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Abstract. In a recent short paper and a report
(see[Neto et al. 98] and [Neto and Costa 99)) it
was $own that programming languages can be
trandated efficiently on rearrent (analog,
rational weighted) neural nets, using bounded
resources. This fact was achieved by creating a
neural programming language called NETDEF,
such that each program corresponds to a modular
neural net that computesit.

This framework has ome practicd implicaions
in recent efforts to merge symbolic and sub-
symbolic computation. Adding neuron-synapse
connedions (high-order neurons) to the neural
network model allows us to integrate leaning
into the NETDEF computing paradigm.

Some possghble enhancements are presented using
this framework, namely dructure sdf-
modification, and integration of sub-symbolic
leaning into the NETDEF neuron architedure.
The Hebb learning rule is used to provide an
ill ugrative example.
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1. Introduction

In the last decade, the significance of systems which
integrate symbolic and sub-symbolic computing
techniques has been consolidated (see [Wilson and
Hendler 93] for an analysis of some particular hybrid
systems). Mativation for this gructura hybridization
can be found bath in biology (persons are able to
process high levd concepts sipported by the neura
biochemistry of the brain) and in engineaing
(intelligent control design tends to incorporate symbolic
and sub-symbdic processng, in order to achieve better
performances).

There ae several different ways to accomplish this
hybridization. Some models sparate ompletely the
two computation methodologies, using the output of the
sub-symbolic structure as an inpu to the dasscd Al

control schemata (cf. [Hendler and Dickens 91]). Others
use symbolic and sub-symboali ¢ information in the same
data structure (as we do in this paper), blurring the
distinctions among them, like in [Lange et al. 89.
Others still encapsulate subsystems of both kinds, and
interface them through supervisors that control and Hde
different computing demands and resources of the
subsystems (cf. [Wil son and Hendler 93]).

This paper presents a method to merge symbolic and
sub-symbolic computation into a single neural network
architedure.

Firg, we briefly introduce the high-level programming
language NETDEF to hard-wire the neura net model.
(Programs written in NETDEF can be ®nverted into
neural nets through a @mpiler available &
www.di.fc.ul.pt/~jpr/netdef/netdef.htm). In NETDEF we
can hand e symbolic computation in an easy way.

Secondly, using se@nd-order neurons, corresponding to
spedal constructs called neuron-synapse @nnedions,
we show how to add leaning processes to NETDEF. The
end result is a neural net partially hard-wired and
partialy soft-wired by a suitable leaning algorithm.
This new language is NETDEF+. Since NETDEF+ iS
modular we have, after compilation, modules
performing programming tasks and modules supporting
sub-symboali ¢ tasks.

2. NETDEF

Computahility analysis of the analog neural net model is
due to Hava Siegdmann and Eduardo Sontag. They
used a quite simple modd to establish lower bounds on
the omputational power of analog reaurrent neural nets
(see[Siegelmann 99 for detail s). These systems stisfy
the dasscd constraints of computation theory, namely,
(a) input is discrete and finite, (b) output is discrete, and
(c) the system isitsdlf finite (control isfinite).

The functions computable by such a model depend o
the type of the weights. With integer type, the neural



network has the power of finite aitomata, like the
McCull och and PFitts neural net model (see[Minsky 67]
for details). Rational weights give Turing power to
neural nets and with real weights we @n compute non
reawrsve functions (see [Siegdmann 99 for a
systematic approach).

The aalog reaurrent neural net is a discrete time
dynamic system, x(t+1) = q(x(t), u(t)), with initial state
X(0) = Xo, Where t denotes time, X;(t) denotes the activity
(firing frequency) of neuroni at time t, within a
population of N interconneded neurons, and uk(t)
denotes the value of input channd k at time t, within a
set of M input channels. The gplication map @is taken
as a omposition of an affine map with a piecevise
linea map o theinterval [0,1], known as the piecevise
linea function O:

1 ,x=1
a:%( 0<x<1

B) ,X<0

The dynamic system becomes,
N M
Xj(t+1) = o( Z a;x;(t) + ijkuk(t) +G)
1= =

where gi, bjk and ¢ are rational weights. Figue 1
displays a graphical representation of a Sngle equation,
used throughout this paper. When gji (or bjk or &j) takes
value 1, it is not displayed in the graph.
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Figure 1. Graphical notation for neurons, input channels
andtheir interconnections.

NETDEF is a high level pardle programming language
able to describe abitrarily complex algorithms. It is an
imperative languege, with syntax and semantic very
close to those of Occam. Its main concepts are processes
and channels. A program can be described as a
colledion of processes exeauting concurrently, and
communicating with each other through channds or
shared memory.

The language has assgnment, conditional and loap
control structures (see Figure 2 for a rearsive ad
modular construction of a process), it supports several
data types, variable and function dedarations, and
several other processes. It uses a modular

synchronization medianism based on handshaking for
process ordering (the IN/ouT interface in Figure2). A
detailed description may be found in [Neto and
Costa 99] at www.di.fc.ul.pt/biblioteca/tech-reports.

The information flow between neurons, due to the
activation function o, is preserved only within [0, 1],
implying that data types must be cded in this interval.
The real coding for values within [-a, a], where ais a
positi ve integer, is.

a(x) = (x +a)/2a (D]

This coding is a one to one mapping of [-g, g into the
working st [0, 1].

Input channels u; are the interface between the system
and the environment. They act has typical NETDEF
blocking ane-to-one channels. Thereisaso a FIFO data
structure for each u; to kegp unprocessed information
(this happens whenever the incoming information rateis
higher than the system processng capacity).

ouT

ouT

(D (Do
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Module G 1
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Module P /

Figure 2. Processconstruction for WHILE bDO X := x+1.



In Figure 2, synapse IN sends value 1 (by some neuron
Xin) into Xy: neuron, thus starting the mputation.
Module G (denoted by a square) computes the value of
bodean variable ‘b’ and sends the 0/1 result through
synapse Res. This result is g/nchronized with an output
of 1 through synapse out. The next two neurons dedde
between stopping the process(‘b’ is false) or exeauting
module P (‘b’ is true), iterating again. The dynamic
system is described by the foll owing equations:

Xm1(t+1) = a( Xin(t) + Xe2(1) )

Xm2(t+1) = o( Xeo(t) + Xea(t) —1.0)

Xma(t+1) = 0( 2.Xe(t) — Xes(t) —1.0)
Module G just acceses the value ‘b’ and autputs it
through neuron xgs. This is achieved because Xg3 bias
-1.0 is compensated by value 1 sent by Xg;, alowing

value ‘b’ to be the activation of Xg3. This module is
defined hy:

Xe1(t+1) = o( Xuma(t) )

Xea(t+1) = 0( Xeu(t) )

Xe3(t+1) = o Xau(t) + b(t) —1.0)
Module P makes an assgnment to the real variable ‘X’
with the value computed by module E. Before neuron x

receves the activation value of Xpg, the module uses the
output signal of E to erase its previous value.

Xp1(t+1) = o Xma(t) )
Xpa(t+1) = 0( Xes(t) )
Xpa(t+1) = 0( Xe(t) + Xe3(t) —1.0)
In module E the increment of ‘x’ is computed (using

a(1) for the mde of real 1). The extra —1/2 hias of
Neuron Xg, is necessary due to the interna coding:

Xe1(t+1) = o( Xpa(t) )
Xe2(t+1) = 0( 2Xea(t) —Xea(t) + X(t) —52)
Xea(t+1) = o( Xea(t) )
Xea(t+1) = o( (1) )
The dynamics of neuron xis given by:

X(t+1) = o(X(t) + Xpa(t) — Xes(t) )

However, if neuron X is used in other modules, the
compil er will add more synaptic links to its equation.

The compiler takes a NETDEF program and trandates it
into a text description defining the neural network (see
Figure 3). Given a neural hardware, an interface would
trandate the fina description into suitable syntax, so
that the neura system may exeaute. The use of neurd

networks to implement arbitrary complex agorithms
can be then handled through compil ers like NETDEF.

This neural network is homogenous (all neurons have
the same activation function) and the system is
composed only by first-order neurons. The find
network is also an independent module, which can be
used in some other context. Regarding time and space
complexity, the compiled nets are proportional to the
respedive algorithm complexity.

NETDEF n(1,1)IS MnOIn(i+1) = sigma( )
MnOOut(i+1) = sigma( +
1.0 * SEQ10ut(i) )

VARCMnO:IN1(i+1) =

sigma( + 1.0 *
|:> VARCMnO:IN1(j) + 1.0
* SEND1Val(j) — 1.0
* RECV1Wait(i) )
VARCMnO:IN1FIg(i+1) =
sigma( + 1.0 *
MnOIn(i) + 1.0 *

VAR a: INTEGER;
g GUARD

|:> SEQ
a := succ(a);

START g;
T@ ENDSEQ;
@ (b) (©

Figure 3. Obtaining a NETDEF neurd network.
(8) The schematics of an algarithm, (b) A NETDEF program,
(¢) The neurd network description.
The NETDEF compil er automates gep (b) to ().

There ae some related works in the literature about
symbolic neura computation. The JanNNeT system (see
[Gruau 95] for details), introduces a dialed of Pascal
with some pardld constructs This agorithmic
description is trandated, using several automated steps
(first on a treelike data structure ad then on a
low-level code, named cellular code), to produce a
non-homogenous neural network (there ae four
different neuron types) able to perform the required
computations.

Other difference to NETDEF is the network dynamics. In
our model, at each ingant, all neurons are updeted with
their new values. In JaNNeT, every neuron is activated
only when all its g/napses had transferred their values.
Sincethis may not ocaur at the same ingant, the globeal
dynamics is not synchronous. A spedal attention is
given to design automation of the final neural network
architedure.

Anocther neural language projed is NiL (outlined in
[Siegddmann 93 and [Siegelmann 94). The NiL system
is aso able to perform symbolic computations by using
certain sets of constructions that are compiled into an
appropriate neural net (usng the same homogeneous
neural architedure of NETDEF). It has a complex set of
data types, from bod ean and scalar types, to lists, stacks
or sets that are kept inside asingle neuron, using fractal
coding.



An important difference is that NETDEF has a modular
design, while NIL has not. Also, NIL does not provide
esentiadl medhanisms required for a neura language
like a mutual exclusion scheme for variable access
seaurity, temporal processes for real-time applications,
genuine paralld cdls of functions and procedures,
blocking communicaion primitives for concurrent
processinteraction, dynamic aray assgnment. NETDEF
deals and solves all these subjects without loasing its
modular properties.

A proposed goal, but just delineaed in [Siegelmann 96],
was to provide mechanisms for tuning the compiled
network, in order to generalize the initial processed
information. However, to ou knowledge, NIL was
mainly used as a tod to derive spedfic theoreticd
results about neurocomputation, and was not fully
devel oped into a network compiler application.

3. Extending the model

Our goal now is to integrate leaning and hard-wiring
medhanisms into the @mputation tods already
developed, merging two standard computation
methodologies (symbolic and sub-symbolic) in one
single neural architedure. A further extension of the
current conceptual schema, called NETDEF+, was
devised to be;

e Smple — the neurd net model should
remain as close as possble to its initia
formulation.

» Expressive —theneural net mode should be
expressve enough to model new tods and
new medanisms.

e Modular — in NETDEF we had a spedfic
concern about modularity; modularity must
be preserved in the extension.

To acoomplish these requirements, we dedded to
include neuron-synaptic connedions into the neura
network modd. Although we ae not concerned with
biological plausibility, the eistence of neuron-synaptic
connedions in the brain is known to exist in the
complex dendritic trees of genuine neural nets (see
[Shepherd 94] for details). In the model their main task
is to convey values and use them to update ad change
other synaptic weights.

In this new high-order model, each neuron can compute
a rational polynomia of its inputs, i.e, x(t+1) =
@X(t), u(t)), with initial state x(0) = X, where the
application map @ is the composition of a polynomia
with rational coefficients with the piecewise sigmoid o.
The new dynamic system becomes,

Xj(t+1) = o( B(X1(), - Xn (1), U2(Y), ..., Um(1)) )

Figure 4 displays a diagram of a neuron-synaptic
connedion, linking neuron x to the mnnedion between
neurons y and z. Semantically, synapse of weight w,,
receves the previous activation value of Xx. The
dynamics of neuron z is defined by the high-order
dynamic rule":

Z(t+1) = o(2ax(t).y(t) - a(x(t) + y(t)) + 0.5a+ 0.5) (2)

OO

Figure 4. Graphical notation for neuron-synapse
connection in equation (2).

High-order nets (i.e, networks having neurons with
high-order transfer functions) have been used before.
Most of the previous work on high-order neural nets
study the superior computational power achieved by
these types of transfer function, that can possbly
multiply activations, and not only take alinea function
of them.

Pallack, in [Pollack 87], built a finite high-order neural
network model with universal properties. [Sun et al. 9]]
shows another Turing computational equivalence of
second-order nets. [Goudreau et al. 94 deds with
networks with the Heaviside (step) activation function.
They show that single layer second-order nets are
strictly more powerful than single layer first-order
networks. An application to lean finite state automata
using seand-order neural nets is described in [Giles et
al. 92).

Is it worthwhile to include high-order equations? There
is no increase of computational power, since NETDEF iS
already Turing equivalent (with bounded resources).
However, there ae some pertinent advantages that
justify the extension. The next sedions will il lustrate
these benefits.

4. Dynamic Structures

Features associated with neuron-synapse mnnedions
(of second-order neurons) are deletion and insertion of

! The expression is the result of a(a™ (x(t)*a*(y(t))). This
calculation is necessry because the data flow values are
encoded through a, given by (1). To avoid ambiguities, the
first argument refers to the neuron-synapse @nnection, and
the second, to the input neuron.



connedions in exeaution time. If a synapse recaves a
zero weight, it can be seen as being removed from the
architedure. Likewise, a z2ro weight synapse receving
a non-zero value will be added to the net. This feature
implies a salf-modifiable neural network. In order to
allow NETDEF+ to perform deletions and insertions, we
introduce a new process named LINK. A LINK Process
changes the synaptic weight of a pair of neurons. Its
syntax is,

LINK ( <input-neuron>,
<new-weight-value>,
<output-neuron> )

In Figure 5, neuron wyy keeps the synaptic weight until
an input signal comes through channel IN. At that
moment, the neuron wyy resets its activation to zero. At
the same time the incoming signa through IN cancds
the bias of the left data neuron, and the new value ‘w' is
inserted in the next step of computation as the new
activation of neuron wyy. The synaptic weight is
changed at runtime. The diagram of the wmpiled net is
given in Figure5,

IN P out

Figure5. Neural net schemafor LINK (X, w, ) process

By using a LINK(X,0,y) process, the synapse between
neurons X and y is deleted. Inputing a non-zero value
reinserts the synapse. Deleting all inputs/outputs of a
neuron separates it from the remaining network. This
feature alds to NETDEF+ an architedural self-modifying
medhanism.

5. Learning

A system that undergoes changes dimulated by the
environment is capable of learning. A leaning
algorithm is a well -defined procedure that spedfies how
the system changes according to autside information. In
this way, leaning can be seen as the exeaution in run
time of some hard-wiring agorithm, running under the
inputs from the environment.

Many neural leaning algorithms, like backpropagation,
recave inputs and adapt the synaptic weights, pulling
the network wiring towards the solution of the problem.
Each agorithm uses some appropriate procedures to

updkte the network weights, inspired by means of pure
mathematicd reasoning (e.g., the Least Mean Squares
rule) or by biological inspiration (e.g., the Hebb rule).

The NETDEF+ model makes possble the change of
synaptic weights at runtime, so that it should also ke
concdvable to implement some kind of leaning
algorithm with it. Starting with NETDEF, an already
available neural programming language, how can this
new feature be used to implement the most genera
leaning a gorithms?

The control structure given by the NETDEF language can
be used to regulate leaning proceses, since it is
flexible enough to handle abitrary algorithms. Usually,
leaning algorithms condst of several weight
calculations and they define how the entire module
should change in order to respond in a new way to the
environment (see [Haykin 99 for a description of
several leaning agorithms). The learning structure
consists of a set of neurons, arranged in an appropriate
architeaure (in layers, in a bidimensional grid), keeping
the knowledge acquired during the learning procedure.

The leaning module embadies the @ntrol structure and
the leaning structure. This module is affeded by
outside requests, like processng the information
presented by a new leaning sample, or resetting the
weight values. Control and leaning are implemented in
the same homogeneous framework, and they are joined
together homogeneoudy. The integration of the leaning
process in NETDEF+ implies combining symbolic and
sub-symbolic computations using modular high-order
(second-order) neural nets.

6. The Hebb Rulerevisited

The Hebb rule, one of the first leaning rules presented
in the literature, had a biological inspiration. Sucdnctly,
it says that if two conneded neurons are simultaneously
active, their synaptic interconnedion should be
seledively strengthened.

In this dion, we discussHebb's leaning rule built on
top of NETDEF+. We choose the classcal probem of
leaning binary Boolean operators. The inpu vedor x
has two dimensions and the output vedor y has one
dimension.

Hebb rule states that for each sample <x1, Xo; y>,
synapse wyx; should be strengthened if and only if
Xj =Y. The sample values are bipolar (using the a codes
for —1 and +1), introducing a mmpensation medanism
to avoid synapse saturation presented in the original
Hebb rule. The common interpretation in the literature,
is that the synaptic connedion is updated by Awyx; =



n.xj.y (the leaning coefficient n is taken to ke 1 for
simplicity).

As said before, the Hebb module is divided into two
parts, the learning net and the control net.

Learning net. The leaning structure with two layers
(input and autput) is outlined in Figure 6. Each synapse
has a neuron that keeps its current weight, in order to
make synaptic changes smple and sraightforward.
There is aso a neuron kegiing the airrent bias. In
general, the leaning net refleds the topology of the
network data structure neaded to implement the leaning
algorithm.

) HEY

Figure 6. Thelearning ret.

Control net. In this net we find the control medanism
performing leaning and clasdfication tasks over the
knowledge kept in the leaning net. This net is divided
into the foll owing components:

» The data structure. In this example, it
consists of input (the x vedor), and
desired output (the y vedor) that needs to
be kept. This is done using a spedfic
neural configuration, named L-array. An
L-array is a set of neurons, one for each
vector component, asin Figure 7 (even if
it not strictly necessary to compute the
Hebb rule, it will be nealed to exeaite
iterative leaning algorithms).

g d

Figure7. Two L-arrays.

» The synaptic updating structure, where
the synaptic change formula is evaluated
accordingly. For the Hebb Ilearning
algorithm, the actual formula is wyx;(t+1)
= wyx(t) + Xi(t).y(t) (the bias update

formula is simpler, b(t+1) = b(t) + y(t),
the @rresponding net is not displayed).
The subnet which performs this
computation is automaticdly built by the
compiler, and it is $owed in Figure 8 (the
actual compiled subnet is more mmplex,
but we have simplified it for the darity of
expositi on).

Figure 8. Updating synapse Wyy;.

« The interface dructure, where dl
communications with the remaining
network are made. To achieve maximum
transparency between symbolic and sub-
symbolic computations, each leaning
module is e from the outside as a
function. These learning functions can be
used as any other function when
programming with NETDEF, except that
they neeal training before being called.
This interface structure is autonomous
relative to leaning, so leaning proceses
and clasdfication  proceses  are
independent and can, whenever nealed,
run in parallel. We will not present it due
to space limitations,  since its
configuration is complex.

7. Conclusion and Future Wor k

This paper explores a new neural network mode and
uses it to extend NETDEF, a high-level programming
language to hard-wire piecewise linea neural nets. The
extension, aneuron-synaptic connedion mode (seand-
order neurons), is applied to define new processtypes.

We present three new tods. Dired red multiplication
between two inpus is eadly hard-wired, applying a
neuron-synaptic link within two neurons. It is also
possble to handle sdf-modifying mechanisms within
neuron-synaptic neural nets, alowing dynamic
architedures. Most relevant is that the model supports
leaning. With this feature, sub-symbolic and symbolic
computations are linked together in the same neura
framework.



The next step is to present an appropriate process t, in
order to implement a general setting for leaning
algorithms. These processes dould interact consistently
with NETDEF control structures.
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