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Abstract
The majority of neural net models presented in the literature focus mainly in the neural

structure of nets, leaving aside many detail s about synapses and dendrites. This can be very
reductionist if we want to approach our model to real neural nets. These structures tend to be very
elaborate, and are able to process information in very complex ways (see [Mel 94] for detail s).

We will i ntroduce a new model, the S-Net (Synaptic-Net), in order to represent neural nets
with special emphasis on synaptic and dendriti c transmission. First, we present the supporting
mathematical structure of S-Nets, initiall y inspired on Petri-Net formalism, adding a transition to
transition connection type. There are two main components of S-Nets, neurones and
synaptic/dendriti c units (s/d units). All activation values are integers. Neurones are similar to
McCulloch-Pitts neurones, and s/d units will process information within certain class of functions.

S-Nets are able to represent spatial nets representations in a very natural way. We can easil y
modulate the length of an axon, the connection or branching of two dendrites or synaptic
connections. Some examples are shown.

Next, the focus will be on what kind of functions are suited to s/d units. We will present three
function types: sum, maximization and simple negation (changing an excitatory impulse to an
inhibitory one, or vice-versa). With these functions for s/d units and with simple neurones, we will
prove that all recursive functions can be computed by at least one specific S-Net. In order to
achieve this, we will use the Register Machine, and show a way to build for each symbolic
program, a S-Net capable of computing the function defined for that specific program. This
computational power will be achieved without any use of synaptic weights (i.e., all weights are one
as in McCulloch’s model) or neurones activation values (i.e., all values are set to zero).

Finall y, some aspects for future investigation are presented, namely, the possibilit y of
synaptic-synaptic connections, how can noise be handled, and some other features intended to
approach this mathematical model to our realit y.

Keywords: Neural Networks, Synapses, Dentriti c Trees, Neural Computation, Theory of
Computation, Spatial Representation.

Introduction

Many neural network models proposed in the literature have their major focus in
neurones as distributed processors with machine learning purposes. Although they were
inspired initially in the way brain processes information (see [McCulloch 43]), almost all
systems leave aside the complex structure involving neurones. Namely, dentritic trees that
process spatial integration of signals sent from presynaptic cells; the terminal arborization
at the end of each axon; the subtle structure of synaptic transmissions, that can make
direct contact with dendrites, with axons, with the soma, or even with other synapses (a
good overview can be found in [Shepherd 94]).

Usually, the ultimate reference are synaptic weights between neurones. If it is true that
some of these models had succeeded on classification and learning tasks, it is also a fact
that they put themselves far away in modelli ng real neural networks. Our main concern is
not to search for a new learning algorithm, but to find how much computabili ty power can
retain a specific denditric architecture, that can be used for explanation purposes.

Several neurobiological studies had consistently shown how complex and intricate are
dentritic trees and synaptic connections. These structures may possess a great
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computational symbolic potential. This capabili ty is not only an effect of how the single
units process information, but it is also a consequence of its spatial configuration, of its
different external influences or even of its capacity for multiple pseudoindependent
processing subunits inside the same dentritic tree (see [Mel 94]).

Synaptic-Nets

Our aim with this paper is to introduce a mathematical system able to model some of
those complex connection structures, in a direct and natural way. The present result, still
in development, is coined Synaptic-Nets (S-Nets).

The earliest idea came from the common way we see an Artificial Recorrent Neural
Net (ARNN): as a direct graph. Usually, an ARNN uses graph nodes to represent
neurones, and directed arcs to represent connections between neurones, also called
synapses.

Here arises the first difference. In this new structure, we are able to perform
calculations in neurones as well as in dentritic and synaptic units. So, one type of node is
no longer sufficient. The first question is, how many different nodes should we allow? We
think that two types are enough, one for neurones, and one for all others. It is not relevant
to introduce more node types. What seems important is the connection point. They can be
dendrite to dendrite connections, axon to dendrite, axon to axon, and so on… (see
[Sheperd 94] for a good overview of different types of junctions between nerve cells).
What is common to all, is the linking synapses. We also decided to include the concept of
dendritic convergence and divergence.

With two types of nodes, the next question is whether S-Nets are formally a kind of
Petri-Nets? Despite some similarities, there is a fundamental difference between both. In
Petri-Nets, we must have an alternate sequence event to transition to event, but in S-Nets,
the existence of arbitrary complex synapse to synapse connections is necessary. The
binary relation of Petri-Nets must be generalized.

Definition: A Synaptic-Net (S-Net) is a tuple < G, S, R, F >, where G is a finite non-
empty set whose elements are from now on called neurones; S is a finite set whose
elements are from now on called synapses; R is a binary relation, R ⊆
(G×S)∪ (S×G)∪ (S×S); and F is a function, F:(G∪ S) × ω → Ζ.

Remark: ω is the set of natural numbers. R determines the corresponding S-Net
structure; F associates to each neurone or synapse an activation value in Z, for each time
t∈ ω. To compute this value, each element x∈ G∪ S has a specific information processing
function, φx:Ζn→Ζ, being n the number of inputs of x, i.e., n = #{ y: (y,x)∈ R} .

In graphical terms, we will use circles to identify neurones, and squares to identify
synaptic connections and dendritic trees (s/d units). These graphs are admissable S-Nets:

Figure 1 - S-Nets examples.
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Here in, we work with dynamic maps F of the following form:

For each x∈ G∪ S,

F(x,0) = 0,

F(x,t+1) = φx( F(x1,t), …, F(xn,t) ) ∀ i=1..n: (xi,x)∈ R

where φx is a specific function for each element of x∈ G∪ S

All activation values are set to zero at time t=0, and the activation value at time t+1 is
computed by the values of its predecessors at time t.

We will focus on a few set of simple functions, in order to get as close as possible of
what might happen in real neural nets. One of the main concerns is to obtain functions
able to support n inputs, and to consider all inputs in the same way (what could or could
not be correct…). If there is more than one output, the signal is the same to all.

For neurones, there is only one function. Each neuron adds its inputs, both excitatory
and inhibitory (it does not exist absolute inhibition), and checks if the sum is greater or
equal to zero. If it is, the neuron becomes active and sends an excitatory signal through its
outputs (value 1 for each output). If it is not, the neuron is inactive (value 0).

For all g∈ G,

φg(y
→) = φH(y→) = 

î

 1,  ∑

i=1

n

  yi ≥ 0

0,  ∑
i=1

n

  yi <0

 

All internal activities are set to zero, so all neurones have an identical internal
structure. There are 3 functions for s/d units: sum, maximum and negation. If s∈ S then
φs∈ { φΣ, φM, φ¬} . For each s∈ S, we have one of the following functions,

φs(y
→) = φΣ(y

→) = ∑
i=1

n
  yi  

 φs(y
→) = φM(y→) =  

î

 max(y1,…,yn) , ∀ yi∈ G∪ S : yi≥0

0 , ∃ yi∈ G∪ S : yi<0
 

 φs(y
→) = φ¬(y→) = -φΣ(y

→)

Therefore, φx∈ { φH, φΣ, φM, φ¬} , for all x∈ G∪ S.

Spatial Representation of Synapses and Dendr itic Trees

One of the main advantages of S-Nets is its capacity to apprehend spatial structures of
real neural networks. Is this relevant? Yes, because some neural proprieties depend on the
neuron’s physical structure. For instance, action potentials travel between neurones with
some finite velocity, after all, they are just flows of electrical current along nerves. So, the
length of those nerves is essential. We can model axons with different sizes very directly,
adding more s/d units in proportion to their sizes (see fig. 2a). This also has an effect on
transmission time, as required (long axons take more time to transmit the action potential
to their postsynaptic cells).
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Hence, these different lengths determine when the action potential arrives at the next
neurones, which is fundamental to determine if a neuron is activated or not. Moreover,
each neuron has an absolute refractory period (the period, after the neuron activation,
during which it is impossible to stimulate the nerve a second time) and a relative
refractory period (the period during which it can be stimulated, but only by using a larger
current than usual), both functions of time.

Figure 2- Modelli ng examples.

There are important spatiotemporal interactions inside neural nets as we will see in the
following examples. The geometry of dendritic trees or the complex organization of
synaptic contacts are more than just a useful way to connect neurones. They are special
mechanisms that delay, attenuate and synchronize action potentials. S-Nets can represent
this spatial complexity in a very direct way (see fig. 2b and 2c).

A well-known example, first introduced by Wilfred Rall in 1964, and very common in
the literature (see, e.g., [Mel 94, Arbib 94, Anderson 95]), confirms that a passive
dendritic branch, because of its spatial extension, can act as a filter that selects specific
sequences of synaptic inputs. In Fig. 3, if input I1 is activated at time t, I2 at time t+1, and
I3 at time t+2, the neuron is activated. If the activation sequence is I3→I2→I1, the neuron
is not activated.

Figure 3- Input sequence selection.

Another example is taken from [Arbib 89], about lateral inhibition. This happens
when a network structure is made so that neurones inhibit all but their close neighbours.
Inhibition can be recurrent or nonrecurrent. In nonrecurrent inhibition, the inhibitory
signal is a combination of the current excitations, O1 = I1 - k.I2 and O2 = I2 - k.I1, in which
the local excitation is reduced by k times the neighbours excitation.

In recurrent inhibition, the signal sent to the neighbours is itself subject to their own
inhibitory effect. In fig. 4b, O1(t+2) = I1 - k.O2(t) and O2(t+2) = I2 - k.O1(t). This type of
inhibition is observed in the lateral eye of Limulus, the horseshoe crab. These two
equations can be seen as a dynamic system, and the final outputs O1 and O2 will held an
eventual equili brium pair for this system.

The events of nonrecurrent inhibition are strictly localized, since the outputs depend
exclusively on the inputs. In recurrent inhibition, the effects can spread to distant

-3
I1 I2 I3

(a) (b) (c)
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neighbours, since the actual changes effect their immediate neighbours, and these changes
produce further changes in the next neighbours, and so on. Recurrent inhibition has an
important feature, disinhibition, the inhibitions can themselves be inhibited.

Figure 4- (a) Nonrecurrent inhibition (b) Recurrent inhibition.

Lower Bounds of Computational Power of S-Nets

Hava Siegelmann and Eduardo Sontag, [Siegelmann 95], proved that it is possible to
simulate all Turing Machines by finite size neural networks. As in their paper, we will
show that S-Nets are universal, using another mathematical formalism (but equivalent to
Turing Machines), the Universal Register Machine (URM).

Having {φH, φΣ, φM, φ¬} , we state the following.

Proposition: All partial recursive functions f:ωn→ωm can be computed by at least one
specific S-Net, using only φ∈ { φH, φΣ, φM, φ¬} .

Proof:

We will show that each URM instruction (see appendix) can be simulated by a specific
S-Net. First, we see how to make a register with only 4 s/d units. So, for each program P,
we need 4*ρ(P) s/d units to simulate all necessary memory (ρ(P) is the greatest register
index used in P).

Graphically, each s/d function is represented by one of the following diagrams:

Figure 5- s/d units diagrams.

We can increment, reset and access a register value, that is done by the following sub-
net,

Figure 6- Memory Register.

Σ M ¬

¬MΣ Reset RiInc Ri

Value of Ri
If omitted, it’s a Σ

¬

¬

I1 I2

O2O1

(b)(a)

¬ ¬

I2I1

O1 O2
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In the following diagrams (where we build each URM instruction), the signals mean:

In-1 - activate this instruction; I0 - activate first instruction;
In+1 - activate next instruction; If - end of the program.

Figure 7- (a) Z(i), (b) S(i), (c) T(i,j), (d) J(i,j,k).

At this point, we already know how to build all instruction types and also to make
memory registers. The next two diagrams show how to receive inputs, and how to return
outputs. There are two special activation channels indicating when the input and the
output are available. They are activated when they have value one.

Figure 8 - Input and Output.

Finally, to create constant -1, we use the following sub-net,

Figure 9 - Constant definition.

Using this method we see that each computable function f:ωn→ωm, is also computed by
a S-Net with 3.J+1 neurones and 1+(n+1)+4.R+3.(Z+S)+18.J+5.T+(2.m+2) s/d units,
where R is the number of registers used in P, and, Z, S, J and T, the number of Z, S, J and
T instructions of P. We have a linear complexity in time and in space, with respect to the
Register Machine.

�

How this is done? Find P, and then for each sequential instruction of P, use the
respective sub-net, and link them in the same sequential order.

x1

.

.

.
xn

Input
Validation

Inc R1

Inc Rn

I1

Σ

I f Output
Validation

f(x1, …, xn)

R1-1

M

¬ -1

Inc Ri

In+1In-1

(b)

Reset Ri

In+1In-1

(a)

MΣ

Σ

MΣ

¬¬

Rj

Ri

-1

-1

Ik

In+1

In-1

¬

-1

(d)

Ri

Inc Rj

Reset Rj

-1

In-1

In+1

Σ M

(c)
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To present an example, we will enclose each instruction in a box, labelli ng each one
with its specific instruction (e.g., fig. 10). We only explicit the inputs and outputs. Also,
we do not represent any register sub-net, only some of their reset, increment and value
connections.

Figure 10 - Input and Output.

Let’s compute binary multiplication, x*y. A possible URM program is, P = <J(1,4,9),
J(2,5,6), S(5), S(3), J(1,1,2), Z(5), S(4), J(1,1,1), T(3,1)>. We will need ρ(P)=5 memory
registers. The S-Net will be,

 

Figure 11 - Computing the product.

 The URM program has two inconditional jumps, J(1,1,2) and J(1,1,1). For these, we do
not use a Jump sub-net, but only a straight arrow to the next instruction.

 Obviously, if there is a countable infinity of URM programs that compute each partial
recursive function (and in fact, there is), it is also possible to construct a countable infinity
of S-Nets capable of handle those same computations.

A S-Net is intrinsically a massive parallel machine. However, the method used to
compute a function is based on the URM, which is a sequential machine. It is important to
understand that our main goal in this section is to check the lower computational bounds
of S-Nets, not to seek the fastest or simplest way to compute those same functions.

Since S-Nets are made of local units of information processing, it is not diff icult to
generalize this method to perform parallel computations. There are only the usual
problems, like synchronising access to shared resources. We believe that S-Nets do not
introduce new fundamental problems in this area.

Future Developments

There are several paths open to exploration in S-Nets. We shall point here some of the
most promising.

S/d units refer to synaptic connections with axons, dendrites or with the soma. But
they cannot model synaptic-synaptic connections. In graphical terms, we need something
like this:

Z(5)

Reset R5

In+1In-1

⇒⇒

Input
Validation

x

J(1,4,9)

Inc R1

y Inc R2

J(2,5,6)

T(3,1)

Z(5)

S(5) S(3)

S(4)

Σ

Output
Validation

x*y

R1-1

M
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Figure 12- Synaptic-synaptic connection.

What kind of functions can be used in this new connection type? Some proposals fall
into partial or total inhibition of that specific connection (or perhaps a probabili stic
inhibition); simple addition of both currents, or even multiplication (introducing synaptic
weights).

In the Definition of S-Nets, R is defined as a sub-set of (G×S)∪ (S×G)∪ (S×S). It
remains one possibili ty, (G×G) connections. This means, neurones linked directly, soma
with soma. Some interpretations are possible:

a) The introduction of Slow Potential Theory (see, e.g., [Anderson 95]). This theory
suggests that the important feature of cell activity is the value of its slow potential, not the
presence/absence of action potentials. Action potentials are used only as a way to transmit
information through, an otherwise long and poor conductor, the axon. If neurons are
close together, perhaps action potentials are not needed.

b) The event of neuronal death or neuronal merging (interesting as a simplification
method in a future S-Net construction algorithm).

Another interest point is noise. Several components of the neuron are intrinsically
noise sources, like ion flows through ion channels, or the rate of neurotransmitter release
stored on synaptic vesicles. Complex dendritic trees and intricate synaptic connections
can increase noise and create distortion, which can affect information transmission. These
can be approached by S-Nets, if we change the information processing functions in order
to handle noise. Noise probably inserts the need of rational numbers in activation values.

Conclusion

We have presented a model that tries to grasp the internal complexity of real neural
networks. With only four simple types of information processing units, we have shown
that S-Nets can compute all partial recursive functions.

We think that S-Nets have potential to represent many subtle structures existing in
central nervous systems, and perhaps eventually, they can help us to understand a little
more of what is going on. There is a lot to do, but fortunately, there are many new
directions to improve this model, as shown in the previous section.
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Appendix: The Unlimited Register Machine (URM)
The URM has an infinite number of registers labelled R1, R2, … each one containing a

natural number. The value contained in Ri, is denoted by ri. These values can be altered by
the URM in reply of some very simple instructions that the machine do recognise. A finite
list of instructions establishes a program. There are four types of instructions,

•  Zero instructions. Syntax: Z(n); n∈ ω+. Change value of Rn to 0 (rn := 0).
•  Successor instructions. Syntax: S(n); n∈ ω+. Increase value of Rn by 1 (rn := rn+1).
•  Transfer instructions. Syntax: T(n,m); n,m∈ ω+. Replace content of Rn, by rm (rn := rm).
•  Jump instructions. Syntax: J(n,m,k); n,m,k ∈ ω+. If the values of Rn and Rm are equal, jump

to the kth instruction. If not, proceed to the next instruction (if rn=rm then goto k else nil ).
Jump instructions do not change any registers, only the program execution.

Figure 13- Some possible instructions.

We can define the execution of program P = <I1, I2, …, I |P|>, as follow. The URM
starts executing I1. Suppose the URM as just performed I i. Then it proceeds to the next
instruction, defined as: if I i is a Zero, Successor or Transfer instruction, then the next
instruction is I i+1; if it is a Jump instruction, and rn=rm, then the next one is Ik, if rn≠rm the
next is I i+1. The URM continues as long as possible, i.e., the machine stops if and only if
there is no next instruction.

A URM-program P computes a function f:ωn→ω, iff, ∀ (x1,…, xn)∈ Dom(f), P with
input (x1,…, xn), converges to f(x1,…, xn), i.e., P ends and f(x1,…, xn) is stored in some
register (usually in R1). A function is URM-computable if there is a program that
computes f. All partial recursive functions are URM-computable (for a good introduction
see [Cutland 88]).
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