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Abstract. In a recent short paper and a report
(see [Neto et al. 98] and [Neto and Costa 99]) it
was shown that programming languages can be
translated efficiently on recurrent (analog,
rational weighted) neural nets, using bounded
resources. This fact was achieved by creating a
neural programming language called NETDEF,
such that each program corresponds to a modular
neural net that computes it.

This framework has some practical implications
in recent efforts to merge symbolic and sub-
symbolic computation. Adding neuron-synapse
connections (high-order neurons) to the neural
network model allows us to integrate learning
into the NETDEF computing paradigm.

Some possible enhancements are presented using
this framework, namely structure self-
modification, and integration of sub-symbolic
learning into the NETDEF neuron architecture.
The Hebb learning rule is used to provide an
ill ustrative example.
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1. Introduction

In the last decade, the significance of systems which
integrate symbolic and sub-symbolic computing
techniques has been consolidated (see [Wilson and
Hendler 93] for an analysis of some particular hybrid
systems). Motivation for this structural hybridization
can be found both in biology (persons are able to
process high level concepts supported by the neural
biochemistry of the brain) and in engineering
(intelligent control design tends to incorporate symbolic
and sub-symbolic processing, in order to achieve better
performances).

There are several different ways to accomplish this
hybridization. Some models separate completely the
two computation methodologies, using the output of the
sub-symbolic structure as an input to the classical AI

control schemata (cf. [Hendler and Dickens 91]). Others
use symbolic and sub-symbolic information in the same
data structure (as we do in this paper), blurring the
distinctions among them, like in [Lange et al. 89].
Others still encapsulate subsystems of both kinds, and
interface them through supervisors that control and hide
different computing demands and resources of the
subsystems (cf. [Wilson and Hendler 93]).

This paper presents a method to merge symbolic and
sub-symbolic computation into a single neural network
architecture.

First, we briefly introduce the high-level programming
language NETDEF to hard-wire the neural net model.
(Programs written in NETDEF can be converted into
neural nets through a compiler available at
www.di.fc.ul.pt/~jpn/netdef/netdef.htm). In NETDEF we
can handle symbolic computation in an easy way.

Secondly, using second-order neurons, corresponding to
special constructs called neuron-synapse connections,
we show how to add learning processes to NETDEF. The
end result is a neural net partially hard-wired and
partiall y soft-wired by a suitable learning algorithm.
This new language is NETDEF+. Since NETDEF+ is
modular we have, after compilation, modules
performing programming tasks and modules supporting
sub-symbolic tasks.

2. NETDEF

Computability analysis of the analog neural net model is
due to Hava Siegelmann and Eduardo Sontag. They
used a quite simple model to establi sh lower bounds on
the computational power of analog recurrent neural nets
(see [Siegelmann 99] for detail s). These systems satisfy
the classical constraints of computation theory, namely,
(a) input is discrete and finite, (b) output is discrete, and
(c) the system is itself finite (control is finite).

The functions computable by such a model depend on
the type of the weights. With integer type, the neural



network has the power of finite automata, li ke the
McCulloch and Pitts neural net model (see [Minsky 67]
for detail s). Rational weights give Turing power to
neural nets and with real weights we can compute non
recursive functions (see [Siegelmann 99] for a
systematic approach).

The analog recurrent neural net is a discrete time
dynamic system, x(t+1) = φ(x(t), u(t)), with initial state
x(0) = x0, where t denotes time, xi(t) denotes the activity
(firing frequency) of neuron i at time t, within a
population of N interconnected neurons, and uk(t)
denotes the value of input channel k at time t, within a
set of M input channels. The application map φ is taken
as a composition of an aff ine map with a piecewise
linear map of the interval [0,1], known as the piecewise
linear function σ:

The dynamic system becomes,

xj(t+1) = σ( ∑
=

N

i 1
iji (t)xa  +∑

=

M

k 1
kjk (t)ub  + cj )

where aj i, bjk and cj are rational weights. Figure 1
displays a graphical representation of a single equation,
used throughout this paper. When aji (or bjk or ajj) takes
value 1, it is not displayed in the graph.

Figure 1. Graphical notation for neurons, input channels
and their interconnections.

NETDEF is a high level parallel programming language
able to describe arbitraril y complex algorithms. It is an
imperative language, with syntax and semantic very
close to those of Occam. Its main concepts are processes
and channels. A program can be described as a
collection of processes executing concurrently, and
communicating with each other through channels or
shared memory.

The language has assignment, conditional and loop
control structures (see Figure 2 for a recursive and
modular construction of a process), it supports several
data types, variable and function declarations, and
several other processes. It uses a modular

synchronization mechanism based on handshaking for
process ordering (the IN/OUT interface in Figure 2). A
detailed description may be found in [Neto and
Costa 99] at www.di.fc.ul.pt/biblioteca/tech-reports.

The information flow between neurons, due to the
activation function σ, is preserved only within [0, 1],
implying that data types must be coded in this interval.
The real coding for values within [-a, a], where a is a
positi ve integer, is:

α(x) = (x + a)/2a (1)

This coding is a one to one mapping of [-a, a] into the
working set [0, 1].

Input channels ui are the interface between the system
and the environment. They act has typical NETDEF

blocking one-to-one channels. There is also a FIFO data
structure for each ui to keep unprocessed information
(this happens whenever the incoming information rate is
higher than the system processing capacity).

Figure 2. Process construction for WHILE b DO x := x+1.
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In Figure 2, synapse IN sends value 1 (by some neuron
xIN) into xM1 neuron, thus starting the computation.
Module G (denoted by a square) computes the value of
boolean variable ‘b’ and sends the 0/1 result through
synapse RES. This result is synchronized with an output
of 1 through synapse OUT. The next two neurons decide
between stopping the process (‘b’ is false) or executing
module P (‘b’ is true), iterating again. The dynamic
system is described by the following equations:

xM1(t+1) = σ( xIN(t) + xP2(t) )

xM2(t+1) = σ( xG2(t) + xG3(t) – 1.0 )

xM3(t+1) = σ( 2.xG2(t) – xG3(t) – 1.0 )

Module G just accesses the value ‘b’ and outputs it
through neuron xG3. This is achieved because xG3 bias
-1.0 is compensated by value 1 sent by xG1, allowing
value ‘b’ to be the activation of xG3. This module is
defined by:

xG1(t+1) = σ( xM1(t) )

xG2(t+1) = σ( xG1(t) )

xG3(t+1) = σ( xG1(t) + b(t) – 1.0 )

Module P makes an assignment to the real variable ‘x’
with the value computed by module E. Before neuron x
receives the activation value of xP3, the module uses the
output signal of E to erase its previous value.

xP1(t+1) = σ( xM2(t) )

xP2(t+1) = σ( xE3(t) )

xP3(t+1) = σ( xE2(t) + xE3(t) – 1.0 )

In module E the increment of ‘x’ is computed (using
α(1) for the code of real 1). The extra –1/2 bias of
neuron xE2 is necessary due to the internal coding:

xE1(t+1) = σ( xP1(t) )

xE2(t+1) = σ( 2.xE1(t) – xE4(t) + x(t) – 5/2 )

xE3(t+1) = σ( xE1(t) )

xE4(t+1) = σ( α(1) )

The dynamics of neuron x is given by:

x(t+1) = σ( x(t) + xP3(t) – xE3(t) )

However, if neuron x is used in other modules, the
compiler will add more synaptic links to its equation.

The compiler takes a NETDEF program and translates it
into a text description defining the neural network (see
Figure 3). Given a neural hardware, an interface would
translate the final description into suitable syntax, so
that the neural system may execute. The use of neural

networks to implement arbitrary complex algorithms
can be then handled through compilers like NETDEF.

This neural network is homogenous (all neurons have
the same activation function) and the system is
composed only by first-order neurons. The final
network is also an independent module, which can be
used in some other context. Regarding time and space
complexity, the compiled nets are proportional to the
respective algorithm complexity.

Figure 3. Obtaining a NETDEF neural network.
(a) The schematics of an algorithm, (b) A NETDEF program,

(c) The neural network description.
The NETDEF compiler automates step (b) to (c).

There are some related works in the literature about
symbolic neural computation. The JaNNeT system (see
[Gruau 95] for detail s), introduces a dialect of Pascal
with some parallel constructs. This algorithmic
description is translated, using several automated steps
(first on a tree-li ke data structure and then on a
low-level code, named cellular code), to produce a
non-homogenous neural network (there are four
different neuron types) able to perform the required
computations.

Other difference to NETDEF is the network dynamics. In
our model, at each instant, all neurons are updated with
their new values. In JaNNeT, every neuron is activated
only when all its synapses had transferred their values.
Since this may not occur at the same instant, the global
dynamics is not synchronous. A special attention is
given to design automation of the final neural network
architecture.

Another neural language project is NIL (outlined in
[Siegelmann 93] and [Siegelmann 96]). The NIL system
is also able to perform symbolic computations by using
certain sets of constructions that are compiled into an
appropriate neural net (using the same homogeneous
neural architecture of NETDEF). It has a complex set of
data types, from boolean and scalar types, to li sts, stacks
or sets that are kept inside a single neuron, using fractal
coding.

NETDEF n(1,1)IS

VAR a: INTEGER;
    g: GUARD;

SEQ
  a := succ(a);
  START g;
ENDSEQ;

Mn0In(i+1) = sigma( )
Mn0Out(i+1) = sigma( +

1.0 * SEQ1Out(i) )
VARCMn0:IN1(i+1) =

sigma( + 1.0 *
VARCMn0:IN1(i) + 1.0
* SEND1Val(i) – 1.0
* RECV1Wait(i) )

VARCMn0:IN1Flg(i+1) =
sigma( + 1.0 *
Mn0In(i) + 1.0 *
VARCMn0:IN1Flg(i) -
1,0 * SEND1Flg(i) +
1,0 * RECV1Wait(i) )

VARCMn0:IN2(i+1) =
sigma( + 1,0 *
VARCMn0:IN2(i) + 1,0
* SEND2Val(i) - 1,0
* RECV2Wait(i) )

(a) (b) (c)



An important difference is that NETDEF has a modular
design, while NIL has not. Also, NIL does not provide
essential mechanisms required for a neural language
like a mutual exclusion scheme for variable access
security, temporal processes for real-time applications,
genuine parallel call s of functions and procedures,
blocking communication primitives for concurrent
process interaction, dynamic array assignment. NETDEF

deals and solves all these subjects without loosing its
modular properties.

A proposed goal, but just delineated in [Siegelmann 96],
was to provide mechanisms for tuning the compiled
network, in order to generalize the initial processed
information. However, to our knowledge, NIL was
mainly used as a tool to derive specific theoretical
results about neurocomputation, and was not fully
developed into a network compiler application.

3. Extending the model

Our goal now is to integrate learning and hard-wiring
mechanisms into the computation tools already
developed, merging two standard computation
methodologies (symbolic and sub-symbolic) in one
single neural architecture. A further extension of the
current conceptual schema, called NETDEF+, was
devised to be:

•  Simple – the neural net model should
remain as close as possible to its initial
formulation.

•  Expressive – the neural net model should be
expressive enough to model new tools and
new mechanisms.

•  Modular – in NETDEF we had a specific
concern about modularity; modularity must
be preserved in the extension.

To accomplish these requirements, we decided to
include neuron-synaptic connections into the neural
network model. Although we are not concerned with
biological plausibility, the existence of neuron-synaptic
connections in the brain is known to exist in the
complex dendritic trees of genuine neural nets (see
[Shepherd 94] for details). In the model their main task
is to convey values and use them to update and change
other synaptic weights.

In this new high-order model, each neuron can compute
a rational polynomial of its inputs, i.e., x(t+1) =
φ(x(t), u(t)), with initial state x(0) = x0, where the
application map φ is the composition of a polynomial
with rational coefficients with the piecewise sigmoid σ.
The new dynamic system becomes,

xj(t+1) = σ( Pj(x1(t), ..., xN(t), u1(t), ..., uM(t)) )

Figure 4 displays a diagram of a neuron-synaptic
connection, linking neuron x to the connection between
neurons y and z. Semantically, synapse of weight wzy

receives the previous activation value of x. The
dynamics of neuron z is defined by the high-order
dynamic rule1:

 z(t+1) = σ(2a.x(t).y(t) - a(x(t) + y(t)) + 0.5a + 0.5) (2)

Figure 4. Graphical notation for neuron-synapse
connection in equation (2).

High-order nets (i.e., networks having neurons with
high-order transfer functions) have been used before.
Most of the previous work on high-order neural nets
study the superior computational power achieved by
these types of transfer function, that can possibly
multiply activations, and not only take a linear function
of them.

Pollack, in [Pollack 87], buil t a finite high-order neural
network model with universal properties. [Sun et al. 91]
shows another Turing computational equivalence of
second-order nets. [Goudreau et al. 94] deals with
networks with the Heaviside (step) activation function.
They show that single layer second-order nets are
strictly more powerful than single layer first-order
networks. An application to learn finite state automata
using second-order neural nets is described in [Giles et
al. 92].

Is it worthwhile to include high-order equations? There
is no increase of computational power, since NETDEF is
already Turing equivalent (with bounded resources).
However, there are some pertinent advantages that
justify the extension. The next sections will il lustrate
these benefits.

4. Dynamic Structures

Features associated with neuron-synapse connections
(of second-order neurons) are deletion and insertion of

                                                       
1 The expression is the result of α(α-1(x(t))*α-1(y(t))). This
calculation is necessary because the data flow values are
encoded through α, given by (1). To avoid ambiguities, the
first argument refers to the neuron-synapse connection, and
the second, to the input neuron.

y z

x



connections in execution time. If a synapse receives a
zero weight, it can be seen as being removed from the
architecture. Likewise, a zero weight synapse receiving
a non-zero value wil l be added to the net. This feature
implies a self-modifiable neural network. In order to
allow NETDEF+ to perform deletions and insertions, we
introduce a new process named LINK. A LINK process
changes the synaptic weight of a pair of neurons. Its
syntax is,

LINK ( <input-neuron>,
<new-weight-value>,
<output-neuron>  )

In Figure 5, neuron wyx keeps the synaptic weight until
an input signal comes through channel IN. At that
moment, the neuron wyx resets its activation to zero. At
the same time the incoming signal through IN cancels
the bias of the left data neuron, and the new value ‘w’ is
inserted in the next step of computation as the new
activation of neuron wyx. The synaptic weight is
changed at runtime. The diagram of the compiled net is
given in Figure 5,

Figure 5. Neural net schema for LINK (x, w, y) process.

By using a LINK(x,0,y) process, the synapse between
neurons x and y is deleted. Inputting a non-zero value
reinserts the synapse. Deleting all inputs/outputs of a
neuron separates it from the remaining network. This
feature adds to NETDEF+ an architectural self-modifying
mechanism.

5. Learning

A system that undergoes changes stimulated by the
environment is capable of learning. A learning
algorithm is a well -defined procedure that specifies how
the system changes according to outside information. In
this way, learning can be seen as the execution in run
time of some hard-wiring algorithm, running under the
inputs from the environment.

Many neural learning algorithms, like backpropagation,
receive inputs and adapt the synaptic weights, pulling
the network wiring towards the solution of the problem.
Each algorithm uses some appropriate procedures to

update the network weights, inspired by means of pure
mathematical reasoning (e.g., the Least Mean Squares
rule) or by biological inspiration (e.g., the Hebb rule).

The NETDEF+ model makes possible the change of
synaptic weights at runtime, so that it should also be
conceivable to implement some kind of learning
algorithm with it. Starting with NETDEF, an already
available neural programming language, how can this
new feature be used to implement the most general
learning algorithms?

The control structure given by the NETDEF language can
be used to regulate learning processes, since it is
flexible enough to handle arbitrary algorithms. Usually,
learning algorithms consist of several weight
calculations and they define how the entire module
should change in order to respond in a new way to the
environment (see [Haykin 99] for a description of
several learning algorithms). The learning structure
consists of a set of neurons, arranged in an appropriate
architecture (in layers, in a bidimensional grid), keeping
the knowledge acquired during the learning procedure.

The learning module embodies the control structure and
the learning structure. This module is affected by
outside requests, like processing the information
presented by a new learning sample, or resetting the
weight values. Control and learning are implemented in
the same homogeneous framework, and they are joined
together homogeneously. The integration of the learning
process in NETDEF+ implies combining symbolic and
sub-symbolic computations using modular high-order
(second-order) neural nets.

6. The Hebb Rule revisited

The Hebb rule, one of the first learning rules presented
in the literature, had a biological inspiration. Succinctly,
it says that if two connected neurons are simultaneously
active, their synaptic interconnection should be
selectively strengthened.

In this section, we discuss Hebb’s learning rule buil t on
top of NETDEF+. We choose the classical problem of
learning binary Boolean operators. The input vector x
has two dimensions and the output vector y has one
dimension.

Hebb rule states that for each sample <x1, x2; y>,
synapse wyxi should be strengthened if and only if
xi = y. The sample values are bipolar (using the α codes
for –1 and +1), introducing a compensation mechanism
to avoid synapse saturation presented in the original
Hebb rule. The common interpretation in the literature,
is that the synaptic connection is updated by ∆wyxi =

x y

OUTIN

-1

-1

w wyx



η.xi.y (the learning coefficient η is taken to be 1 for
simplicity).

As said before, the Hebb module is divided into two
parts, the learning net and the control net.

Learning net. The learning structure with two layers
(input and output) is outlined in Figure 6. Each synapse
has a neuron that keeps its current weight, in order to
make synaptic changes simple and straightforward.
There is also a neuron keeping the current bias. In
general, the learning net reflects the topology of the
network data structure needed to implement the learning
algorithm.

Figure 6. The learning net.

Control net. In this net we find the control mechanism
performing learning and classification tasks over the
knowledge kept in the learning net. This net is divided
into the following components:

•  The data structure. In this example, it
consists of input (the x vector), and
desired output (the y vector) that needs to
be kept. This is done using a specific
neural configuration, named L-array. An
L-array is a set of neurons, one for each
vector component, as in Figure 7 (even if
it not strictly necessary to compute the
Hebb rule, it wil l be needed to execute
iterative learning algorithms).

Figure 7. Two L-arrays.

•  The synaptic updating structure, where
the synaptic change formula is evaluated
accordingly. For the Hebb learning
algorithm, the actual formula is wyxi(t+1)
= wyxi(t) + xi(t).y(t) (the bias update

formula is simpler, b(t+1) = b(t) + y(t),
the corresponding net is not displayed).
The subnet which performs this
computation is automaticall y built by the
compiler, and it is showed in Figure 8 (the
actual compiled subnet is more complex,
but we have simpli fied it for the clarity of
exposition).

Figure 8. Updating synapse wyxi.

•  The interface structure, where all
communications with the remaining
network are made. To achieve maximum
transparency between symbolic and sub-
symbolic computations, each learning
module is seen from the outside as a
function. These learning functions can be
used as any other function when
programming with NETDEF, except that
they need training before being called.
This interface structure is autonomous
relative to learning, so learning processes
and classification processes are
independent and can, whenever needed,
run in parallel. We will not present it due
to space limitations, since its
configuration is complex.

7. Conclusion and Future Work

This paper explores a new neural network model and
uses it to extend NETDEF, a high-level programming
language to hard-wire piecewise linear neural nets. The
extension, a neuron-synaptic connection model (second-
order neurons), is applied to define new process types.

We present three new tools. Direct real multipli cation
between two inputs is easil y hard-wired, applying a
neuron-synaptic link within two neurons. It is also
possible to handle self-modifying mechanisms within
neuron-synaptic neural nets, allowing dynamic
architectures. Most relevant is that the model supports
learning. With this feature, sub-symbolic and symbolic
computations are linked together in the same neural
framework.

x1 yx2
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The next step is to present an appropriate process set, in
order to implement a general setting for learning
algorithms. These processes should interact consistently
with NETDEF control structures.
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