17) is similar to the proof of Theorem 3.

Let us now prove that all correct processes in phase 2
eventually decide. All correct processes multicast their val-
uesvi to all others (line 6). Attending to the communica-
tion model, eventually every correct process receives the mes-
sages with the valuesvi from all correct processes. Line 10
chooses the valuevj proposed by the process with index(r
mod n) in elistor the next one available. Again using the rea-
soning of the proof of Theorem 3, eventuallyf + 1 processes
manage to propose the sameH(vj), which is decided by the
TBA. If a process has the valuevj in bag then it decides im-
mediately (lines 19-20, 23-26). If a processp does not have
the valuevj then it will eventually receive it, since at least
one other correct process hasvj (f + 1 processes have it)
and multicasts it (line 24-25). After receivingvj , p decides it
(lines 21-26). ut
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