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Attention-locked computation
with chaotic neural nets

Abstract

We review a neural network model based on chaotic dynamics [Babloyantz & Lourenço,

1994, 1996] and provide a detailed discussion of its biological and computational rele-

vance. Chaos can be viewed as a “reservoir” containing an infinite number of unstable

periodic orbits. In our approach, the periodic orbits are used as coding devices. By

considering a large enough number of them, one can in principle expand the informa-

tion processing capacity of small or moderate-size networks. The system is most of the

time in an undetermined state characterized by a chaotic attractor. Depending on the

type of an external stimulus, the dynamics is stabilized into one of the available periodic

orbits, and the system is then ready to process information. This corresponds to the

system being driven into an “attentive” state. We show that, apart from static pattern

processing, the model is capable of dealing with moving stimuli. We especially consider

in this paper the case of transient visual stimuli, which has a clear biological relevance.

The advantages of chaos over more regular regimes are discussed.

Keywords: Chaos; Computation; Attention; Spatiotemporal Dynamics; Neural Net-

works; Cortical Layers; Processing of Changing Visual Stimuli
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1 Introduction

Never quiet, the brain oscillates. The electroencephalogram (EEG) and the measure-

ment of local field potentials (LFPs) provide notable examples of oscillations in electrical

activity. Most relevant to cognitive sciences are the observed correlations of electrical

activity with information processing tasks. The spatial dimension of electrical oscilla-

tions in the brain has revealed additional structure not present in global measurements

of a scalar variable. In a much cited example [Eckhorn et al., 1988; Gray & Singer,

1989], functional subunits in separate regions of the cortex synchronize in response to a

visual stimulus. Thus the regions are linked by a mechanism of phase coherence. The

synchronization mechanism is a much more general and powerful one, in that it can am-

plify small individual effects via collective organization. More complex spatiotemporal

modes of oscillation, other than synchronous activity, may also be considered. Although

these modes are difficult to deal with experimentally, researchers at the laboratory have

revealed their nature over the last decade. Lachaux et al. [1997], for instance, advocate

that single-channel EEG reconstruction of brain dynamics is misleading and does not

reliably quantify spatial aspects of the dynamics as well as multi-channel techniques do.

Further evidence along these lines prompts us to include spatial features in cognitive

modeling ab initio. In our more theoretical work we propose and explore abstract mod-

els of cognitive processes. Such models feature a spatiotemporal dynamics and general

layout that aim to reproduce some of the intricacies of the real brain. As in every oper-

ational model, just about the right level of detail is retained so that the essence of the

targeted phenomenon is captured. Our modeling does not try to avoid the complexity

that may unfold from a full spatiotemporal nonlinear dynamics, but instead incorpo-

rates that complexity to the advantage of performance in computational and cognitive

tasks. In this paper we consider the modulator role of attention in the complex dynam-

ical regimes of spatially distributed neural networks, and the resulting enhancement of

stimulus processing capabilities. We review a specific computational model capable of

stimulus processing [Babloyantz & Lourenço, 1994, 1996], but precede the presentation

of the mathematical part of the model with an original discussion of its biological rele-

vance. We further elaborate on the case where the stimuli themselves are dynamic, or

even transient. The latter is of course a most relevant case in biological terms.

Sections 2 to 5 present the biological motivation of our model. Actually the main

features of the model are introduced in those sections along with a review of the most

relevant findings and open issues in biology. The computational model itself is presented
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in detail in Sec. 6, whereas Sec. 7 demonstrates the type of stimulus processing that it

is capable of. The last section summarizes the main results and adds to the biological

relevance of the abstract model in view of Secs. 6 and 7.

2 Complexity and Chaos in the Brain

The first models of biological cycles produced extremely regular, periodic, time-series.

Yet, this regularity was often overruled by experiments. Complex patterns of oscilla-

tion were revealed, escaping the predictions of simple models. This happened at all

levels, from the single neuron to entire cortical and subcortical regions. During the last

years, the theory of nonlinear dynamical systems provided a new framework in which to

study complex phenomena in brain. The notion of deterministic chaos is an important

cornerstone of the new approach. It allows that randomness and complexity embrace

determinism and underlying structure.

The tools of nonlinear analysis have been fruitful in two directions. They enabled the

identification of underlying order in seemingly random biological time-series such as the

EEG. They also helped propose qualitative and quantitative models of brain processes,

including those that generate the experimental time-series. Nonlinearity arises at the

level of internal dynamics of units, or through the interactions between coupled units.

Below we cite some important results in the domains of data analysis and modeling.

Another salient feature of the nonlinear approach is the explanation of how bifurca-

tions and self-organization can arise in complex systems. Interestingly, these provide an

elegant setting where a quantitative and a qualitative view of dynamics come to merge.

In 1985 Babloyantz et al., using the tools of nonlinear time-series analysis, could

show that several behavioral states of the brain, as measured from EEGs, exhibit de-

terministic chaos. This study made a comparative analysis of different sleep as well

as awake stages, in human subjects. The assessment of chaos was done by measuring

correlation dimensions and positive Lyapunov exponents of reconstructed attractors of

the dynamics. In the same year, chaotic activity was detected in the monkey neurons

by Rapp et al. [1985]. These seminal papers gave rise to a vast literature which is still

expanding. Early examples include e.g. the unveiling of deterministic chaos in petit-mal

epilepsy [Babloyantz & Destexhe, 1986] and in cat olfactory bulb [Skarda & Freeman,

1987]. Other dynamical quantities have been measured, such as generalized dimensions,

Kolmogorov-Sinai entropy and power spectra. Apart from the EEG, the magnetoen-

cephalogram (MEG) has also provided time-series for dimension evaluation. In each
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case, the ensemble activity of large populations of neurons is monitored. Meanwhile,

deterministic chaos has also been detected in the dynamics of isolated neurons [Elbert

et al., 1994]. All these studies share a new view of what was previously described as

“random effect of internal noise sources”. The system dynamics is perceived as a rela-

tively low-dimensional process, in contrast to the great number of degrees of freedom of

purely random noise or fully developed turbulence. Although the numerical accuracy of

certain measurements has been a matter of debate, it became clear that some form of

determinism underlies the time-series. In a sense, the brain could be viewed as operating

at the “edge of chaos”.

Interestingly, chaos was initially believed to be a sign of illness. The term “dynami-

cal disease” was even adopted in 1977 [Elbert et al., 1994]. Although the most obvious

demonstrations of low-dimensional chaos are provided by pathological states, such as

epilepsy [Babloyantz & Destexhe, 1986] and Creutzfeld-Jacob coma [Babloyantz & Des-

texhe, 1987], other (behavioral) states allowed the measurement of moderate correlation

dimensions, indicating determinism [Elbert et al., 1994]. It has been proposed that

chaos could serve cognitive functions that cannot be described in a linear fashion, such

as searching in memory for some concept, or finding a creative solution to a problem.

Chaos would also underly the brain’s ability to respond flexibly to external stimuli. A

too regular behavior could even be maladaptive in many circumstances. In addition,

chaos provides a model for the transition between regular and irregular behavior in a sin-

gle system. Such transitions are observed in biological time-series, either spontaneously

or in response to some stimulus.

Chaos is a consequence of internal mechanisms of the brain. The most evident

demonstrations of brain dynamics are our everyday actions and thoughts. This fact

inspired a number of experiments on the chaotic nature of human perception and be-

havior. In [Richards et al., 1994], a low fractal dimension is obtained from a time-series

that reflects the outcome of a perceptual task. Another interesting approach is one that

relates chaos in the internal electromagnetic state of the brain, with behavior. Kelso and

colleagues have performed a series of experiments where MEGs or EEGs are recorded

during sensorimotor coordination tasks. The measured signals include simple time-series

as well as the amplitudes of entire spatial modes of electrical activity. By varying a be-

havioral parameter, critical instabilities giving rise to non-equilibrium phase transitions

are detected in both the psychophysical data and brain activity [Fuchs et al., 1992; Kelso

et al., 1992; Wallenstein et al., 1995]. In MEG experiments reported in [Kelso & Fuchs,

1995], the time-varying amplitude of spatial modes displays a task-dependent phase-
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space geometry characteristic of Šil’nikov chaos. The geometry changes qualitatively at

a phase transition. For a recent account of correlating spatiotemporal brain signals with

behavior, see [Jirsa, this issue].

If one accepts that brain dynamics is of a spatiotemporal chaotic nature, then it

may be investigated how this relates to biological information processing in concrete

ways. How can chaotic operation modes actually enhance the processing capabilities of

the system? This question lead us to propose a model neural network featuring chaotic

spatiotemporal dynamics [Babloyantz & Lourenço, 1994, 1996]. Along this paper we

shall point out the model features more directly inspired in biology.

In modeling, details of individual units, neurons, axons, synapses, can sometimes

be overlooked with respect to the dynamical function that they support. This has led

e.g. to the modeling of the thalamo-cortical system as abstract coupled oscillators, or

modernly to the description of cortical activity in terms of chaotic differential equations

based on generic biological data. In our work we follow this conceptual view.

Observing the microscopic activity of neurons is a natural starting point in a “bottom-

up” approach. However this démarche is not exclusive. For instance, in the experiments

of Kelso et al. (see above), the measurements have a macroscopic nature. One monitors

the electromagnetic field generated by neuronal activity. In that case, the physiology

and behavior of individual neurons need not be known exactly. Overall, a two-level or

multi-level approach to brain seems necessary, considering functional units at different

scales.

For the purpose of the present paper, we actually consider individual units consisting

in oscillators, having a phase and amplitude as relevant variables. These are coupled

within a so-called neural network, giving rise to cooperative phenomena through mutual

forcing of the units. These can adequately be viewed as sub-populations of neurons

(which could then be of a more realistic type). With a large enough number of units,

massively parallel computation becomes possible.

3 Single-cell versus Population Coding

The issue of cooperative behavior relates to a debate among the neurobiology commu-

nity, on the relative merits of single-unit versus population coding. A strong motivation

to the single-unit approach was provided by Hubel and Wiesel’s experiments starting

in the late 1950’s [Hubel, 1982]. They established that individual cortical cells could

respond selectively to a feature of visual stimuli, such as the orientation angle of simple
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bars. This can be viewed as a “quantum” of knowledge, but it may be argued that

correct assessment of a complex object can only be obtained through the activity of

an entire array of such cells, and also of different cells responding to other features of

the input. A modern stream of research seeks to evaluate the information content of

spike trains from single neurons [Strehler & Lestienne, 1986]. In a typical experiment,

the animal performs the same sensory or motor task on different occasions. Simulta-

neously, spikes are recorded from individual cortical cells. Although the data are very

noisy, well-defined temporal patterns appear repeatedly in individual spike trains, de-

noting deterministic response to a stimulus or preparation of motor action. However,

the profound implications of such results for cognition have not yet been clarified. The

situation would be somewhat like looking at a single pixel on a TV screen, and trying

to deduce the features of a moving image from it [Deadwyler & Hampson, 1995].

This goes in pair with the discussion of the “grandmother cell”. The latter is a

single cell, sitting at the top of some hierarchy, and which after presentation of visual

input and a few more computational steps would answer yes or no to the question “is

that grandmother’s face?”. Hence the debate is: Is grandmother coded in a single cell,

or in the distributed activity of a neuronal population? We believe that both levels

of coding must coexist in brain. Let us also mention an experiment involving a wide-

field, movement-sensitive visual neuron in the brain of the locust [Hatsopoulos et al.,

1995]. Visual stimuli consisted in approaching, receding and translating objects. The

neuron’s responses could be described by multiplying the velocity of the image edge with

an exponential function of the object’s size on the retina. The authors argue that the

neuron receives distinct inputs about image velocity and size, and hence the dendritic

tree of a single neuron may work as a biophysical device performing the multiplication

of two independent input signals. In [Single & Borst, 1998], dendritic integration is

observed in single motion-sensitive cells of the fly, giving rise to axonal signals coding

for image velocity. Reports of information processing by individual neurons, however,

do not exclude that entire neural populations may be working at a “pre-processing”

stage to provide the individual neuron with relevant signals.

Meanwhile, the evidence of coding by neuronal populations has become quite siz-

able. We cite but a few examples. In [Wu et al., 1994], the active neuronal populations

in the Aplysia abdominal ganglion during different behaviors are compared via multi-

neuronal optical measurements. The populations activated during distinct behaviors,

spontaneous or evoked, may overlap by more than 90%. However, the activity patterns

are different for each behavior. Furthermore, if a gill withdrawal reflex is elicited a few
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seconds after a respiratory pumping episode, the evoked neuronal activity is clearly al-

tered for the majority of neurons. Thus it appears that different behaviors are generated

by altered activities of a single, extended network, and not by small dedicated circuits.

The experiments of Freeman and co-workers (see [Freeman, 1991, 1994] and references

therein) have demonstrated a similar phenomenon, while providing further coding evi-

dence. Here the spatial and temporal distributions of neuronal activity were measured in

the olfactory bulb of different species of mammals, most often rabbit. The animal’s task

consisted in sniffing different odors, some known beforehand, others not. It was found

that each odor is coded by a particular spatial pattern of amplitude modulation (AM)

of common carrier oscillations that are self-organized within the neuronal population.

Interestingly, the detailed form of an AM pattern may change in the course of learning,

denoting structural reorganization. Nicolelis et al. [1993] have provided clear evidence

that the ventral posterior medial thalamus (VPM) of the rat displays a dynamical and

distributed representation of the animal’s face. Their experiments involved vibrome-

chanical stimulation of single facial whiskers. Previously it was believed that the map of

the face in the VPM was static and highly discrete. It would be based on small, robust,

and non-overlapping receptive fields (RFs) of the neurons. However, quantitative anal-

ysis proved that the RFs in the VPM are large and overlapping. Moreover, they tend to

shift as a function of post-stimulus time. This suggests that nontrivial spatial and tem-

poral coding of stimulus information is occurring. Shortly after, Nicolelis et al. [1995]

have measured widespread 7 to 12 Hz synchronous oscillations at multiple sites of the

trigeminal somatosensory system of rat. The measurements involved up to 48 cortical,

thalamic and brainstem neurons. The oscillations began during attentive immobility

and reliably predicted the onset of whisker twitching. The pattern of activity consisted

in traveling waves propagating from the cortex to the thalamus and to the spinal trigem-

inal brainstem complex. Direct neuronal response to tactile stimulation also displayed

spatiotemporal structure, as previously demonstrated for VPM neurons [Nicolelis et al.,

1993].

A different set of experiments provides coding evidence of a more quantitative nature.

The so-called neuronal population vector [Georgopoulos et al., 1989] is a weighted vector

sum of contributions or “votes” of neurons tuned to direction. Each neuron is assumed

to contribute along its preferred direction with a strength that depends on how much

the neuron’s activity changes for the movement considered. The cognitive operation of

mental rotation is tested with a trained rhesus monkey. The animal must move its arm

in a direction at a fixed angle from a visual stimulus that changes from trial to trial. By
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measuring arrays of cells in motor cortex, the authors find that accomplishing this task

involves the creation and mental rotation of a population vector from the direction of the

stimulus to the direction of the movement. The speed of mental rotation is estimated

at 732◦ per second. It should be emphasized that each neuron is broadly tuned to

movement direction, and only the ensemble activity of the population has meaningful

quantitative value. In fact, a neuron has a graded activity level with respect to direction.

This implies that the same neuron may participate (“vote”) in the coding of different

directions. The notion of population vector has also been useful in interpreting the

results of a more recent experiment [Young & Yamane, 1992]. Here, the activity of

the population codes faces instead of directions of movement. Macaque monkeys are

presented with photographs of different men in full face. Measurements in the anterior

inferotemporal cortex indicate a selective response to physical properties of face stimuli.

The responses in the superior temporal polysensory area correlate with other aspects of

faces, such as familiarity. Each neuron has a graded response to the combined features

of the stimuli. The authors report that there is often sufficient information in small

neuronal populations to identify particular faces. In both studies [Georgopoulos et al.,

1989; Young & Yamane, 1992], the neurons whose individual activities are captured by

the electrodes represent only a tiny fraction of the total neuronal population. Yet there is

often enough information in those activities to predict the properties of some stimulus or

motor action. Thus there is a form of sparse coding, most likely redundant and therefore

with high survival value. A note should be made on the mechanism of cooperation.

Dynamical entrainment within the same population arises through synaptic connections,

whose strengths may be viewed as parameters conditioning the observed patterns of

activity. Yet the pattern of synaptic linking is rarely discussed in the context of the

above studies. A priori, the connectivity pattern conditioning the population vector

in the monkey’s motor cortex may be quite different from, say, the one featured in the

rabbit’s olfactory bulb. Hence, functional connectivity among neurons forming a pattern

of activity must still be elucidated.

4 Cortical Layers and Retinotopy

Our model mimics a fully parallel type of biological computation in continuous time,

via a recurrent neural network with sparse connectivity of a local type inducing a nat-

ural topology. Parallelism is a crucial feature of brain dynamics, allowing increased

processing speed and fault tolerance due to redundancy. Likewise, topological ordering
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has been identified in neuroanatomic studies of sensory and motor processing, at several

stages [Sereno, 1995]. Another essential feature of the model is the existence of different

interconnected layers. A strong biological motivation comes from the multilayer struc-

ture of cerebral cortex, with specific interconnections between different layers [Kandel

et al., 1999; Churchland & Sejnowski, 1989]. Each layer is a network of densely connected

neurons. Different layers are thought to have functional specificities in the processing

of information, and it is widely assumed that information transmission is mediated by

the links or synapses joining the neurons.

In the following we concentrate on visual-type processing, for which our model is

most adequate. Vision is a major capability of most animals. In higher primates, in-

cluding humans, over 50% of the cortex is dedicated to visual processing [Sereno, 1995].

In sighted people, it constitutes the most important interface with the external world,

providing fast and accurate information about the surrounding environment. In hu-

mans, the most distinct visual area is V1 of primary visual cortex. There is evidence

that human areas V1 and V2 are laid out similarly to those of other primates [Burkhal-

ter & Bernardo, 1989]. In non-human primates, cortical electrical activity is measured

arbitrarily close to its sources, via arrays of electrodes. These multi-electrode measure-

ments can be correlated to sensory-evoked potentials (SEPs) and event-related potentials

(ERPs) [Kandel et al., 1999]. Both types of potentials constitute changes in the standard

electroencephalogram (EEG), and can therefore be studied also in humans, in diverse

behavioral states. The measurement of cortical electrical activity by these procedures

remains as one of the most convenient ways of monitoring the dynamical states of the

brain. It provides a wealth of data that prompt dynamical models of brain function and

also question their validity.

It was initially thought that the visual information pathways, from the eyes up

to the highest cortical processing areas, are arranged in a single chain of areas. A

successively higher level of analysis would be present at each stage, receiving an image

from the previous stage and feeding a transformed version of it to the next stage. At

present, it has been established that several serial pathways run in parallel, each of them

specialized to a large degree in some function [Honavar & Uhr, 1989]. This can be for

example the analysis of form, color, motion, or partial aspects thereof. One then speaks

of heterarchies rather than a simple hierarchy. Our modeling makes no claims of such

functional completeness, but rather concentrates on specific processing capabilities of a

dynamical device, that do not exclude concurrent treatment of the image in the visual

field. Furthermore, biological details are incorporated in a highly schematic manner.
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Let us briefly review biological vision. The images of the external world are projected

onto the retina, which is made up of sensitive cells arranged in a two-dimensional array.

Outside of the fovea, a number of neuronal layers pre-treat the information that is then

supplied to the optical nerve. The visual signal is then oriented to the primary visual

cortex, situated in the occipital lobe, via the lateral geniculate nucleus of the thalamus.

Several distinct sub-areas are found in the primary visual cortex, namely, areas V1 to

V5. The most thoroughly studied is certainly area V1. As most sensory cortices, the

visual cortex displays a structure with several layers of neurons, numbered from I to

VI. The complete sheet, with a thickness no larger than 2 mm, forms the gray matter.

The layers are structurally and functionally distinct. Although the patterns of intra-

and inter-connectivity are somehow involved and include several feedback loops, we may

summarize the main pathway as follows. Input to the sensory cortices, via the thalamus,

terminates predominantly in layer IV. The neurons in this layer, in turn, distribute the

information to other layers. Typically, the output functions are conveyed by neurons in

layers II, III, V, and VI [Kandel et al., 1999]. Processes that connect cells in different

layers, within the same area, run perpendicularly to the surface of the cortex. Within

the same layer, most lateral processes are of short range [Honavar & Uhr, 1989].

Retinotopy is a fundamental property of visual information processing. It consists

in a point-to-point mapping, from the sensitive cells of the retina to the neuronal layers

at several stages of the processing. A high degree of topological order is preserved, such

that the images of the external world are “reproduced” in an oriented manner along the

visual pathways. Retinotopy is most marked in area V1, and becomes less precise at

higher visual areas [Sereno, 1995]. Detailed neuroanatomic studies in mammals (e.g.,

the galago [Sereno, 1995] and the wallaby [Ding & Marotte, 1994]) as well as in insects

(e.g., Drosophila [Kunes et al., 1993]) have demonstrated that this is a rather general

property in the animal world. In experiments with behaving monkeys [Tootell et al.,

1988], a pattern seen by the animal elicits neuronal activity in one of the layers of primary

visual cortex. The spatial distribution of activity closely resembles the form of the visual

pattern. For humans, it has been pointed out that retinotopy (or its analogue) may also

be an important element in speech processing, by an adequate transformation between

time and space [Edelman, 1994]. This is supported by growing evidence that visual

areas in humans participate in specifically linguistic functions. For an interpretation

based on the study of cerebral lesions, see [Sereno, 1995].

Retinotopy is also an important pre-requisite of our abstract model, where it is

present in the simplest form: each “cell” in a two-dimensional array detects the presence
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or the absence of visual stimulus at the corresponding position in an image of the visual

field. We should however note a number of simplifications that are present in the model.

In area V1, for example, the entire visual field is represented via a polar coordinate map

according to a complex logarithm law [Girod et al., 1994]. Here, we dispense with the

complications of polar coordinates and adopt a simple Cartesian arrangement of the

units in a regular network. Likewise, we implement a basic “visual projection” that

ignores such pathways as those from V1 to V2, then to V4, and eventually to parietal

and temporal cortices [Honavar & Uhr, 1989]. We consider two layers, instead of the

usual five or six in a typical region of cortex. We evaluate the dynamical influence of

one layer over the other, mediated by specificities of the external input. By isolating

two layers in this manner, we avoid having to consider a much more complex, global

pathway. We demonstrate, however, that a two-layer device already possesses a fair

degree of visual pattern processing capability. Finer details, such as the distinction

between cones (color sensitive) and rods (sensing position and intensity) in the retina,

are not incorporated into the model. We note that a cortical organization into columns

of cells grouped by, e.g., ocular dominance and orientation selectivity criteria [Hubel,

1982], is not in conflict with a retinotopic organization such as the one featured in the

model. For further details, see for example [Hubel, 1982; von der Malsburg & Singer,

1988; Honavar & Uhr, 1989]. Overall, it should still be said that the connectivity in the

model can only be related to biology in a very abstract way.

5 Attentiveness and Performance

It has been noted that animal and human responses to relevant, attended events, can

show marked improvement when compared to the case where no attentional mechanism

is present [Mangun & Heinze, 1995]. Spatial selective attention is of particular impor-

tance, given its functional role and the extent of the neuronal regions involved. Some

of these neuronal mechanisms have been elucidated in humans, by a combined study

of ERPs (via noninvasive electrophysiological approaches), and neuroimaging data, ob-

tained with positron emission tomography (PET) and functional magnetic resonance

imaging (fMRI) [Mangun & Heinze, 1995]. The complete mechanism is quite complex

and still on its way to being revealed. Evidence reported in the above reference and

references therein does suggest, however, the presence of an attentional process that

gives input from selected regions of the visual field a preferential access to higher sys-

tems of stimulus identification. This can be viewed as a modulation of the external
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input. In another example of such modulation, Fries et al. [2001] recorded neurons in

cortical area V4 of macaque monkeys while the animals attended to relevant stimuli.

The animals were also conditioned to ignore distracter stimuli. Neurons activated by

the attended stimulus displayed increased synchronization in the gamma frequency band

(35 to 90 Hz) but reduced low-frequency synchronization (<17 Hz) when compared with

nearby neurons activated by distracters. Those authors suggest that local changes in

synchronization may serve to amplify relevant signals upward in cortical processing.

In our model, there is a dynamical modulation of the input, associated with a so-

called state of attentiveness. The important feature is that the details of the modulator

mechanism selected are dependent on gross features of the input, or on the visual task

to be performed. In a way, the global quality of the input prompts the activation

of a certain type of modulation. In the presence of this modulation, the device then

fine-tunes the evaluation of the visual pattern presented externally.

The pattern recognition system can therefore select an internal state best suited to

process a given type of input. The biological correlate of this property is not necessarily

associated with a deliberate will. We speak of attentiveness in a more general, opera-

tional, sense. Emphasis is put on the dynamical modulation of the input, and not on

the biological mechanism creating or sustaining that modulation. In particular, we do

not concern ourselves with the relation between automatic and controlled processing of

the stimuli, as discussed e.g. in [Schneider et al., 1995]. In other words, the degree of

conscious attentiveness is not specified here. Hillyard & Picton [1979] helped fix the

nomenclature, as summarized in [Başar et al., 1989]:

[They] used the term “selective attention” or simply “attention” as a con-

struct which has a rather broad but circumscribed set of meanings, being

clearly distinguished from nonselective central nervous system (CNS) pro-

cesses such as arousal or alertness. Attentional processes are those CNS

functions which enable perceptual or motor responses to be made selectively

to one stimulus category or dimension in preference to others. Irrelevant

stimuli that are not being attended are either partially or completely rejected

from perceptual experience, entry into long-term memory, and control over

behavior. Furthermore, these authors state that attention refers to selective

aspects of sensory processing. Accordingly all experimental demonstrations

of attention must measure the responsiveness of the organism to more than

one category of stimulus.
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Attentional processes are well characterized in a large psychophysical literature. As

indicated above, their traces can also be found in electrophysiological and neuroimaging

experiments with behaving subjects. A remarkable series of experiments was performed

by Rougeul-Buser and colleagues in the 1970s and 1980s [Rougeul et al., 1974; Rougeul-

Buser et al., 1978, 1983]. These experiments include electrocorticographic (ECoG) ex-

ploration, which is a form of invasive electrophysiology. An array of electrodes is im-

planted over the sensorimotor and proximal parietal cortices in cats and monkeys, in an

arrangement providing good spatial resolution. It is found that the electrical activity of

brain shows different frequency and amplitude according to the behavioral state of the

subject. Furthermore, the cortical regions showing these characteristic frequencies, are

well localized and differentiated from the remaining cortex, that provides a background

of “desynchronized” activity. This indicates that these rhythms are to be distinguished

from the classical alpha waves [Andersen & Andersson, 1968], found in EEG and associ-

ated with a state of relaxed wakefulness. The latter have a more global nature, lacking

a strict spatial localization. Taking e.g. the cat, two distinct situations are studied,

within waking immobility [Rougeul-Buser et al., 1983]. In one case (“expectancy/quiet

waking”), the cat watches a hole in a wall, from which a mouse may come out at any

moment. This originates a focal rhythm close to 14 Hz. In another situation (“watching

prey/focused attention/hypervigilance”), a mouse is inside a perspex box; the cat can

see it, but not catch it. A frequency of around 36 Hz is measured. In both cases, the

animal is motionless, displaying only occasional movements of the eyes or tail. One

can, therefore, associate the measured electrical rhythms primarily with visual stim-

ulus processing; eventually, the visual information will serve to guide motor action.

Occasional trains of 36 Hz activities are also observed when the animal displays an ex-

ploratory behavior at an unfamiliar place. In analogy with human EEG, the 14 Hz and

36 Hz rhythms have been called mu and beta, respectively. These electrical activities

are clearly distinct from the 7 Hz signals (in the cat) accompanying drowsiness, or the

slow waves and spindles of slow sleep [Rougeul-Buser et al., 1978]. Do the synchronized

oscillations, in behaving situations, possess a definite functional role? Or are they an

epiphenomenon? The answer to this question is not known yet. By way of the abstract

model in the present paper, we will show how a synchronized oscillatory state, stabilized

out of a chaotic dynamics, can be a key factor in visual information processing.
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6 Chaotic Categorizer

Our modeling stems from the observation that, in all sensory processing, the first task is

to become receptive to incoming information. Once such an attentive state is reached,

the information to be treated can flow through the specific pathways. In the model

system, switching to one of the alternative attentive states is achieved by stabilizing a

corresponding unstable periodic orbit (UPO) in the dynamics of one of the layers. Let

us note that each layer of the neural network will be in a chaotic dynamical regime if left

uncontrolled. When controlled, a layer will show a sudden increase in spatiotemporal

order. Only one layer is stabilized, and this will be called the attentiveness layer. Each

attentive state corresponding to a given UPO is more suitable to handle a certain class

of information processing tasks. From a dynamics point of view, it is known that an

infinity of UPOs may coexist in a chaotic regime [Ruelle, 1978; Takens, 1980; Auerbach

et al., 1987; Ott, 1993]. In the case of extended systems, such as the network we consider,

these UPOs may show different spatial and temporal symmetries, thus allowing great

operational flexibility. This flexibility is further enhanced by the great sensitivity and

small response times of chaos to small perturbations.

6.1 The model

The chaotic categorizer is based on a device developed by Babloyantz, Sepulchre and

Lourenço (see [Babloyantz & Lourenço, 1994, 1996]) and featured in preliminary form in

the PhD thesis of Sepulchre [1993]. It is made of two interconnected layers (see Fig. 1).

Each layer comprises N × N oscillating elements. The elements of the two layers are

connected in a one-to-one correspondence via links that are active and represent a given

pattern only if an external stimulus activates the first layer [Babloyantz & Lourenço,

1994, 1996]. The details of this process will become apparent in the sequel.

A “pacemaker” P sends micropulses only to layer I, as shown in Fig. 1. In the

absence of external stimuli, the activities of the two layers are independent and both

show spatiotemporal chaotic behavior [Babloyantz et al., 1995]. The device is described

by the following differential equations.

dZjk
d t

= Zjk − (1 + i β)|Zjk|2Zjk + (1 + i α)D
∑
l,m

CjklmZlm + Pjk(t) (1)

dWjk

d t
= Wjk − (1 + i β)|Wjk|2Wjk + (1 + i α)D

∑
l,m

CjklmWlm + γIjk(Zjk −Wjk)

(j, k, l,m = 1, . . . , N).
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The variables Zjk are the complex amplitudes describing the oscillators in layer I,

whereas the Wjk refer to the corresponding variables in layer II. At a mathematical

level, Eqs. (1) can be related to the complex Ginzburg-Landau equation describing oscil-

lating reaction-diffusion systems. If we ignore the Pjk and γIjk(Zjk −Wjk) terms, what

remains in Eqs. (1) corresponds exactly to the discretization of the complex Ginzburg-

Landau equation on each of the layers (taking into account the choice in Eqs. (2)). Let

us note that the evolution equation for each of the complex variables can effectively be

decoupled into two equations for two real variables. The first two terms, a linear and a

cubic one, provide a simple description of periodic oscillations of a single oscillator. The

summation terms describe a diffusion coupling, in the form of a discretized Laplacian.

Equations (1) are generic as they constitute the normal form of an oscillatory network

near a supercritical Hopf bifurcation. Other models can describe certain aspects of cor-

tical dynamics in finer detail. That is the case of the well-known FitzHugh-Nagumo

model for excitable neurons [FitzHugh, 1961, 1969], which also features diffusive cou-

pling. Both the Ginzburg-Landau and the FitzHugh-Nagumo equations provide local

oscillations via the first (non-coupling) terms. However, the oscillations displayed by the

Ginzburg-Landau equation are not akin to the ones featured by the FitzHugh-Nagumo

equation in the usual dynamical region of interest of the latter. Our use of the Ginzburg-

Landau equation should be viewed as describing neuronal population oscillations in a

very broad sense, without the aim of uncovering the actual mechanisms that sustain

local oscillations.

The terms Pjk(t) represent the influence of the pacemaker P on each oscillator of

layer I, whereas the terms proportional to γ take into account the forcing of layer II

by layer I. We consider only first-neighbor interactions, defined by∑
l,m

CjklmZlm = Zj(k+1) + Zj(k−1) + Z(j+1)k + Z(j−1)k − 4Zjk . (2)

The parameters α, β, D and γ are real-valued. α and D reflect the coupling strength

between units. The complete list of fixed parameter values is: N = 9, α = −10, β = 2

and D = 1.3. The value of γ is dependent on the particular experiment. The boundary

conditions are of the zero-flux type.

The information to be processed is sent to the device via a binary matrix Ijk. If

Ijk = 0 then the connection between elements jk of the two layers is nonexistent.

However, if Ijk = 1 then the two layers are connected via elements jk, and γ describes

the strength of the binding. Moreover, in this model if Pjk(t) ≡ 0 then γ = 0. Thus, it is

only when the pacemaker P is active, and therefore a periodic orbit has been stabilized in
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layer I, that there is entrainment of the second layer by the first layer. The entrainment

can be total if all Ijk = 1, and it is partial if only some of the Ijk are nonzero. Moreover,

the dynamics of the second layer is critically dependent on the parameter γ. If γ = 0

then the two layers have independent dynamics, whereas large values of γ with a large

number of “on” links representing incoming information, can synchronize the activities

of the two layers.

If Pjk(t) = 0, γ = 0, N = 9, α = −10, β = 2 and D = 1.3, then both layers

follow spatiotemporal chaotic activity. The dynamics of each network separately could

be viewed as evolving on a chaotic attractor embedded in a 2(N×N)-dimensional space.

The nature of this spatiotemporal chaotic regime is elucidated namely in [Babloyantz

et al., 1995]. In the same article, it is shown how a number of UPOs can be stabilized

from the chaotic attractor. In this case, the process consists in an extension of the well-

known Ott-Grebogi-Yorke control algorithm [Ott et al., 1990] to high dimension. Under

this type of control, the chaotic system is acted upon by only small-sized perturbations.

Four orbits are stabilized, displaying different spatiotemporal symmetries. Here, control

of chaos is symbolized by the pacemaker P applying micropulses to layer I of the device.

Hence, the nature of the stabilized orbit is a function of the action performed by P .

6.2 Attentive states

Three different orbits, exhibiting spatiotemporal structure, are displayed in Fig. 2. An-

other orbit, C0, could also be stabilized but is not represented in the figure. It corre-

sponds to the bulk oscillation of the network, where all the oscillators are in phase. Its

period is T = π. Let us summarize the main features of the depicted orbits. Although

the orbits C1, C2 and C3 are periodic at the level of the 2N2-dimensional dynamics, when

viewed at the network level they exhibit spatiotemporal structure. Phase differences are

seen between individual oscillators of the network. The orbit C1, with T=13.66, shows a

rotating wave activity of the amplitude of individual units around the central unit of the

network. The amplitude of the latter is zero; that is, we are in the presence of a “phase

defect”. In this case, the rotation is clockwise. The orbits C2 and C3 show stationary

waves of different symmetries. Orbit C2 shows a polar structure. At a given moment,

the amplitude is higher on one side of the network and lower on the opposite side; the

amplitude distribution then reverses. The complete alternation has a period T=15.38.

In C2, the activity is antisymmetric with respect to the reflection around a median and

constant along any direction parallel to that median. Due to the square geometry of
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the network, a similar solution exists with a symmetry axis perpendicular to the one

seen in Fig. 2. In orbit C3, spatiotemporal phenomena show a different structure. The

activity is high in units along one of the diagonals and near the corners of the network,

whereas the oscillators on the other diagonal show lower activity close to the corners.

Again, the situation changes periodically. Here, the period is T=2.25. This orbit shows

an invariance with respect to reflection around the two diagonal axes of the square. In

principle, an infinite number of other periodic orbits might be found in this system.

Let us go back to the device as shown in Fig. 1, and describe how it can process

information. The total input into the system is divided into two parts: the pacemaker

P , which emits the appropriate micropulses, and the input representing the pattern

to be processed. Thus, the information is captured on the first layer and on the links

relating the latter to the second layer. The response of the second layer defines the

output of the system. The pacemaker P , according to the nature of the information to

be processed, stabilizes the first layer into one of the orbits described in Fig. 2. Let us

recall the analogy with sensory processing in the brain, where the first act is to become

attentive to an external input. In accordance, these orbits correspond to the so-called

attentive states of the device. Now the device is ready for processing the input. The

latter is imprinted in the links Ijk, which are nonzero only if they represent an active

portion of the input. The attentive state, associated with a well-defined spatiotemporal

structure, entrains the output layer according to the number and location of “on” links

in the device. Thus, each input pattern generates a specific spatiotemporal activity in

the second layer. The resulting notion of information processing is not far from the one

presented by Jirsa [this issue], who argues that input information becomes relevant when

it alters qualitatively a given dynamical state of the system. Such qualitative changes

are indeed observed in our model.

6.3 Output functions

The dynamics of the output layer can remain chaotic, or become periodic or at least

more regular. In order to discriminate between various inputs, we need to quantify the

spatiotemporal activity of the response layer. We are interested in the differential change

in the network coherence of layer II as a result of the input. To assess it, a global eval-

uation of the activity of that layer is performed. Finer details of the full spatiotemporal

activity obtained in layer II might also be relevant, but they were not judged necessary

for the present purposes. Indeed, a balance must be obtained when choosing the level of
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detail of the observables, in view of both desired pattern discrimination and information

compression capacities. In our case, the amount of information compression when read-

ing a global variable as output does not compromise performance in terms of pattern

categorization. We consider most often the average value of the squared amplitude of

the forced layer 〈|W |2〉(t) as the output function. Here, the brackets 〈 〉 denote a space

average over the entire network, and not a time average. We have also computed other

quantities such as the mean value of the real part of W over the network. The time

evolution of the cross-correlation function between the two layers was also computed. It

is defined as

C(t) = Re
∑
j,k Zjk(t)Wjk(t)(∑

j,k |Zjk(t)|2
)1/2 (∑

j,k |Wjk(t)|2
)1/2

. (3)

In our simulations, the function 〈|W |2〉(t) seemed in general more appropriate for static

pattern classification and circular motion discrimination than the other output func-

tions. Notwithstanding, in our work the cross-correlation function (3) was useful in the

evaluation of linear motion.

7 Pattern Processing

The chaotic categorizer of Fig. 1 can be used as a pattern recognition device as well as

a motion detector. The ability of the device to perform a given task is a function of

the attentive state that is generated by the device under the action of the input to be

processed. Visual processing tasks could be grouped by their symmetries, into different

possible classes.

In general terms, with the categorizer the orbits C2 and C3 are suitable for pattern

recognition and also for detection of linear motion. As will be seen in the sequel,

however, C2 and C3 do not perform equally well with all possible patterns. C3 may be

totally inoperative in a task correctly handled by C2. On the other hand, orbit C1 leads

to detection of clockwise and counterclockwise motion.

7.1 Static pattern discrimination

Basic orientation task

We start with the device in the attentive state C2. In this state, the stabilized orbit

in the first layer shows a polarity that oscillates in time. At a given time one may see

a high activity at the right-hand side of the network while the activity is at its lowest
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level at the left-hand side. The situation reverses periodically. In this attentive state,

the device is presented with a bar that activates the nine middle links between the two

layers and is parallel to the direction of polarity of orbit C2 (see Fig. 3 (a)). When these

links are “on”, there follows an entrainment of layer II by layer I. The value of the

space average 〈|W |2〉 is a measure of this entrainment and is shown in Fig. 4. One sees a

constant value of 0.68. In another experiment, the bar is presented again to the middle

links of the network but perpendicularly to the polarity of C2 (shown in Fig. 3 (b)). The

response of the system as seen in Fig. 4 is irregular, with high amplitude and a decreased

mean value. If the bar is presented along the diagonal (as in Fig. 3 (c)), the response is

periodic with a time averaged value of 0.53 (see also Fig. 4). Hence, the device when in

the attentive state C2 can discriminate between different orientations on the plane.

If the same type of experiment is conducted in the attentive state C3, the device

can only discriminate between a bar perpendicular to the side of the network and one

presented along the diagonal. This property stems from the fact that orbit C3 has

a reflection symmetry with respect to the two diagonals and therefore the two bars

perpendicular to the side of the network entrain layer II in the same manner. Because

of the quasi-circular symmetry of orbit C1, the corresponding attentive state is not

suitable for the type of pattern processing mentioned above.

Symbol discrimination

We consider two different patterns, + and × (see Fig. 5). Figure 6 shows the output of

layer II when these two patterns are presented to the system, when it is in the attentive

state C2. We see that the two patterns are discriminated by the system. The same is

true for the attentive state C3 (see also Fig. 6). However, we notice that the form and

the amplitude of responses for a given pattern are not identical for the two attentive

states. Figure 7 shows a longer plot of the network’s response to pattern × when in the

attentive state C2 (same color coding of the time-series as in Fig. 6). It reveals bimodal

oscillating behavior, not strictly periodic but nonetheless with a major periodicity. Such

a large time-window as in Fig. 7 might be too long for pattern processing in a real-time

setting. We have actually been considering smaller time-windows (with 120 time units)

for pattern discrimination. Nevertheless, we note that the response to pattern × when

in the attentive state C2 is markedly different from all other responses on any finite

time-scale. Thus, pattern discrimination remains effective.

Let us now perform another simple experiment, that illustrates the role of symmetries

in finding the adequate attentive state for a given task. We consider a new pair of
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patterns, N and Z (see Fig. 8). The first letter can be recovered by a 90 ◦ rotation of

the second. From symmetry considerations and the result of experiments with single

bars, we expect that the attentive state C2 will discriminate between patterns N and

Z, whereas the state C3 will give the same answer for both patterns. Our simulations

confirmed these conjectures. We present only the result of the N/Z discrimination with

the attentive state C2. Each of these patterns originates its own response, as displayed

in Fig. 9.

7.2 Motion detection

Circular motion

The device of Fig. 1 is able to discriminate between clockwise and counterclockwise

rotation. To this end we assume that the attentive state of the system is achieved by

the stabilization of the first layer into orbit C1, which shows a phase rotation of period

T=13.66 (see Fig. 2). As we have stated already, in this example the phase motion of the

stabilized orbit is clockwise. Because of the phase rotation of the orbit, the attentive

state C1 is able to discriminate between clockwise and counterclockwise motion of a

pattern presented to the system.

To see this, let us consider the motion of a small object that activates three links

at a time. In this experiment, γ = 30. As the object moves, at each step only the

next neighboring link is activated and one of the previous “on” links is deactivated.

Thus, the successive activation and deactivation of links represents a circular motion.

Figure 10 illustrates this motion. In our example, the diameter of the circular trajectory

spans over five network units and the rotation period of the object varies from T = 6 to

T = 25.

In a first experiment, when in the attentive state C1, the device perceives the clock-

wise motion of the object which is imprinted in the links. The response of layer II is

shown in Fig. 11 for a period of rotation of the object of T = 18.96. The value of the

space average of the squared amplitude 〈|W |2〉 = 0.65 is almost constant in time. How-

ever, at very fine resolution, small amplitude oscillations are seen around this value (not

apparent in Fig. 11). The same response is seen for all values of the rotation periods

considered. Thus, in the attentive state C1, the device is not sensitive to the speed of

clockwise motion of the object.

Presently we reverse the direction of rotation of the object, and keep all other con-

ditions as above. The response of layer II to counterclockwise motion is very different

21



and is sensitive to the rotation speed. For T = 6, the motion generates a chaotic re-

sponse 〈|W |2〉 around a time-averaged value of 0.5. As the speed decreases, the time

behavior of the response becomes less and less chaotic and gradually a periodic output

function appears. Figure 11 shows the responses associated with the counterclockwise

motions of periods T = 12.48 and T = 18.96. The corresponding time-averaged values

of 〈|W |2〉 are 0.54 and 0.57, respectively. For the range of T considered, the value of

〈|W |2〉 corresponding to counterclockwise motion is always smaller than that for clock-

wise motion. The time-averaged value and the shape of the response in the case of

counterclockwise motion are sensitive to the speed of rotation. If we restrict the range

of T to 12 < T < 25, we observe that the time-averaged value of 〈|W |2〉 is an increasing

function of T . This function is plotted in Fig. 12. Thus, in this range not only the device

discriminates between clockwise and counterclockwise motion, but it also evaluates the

speed of counterclockwise motion.

For slow motions, T > 26, and very fast motions, T < 0.5, the response to clockwise

and counterclockwise rotation is practically identical. A difference may be seen only in

the fine structure of the 〈|W |2〉 output function. Thus, for these velocities the device

is “blind” with respect to the direction of rotation. The responses in these ranges are

similar to the response to clockwise rotation for 6 < T < 25 (see Fig. 11). For values

of 0.5 < T < 6, the response of the system does not follow the smooth change that was

described above.

A static object could be considered as rotating with period T → ∞ and thus it is

perceived in the same manner as other objects rotating with long periods — that is,

T > 26.

Linear motion

Motion detection is not limited to orbit C1. The attentive states corresponding to orbits

C2 and C3 are able to perceive a moving object and discriminate between “perpendicular”

and “diagonal” motions.

Let us consider the attentive state C3 and a moving object that activates only one link

at a time. In one case, the motion starts from the middle of the boundary of the device

and continues along a straight line perpendicular to that boundary (see Fig. 13 (a)). In

the other case, the motion is along the diagonal (represented in Fig. 13 (b)). Contrarily

to Fig. 10, where the rotating pattern settles in a permanent motion, here the object

performs a single passage through the visual field. Therefore, the features of the ob-

ject (size, direction, speed) must be apprehended quickly by the device. Although the
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system’s response depends also on the object’s size and speed, for the purpose of this

discussion we consider only the direction dependence. In this experiment, we choose

the cross-correlation function C(t) defined in Eq. (3) for monitoring. The response of

the system is markedly different for each of the two cases displayed above. Figure 14

provides a comparison between the two responses. We see that the perpendicular mo-

tion provokes a “lasting impression”, whereas, for the diagonal motion, there is a faster

return to a high-variance signal. The difference can also be appreciated with a plot of

the (running) variance of C(t), as in Fig. 15. Although these are transient responses,

we verified that their form is reproduced in a consistent manner, for several indepen-

dent numerical simulations. As expected, opposite directions of motion, along any one

of the paths in Fig. 13, cannot be distinguished. With orbit C3 the two perpendicular

orientations cannot be distinguished, and the same happens regarding the two diagonal

ones. The distinction between the two perpendicular orientations is possible only if the

device is in the attentive state C2. The latter is also unable to discriminate between

the two opposite directions along any one of the two diagonals as well as along each of

the two perpendicular axes. We note the importance of the time-scales involved. The

choice of the UPO to stabilize, for a given processing task, must depend on spatial sym-

metries but also on temporal resolution. For instance, in the linear motion detection

that we have been discussing, the spatial distribution of the activity of orbit C3 oscillates

99÷2.25 = 44 times during the crossing of the visual field by the moving object. For the

same speed of the object, orbit C2 will only “flap” 99÷15.38 = 6.4 times during pattern

presentation. This may imply considering the relative phase between the moving object

and the stabilized orbit, and its influence on the form of the output functions. This

problem disappears whenever the frequency of the orbit stabilized in layer I is high

enough, compared to the speed of the dynamical pattern. In this manner, the forcing

of layer II by layer I can appear as an averaged process at the slower time-scale of the

moving object. The experiment of Figs. 13 to 15 was performed in these conditions.

8 Discussion

We have shown that a simple device, made of two interconnected layers of oscillators and

featuring spatiotemporal chaotic dynamics, is capable of pattern selection and motion

detection. UPOs are stabilized from the chaotic attractor, placing the system into a

state of attentiveness. The system is then ready for pattern processing. The attentive

state selected depends on general features of the visual pattern presented, or on the
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symmetry class of the processing task to be performed. For a given task, the periodic

orbit that is stabilized is the one with the most adequate spatiotemporal symmetry.

The two-layer architecture and neural connectivity in the model are reminiscent

of brain anatomy, although largely simplified. Here, we mean to bring out essential

dynamical features, and not to produce a detailed model of visual processing in the brain.

An attentive state is encoded in the activity of layer I, where an UPO is stabilized. The

patterns to be processed are encoded in the links between layers. A response or output is

measured from the activity of layer II. For the same UPO stabilized in layer I, different

visual patterns modulate the forcing of layer II by layer I in different manners, thus

originating different responses at the level of layer II. This allows that the patterns

be discriminated. We can take the alternative view: for the same pattern presented to

the system, different UPOs stabilized in layer I modulate the action of that pattern, on

layer II, in distinct ways. From the ensemble of UPOs available, a symmetry evaluation

reveals the orbit that enhances certain features of the visual pattern. The processing of

the pattern can then performed by measuring some observable of the forced dynamics

of layer II. That is, the gross features of the input and processing task constrain the

type of modulation. Following that, fine-tuning of the response may take place.

Especially interesting is the case of motion evaluation. Circular motion detection

and angular velocity measurement within our model might ultimately be considered

a stationary process (after transient periods have elapsed), or at least time-periodic.

However, in the case of linear motion with a single passage through the visual field,

the transient is the process (see Figs. 13 to 15). Thus, a fast and reliable judgment

must be made about a moving stimulus under far from optimal conditions. Such type

of judgment is of great survival value if one is to consider biological implications. We

observe that the model contains an operation mode capable of this type of processing.

We focused on general symmetry considerations in our discussion of pattern evalua-

tion. This does not preclude that further detailed analytical study of the mathematical

model, e.g. regarding the response dynamics of layer II, be performed. At this point,

however, such a study was not essential to the main cognitive and computational aspects

of the modeling.

The UPOs were stabilized with the help of an algorithm similar to the one pro-

posed by Ott, Grebogi, & Yorke [1990]. This algorithm can become quite involved, for

a spatially extended system such as the one considered [Babloyantz et al., 1995]. To

keep numerical integrations at an affordable level, in this example only three orbits with

spatiotemporal structure and the bulk oscillation were stabilized in the first layer. Yet,
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in principle there is an infinite number of UPOs in a chaotic attractor that could be

stabilized. With the stabilization of higher-order orbits one would expect more intricate

symmetries or more complex spatiotemporal phenomena, especially if larger networks

are considered. Thus, one would think that such a chaotic device could process a great

variety of information relative to static as well as moving objects. This “reservoir” of

behaviors, featured by chaotic dynamics, could be viewed as a form of dynamic opera-

tional memory. The system stores, in the form of links or synapses between oscillators

or neurons, the “algorithm” from which the different spatiotemporal activities are gen-

erated. The activities themselves need not be stored. This results in an economy of

processes that may also be advantageous biologically.

Due to this mixture of behaviors found in a chaotic attractor, the instantaneous

state of the system is never too far from a desired behavior. Furthermore, a targeting

procedure [Shinbrot et al., 1992; Kostelich et al., 1993], taking advantage of the sensi-

bility of chaotic dynamics to small perturbations, can drive the system very rapidly into

a desired orbit. Acting upon the system via small perturbations can also represent a

technological or biological advantage. The gross physical or biochemical parameters of

the system need not be altered. Let us consider the brain once more. If the change of

state was based on synaptic change (via e.g. protein synthesis or degradation), it would

be energetically costly, and often not fast enough for the required processing.

The high flexibility of chaotic dynamics manifests itself on the easy switching of

the attentive state, and also on the wide range of responses of the output layer, layer

II. The latter features a dynamics that, when unperturbed, shows a chaotic regime

similar to the one of the up-most layer (but mutually independent, in the absence of

stimuli). Upon encoding of a stimulus in their mutual links, layer II gets forced by

layer I. The ensemble of possible responses of layer II is used to discriminate between

different stimuli. If the unperturbed dynamics of layer II consisted in, say, a stable

limit cycle, a relatively strong forcing would be required to provoke a noticeable change

in the response dynamics.

Information is processed under the form of complex spatiotemporal activities, mak-

ing our approach divergent from classical neural network theory. Furthermore, global

observables of the dynamics are measured, making for a collective computation. The

device presents a high level of parallelism. Apart from increasing processing speed, this

enhances fault tolerance and pattern completion. The failure of individual processing

units has a reduced effect on the ensemble activity of the network. On the other hand,

small variations of the pattern presented to the device do not alter the system’s response
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qualitatively. One can speak of an “analog” type of processing, as opposed to a “digital”

one. These aspects are most important to biological systems. The latter are built upon

processing elements that are not fully reliable individually. In addition, they often have

to deal with corrupted or ambiguous input, which prevents a direct comparison with

a “library” of template patterns. The volume of the memory required to encompass

all possible configurations of the presented stimuli, would have to be exceedingly large.

There is therefore an advantage in grouping the stimuli into adequate classes with re-

spect to a number of features (orientation, size, or more complex properties). In our

study of the model, we tested the effects of small to moderate distortions of an “ideal”

input pattern. The stronger distortions included totally deleting a (reduced) number

of active units from the pattern, and perturbing the position or orientation of bars in

the visual field. With the present setting, we found that the system only allows small

perturbations of the pattern, in order to maintain the same qualitative response. We

recall that this response is a one-dimensional signal that has itself several distinct fea-

tures, all of which must be consistently preserved: average value, amplitude, frequency

spectrum, and other statistical quantities if the response itself turns out to be chaotic.

Upon perturbation of a pattern, the features of the response signal are not all altered in

the same proportion. This allows generalization over a class of patterns that, although

differing moderately in some feature of the response that they elicit, are very close with

respect to some other feature of that response. We believe that a modest tolerance

capacity with respect to pixel corruption or distortion, found in the device, is caused

by the smallness of the network that was investigated numerically. The visual field is

covered by only 9×9 sensitive “cells”, which originates a discretization error. We expect

that larger networks will allow more graceful degradation.

The dynamical character of the computation makes pattern evaluation a robust pro-

cess. In addition, dynamical computation of this type is most suitable for handling

patterns that are themselves dynamic. Under our proposed paradigm, a common neu-

ronal population participates in multiple activities, that is, provides the substrate for

different dynamical regimes that are suitable for different types of stimulus processing;

switching from one dynamical regime to another is fast and requires but minimal per-

turbation of the system. This is to be contrasted with the case where one would have

several “dedicated circuits”, each dealing with its own class of stimuli. We propose that

a dynamical modulation of input patterns, by spatiotemporal cortical activity, need not

be restricted to visual processing. Due to the ever-changing nature of the external world

perceived by the different sensory modalities, such a modulation may often be essential
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for stimulus processing. Indeed, information processing can only occur if the basic regu-

larities of the stimuli are first extracted or even anticipated. As noted, these regularities

must also be extracted from dynamic stimuli.

In recent years, several researchers have reported the presence of chaos in the brain.

This is based on the evaluation of time-series of electrophysiological activity, obtained

with EEGs and other methods [Babloyantz et al., 1985; Babloyantz & Destexhe, 1986;

Babloyantz, 1991; Gallez & Babloyantz, 1991; Rapp et al., 1986; Röschke & Başar,

1988]. In addition, deterministic chaotic models of cortex originate patterns of activity

akin to the ones observed physiologically [Destexhe & Babloyantz, 1991; Lourenço &

Babloyantz, 1994]. The degree of determinism observed in the biological time-series,

however, remains an open question. There is also an ongoing discussion as to the

stationarity of the measured time-series. It is clear that the time-scale of most brain

processes is a short one. Nonetheless, it must be accepted that the brain is able to

modulate its degree of temporal stationarity, according, e.g., to the sleep-wake cycle

or eventual requirements of information processing. The picture of a single dynamical

attractor must eventually be abandoned, in favor of a multiplicity of attractors related

in an intricate manner. Regardless of how it is understood, chaos may be a normal

operating mode in the brain, with the advantages discussed above.

We focused on the importance of bringing the system into a state of attentiveness.

This is a necessary condition for information processing to take place. Yet, we did not

engage in the discussion of awareness and conscious attentiveness. Indeed, we discuss

visual stimulus processing that might happen at a very primary stage, say, in area V1

or one of the areas close to it. It has been argued that the neuronal activity in V1 does

not provoke any direct feeling of awareness [Crick & Koch, 1995]. If this is confirmed,

then the placing of V1 in a dynamical state adequate for stimulus processing might not

be apprehended immediately at a higher, “conscious”, level. This does not preclude

“top-down” influences over early processing stages, conscious or otherwise. These influ-

ences might result in the type of dynamical modulation discussed above. The attentive

state can be prompted by external or internal cues. Brain states with different levels

of dynamical coherence are detected in physiological time-series. Episodes of neuronal

coherence can originate the so-called sensory-evoked and event-related potentials (SEPs

and ERPs, respectively). These can appear, for instance, in EEG, MEG, and ECoG.

These potentials arise from a background of desynchronized activity, that corresponds

to a signal of low amplitude and high frequency. In the model that we investigated, the

“desynchronized” state is given by the dynamics of the chaotic attractor. Based on evi-
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dence from experimental studies [Rougeul et al., 1974; Rougeul-Buser et al., 1978, 1983],

the coherent episodes are associated with states of attentiveness. In a study involving

different sensory modalities [Başar et al., 1989] (not restricted to vision), the authors

report on phase-ordered rhythmic patterns in human EEG, with frequencies close to

10 Hz, during periods of attended visual or auditory stimuli. The location of the rhyth-

mic foci is well determined, and depends on the sensory modality. These patterns are

highly reproducible and are denoted as “quasi-deterministic EEG”. Furthermore, the

authors associate them with “cognitive microstates” of the brain. Such states can be

reached very rapidly. We proposed that some sort of chaos control may act to stabilize

the dynamics of the brain into one of the synchronized states required for stimulus pro-

cessing and mechanical action guidance. We do not specify the physical or biological

mechanism responsible for the control. One could suspect that thalamo-cortical inter-

actions are involved in some degree, due to the double role of “relay” and “pacemaker”

attributed to the thalamus. However, this remains a speculative issue. Chaos control

happening in the brain may not be as sharp a process as the one achieved in physical

devices and theoretical models. SEPs and ERPs are not permanently locked processes.

In the model, the synchronized states also have a finite time span, if thermal noise is

included into the system. We note that there is no harm in the system abandoning the

vicinity of a stabilized orbit, if it has stayed close to the orbit long enough for infor-

mation processing to take place. In the brain, such “cognitive microstates” (cf. [Başar

et al., 1989]), corresponding to Lehmann’s momentary “electric landscapes” [Lehmann,

1989], could last from 20 to about 500 msec.

Synchronization in the model happens in an architectonically distinct part, layer I.

Layer II may then respond by becoming also coherent, or by showing diverse irregu-

lar behaviors, depending on features of the stimuli. Experiments with behaving cats

and monkeys also show that synchronization arises in cortical areas that are precisely

localized in space, functionally and anatomically [Rougeul-Buser et al., 1978, 1983]. It

would be interesting to assess the influence of these areas over the ones that are closest

to them, in the visual information processing pathways. This could help confirm the

existence of the dynamical modulation of the activity of a neuronal population, by the

activity of another population. As has been suggested, it is possible that this inter-

action is laid out in a topographically oriented manner, preserving properties of the

visible scene deep inside cortical pathways. Experimental research could also bring out

biological mechanisms that permit the encoding of spatiotemporal patterns in the links

between layers, via e.g. local synaptic enhancement. We remark that no plastic change
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need actually take place at synapses or axons, which would eventually make the stim-

ulus reading process too slow to be effective. Rather, something like a controlled gate

might be present at each link site. If we view this as a sort of logical AND operation

(more precisely an analog product), then one argument for the AND would correspond

to external stimulus conveyed by a sensory cell whereas another argument would come

from the so-called layer I and would be combined via a simple summation (with the

correct signs) with the activity of layer II. All these operations, including the AND,

are known to be within the reach of biological neurons.

The model that we investigated leaves out a number of important properties of neu-

ronal populations. Neurons are not oscillators. However, groups of neurons can show

oscillating electrical activity, sustained by the exchange of excitation and inhibition.

Actually, in some cases, single neurons have been reported to display auto-oscillating

properties [Llinás, 1988]. These are associated with the rhythmic firing of action poten-

tials independently of synaptic input. However, at the level of description of, say, the

post-synaptic potential, this may not even correspond to a clear oscillation. In any case,

the neuronal rhythmic dynamics is only grossly approximated by the Ginzburg-Landau

oscillator.

Neuronal coupling is far from the simple linear connectivity considered in this paper.

Lourenço & Babloyantz [1994] have shown that control of spatiotemporal chaos is also

possible with models describing more adequately the cortical tissue, incorporating exci-

tatory and inhibitory neurons. In that study, passive and active membrane properties

were considered, as well as a highly nonlinear coupling and delays in signal transmission

between neurons. However, only rather homogeneous behavior could be stabilized in

the network. In a forthcoming paper, we shall deploy more sophisticated methods to

show that spatiotemporal dynamics with more subtle symmetries can also be stabilized

in these networks which have a stronger biological appeal.
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in: P. Rakić & W. Singer, eds., Neurobiology of Neocortex pp. 69–99 (Wiley).

Wallenstein, G., Kelso, J., & Bressler, S. [1995] “Phase transitions in spatiotemporal

patterns of brain activity and behavior” Physica D 84, 626–634.

Wu, J.-Y., Cohen, L., & Falk, C. [1994] “Neuronal activity during different behaviors in

Aplysia: A distributed organization?” Science 263, 820–823.

Young, M. & Yamane, S. [1992] “Sparse population coding of faces in the inferotemporal

cortex” Science 256, 1327–1331.

35



Figures

P

I

II

Figure 1: Chaotic categorizer. The pacemaker P sends micropulses to layer I, thus stabilizing

one of the unstable periodic orbits. The oscillators of layers I and II are connected with a

one-to-one correspondence. The distribution of active links (solid arrows) and inactive ones

(dashed arrows) is determined by a pattern to be processed. A response is measured from

output layer II.
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Figure 2: Snapshots of network activity Z corresponding to the unstable periodic orbits C1,

C2 and C3 with periods T = 13.66, 15.38 and 2.25, respectively. The vertical axes span the

interval [−1.2, 1.2]. Parameter values are N = 9, α = −10, β = 2 and D = 1.3. For orbit C1,

arrows show the direction of rotation of the wave of activity.

(c)(a) (b)

Figure 3: Three different orientations for a spatial pattern consisting in a straight bar. The

device can discriminate between these orientations.
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Figure 4: Space average of the squared amplitude, 〈|W |2〉, measured from layer II. Orbit C2

is stabilized in layer I. The three patterns of Fig. 3 are presented to the device, respectively:

(a) a bar activating the nine middle links and parallel to the direction of polarity of C2 (red

line); (b) a bar activating nine links perpendicularly to the direction of polarity (blue line);

(c) a bar activating nine links along one of the diagonals of the network (green line). γ = 2.44

and all other parameters are as in Fig. 2.

Figure 5: A pair of symbol patterns to be discriminated by the categorizer.
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Figure 6: Responses 〈|W |2〉(t) of the output layer in the presence of the patterns + and ×.

With orbit C2 the response is shown as a green line for pattern + and a magenta line for

pattern ×. When orbit C3 is used, the response corresponding to the pattern + is shown as

a red line, whereas the blue line is obtained with the pattern ×. Parameter values are as in

Fig. 4.
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Figure 7: Plot of 〈|W |2〉(t) of the output layer in attentive state C2 and in the presence of

pattern × (same color as in Fig. 6), but with a longer time-span than in Fig. 6. Parameter

values are as in Fig. 4.

Figure 8: Another pair of symbol patterns to be processed.
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Figure 9: Responses 〈|W |2〉(t) showing a discrimination between patterns N (blue line) and

Z (red line). Orbit C2 is stabilized in layer I. Parameter values are as in Fig. 4.

1 2 3 4 5 6

7 8 9 11 1210

Figure 10: “Motion picture” showing the successive positions occupied by the active units of

a moving pattern. After frame 12, the motion continues at frame 1, originating a continuous

loop. The result is a circular motion. The period of rotation is varied according to the needs

of each experiment. Both directions of rotation are considered, but the present figure shows

only the clockwise direction.
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Figure 11: 〈|W |2〉(t) computed in the attentive state C1 for a clockwise (red line) and a

counterclockwise rotating pattern (blue line), with period of rotation T = 18.96. If the

object rotates in the counterclockwise direction with a period T = 12.48 (green line), a higher

amplitude response with a lower time-average value is seen. γ = 30; other parameters are as

in Fig. 2.
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Figure 12: Dependence of the average (1/t)
∫ t

o〈|W |2〉(τ) dτ on the period of rotation T of the

pattern. The device operates in the attentive state C1. Here, the direction of rotation of the

object is counterclockwise. The clockwise motion does not display this dependence. See text

for the details.

(a) (b)

Figure 13: Patterns of motion along straight lines, in two different directions. The arrows

indicate the point of entry of the moving object in the visual field, and also the direction of

the motion. Each link is activated during eleven time units. Therefore, in both cases, the

object remains inside the visual field during 11× 9 = 99 time units.
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Figure 14: Discrimination between two different directions of linear motion. Shown is the

time-variation of the cross-correlation C(t), given by Eq. (3), for the two cases illustrated in

Fig. 13. The device operates in the attentive state C3. (a) and (b) correspond to Fig. 13 (a)

and Fig. 13 (b), respectively. In both cases, the time-window of observation is larger than

the period that the moving object spends inside the visual field: the object enters the scene

at t = 11 and leaves it at t = 110. γ = 25; other parameters are as before.
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Figure 15: Running variance of the time-series in Fig. 14, distinguishing between two different

directions of linear motion. (a) and (b) correspond to perpendicular and diagonal motions,

respectively. The variance is evaluated within a running time-window measuring eight time

units.
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