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Abstract. In [2,5] it is showed that programming languages can be translated 
into recurrent neural nets. Implementation of programming languages in 
neural nets turns to be not only theoretical exciting but has also some practical 
implications in the recent efforts to merge symbolic and subsymbolic 
computation. To be of some use it should be carried in the context of bounded 
resources. With the guidelines provided in [4,5], we introduce data types and 
show how to encode and keep them inside the information flow of neural nets.

1 Introduction 

An analog recurrent neural net is a dynamic system x
→

(t+1) = φ( x
→

(t), u
→

(t)), with 

initial state x
→

(0) = x0

→
, where xi(t) denotes the activity (firing frequency) of neuron i 

at time t within a population of N interconnected neurons, and ui(t) the input bit of 

input stream i at time t within a set of M input channels. The application map φ is 
taken as a composition of an affine map with a piecewise linear map of the interval 

[0,1], known as the saturated sigmoid: 

     σ(x) = 


 0  if x<0

x  if 0≤x≤1
1  if x>1

  (1) 

The dynamic system becomes 

     xi(t+1) = σ( ∑
j=1

N
 aijxj(t)  + ∑

j=1

M
 bijuj(t)  + ci ) (2) 

where aij, bij and ci are rational weights (and therefore Turing computable). The use 

of such a model for computability analysis is due to Hava Siegelmann and Eduardo 
Sontag. In [3] they used it to establish lower bounds on the computational power of 

analog recurrent neural nets. Our problem will be to find a net with no input streams 
and with inputs encoded in the initial state x0

→
 

     xi(t+1) = σ( ∑
j=1

N
 aijxj(t) + ci) (3) 

for each program written in a suitable programming language. 

In [2] (see [5] for a seminal presentation), we showed that programming languages 
can be translated on recurrent (rational) neural nets. The goal of this implementation 
was not efficiency but simplicity. Indeed we used a number-theoretic approach to 
machine programming, where (integer) numbers were encoded in an unary fashion, 



introducing an exponential slowdown in the computations with respect to a two-
symbol (plus a blank character) tape Turing machine. 

Implementation of programming languages in neural nets turns to be not only 
theoretical exciting but has also some practical implications in the recent efforts to 
merge symbolic and subsymbolic computation. To be of some use, implementation 
of programming languages in neural nets should be carried in a context of bounded 
resources. Herein we show how to use resource boundedness to speed up 
computations over neural nets, through suitable encoding of suitable data types like 
in the usual programming languages. With the guidelines provided in [4,5], we 
introduce data types and show how to encode and keep them inside the information 
flow of neural nets. 

2 Data Types 

Every value x of a given data type, is encoded into some value of [0,1], to take in 
consideration the lower and upper saturation limits of the activation function σ. For 
each data type T, we will have some injective encoding map αT:T→[0,1] that maps a 
value x∈ T onto its specific code. The encoding map will determine the neural 
architecture of the operators. 

Data types include: boolean, scalars, integer, real, and list (keeping elements of a 
given type). If resources are bounded, then there exists a limit to the precision of 
every value (even reals are bounded rationals). Considering a maximum precision of 
P digits, the minimum distance between any two values is 10 –P. Let us denote 10 P by 
M. 

2.1  Pre-defined types 

• For booleans, with B = {0,1}, the encoding map is αB(x) = 


0 , x=FALSE

1 , x=TRUE
  

• For scalars (see [4]), with S = { 0, 1, ... , n }, the map is αS(x) = 
2x + 1

2n   

• For integers, with Z = { – 
M
2  , ... , 

M
2  }, the map is αZ(x) = 

M + 2x
2M   

• For reals, with R = [a,b], the map is αR(x) = 
x – a
b – a  

• For a lists of scalars of type S with cardinality n (see [4]), the map is  

  α? (L) = ∑
i=1

k
  

αS(xi)
(2n) 

i–1  with L = < x1, …, xk >, xi∈ S 

2.2  Arrays and Records  

There is also the possibility to build complex data types with array and record 
constructors. Each structured data type consists of several data elements of the same 
type (if it is an array), or of different types (if it is a record). Each one of the data 
elements is coded by a specific neuron. This means that a structured data type is a 



finite set of neurons. For example, the assignment of one structure to another of the 
same type, is just a parallel assignment of every element of the first to the specific 
element of the second. 

3 Operators 

With the introduction of data types, many different operators will be needed to 
process information. There are arithmetic, logical and relational functions available 
on integers. All expressions when evaluated returns a result of a specific type. The 
net corresponding to each expression starts its execution when it receives an input 
signal. After evaluation, it returns the final result through a special output channel 
(named RES) and at the same time outputs an end signal (through special channel 
named OUT). Each expression net have an extra structure to receive the appropriate 
data and the input signal, and also to synchronize the result with output signal OUT. 
We show some nets that implement some operators. Weight 1 is default for 
non-labelled arcs. 

3.1  Boolean Operators 

These are the McCulloch-Pitts boolean operators (see [1]). 

 

 

 

 

Fig. 1. Boolean operators: (a) NOT x  (b) x AND y (c) x OR y. 

3.2  Scalar Operators 

There are a set of standard order operators for scalar types (see [4] for more 
information). Notice that SUCC is not well defined for the last element, and PRED is 
not well defined for the first (i.e., they return invalid values in those cases). ORD 
returns the ordinal value of the argument. 

 

 

 

 
Fig. 2. Scalar operators: (a) SUCC(x)  (b) PRED(x) (c) ORD(x). 

3.3  Integer Operators 

These operators are the standard ones used on high-level languages, like PASCAL. 
There are arithmetical and relational operators for integers (remember that M is the 
maximum rational number possible to represent with the limited resources 
available). 
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Fig. 3. Integer operators: (a) –X , (b) X + Y, (c) X – Y, (d) X < Y, (e) X > Y. 

To build the other relational operators, the following expressions can be used: 

 x=y ⇔  ¬ (x>y ∨  x<y) x≠y ⇔  x>y ∨  x<y 

 x≥y ⇔  x>y ∨  x=y x≤y ⇔ x<y ∨  x=y 

3.4  Real Operators 

The encoding αR is a scaling of the interval [a,b] into [0,1]. Binary sum, subtraction 
and multiplication by a constant are straightforward. 

 

 

 

 

Fig. 4. Real operators: (a) c.x  (b) x + y (c) x – y. 

The main problem with the scaling technique lies in the relational operators. Two 
reals may be arbitrarily close to each other. How to compare them? In this paper, we 
discuss information encoding with bounded resources. So, there is a limit to the 
precision of every real (in fact, all values are bounded rationals) and number M can 
also be used to produce the required results. 

 

 

 

Fig. 5. Real relational operators: (a) x > y  (b) x < y. 

3.5  List Operators 

A list keeps a set of finite elements of a certain scalar type with cardinality n (with 
possible repetitions). The encoding map α? has the 2n-Cantor set as codomain. Not 
every point on [0,1] is used, just some points are valid list values. When a value is 
inserted, the previous list is divided by 2n, and only then it is added the new value 
(encoded via αS). So, the input and output of a list obeys to a First In - Last Out 
discipline. The empty list has value zero. 

x 

x + y 

y 

x 

–1 x – y 

y (c) (b) (a) 

c 
c.x x 

a(c–1)/(b–a) a/(b–a) –a/(b–a) 

–1 
M 

x 

x < y 
y 

(b) 

M 
–1 

x 

x > y 
y 

(a) 

(a) 

1 

–x   x 

–1 

M 
x 

x > y 

y (e) 

M 
–1 x 

x < y 
y (d) 

–1 

x 

x – y  

y (c) 

x 
x + y 

y (b) 

–1 

–1/2 1/2 



 

 

 

Fig. 6. List operators: (a) push(L,x)  (b) isEmpty?(L). 

4 Conclusions 

Data types and control structures are part of a suitable programming language called 
NETDEF. Each NETDEF program has a specific neural net that simulates it. These 
nets have a strong modular structure and a synchronisation system that allows the 
sequential and parallel execution of subnets despite the massive parallel feature of 
neural nets. 

Each instruction denotes an independent neural net. They may access external 
variables (and use channels to communicate). The implementation map is modular, 
because each block corresponds to a set of several independent instructions (see [2] 
for details). There are constructors for assignments, conditional instructions and 
loop instructions. There are also sequential and parallel instruction blocks. 
Modularity brings great flexibility. For example, with this type of neurons, binary 
multiplication (integer or real) is not trivial. To have multiplication we need to build 
a program for it. But once this program has been made, it can be used elsewhere in 
the same way as a basic operator. 

This is the language core, many other features can be implemented using the same 
method, like channels for module to module communication, synchronous and 
asynchronous input/output, function definition and clocks. If someday, neural net 
hardware be as easy to build as the usual von Neumann hardware, then the NETDEF 
approach will provide a way to insert algorithms into the massive parallel 
architecture of artificial neural nets. 

5 References 

1. McCulloch, W. and Pitts, W., A logical calculus of the ideas immanent in 
nervous activity, Bulletin of Mathematical Biophysics, 5, 1943, 115-133. 

2. Neto, J. Pedro, Siegelmann, H. T., and Costa, J. Félix, On the Implementation of 
Programming Languages with Neural Nets, First International Conference on 
Computing Anticipatory Systems, CHAOS, [1], 1997, 201-208. 

3. Siegelmann, H. and Sontag, E., On the Computational Power of Neural Nets, 
Journal of Computer and System Sciences, [50] 1, Academic Press, 1995, 
132-150. 

4. Siegelmann, H., Foundations of Recurrent Neural Networks, Technical Report 
DCS-TR-306, Rutgers University, 1993. 

5. Siegelmann, H., On NIL: The Software Constructor of Neural Networks, 
Parallel Processing Letters, [6] 4, World Scientific Publishing Company, 
1996, 575-582. 

(b) 

–2n isEmpty?(L) L 

1 

1/2n 

x 
push(L,x) 

L 
(a) 


