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Abstract— Previously we have shown that chaos can arise in
networks of physically realistic neurons [1], [2]. Those networks
contain a moderate to large number of units connected in a
spatial arrangement providing instances of so-called Cellular
Neural Networks. It was proposed that the flexibility and wide
range of behaviors of chaos could be of computational value,
namely in spatiotemporal regimes and when coupled with a
chaos control process, either in biological or artificial nets.
Here we aim to find a minimal network of realistic neurons
already featuring a chaotic regime. Such a small network can
be computationally useful per se, or otherwise constitute the
building block of larger networks with even richer dynamical
regimes. Our investigation unveils the role of the interplay
between a homoclinic tangency and the presence of delays in
neural signal transmission in the creation of complex behavior.

I. INTRODUCTION

Chaos can be observed in neural networks even when
realistic model neurons are considered [1], [2]. While careful
exploration of parameter space is convenient, no purposeful
mathematical gadgets need to be added in order to obtain
complex behavior. Suggestions of the computational useful-
ness of chaos were given in [3], [4], [5], namely by showing
how visual pattern processing can take place in biologically
inspired networks [3], [5]. In previous work we focused on
network properties requiring that a large enough number of
neurons be connected in some spatial arrangement. In the
present paper we downsize the network to as few as two
units, actually one excitatory and one inhibitory neuron. We
thus obtain a minimal chaotic building block. This can then
be used either as a standalone complexity generator module
or in the creation of larger networks where e.g. spatial
symmetries can also be explored. The two latter applications,
however, are outside the scope of this paper.

II. A MINIMAL REALISTIC MODEL

We adopt a model of the leaky integrator type, endowed
with time-delays in the signal transmission between neu-
rons [6], [2]. Passive and active membrane properties are
featured. Neuron connectivity is nonlinear, via the well-
known sigmoidal activation function. Details of the model
derivation can be found in [2]. Here we consider a sim-
plified version which can be viewed as either modeling
an excitatory neuron interacting with an inhibitory one, or
otherwise representing the uniform activity of, respectively,
a population of excitatory and inhibitory neurons coupled
together. Individual neurons are not oscillators under the
present model. However, oscillations in electrical activity
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arise due to the presence of excitatory and inhibitory feed-
back through synaptic connections.

Mathematically, the model consists in a set of two coupled
nonlinear delay differential equations,

dX

dt
= −γ(X − VL) − (X − E1)Ω1 FX [X(t − τ)]

− (X − E2)Ω2 FY [Y (t − τ)] (1)
dY

dt
= −γ(Y − VL) − (Y − E1)Ω3 FX [X(t − τ)] .

Here, X represents the membrane potential of an excitatory
neuron, and Y that of an inhibitory neuron. The different
equilibrium potentials have the values VL = −60 mV, E1 =
50 mV, and E2 = −80 mV. As with other parameters of
the model, these values are suggested by electrophysiological
experiments [6], [7]. The inverse of the membrane’s time-
constant takes the value γ = 0.25 msec−1. The sigmoidal
activation function is of the form

F (V ) =
1

1 + e−α(V −Vc)
.

The parameters α and Vc are adjusted so that the neuron is
silent for a potential V lower than some activation threshold,
and the firing rate saturates for a certain higher value of V .
Vc is fixed at −25 mV, whereas αX = 0.09 mV−1 and
αY = 0.2 mV−1. Note that there is a delay τ in signal
transmission, including the case of the excitatory neuron
feeding back onto itself. The delay is a varying parameter
of the model. All types of connections are present except
the inhibitory-to-inhibitory one. Synaptic weights are given
by Ω1 = 6.3, Ω2 = Ω3 = 5 everywhere in this text except in
Fig. 2 where Ω2 is allowed to vary. From Eqs. (1), it is clear
that, in the absence of coupling, the neurons would simply
relax toward the VL equilibrium. By this we refer to the case
where the self-coupling of X , with delay τ , would also be
absent. This would correspond to Eqs. (1) being left without
any FX or FY terms.

III. ROUTE TO CHAOS

By varying the parameters of system (1), a wide range of
dynamical behaviors can be observed. To gain some analyt-
ical understanding of the system, one may keep most of the
parameters fixed, and change the few remaining parameters.
In this manner, one can identify the loci of bifurcations
from steady states into other stationary states or into periodic
oscillations. Such bifurcation diagrams have been calculated
elsewhere [8], for typical sets of fixed parameters. Destexhe
has also estimated the network size for which uniform
oscillations of networks of neurons of the above type become
linearly unstable [8]. However, that is a multi-unit scenario
clearly different from the one we are considering. In our



case, bifurcations do lead to chaos and this happens for as
few as two neurons. Let us note that different routes to chaos,
namely of a spatiotemporal nature, are possible if we turn
directly to the multi-unit case [8], [2].

To investigate the creation of oscillatory solutions, we
considered Hopf bifurcations with different types of system
parameters acting as the bifurcation parameter. These in-
cluded the values of synaptic strengths ΩI , of the propagation
delay τ , and of the transfer functions’ slopes αX and αY .

Figure 1 provides an example of a Hopf bifurcation
unfolded by varying τ in Eqs. (1).
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Fig. 1. Hopf bifurcation from a stationary solution of Eqs. (1). The
amplitude of the cycles increases with the value of the time-delay τ . Apart
from τ , all other parameters of Eqs. (1) are fixed and have the values as
indicated in the main text.

Shown are three limit cycles obtained for different values
of the delay1. The cycles with τ = 0.424 and τ = 0.6 are
relatively close to the onset of the bifurcation. With τ = 4, a
solution with higher amplitude and more complex structure
is seen. With the same fixed parameters as in this figure, for
higher values of τ , chaotic solutions are observed. This is
strong evidence that time-delays are of crucial importance in
neuronal modeling, and can change completely the nature
of the dynamics. For instance, with τ < 0.42 and all
other parameters as in Fig. 1, only a stationary state can
be observed asymptotically.

It is known that dynamical systems may present different
routes to chaos. In the following, we identify a possible
route to chaotic behavior of Eqs. (1). For finite regions of
the parameter-space, the system may present bursting oscilla-
tions. Figure 2 shows some examples of bursting regimes. In
this figure, τ takes different values, and the synaptic weight
Ω2 is also allowed to vary from the usual value Ω2 = 5. The

1Since the full dynamics is infinite-dimensional due to the delay terms,
the figure only displays projections of that dynamics on the (X, Y ) space.
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Fig. 2. (a), (b) and (c): homoclinic tangency to an unstable limit cycle,
with system (1). (d) to (g): continuation of the sequence, showing a route
to temporal chaos by destabilization of the regular sequence of bursts. The
up-most part of the figure shows time-series of the membrane potential of
the excitatory neuron, for different values of the parameters Ω2 and τ . The
latter are depicted in the down-most diagram. Arrows indicate one proposed
route to chaos. Note that the time-series of (d) has been placed above those
of (c) and (e) for readability reasons. Graphs (c), (d) and (e) actually share a
common value Ω2 = 4.3. Apart from τ and Ω2, the remaining parameters
of Eqs. (1) are fixed. See text for details.

bursting oscillations are characterized by two different time-
scales. Very fast oscillations are superimposed on a basic
cycle occurring on a much longer time-scale. Following a
suggestion by Gaspard (see also [9]), the bursting oscillations
have been interpreted as signaling the presence of a homo-
clinic tangency to an unstable limit cycle [10]. The basic phe-
nomenon concerns the graphs (a), (b) and (c) of Fig. 2, which
are obtained with successively smaller values of Ω2 and all
other parameters fixed. As Ω2 is decreased, the duration of
the active phase, as well as the number of fast pseudo-cycles
thereof, increase continuously. The intermediate segment, or
silent phase, remains practically unchanged. For a critical
value of Ω2 close to 4.26, an infinite-period bifurcation takes
place. Exactly at the bifurcation point, the bursting phase
lasts an infinite time. For lower values of Ω2 past that point,



the dynamics collapses into a stationary solution (not shown
in the figure). At the bifurcation, the stationary solution is
given by (X,Y ) = (−13.38 , 43.04) mV. In analogy with the
case studied by Destexhe and Gaspard [10], the following
explanation can be proposed2. A limit cycle, called LC2,
accounts for the fast oscillations. There is another cycle,
LC1, which is born in a familiar way at a Hopf bifurcation3

and which increases in amplitude (as Ω2 is decreased) until
it “collides” with LC2. LC2 cannot exist without the inter-
mediate segment. Therefore, LC2 must be an unstable limit
cycle. Let us consider the induced discrete-time dynamics at
a Poincaré section transverse to the continuous-time cycles.
LC2 appears to be a cycle of saddle type, because orbits
like LC1 may enter the vicinity of LC2 along a path close
to the stable manifold of LC2, and then escape along a
path close to the unstable manifold of LC2. The bursting
oscillations appear when LC1 grows to a point where it
approaches significantly the region of phase-space where
LC2 exists, such that the oscillations become increasingly
LC2-like. Hence, the bursting can be interpreted as a transient
distortion of the limit cycle LC1 due to the presence of LC2.
At the critical point, or homoclinic tangency, LC1 coalesces
with LC2. If viewed at the Poincaré section, the system’s
trajectory approaches the saddle fixed point LC2 exactly
along the stable manifold of the latter, and escapes LC2
along its unstable manifold. At the bifurcation, the LC2-
like oscillations are no longer a transient process, but last an
infinite time. The exact homoclinic situation is inaccessible
experimentally. Nonetheless, the approach of the critical
situation is signaled by an increase of the bursts’ duration,
depending logarithmically on the distance to criticality [10].
This is illustrated as the sequence (a)→(b)→(c) of Fig. 2.
In the previous investigation [10], the homoclinic tangency
accounts for a succession of regular burst regimes akin
to the one illustrated by that partial sequence of Fig. 2.
Here, we extend the investigation by showing that irregular
behavior of the chaotic type may also appear, associated
with the homoclinicity. In Fig. 2, this corresponds e.g. to
taking the system along a path in parameter-space given
by the sequence (a)→· · ·→(g). This is one of the many
possible sequences. For higher values of the delay τ , the
succession of bursting periods gains an irregular character,
until temporal chaos is obtained (for Ω2 = 5, in the figure).
We propose therefore that chaos is associated with the
interaction between the homoclinic tangency and the memory
effect due to the presence of the delay terms4. Let us note that
the role of homoclinic orbits in the generation of complex
temporal behavior had been pointed out previously by several

2Those authors have not considered the same parameters as ours —hence
they have not found chaos, but the homoclinic phenomenon is analogous.

3With τ fixed at 7 msec and all other parameters with the usual values,
LC1 originates from a supercritical Hopf bifurcation of the fixed point
(X, Y ) = (−75.53 , −40.93) mV, at a critical value Ω2 = 68.6.

4Actually, the intermediate stages of the approach to the homoclinic
tangency, at τ = 7 msec, already show some irregularity. But chaos is only
really developed for delay values greater than about 8 msec, and appropriate
values of Ω2.

authors [11], [12].
In the remainder of the paper, we adopt the parameter

values Ω2 = 5, τ = 16 msec. The resulting chaotic regime
is investigated for the system (1). In Figure 3, a Poincaré
section of the dynamics of Eqs. (1) shows the lack of low-
dimensional structure of the chaotic attractor.
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Fig. 3. Poincaré section obtained with Eqs. (1). Ω2 = 5, τ = 16 msec,
and the other parameters have the usual values. The figure is obtained by
plotting the values (X(t), Y (t)) whenever X(t − 4 msec) = −35 mV,
dX(t − 4 msec)/dt < 0. There are 8368 points in the graph.

Figure 4 illustrates the same dynamics, but in continuous
time. We also made a comparison of the above dynamics
with that of a network comprising several chaotic neurons
of the type described. Such comparison is not detailed in
the present paper. Not surprisingly, we found that chaos is
more developed in the full network case. Notwithstanding, by
coupling several chaotic neurons we brought about a route
to spatiotemporal chaos that had not yet been investigated
by other authors. Indeed, the origin of spatiotemporal chaos
in larger networks, in our case, is somewhat different from
the one in [8], [13]. Given the route to chaos that we
identified with the smaller system, Eqs. (1), we see that
as few as two coupled neurons suffice to display chaotic
behavior. Therefore, “spatiotemporal” chaos can be studied
with arbitrarily small networks. We could thus study chaotic
networks with between 2 and 32 neurons. References [8],
[13] present a different picture. The Author’s numerical sim-
ulations, with parameter values different from ours, show that
uniform periodic oscillations of a network are destabilized
only for network sizes greater or equal to Nex = 144,
Nin = 36, which are, respectively, the number of excitatory
and inhibitory neurons. In the same numerical study, but
with a less favorable connectivity pattern, the periodic bulk
oscillations are not destabilized for network sizes smaller
than Nex = Nin = 1600. In the simulations in [8], [13],
the destabilization of uniform solutions happens through a
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Fig. 4. Top: Chaotic time-series of the activity of the excitatory neuron in
Eqs. (1). Bottom: Phase portrait of the system in the chaotic regime. Model
parameters are as in Fig. 3.

type of spatiotemporal intermittency (see e.g. Figure 4 of
Ref. [13]) that is not featured in our study of larger networks.
The same Author shows theoretically that periodic bulk
oscillations are destabilized for network sizes greater than
Nex = Nin = 9, but with special network configurations that
we do not consider.

IV. CONCLUSIONS

We described a minimal network of realistic continuous-
time neurons which are capable only of relaxing toward equi-
librium when taken is isolation, but which display chaotic
dynamics when synaptically coupled and in the presence
of time-delays. Two neurons suffice to observe the chaotic
behavior.

Although the paper’s emphasis is on the dynamics of a
very small network, we also pointed out that such small
chaotic modules could be connected in order to obtain larger
networks with more complex dynamical regimes. These
include spatiotemporally chaotic regimes, albeit of a different
nature from the ones investigated by other authors and also
from the ones proposed in other studies by the present
author [2].

Chaos may become most useful computationally when
coupled with some form of chaos control [5]. Such con-
trol was achieved by us with the present model, both in
the two-neuron version and for larger networks. While the
discussion of a particular control procedure had already been
provided [1], the actual mechanism of chaos generation in
the homoclinic context is discussed only in the present paper.

Dynamical features of this biologically inspired model
were revealed through theoretical considerations and nu-
merical simulations. In subsequent work, an electronic im-
plementation could be envisaged such that dynamical and

computational properties might be explored in an actual
physical device.
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