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Abstract. A model of biologically inspired natural computing is re-
viewed. Recurrent neural networks are set up so as to take advantage of
emergent spatiotemporal chaotic regimes. Seminal work explaining the
emergence of complexity in initially homogeneous physical and biological
systems can be attributed to Alan Turing himself. Dynamical complexity
provides a variety of computational modes and rich input-output rela-
tions in a dynamical perturbation scheme. Our model is initially proposed
as an ’operational’ device most suitable for the processing of spatially
distributed input patterns varying in continuous time. Formalizations
leading to hypercomputation can be envisaged.
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1 Introduction

There is an obvious similarity between our title and that of Barry Cooper’s
recent article [1] concerning computing with natural paradigms as well as the
related subject of computing by Nature itself. But we specifically intend to pay
homage to Alan Turing’s efforts in understanding computation taking place in
that special natural system which is the brain. Thus our focus here is on that
particular system which we take as inspiration for a computing paradigm.

We would also like to bring out a third way by which Turing —albeit prob-
ably unintentionally— may have contributed to the field of computing in the
whole. The first ’Turing way’ needs little discussion: it is embodied in the Tur-
ing machine and is practically synonymous with classical computation. The sec-
ond Turing way has been appreciated only recently and can be viewed as an
early proposal of connectionist methods, in the form of so-called ’unorganized
machines’ [2] (see also the review of Turing’s anticipation of neural networks
in [3]). It must be said that this incursion of Turing into connectionism went
largely unnoticed. In these first two ways, Turing sought analogues with human
reasoning. In doing so, he actually tried to capture some aspects of the brain’s
workings.
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The aforementioned third way can only now begin to be appreciated in view of
the growing interest in natural computing paradigms and methods. The scientific
community, from both the natural and the computational sciences, regards an
increasing number of ’naturally’ occurring phenomena as qualifying as computa-
tion. These may provide additions to the collection of computational paradigms
where e.g. the neural networks referred above have a more established status.
The apparent lack of a formal definition of computation that might encompass
all the alternative forms of ’unconventional’ computing, as compared to the solid
definitions of classical computability, has been a matter of criticism. The formal
difficulties can sometimes be compensated by the promise, or actual demonstra-
tion, of practical applications where some operational advantage is obtained as
compared to the operation of classical digital machines.

Our approach in this paper will be of the latter, ’operational’, kind. This
does not mean we cannot briefly point e.g. to the hypercomputational possibil-
ities of the model(s) under discussion. ’Hypercomputation’ is used here in the
sense of computing non-Turing-computable functions, which is something we re-
gard as theoretically possible with the models we propose. Our work is within
the context of dynamical systems, which does allow a number of possible rea-
sonable formal definitions of continuous-time analog dynamical computation, be
it exact computation or otherwise. Generalization of classical concepts such as
input data, memory, program, and output, may be less than obvious, but are
nonetheless possible. Notwithstanding, such formalization will not be attempted
in the present publication.

At this point we return to Turing’s third contribution to computation, which
at the time appeared to have no direct implication for computation itself. Tur-
ing’s last ground breaking contribution to science, shortly before his premature
death, was his attempt of explaining morphogenesis in living systems. To be
technically more precise, it was actually an attempt of explaining the presence
of spatial patterns in living tissue, and the slow time-variation thereof. One sem-
inal paper, “The chemical basis of morphogenesis”[4], was published during his
lifetime. That article seems to have had a more profound influence among theo-
retical biologists —at least among those who could understand the math— and,
lately, among chemists and physicists, than it has had for computer science. As
it comes, it is not even considered relevant for computer science, apart from the
need for computer-aided numerical simulations that it brought about.

In a broad sense, computation might have been served by, say, Turing hav-
ing achieved a proper explanation of morphogenesis in neural tissue. This would
have, at least partially, contributed to the understanding of the physical sub-
strate of ’computation’ in living beings. However, that was not quite the case.
A proper explanation of morphogenesis could indeed only be achieved with the
advent of molecular biology and the discovery of DNA. Yet, Turing did provide
a powerful explanation of the emergence of patterns in an initially homogeneous
spatially extended system, as he proposed the so-called reaction-diffusion mecha-
nism. The latter was presented as an explanation of naturally occurring patterns
based solely on the laws of physics, but could also serve as a recipe for the tech-
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nological creation of such type of patterns if desired. Experimental verification
of Turing’s principles can be found e.g. in [5].

Reaction-diffusion may be briefly described as the reaction between an acti-
vator substance and an inhibitor, accompanied by the spatial diffusion of both
substances at different rates. For appropriate values of the reaction and diffusion
rates, the interplay between both mechanisms can give rise to spatial patterns,
denoting an inhomogeneity in, say, the activator’s concentration. Here there is
no explicit term in the original equations that describe the system, and which
might point to the spatial structures that do arise. For instance, emergent cor-
relations and observed wavelengths are not explicit beforehand. Such quantities
tend to be intrinsic, i.e., dependent upon the substances and associated intensive
parameters, and not (at least in a first approximation) upon imposed geometrical
or boundary conditions constraints.

What Turing provided was one of the first rigorous explanations of emer-
gence itself, in terms acceptable to the natural science community. The fact that
emergent observable quantities are mostly intrinsic in reaction-diffusion systems
provides a most elegant example of self-organization. In other systems, such as in
hydrodynamics, emergent structures may be dependent upon externally imposed
geometry and boundary conditions [6].

Turing was primarily interested in explaining essentially static patterns. How-
ever, he did consider concepts such as the state of the system —which is implicit
in the mathematical description itself— and the evolution thereof, hence dy-
namics. This use of dynamics would concern mainly the slow evolution from a
homogeneous state to some ’final’ pattern. Regularity was sought, be it along the
spatial or the temporal dimension. For another example of this regularity, simple
traveling waves were acknowledged as a possible solution of the dynamical equa-
tions. More modernly, non-convergent solutions are also considered, including the
extreme case of spatiotemporal chaos, where the system may present different
degrees of (ir)regularity along both the spatial and the temporal dimensions.

The real world is nonlinear, and Turing gave an important and seminal con-
tribution for the description of emergence in this world. Originally, the reaction-
diffusion system’s dynamical evolution does not seem to have been proposed as
a computational model or computational paradigm per se. However, in our re-
search on computation, we acknowledge the influence of the explanatory trend
initiated by Turing concerning the emergence of complex dynamics in the natural
world.

We are particularly interested in evaluating the relevance of complex spa-
tiotemporal dynamics for the computations that living organisms might perform.
On the other hand, we seek to propose actual computation paradigms inspired
by those observations, and which might therefore be classified as ’natural com-
puting’.

Our approach, chiefly operational at start, falls most naturally into the cate-
gory of practical computation with natural paradigms. However, as noted above,
the road is open for a formalization of the proposed type of analog computation.
Namely, exact analog computation can be contemplated at the formal level.
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For now, let us call our starting point a Baconian one [1], that is, observing
Nature itself as a first step.

2 The chaotic brain — what use could it have?

Around twenty years ago, the discovery of putative chaotic electrical signals in
the brain [7, 8] elicited a discussion on the possible functional role of chaos in
cognition. Advantages such as flexibility , or the possibility of performing non-
linear search for some data or concept, were highlighted based on very general
arguments. In our own work, chaos is taken for a fact, and the question is then
what actual use it may have, if any, for living brains. Furthermore, we ask how
’natural computing’ paradigms might be proposed as inspired by this observation
of biology.

2.1 A model

The computational model presented in [9] (see also references therein) has the
double aim of explaining biological cognitive phenomena and proposing a possi-
ble computing device or paradigm. Models such as this one are indeed continuous-
time recurrent neural networks where a range of complex spatiotemporal phe-
nomena can be observed. Such complex behavior occurs due to nonlinear prop-
erties of the nodes and, especially, due the system being spatially extended. The
degree of complexity is dependent upon parameters such as the system’s size and
details of the connectivity. Spatiotemporal chaos is one of the possible regimes.

Most interesting in view of computing are the parameter regions for which a
certain temporal and spatial coherence is kept among nodes (or ’neurons’), that
is, a form of low-dimensional spatiotemporal chaos. These have been called by
some authors the ’edge of chaos’ regions.

The equations describing the essential aspects of the neurons’ dynamics in [9]
happen to be a discretization of the Ginzburg-Landau equation for oscillating
reaction-diffusion systems. This normal-form approach abstracts away most of
the details of chemical systems and becomes convenient in describing generic
populations of (diffusively) coupled oscillating units. In our case, it was a first
approach in trying to capture the essential dynamical features of neural popu-
lations. Assessment of the model’s computational capabilities initially includes
analytical investigation of its dynamical structure. This is complemented by nu-
merical simulations (on a digital computer. . . ) which are instrumental in the
obtainment of practical results.

2.2 Computing with the model

The idea which is reviewed and expanded in [9] consists in exploring the Unstable
Periodic Orbits (UPO) structure of chaos. In dynamical terms, chaos is a ’reser-
voir’ containing a countably infinite number of UPOs. Such UPOs cannot be
spontaneously observed. However, by using suitable control methods, they can
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be stabilized from within chaos in a flexible way and via perturbations of very
small magnitude. One fruitful approach consists in viewing each of these UPOs
as a computational mode (or ’program’) which could be selectively stabilized
according to the requirements of computational tasks.

A dynamical systems viewpoint is adopted, in which the input data, the so-
called program and the output data are all real functions of continuous time.
This does not exclude the particular case of discrete or symbolic data, as well
as the particular case of static input.

An essential feature of the computing model is that a transient response —
or eventually a permanent response, in the case of static input— is measured
and is interpreted as the result of applying some function to the input data.
In dynamical terms, the input data constitutes a time-dependent perturbation
of the main system. Given this setting, the computed function is actually an
operator. Through further processing stages, the device can also be made to
compute a (scalar-valued) functional of the input data, or simply a discrete-
valued functional of the same data.

The computational task chosen for illustration in [9] is the processing of spa-
tiotemporal visual input patterns. The intrinsic dynamics of the original system,
either viewed as each of the UPOs or the collection thereof, is itself spatiotem-
poral and has therefore certain spatiotemporal symmetries. The exploration of
the interplay between these symmetries and the ones of the input patterns is a
key aspect of the practical application of this computing paradigm. The reader
is referred to [9] for more details.

Let us also note that such type of computation could be viewed as an in-
stance of what is modernly called “reservoir computing”, for which we may cite
Echo State Networks [10] and Liquid State Machines [11] as application-oriented
examples. The latter are probably philosophically closer to a ’black-box’ model
of computation.

2.3 A more ’neural’ model

The diffusive nature of the connectivity in [9], along with a general lack of
biological detail, albeit theoretically justifiable, faces difficulties among purist
neurobiologists. To test our ideas in a more biologically realistic setting, and
also with the purpose of exploring novel spatiotemporal chaotic regimes, we
turned to the model in [12]. The latter closer incorporates neurophysiological
features.

Although it is not central to our discussion, we note that this model could
have a physical implementation e.g. in the form of an electronic analog machine.
When comparing the computational power of any such physical embodiment
with that of the theoretical model which abstracts it, one would suggest that
such issues as measurement and parameter precision would imply a lowering of
the computational power of the physical version.

The essential ’UPO reservoir’ property is once again established in [12] for
the chaotic attractor. Preliminary examples of rather simple computation with
this model are presented in [13], along with the proposal of different versions
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of ’chaotic’ computing via a dynamical perturbation scheme. The processing of
more complex patterns is a possibility for subsequent exploration.

Although more realistically neural, the present model can be compared in
dynamical terms with the markedly ’reaction-diffusion’ model of Section 2.1.
In the present neurons, the role of activation is assumed by neural excitation,
whereas the role of inhibition is assumed by neural inhibition. The existence of an
interplay between neural excitation and inhibition is well known in biology. Here
it turns out essential in the generation of complex spatiotemporal patterns, which
are indeed a mixture of regular and irregular behavior at different time-scales.
The careful balancing of excitation and inhibition, as well as an appropriate
setup of network connections and delays in signal transmission, provide a range
of possible behaviors to be explored in view of computation.

2.4 A digression: chemical computers

Over the years, practical applications of reaction-diffusion principles have been
proposed as ’chemical computers’, namely featuring variants of the Belousov-
Zhabotinskii reaction [14, 15]. In [14], elementary image processing is performed
by perturbing chemical waves with light. In [15], logic gates are built out of
chemical waves. These approaches differ from ours in that they feature a local
type of processing, whereas we seek global dynamical responses for given input
data. Also, information flow and the actual dynamical regimes that may be
present in neural networks tend to be richer than with the simpler reaction-
diffusion systems. Moreover, the ’gate design’ approach of [15], for instance, is
a re-implementation of standard digital circuitry, although in a novel substrate.
Regarding the essence of computation, no new paradigm is actually proposed.

A clarifying distinction can also be made between our use of a global dynam-
ics and the local processing in certain models which can be related to chemical
computers, such as the Excitable Lattice model [16]. In the latter, particle-like
waves represent quanta of information. Binary collisions between particle-like
waves are used as implementations of logical gates, thus in close agreement with
the basic idea illustrated e.g. in [15]. Our model in [13] is not originally intended
to directly implement logical gates. However, an actual implementation of the
XOR function is provided as an arbitrary illustration of yet another possible
usage of the device. Let us recall that the primary purpose of our model is the
processing of more complex spatiotemporal patterns, where some obvious advan-
tage might be obtained over classical digital processing. In our case, whichever
function is computed (including the XOR and other Boolean functions), the
processing is globally done by the neural population.

3 Discussion

We propose a computational model which tries to capture the essentially dynam-
ical, nonlinear way by which Nature itself ’computes’ whatever it may be that it
computes most of the time. Our model supports a basic digital processing mode
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if required —as is certainly the case with Nature for certain tasks. However, it
preserves a fully analog computation power, to be subsequently explored.

Dynamical regimes as complex as spatiotemporal chaos are not avoided as if
they were a nuisance. Rather, they are explicitly taken advantage of. A setting
within neural networks is adopted, although markedly deviating from standard
presentations of such networks.

It is a valid endeavor to try to generalize concepts from classical computation
into this new analog dynamical context. Even if a direct translation of concepts
is not possible, questions such as the assessment of computational power remain
very relevant, both in practical usage and in an exact analog computation setting.

In retrospect, we also appreciate the seminal contribution of Alan Turing
himself to the rigorous description of complexity in the natural world, eventually
leading to our own work.
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