Lower Bounds of a Computacional Power of a Synaptic Calculus.
Ledure Notesin Computer Science- 124Q 340-348 Springer-Verlag, 1997.

L ower Bounds of Computational Power of a Synaptic Calculus

Jodo Pedro Neto, J. Félix Costa and Helder Coelho
{ipn, fgc, hcoelho} @di.fe.ul.pt

Dept. Informética, Faculdade de Ciéncias da Universidade de Lisboa, Bloco C5 - Piso 1,
Campo Grande 1700Lisboa - Portugal. Tel. 7573141 Fax. 7570084

Abstract

The mgjority of neural net models presented in the literature focus mainly in the neural
structure of nets, leaving aside many details about synapses and dendrites. This can be very
reductionist if we want to approach our model to real neural nets. These structures tend to be very
elaborate, and are able to processinformation in very complex ways (see[Mée 94] for detail s).

We will i ntroduce a new model, the S-Net (Synaptic-Net), in order to represent neural nets
with spedal emphasis on synaptic and dendritic transmisson. First, we present the supporting
mathematical structure of S-Nets, initially inspired on Petri-Net formalism, adding a transition to
transition connedion type. There are two main components of S-Nets, neurones and
synaptic/dendritic units (s/d wnits). All activation values are integers. Neurones are similar to
McCull och-Pitts neurones, and s/d units will processinformation within certain classof functions.

S-Nets are able to represent spatial nets representations in a very natural way. We @n easily
modulate the length of an axon, the mnnedion or branching of two dendrites or synaptic
connedions. Some examples are shown.

Next, the focus will be on what kind of functions are suited to §d units. We will present three
function types. sum, maximizaion and simple negation (changing an excitatory impulse to an
inhibitory one, or vice-versa). With these functions for s/d wnits and with simple neurones, we will
prove that al reaursive functions can be momputed by at least one spedfic S-Net. In order to
achieve this, we will use the Register Machine, and show a way to huild for each symbdic
program, a S-Net capable of computing the function defined for that spedfic program. This
computational power will be achieved without any use of synaptic weights (i.e., al weights are one
asin McCulloch’s model) or neurones activation values (i.e., al values are set to zero).

Finally, some aspeds for future investigation are presented, namely, the posshility of
synaptic-synaptic cnnedions, how can noise be handled, and some other features intended to
approach this mathematical modd to aur readlity.

Keywords: Neural Networks, Synapses, Dentritic Trees, Neural Computation, Theory of
Computation, Spatial Representation.

| ntroduction

Many neural network models proposed in the literature have their major focus in
neurones as distributed processors with macdhine leaning puposes. Although they were
inspired initially in the way brain processes information (see [McCulloch 43]), amost all
systems leave aside the complex structure involving neurones. Namely, dentritic trees that
process Patial integration of signals snt from presynaptic cdls; the terminal arborization
a the end of ead axon; the subtle structure of synaptic transmissons, that can make
direa contad with dendrites, with axons, with the soma, or even with other synapses (a
good overview can be found in [Shepherd 94).

Usually, the ultimate reference ae synaptic weights between reurones. If it is true that
some of these models had succealed on classficaion and leaning tasks, it is adso a fad
that they put themselves far away in modelling red neural networks. Our main concern is
not to seach for a new learning algorithm, but to find how much computabili ty power can
retain a spedfic denditric architedure, that can be used for explanation purposes.

Several neurobiologicd studies had consistently shown how complex and intricate ae
dentritic trees and synaptic connedions. These structures may posess a gred
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computational symbolic potential. This cgpability is not only an effed of how the single
units processinformation, but it is also a mnsequence of its Patial configuration, of its
different externa influences or even of its cgpadty for multiple pseudoindependent
processng subunits inside the same dentritic tree(see[Mel 94)]).

Synaptic-Nets

Our aim with this paper is to introduce amathematica system able to model some of
those complex connedion structures, in a dired and natural way. The present result, till
in development, is coined Synaptic-Nets (S-Nets).

The ealiest idea cane from the common way we see a Artificial Recorrent Neural
Net (ARNN): as a dired graph. Usually, an ARNN uses graph nodes to represent
neurones, and dreded arcs to represent connedions between reurones, aso cdled
Synapses.

Here aises the first difference In this new structure, we ae ale to perform
cdculations in neurones as well as in dentritic and synaptic units. So, one type of node is
no longer sufficient. The first question is, how many different nodes sould we dlow? We
think that two types are enough, one for neurones, and one for all others. It is not relevant
to introduce more node types. What seamns important isthe amnnedion point. They can be
dendrite to dendrite @nnedions, axon to dendrite, axon to axon, and so on... (see
[Sheperd 94 for a good overview of different types of junctions between rerve cdls).
What is common to all, is the linking synapses. We dso dedded to include the ancept of
dendritic convergence and divergence

With two types of nodes, the next question is whether S-Nets are formally a kind of
Petri-Nets? Despite some similarities, there is a fundamenta difference between both. In
Petri-Nets, we must have an aternate sequence event to transition to event, but in S-Nets,
the eistence of arbitrary complex synapse to synapse nnedions is necessary. The
binary relation of Petri-Nets must be generalized.

Definition: A Synaptic-Net (S-Net) isatuple <G, S, R, F >, where G is a finite non-
empty set whose dements are from now on cdled neurones; S is a finite set whose
elements are from now on cdled synapses; R is a binary relation, R O
(Gx9)I(SxG)(SxS); and Fisafunction, F:(GLS) x w - Z.

Remark: w is the set of natura numbers. R determines the corresponding S-Net
structure; F asciates to ead neurone or synapse an activation value in Z, for ead time
tOw. To compute this value, ead element xJGOS has a spedfic information processing
function, @:Z" - Z, being n the number of inputs of x, i.e., n=#y: (y,X)JR}.

In graphicd terms, we will use drcles to identify neurones, and squares to identify
synaptic connedions and dendritic trees (§/d units). These graphs are almissable S-Nets:

- O
e e
(o)

Figure 1 - S-Nets examples.
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Here in, we work with dynamic maps F of the following form:
For eath xJGLIS,

F(x,00 =0,

Fx,t+1) =@ F(Xs,t), ..., F(Xn,t) )  Ui=v.n: (x,X)0R
where ¢ is a spedfic function for eat element of x[JIGLIS

All adivation values are set to zero at time t=0, and the acivation value & time t+1 is
computed by the values of its predecessors at time't.

We will focus on a few set of smple functions, in order to get as close & possble of
what might happen in red neural nets. One of the main concerns is to obtain functions
able to support ninputs, and to consider al inputs in the same way (what could or could
not be crred...). If there is more than one output, the signa is the same to all.

For neurones, there is only one function. Each neuron adds its inputs, both excitatory
and inhibitory (it does not exist absolute inhibition), and chedks if the sum is greaer or
equal to zero. If it is, the neuron becomes adive and sends an excitatory signal through its
outputs (value 1 for eat output). If it is not, the neuron isinadive (value 0).

For al gliG,

B, z Vi >0

o) =em=[]
[P 2 %<0

i=1

All internal adivities are set to zero, so al neurones have an identicd internal
structure. There ae 3 functions for g/d units: sum, maximum and negation. If sCIS then
@ @5, @u, @.}. For ead LIS, we have one of the following functions,

n
aY)=e:(Y)= 3 v

i=1
Chmax(Ya,...,Yn) , Lyioeos: yi=0

= = [
Y) = u(y) D Dhoecs: yi<0

oY) = e.(Y) =-¢:(y)
Therefore, @.{ @4, @5, @Ou, @}, for al xOGOS.

Spatial Representation of Synapses and Dendritic Trees

One of the main advantages of S-Nets s its cgpaaty to apprehend spatia structures of
red neural networks. Isthisrelevant? Y es, becaise some neural proprieties depend on the
neuron’s physicd structure. For instance, adion potentials travel between neurones with
some finite velocity, after al, they are just flows of eledricd current along nerves. So, the
length of those nervesis esential. We can model axons with different sizes very diredly,
adding more g/d wnits in proportion to their sizes (seefig. 2a). This also has an effed on
transmisson time, as required (long axons take more time to transmit the adion potential
to their postsynaptic cdls).
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Hence, these different lengths determine when the adion potential arrives at the next
neurones, which is fundamental to determine if a neuron is adivated or not. Moreover,
eat reuron has an absolute refradory period (the period, after the neuron adivation,
during which it is impossble to stimulate the nerve a semnd time) and a relative
refradory period (the period during which it can be stimulated, but only by using a larger
current than usual), both functions of time.
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Figure 2- Modelli ng examples.

There ae important spatiotemporal interadions inside neural nets as we will seein the
following examples. The geometry of dendritic trees or the @mplex organizaion of
synaptic contads are more than just a useful way to conned neurones. They are spedal
medanisms that delay, attenuate and synchronize ation potentials. S-Nets can represent
this gatia complexity in avery dired way (seefig. 2b and 2c).

A well-known example, first introduced by Wilfred Rall in 1964 and very common in
the literature (see e.g., [Med 94, Arbib 94, Anderson 95]), confirms that a passve
dendritic branch, because of its atial extension, can ad as a filter that seleds gedfic
sequences of synaptic inputs. In Fig. 3, if input I, is adivated at timet, I, at time t+1, and
I3 a time t+2, the neuron is adivated. If the adivation sequenceis I3 -1, |1, the neuron

is not adivated.
I I I -3
I I, I3

Figure 3- Input sequence seledion.

Another example is taken from [Arbib 89|, about lateral inhibition. This happens
when a network structure is made so that neurones inhibit al but their close neighbours.
Inhibition can be reaurrent or nonreaurrent. In nonrecurrent inhibition, the inhibitory
signal is a combination of the aurrent excitations, O, = I, - k.l and O, = I, - k.l4, in which
the locd excitation is reduced by k times the neighbours excitation.

In recurrent inhibition, the signal sent to the neighbours is itself subjed to their own
inhibitory effed. In fig. 4b, O,(t+2) = I, - k.O,(t) and Oy(t+2) = I, - k.O4(t). This type of
inhibition is observed in the latera eye of Limulus, the horseshoe aab. These two
equations can be seen as a dynamic system, and the final outputs O, and O, will held an
eventual equili brium pair for this g/stem.

The events of nonreaurrent inhibition are strictly locdized, since the outputs depend
exclusively on the inputs. In reaurrent inhibition, the dfeds can spread to distant
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neighbours, since the adual changes effed their immediate neighbours, and these dhanges
produce further changes in the next neighbours, and so on. Reaurrent inhibition has an
important fegure, disinhibition, the inhibitions can themselves be inhibited.

(b)
Figurg A (a) Nonremr?éﬂ inhibition (b) Reaurrent inhibiti on.

L ower Bounds of Computational Power of S-Nets

Hava Siegelmann and Eduardo Sontag, [Siegelmann 95|, proved that it is possble to
smulate d Turing Madines by finite size neural networks. As in their paper, we will
show that S-Nets are universal, using another mathematicd formalism (but equivalent to
Turing Madines), the Universal Register Macdine (URM).

Having {®4, @, @uv, @.}, we state the following.

Proposition: All partial reaursive functions f:oJ' - 3" can be computed by at least one
spedfic S-Net, using only @U{ @4, @5, @u, @-}.
Proof:

We will show that eadr URM instruction (see gopendix) can be simulated by a spedfic
S-Net. First, we seehow to make aregister with only 4 §/d units. So, for ead program P,
we need 4*p(P) g/d units to simulate dl necessary memory (p(P) is the gredest register
index used in P).

Graphicdly, eat g/d function is represented by one of the following dagrams:

35 3Img 3-g

Figure 5- ¢/d units diagrams.
We can increment, reset and accessa register value, that is done by the following sub-

net,
Inc R 4_ Reset R

Vaueof R If omitted, it’'sa X

Figure 6- Memory Register.
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In the following dagrams (where we build eady URM instruction), the signals mean:

Inl - activatethisinstruction; |, - activatefirst instruction;

.1 - activate next instruction; |; - end d the program.
nl—El——l’D—»D—» I nl_}D——l’D_’D_} I
Resat R, Inc R
i
ln1 . Inc R
1

R > B> | Ine1
= N ;

R~ @

Figure 7- (a) Z(i), (b) S(i), (c) T(i.j), (d) Xi,j,k).

At this point, we dready know how to build al instruction types and also to make
memory registers. The next two diagrams iow how to receve inputs, and how to return
outputs. There ae two speda adivation channels indicaing when the input and the
output are available. They are acivated when they have value one.

X1 —>|:|—> Inc Ry
_ i > oupu

Validation

X — —> IncR, f(xl,...,xn)
Input —>|:|—>

l1
Validation -1 R:

Figure 8 - Input and Output.
Finally, to creae cmnstant -1, we use the following sub-net,

(O~

Figure 9 - Constant definition.

Using this method we seethat ead computable function f:«' - oJ", is also computed by
a S-Net with 3.7+1 neurones and 1+(n+1)+4.R+3.(Z+S)+18 H5.T+(2.m+2) gd uwnits,
where R is the number of registersused in P, and, Z, S, Jand T, the number of Z, S, Jand
T instructions of P. We have alinea complexity in time and in space with resped to the
Register Madhine. u

How this is done? Find P, and then for eat sequential instruction of P, use the
respedive sub-net, and link them in the same sequential order.
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To present an example, we will enclose eab instruction in a box, labelling ead one
with its gedfic instruction (e.g., fig. 10). We only explicit the inputs and outputs. Also,
we do not represent any register sub-net, only some of their reset, increment and value

connedions.
'mﬂD——l’D—vﬂ—» s
0  —zel—

Reset Ry
Figure 10 - Input and OutpLt.

Let’s compute binary multiplicaion, x*y. A possble URM program is, P = <J(1,4,9),
J2,5,6), 5), 3), J1,1,2), Z(5), S(4), J1,1,1), T(3,1)>. We will nead p(P)=5 memory
registers. The S-Net will be,

X _>|:|_> Inc R,
y _>|:|_> Inc R,
Inpt —>E|—>|J(1f,9)}:r~l(2,1§,6)l—>l S(5) l—’

Validation
D] —— —» oupu

Validation

Xy

-1 Ry
Figure 11 - Computing the product.

The URM program has two inconditiona jumps, J(1,1,2) and J(1,1,1). For these, we do
not use aJump sub-net, but only a straight arrow to the next instruction.

Obviousdly, if there is a muntable infinity of URM programs that compute eab partial
reaursive function (and in fad, thereis), it is also possble to construct a muntable infinity
of S-Nets capable of handle those same computations.

A S-Net is intrinsgcdly a massve paralel maciine. However, the method used to
compute afunction is based on the URM, which is a sequential machine. It is important to
understand that our main goal in this ®dion is to ched the lower computational bounds
of S-Nets, not to seek the fastest or simplest way to compute those same functions.

Since S-Nets are made of locd units of information processng, it is not difficult to
generalize this method to perform paralel computations. There ae only the usual
problems, like synchronising accessto shared resources. We believe that S-Nets do not
introduce new fundamental problemsin this area

Future Developments

There ae severa paths open to exploration in S-Nets. We shall point here some of the
most promising.

S/d wnits refer to synaptic connedions with axons, dendrites or with the soma. But
they cannot model synaptic-synaptic connedions. In graphicd terms, we need something
like this:
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Figure 12- Synaptic-synaptic connedion.

What kind of functions can be used in this new connedion type? Some proposals fall
into partial or total inhibition of that spedfic connedion (or perhaps a probabili stic
inhibition); smple aldition of both currents, or even multiplicaion (introducing synaptic
weights).

In the Definition of S-Nets, R is defined as a sub-set of (GxS)(SxG)I(SxS). It
remains one possbhility, (GxG) conredions. This means, neurones linked dredly, soma
with soma. Some interpretations are possble:

a) The introduction of Slow Potential Theory (see e.g., [Anderson 95]). This theory
suggests that the important feaure of cdl adivity isthe value of its dow potential, not the
presence/absence of adion potentials. Action potentials are used only as away to transmit
information through, an otherwise long and poor conductor, the aon. If neurons are
close together, perhaps adion potentials are not needed.

b) The event of neuronal deah or neuronal merging (interesting as a smplification
method in afuture S-Net construction algorithm).

Another interest point is noise. Several components of the neuron are intrinsicaly
noise sources, like ion flows through ion channels, or the rate of neurotransmitter release
stored on synaptic vesicles. Complex dendritic trees and intricate synaptic connedions
can increase noise and creae distortion, which can affed information transmisson. These
can be gproadhed by S-Nets, if we diange the information processng functions in order
to handle noise. Noise probably inserts the need of rational numbersin adivation values.

Conclusion

We have presented a model that tries to grasp the interna complexity of red neural
networks. With only four smple types of information processng units, we have shown
that S-Nets can compute dl partial reaursive functions.

We think that S-Nets have potential to represent many subtle structures existing in
central nervous g/stems, and perhaps eventually, they can help us to understand a little
more of what is going on. There is a lot to do, but fortunately, there ae many new
diredions to improve this model, as $own in the previous fdion.
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Appendix: The Unlimited Register Machine (URM)

The URM has an infinite number of registers labelled Ry, R;, ... ead one mntaining a
natural number. The value mntained in R;, is denoted by r;. These values can be dtered by
the URM in reply of some very simple instructions that the macdhine do recognise. A finite
list of instructions establishes a program. There ae four types of instructions,

« Zeroinstructions. Syntax: Z(n); nOw'. Change value of R, t0 0 (r, := 0).

+ Sucoesor instructions. Syntax: S(n); nCw'. Increase value of R, by 1 (r, :=r+1).

+ Transfer instructions. Syntax: T(n,m); nmOw'. Replace content of Ry, by ry, (1 := ).

+ Jump instructions. Syntax: J(n,m,k); nm,k Ow'". If the values of R, and R,,, are egual, jump
to the kth instruction. If nat, proceed to the next instruction (if r,=r,, then gdo k dse nil).
Jump instructions do nd change any registers, only the program execution.

Iy ry Iz Iy I Ig Iy ry rz Iy I Ig Iy ry Iz Iy I Ig
[o]oJoJoJoJo] % [o]z]oJo]ofo] & [o]1]o[1]o]0]

20 YL T2 fs Ta Ts s yyo90F1 T2 s T Ts Mg
o [ofofof1][ofo] "o ‘[ofo]o[1]o]0]

Figure 13- Some possbleinstructions.

We can define the exeaution of program P = <y, I, ..., Ip>, as follow. The URM
starts exeauting 1,. Suppose the URM as just performed I;. Then it proceels to the next
instruction, defined as: if |; is a Zero, Succesr or Transfer instruction, then the next
instruction is |, If it is a Jump instruction, and r.=ry,, then the next oneis Iy, if r#zr, the

next is li+1. The URM continues as long as possble, i.e., the madine stops if and only if
thereis no next instruction.

A URM-program P computes a function f:a' - o, iff, O(Xy,..., X,)ODom(f), P with
input (Xy,..., Xn), converges to f(xy,..., X»), i.e., P ends and f(x,..., X,) is gored in some
register (usualy in R;). A function is URM-computable if there is a program that

computes f. All partial reaursive functions are URM-computable (for a good introduction
see[Cutland 89).
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