
Sharing Files Using Cloud Storage Services

Tiago Oliveira, Ricardo Mendes, and Alysson Bessani
{toliveira,rmendes}@lasige.di.fc.ul.pt, bessani@di.fc.ul.pt

Universidade de Lisboa, Faculdade de Ciências, LaSIGE – Portugal

Abstract. The widespread use of cloud storage in the last few years
can be attributed to the existence of appealing applications such as file
backup, data archival and file sharing. File sharing in particular, is im-
plemented in different ways by distinct cloud storage services. These
differences can appear at the offered permission types and in the form
they are applied. We present a survey of these differences for several
popular cloud storage services. We also show how to realize secure data
sharing using these services, allowing the implementation of equivalent
data sharing features in different clouds, an important requirement for
secure multi-cloud systems.

1 Introduction

With more people accessing their files online, an important part of file sharing
today is done by taking advantage of cloud storage. This can be done through
personal file synchronization services like Dropbox [4], Google Drive [6], Mi-
crosoft OneDrive [13], Box [3] or Ubuntu One [18], which store users’ data in the
cloud. These services have been extremely successful, as attested by the success
of DropBox, which has announced last April that it reached 275 million users [5].

These systems perform file sharing through dedicated application servers
which are responsible for controlling access to the files as well as user groups
management, data deduplication, etc. It means that the security of the file shar-
ing requires trusting not only the storage service (for instance, Dropbox is built
on top Amazon S3 [4]), but also these application servers.

An alternative for using these services is to mount the cloud storage (e.g.,
Amazon S3) in a user-level file system and access it directly. S3QL [17], BlueSky [26]
and SCFS [24] are examples of this kind of systems.

BlueSky uses a proxy that acts as a network file server, which is accessed by
the clients in order to store their data. This proxy is responsible for sending the
users’ data to the storage clouds. Nonetheless, as in synchronization services,
clients need to trust this component and the cloud storage provider.

On the other hand, S3QL and SCFS allow clients to share data without a
proxy. In S3QL, the clients just mount the file system to access the storage
service objects as files, with no concurrency control. SCFS, on the other hand,
offers controlled file sharing where concurrent updates and file version conflicts
are avoided through the use of locks. Moreover, in SCFS clients are able to take
advantage of DepSky [23] to store data in a multiple cloud providers, i.e., a
cloud-of-clouds. DepSky and SCFS ensure the privacy, integrity and availability



of the data stored in the clouds as long as less then a third of the cloud providers
are faulty.

SCFS uses the pay-per-ownership model, in which each user pays for the
files he/she creates. A more simple model where all the clients use the same
cloud account could be used, and automatically share all the data stored by
the system. This alternative raises some problems. First, all users could access
all data stored in the clouds. In this way, each client must trust all the system
users since they can access, delete or corrupt all stored data. Second, just one
organization will be charged for all the data stored in the system.

In this paper we present a survey of the access-control techniques provided
by some popular cloud storage services. We also show how to implement secure
data sharing using these services, allowing the implementation of equivalent data
sharing features in different clouds, a fundamental requirement for multi-cloud
systems.

In summary, we contribute with (1) a study of several cloud storage ser-
vices’ access control models (i.e., Amazon S3 [1], Google Storage [7], Window
Azure Storage [19], RackSpace Cloud Files [15], HP Public Cloud [9], and Luna
Cloud [11]), i.e, a study of the techniques used by these services to apply the
permissions they provided and (2) a set of protocols that allow the sharing of
files between clients according with pre-defined access control patterns for each
of the studied storage clouds.

2 Access control on storage clouds

To allow users to share their data, all cloud storage services provide some mech-
anisms that enable data owners (users) to grant access over their resources to
other principals.

In all these storage services, the resources can be either buckets or objects. A
bucket, or container, represents a root directory where objects must be stored.
There could be several buckets associated with a single cloud storage account.1

However, in most of the services, buckets must have unique names. Objects are
stored in a bucket and can be either files or directories.

On the other hand, the cloud storage services differ in the techniques they
provide to allow users to grant access over their resources, and also in the per-
mission types that users are able to specify. In this paper these techniques will
be called access-granting and the permission types that can be specified with
them will be named permissions.

Access-granting techniques. These are the techniques provided by cloud stor-
age services to allow users to give others access to their resources. The users are
able to specify a set of permissions in each technique. To apply these permis-
sions over the resources, different storage clouds could offer different techniques.
In this paper we cover three of them: Per Group Predefined Permissions, Tem-
porary Constraints and Access Control Lists (ACLs).

1 Some storage clouds has a limited number of buckets. For instance, an Amazon S3
account can have at most 100 buckets.



In the first one the users are able to make their stored data accessible to
some predefined group. The second technique allows users to give other users a
ticket that grant access for a resource by a predefined period of time. The last
one, ACLs, permits to associate with each resource a list of grantees that are
able to access it.

Permissions. When a user wants to share some resource with another user, i.e.,
with a different account/user, he/she needs to specify what are the capabilities of
this other user with respect to the shared resource(s). Permissions are specified
in the access-granting techniques. Each permission has a semantic that specifies
the capabilities of the grantees of some resource.

However, different storage clouds provide a different set of specifiable permis-
sions. For example, Amazon S3’s users cannot grant write permission to specific
objects. On the other hand, RackSpace Cloud Files users can do that [15] (see
Section 3).

Moreover, equal permissions could have different semantics. As an example,
in Amazon S3 [1] when a read permission over a bucket is given, grantees
can list objects inside it. On the other hand, the same permission in Windows
Azure [19] does not allow grantees to list the objects in a bucket, instead it
grants the permission to read all the objects it contains.

3 Permissions

To allow users to define the grantees’ capabilities over a shared resource, all
clouds provide a set of permissions with documented semantics. As explained
before, the same permission could have different semantics in different clouds.
Table 1 shows the available permissions for buckets and objects in several cloud
storage providers.

As can be seen, Amazon S3 [1] and LunaCloud [11] provide the largest set
of permissions among all the services studied. They permit users to give read,
write, read acp, write acp and full control permissions [2, 12] over both
buckets and objects. Google Storage [7] have almost the same set of permissions.
The difference is that Google Storage does not allow users to apply read acp
and write acp permissions separately [8]. Instead, it put together these two
permissions into the full control one. This means that if a user wants to
give other users the capability of read some resource’s ACL, he/she is forced to
also grant the capability to write or update that ACL.

Interestingly, in most clouds the read permission over a bucket does not
allow a grantee to read an object inside it. Instead, it only allows grantees to list
the objects inside the bucket. To grant read access, a read permission need to
be applied on the desired objects. On the other hand, the write permission on
the bucket allows a grantee to write, overwrite or delete any object inside that
bucket. In this case, the same permission is not applicable to objects. Given that,
it is impossible to grant write access to a subset of the objects inside a bucket.
This means that there is no way to grant write access over objects individually.

Another important thing to highlight is that those clouds allow users to
give others the right to read or write a resource’s ACL through the read acp,



On#bucket: On#object:

Amazon
#S3

!READ:&List&the&objects&in&the&bucket.
!WRITE:&Create,&overwrite,&and&delete&any&object&in&the&bucket.
!READ_ACP:&Read&the&bucket&ACL.
!WRITE_ACP:&Write&the&ACL&for&the&applicable&bucket.
!FULL_CONTROL:&READ,&WRITE,&READ_ACP,&and&WRITE_ACP&
permissions&on&the&bucket.

!READ:&Read&the&object&data&and&its&metadata.
!WRITE:&Not&applicable.
!READ_ACP:&Read&the&object&ACL.
!WRITE_ACP:&Write&the&ACL&for&the&applicable&object.
!FULL_CONTROL:&READ,&READ_ACP,&and&WRITE_ACP&
permissions&on&the&object.

Google#
Storage

!READ:&List&a&bucket's&contents.
!WRITE:&List,&create,&overwrite,&and&delete&objects&in&a&bucket.
!FULL_CONTROL:&READ&and&WRITE&permissions&on&the&bucket.&
It&also&lets&a&user&READ&and&WRITE&bucket&ACLs&and&other&
metadata.

!READ:&Download&an&object.
!WRITE:&Not&applied.
!FULL_CONTROLL:&READ&access.&It&also&lets&a&user&
READ&and&WRITE&object&ACLs&and&other&metadata.

HP#Public
#Cloud

!READ:&Read&and&list&any&object&in&the&bucket.
!WRITE:&Create,&overwrite&and&delete&any&object&in&the&bucket.

!READ:&Read&the&specified&object.
!WRITE:&Write&in&the&object.

RackSpace# !READ:&Read&any&object&in&the&bucket.
!WRITE:&Create,&overwrite&and&delete&any&object&in&the&bucket.

!READ:&Read&the&specified&object.
!WRITE:&Write&in&the&object.

Windows#
Azure

!READ:&�Read&any&object&in&the&bucket.
!WRITE:&�Write&and&overwrite&any&object&in&the&bucket.
!DELETE:�&Delete&any&object&in&the&bucket.
!LIST:&List&the&objects&in&the&bucket.

!READ:&�Read&the&specified&object.
!WRITE:&Write&the&specified&object.
!DELETE:�&Delete&the&specified&object.

LunaCloud

!READ:&List&the&objects&in&the&bucket.
!WRITE:&Create,&overwrite,&and&delete&any&object&in&the&bucket.
!READ_ACP:&Read&the&bucket&ACL.
!WRITE_ACP:&Write&the&ACL&for&the&applicable&bucket.
!FULL_CONTROL:&READ,&WRITE,&READ_ACP,&and&WRITE_ACP&
permissions&on&the&bucket.

!READ:&Read&the&object&data&and&its&metadata.
!WRITE:&Not&applicable.
!READ_ACP:&Read&the&object&ACL.
!WRITE_ACP:&Write&the&ACL&for&the&applicable&object.
!FULL_CONTROL:&READ,&READ_ACP,&and&WRITE_ACP&
permissions&on&the&object.

Available#Permissions

Table 1. Storage services available permissions.

write acp and full control permissions. It is also important to notice that
when a grantee have the permission to update an ACL, he/she is able to grant
access over it to other users without being the resource owner.

HP Public Cloud [9] and RackSpace Cloud Files [15] available permissions are
more simple [10, 14]. These two services only provide two different permissions,
either for buckets and objects: read and write. The only difference between
these two storage clouds is that the read permission on the bucket for Hp Public
cloud allow grantees to list and read its objects (contrary to Amazon S3, Luna-
Cloud and Google Storage), while for RackSpace only allow grantees to read the
objects inside it. Also different of Amazon S3, LunaCloud and Google Storage,
in these two clouds is impossible give other users the right to read/update the
bucket permissions.

The Windows Azure Storage’s [19] set of permissions [20] differs from all other
studied cloud storage services. Basically, the write and delete permissions are
separated, as well as the read and the list. In the other clouds these permissions
are grouped in one permission, i.e., when the write access is granted, grantees
have also the capability to delete resources. Similarly with HP Public Cloud and
RackSpace, a grantee cannot update/read the bucket permissions.

4 Access-granting Techniques

4.1 Per Group Predefined Permissions

Using Per Group Predefined Permissions, the users are able to apply permis-
sions on buckets or objects granting access for two kinds of groups: All Users



and Authenticated Users. The All Users group refers to anyone in the internet.
In turn, the Authenticated Users group represents all users that have an account
in the cloud provider. However, to give permissions to these groups, the own-
ers must use some predefined permissions that the storage clouds provide. For
instance, Amazon S3 and LunaCloud call this technique Canned ACLs, while
Google Storage name it Predefined ACLs.

The first column of Table 2 shows the available predefined permissions for
each group, as well as the type of access that each one grants. As we can see,
Amazon S3 and Google Storage provide the same Per Group Predefined Per-
missions [2, 8].2 These default permissions allow users to make their resources
public for the All Users group, for both read and write. For the Authenticated
group, the storage clouds only allow the users to grant read permission over
buckets or objects. Notice that the bucket-owner-read and bucket-owner-full-
control predefined permissions over objects for Amazon S3 and Google Storage,
only grant access permissions to resources owners (not for the Authenticated
Group). These predefined permissions are provided because the bucket owner
could not be the object owner. In these two clouds, each user is the owner of
the objects he uploads, even if the uploads are made to a bucket owned by other
user. Thus, they are useful to give access rights to the bucket owner when a
user uploads an object to a bucket that is not owned by him. The LunaCloud’s
predefined permissions are similar to the Amazon S3 and Google Storage (see
Table 2), with the exception that they do not have the bucket-owner-read and
bucket-owner-full-control permissions over the objects.

Windows Azure differs from the previous clouds in two ways. First, there is
no predefined permissions to the Authenticated Users group. Second, it provides
no way to give write permissions over buckets or objects, allowing only users
to grant read access to the All Users group [21].

Although not shown in the table, all the clouds that provide predefined
permissions also provide a special permission that gives full control to the
bucket/object owner, with no one else getting any access to it. In fact, this is
the default predefined permission for a resource on its creation.

HP Public Cloud and RackSpace Cloud Files do not provide Per Group
Predefined Permissions. However they allow users to make their buckets public
through different techniques.

4.2 Temporary Constraints

Temporary Constraints is another way to give access permissions to other users.
However, using this technique, the access will be temporary. The second col-
umn of Table 2 shows the studied clouds that implement this access-granting
technique. As can be seen, only three of the studied clouds have this feature.
RackSpace and HP Public Cloud provide Temporary URLs [16, 10], while Win-
dows Azure provide Shared Access Signatures [22]. Temporary URLs are used to

2 There are some other predefined permissions for this two storage clouds that are not
shown in the figure.



support the sharing of objects (and only objects), whereas Shared Access Signa-
ture allows the sharing of both buckets and objects. These temporary constraints
work as a capability given by resource owners to other users in order for them
to access to the specified resource. In this case the ticket that proves the right to
access the object is the URL. This URL contains information about the period of
time that the access will be valid, the path to the resource over which the access
is being granted, the permissions granted, and a signature. This signature, not
to be confused with a digital signature [25], is different from cloud to cloud:

All#Users Authenticated#Users

Amazon
#S3

!public'read,(bucket,and,object):,Owner,
gets,FULL_CONTROL.,The,All,Users,group,
gets,READ,access.
!public'read'write,(bucket,and,object):,
Owner,gets,FULL_CONTROL.,The,All,Users,
group,gets,READ,and,WRITE,access.

!authenticated'read,(bucket,and,object):,
Owner,gets,FULL_CONTROL.,The,
Authenticated,Users,group,gets,READ,access.
!bucket'owner'read,(object):,Object,owner,
gets,FULL_CONTROL.,Bucket,owner,gets,READ,
access.
!buclet'owner'full'control,(object):,Both,the,
object,owner,and,the,bucket,owner,get,
FULL_CONTROL,over,the,object.

✖ ✔

Google#
Storage

!public'read,(bucket,and,object):,Owner,
gets,FULL_CONTROL.,The,All,Users,group,
gets,READ,access.
!public'read'write,(bucket,and,object):,
Owner,gets,FULL_CONTROL.,The,All,Users,
group,gets,READ,and,WRITE,access.

!authenticated'read,(bucket,and,object):,
Owner,gets,FULL_CONTROL.,The,
Authenticated,Users,group,gets,READ,access.
!bucket'owner'read,(object):,Object,owner,
gets,FULL_CONTROL.,Bucket,owner,gets,READ,
access.
!buclet'owner'full'control,(object):,Both,the,
object,owner,and,the,bucket,owner,get,
FULL_CONTROL,over,the,object.

✖ ✔

HP#Public
#Cloud

✖ ✖ TempURL ✔

RackSpace# ✖ ✖ TempURL ✔

Windows#
Azure

!full'public'access:,All,Users,group,gets,
READ,and,LIST,access.
!public'read'access'for'blobs'only:,All,
Users,gets,READ,access,.

✖
Shared,Access,
Signature

✖

LunaCloud

!public'read,(bucket,and,object):,Owner,
gets,FULL_CONTROL.,The,All,Users,group,
gets,READ,access.
!public'read'write,(bucket,and,object):,
Owner,gets,FULL_CONTROL.,The,All,Users,
group,gets,READ,and,WRITE,access.

!authenticated'read,(bucket,and,object):,
Owner,gets,FULL_CONTROL.,The,
Authenticated,Users,group,gets,READ,access.

✖ ✖

Per#Group#Predefined#Permissions Temporary#
Constraints ACLs

Table 2. Storage services access-granting techniques.

– RackSpace Cloud Files: SHA-1 HMAC computed over the URL information
and a key.

– HP Public Cloud: SHA-1 HMAC computed over the URL information and
a key.

– Windows Azure Storage: SHA-256 HMAC computed over the URL informa-
tion and a key.

In the first case, the key is a sequence of letters chosen by the user, while
in the others, it is the secret key used to access the account. This signature
ensures (with high probability) that the URL cannot be guessed or changed by
an attacker even if he knows the other fields of the URL.



4.3 Access Control Lists - ACLs

As shown in Table 2, Amazon S3 [2], Google Storage [8], HP Public Cloud [10]
and RackSpace Cloud Files [14] are the clouds that allow users to specify access
rights to other users through ACLs. Contrary to the use of Temporary Con-
straints, by using ACLs, the user does not need to give to grantees a capability
(a URL like described in Section 4.2). In this case the user who wants to share
data needs to create an ACL and include the names or ids (depending on the
cloud) of the clients whom he want to give access together with the corresponding
permissions and associate it with the shared objects.

However, there are some differences among the storage clouds that provide
ACLs. One difference between Amazon S3 and Google Storage, and RackSpace
and HP Public Cloud is that in the last two, the users can only manage ACLs
for containers. This means that it is impossible for a user to associate an ACL
with an object. Another difference is that, while Amazon S3 and Google Storage
allow users to grant access to a user from a different account, RackSpace and
HP Public Cloud only allow they to set an ACL for sub-users.3

All clouds that allow sharing across different accounts through ACLs, do not
permit buckets to have the same name, even if they belong to different accounts.

5 Setting Per User Permissions

Table 3 summarizes which clouds implement mechanisms for securely sharing
buckets and objects between different users (which is a requirement for imple-
menting the cloud-of-clouds models of DepSky [23] and SCFS [24]). Among the
studied clouds, LunaCloud is the only one that does not provide enough fea-
tures for this, since it only provides Per Group Predefined Permissions. In the
remaining clouds, the per user sharing can be done through ACLs or Tempo-
rary Constraints. However, none of these clouds provide mechanisms for securely
sharing a bucket in a simple way.

To clarify what we mean by “securely” and “simple”, we define a minimum
set of rules to share a bucket in a secure way:

– Rule A: the permissions on the bucket allow a grantee to list, delete, create,
read and write any object inside it.

– Rule B : only grantees and the bucket owner can operate on the bucket.
– Rule C : a grantee cannot delegate access rights to other users.

Sharing a container using a cloud storage service that satisfies these rules
and support ACL as access-granting technique would be very simple. First, the
bucket owner gathers the ids of the accounts he wants to grant access to, and then
he creates/associates a bucket with an ACL granting the desired permissions for
those accounts.

Unfortunately, as described before, this simple protocol cannot be applied
to any cloud we are aware of. However, equivalent functionalities can be imple-
mented in most clouds, albeit using additional steps. In the following subsections

3 A sub-user is a user within an account owned by other user. Such users can be
associated to an account by associating with him a username and a password.



we present the steps required for sharing a bucket with specific users in the dif-
ferent clouds in which this is possible.

on#
bucket: ACL ACL ACL ACL Temp.)

Constraints ✖

on#object: ACL ACL Temp.)
Constraints

Temp.)
Constraints

Temp.)
Constraints ✖

Windows#
Azure LunaCloud

Per#User#
Permission

Amazon
#S3

Google#
Storage

HP#Public
#Cloud RackSpace#

Table 3. Per user permissions in storage services.

5.1 Sharing with Amazon S3 and Google Storage

Sharing a bucket among specific users in Google Storage and Amazon S3 is
quite similar. In the following we describe a protocol (illustrated in Figure 1) for
sharing a bucket in these storage clouds.

1. The bucket owner needs to gather the ids of the users he want to share with.
In the case of Amazon S3, this is the Canonical User ID while for Google
Storage this is the email associated with the account.

2. The bucket owner must create the bucket and associate with it an ACL
with the ids of grantee X and Y granting read and write permissions. The
bucket owner can always get the bucket ACL from the cloud, add more or
remove users to it, and update it again.

3. All the ids, including the id of the bucket owner, must be sent to all grantees.
4. When a grantee or the bucket owner uploads an object, it needs to associate

an ACL granting read access to the other grantees (including the bucket
owner).

4.#!

bucket!owner! Grantee!X!

2.#!

1.#!

1.#!

3.#!

3.#!

Grantee!Y!

Storage#Cloud#

Fig. 1. Sharing a bucket with Amazon S3 and Google Storage.

The permissions provided by these two clouds are different from the set of
permissions we defined in Section 5, therefore, this protocol is more costly than
the protocol exemplified in that section. For instance, Rule A is not respected
in the second step: there is no permission on the bucket that allows grantees
to read all objects inside it. This leads to the third and fourth step described
above: when an object is uploaded to the shared bucket we need to associate an
ACL with it to ensure read access to all grantees.



Assuming that all grantees are trusted, this algorithm fulfill all the require-
ments present in the set of rules we defined in Section 5. However, if any of them
deviate from the protocol, some new issues can arise. In these clouds each user is
the owner of the objects he uploads, consequently, he/she can grant read access
over his objects to other users without the knowledge of bucket owner, or even
give no access to other grantees. The first case does not respect Rule C, while the
last case contradicts Rule A. Notice that it is impossible to the grantee to give
write access to others because these two clouds provide no write permission
for objects. If the bucket owner detect these situations, it can always delete the
objects the grantee uploaded and revoke his access permissions.

5.2 Sharing with HP Public Cloud and RackSpace Cloud Files

HP Public Cloud and RackSpace are the only two clouds, of the five we studied,
that allow per user permissions and that provide ACLs and Temporary Con-
straints to share resources. However, their temporary URLs only allow users
to share objects, not buckets (see Section 4.2). Figure 2 illustrates the steps
required for sharing a container using ACLs.

1. The bucket owner needs to get the grantees’ names and emails. This is the
information needed to add a sub-user. Notice that the grantees do not need
to have an HP Public Cloud or RackSpace account.

2. The bucket owner adds the grantees as sub-users of its account. By default,
a sub-user cannot access any service until the account owner allows it.

3. After that, the bucket should be created and an ACL with read and write
permissions granting access for the previous added users must be associated
with it. For RackSpace in particular, there is no way to update an ACL
already associated with a bucket in the cloud, only to replace it. This means
that if the bucket owner updates an ACL only granting access to grantee X,
when updating the ACL for giving access to grantee Y, the access to grantee
X must be granted again.

4. The next step is to provide to grantees the credentials they need to get
authenticated as sub-users. The bucket owner can get these credentials after
adding the grantees to its account (step 2).

5. From now on, the grantees can authenticate themselves with cloud service
using the referred credentials.

6. Thereafter, they can operate in the bucket that was granted access.

Since RackSpace do not allow grant list access to grantees (see Section 3), in
this case Rule A is not respected. However, in the case of HP Public Cloud all
rules that we specify in Section 5 are covered. Despite that, in both cases Rule B
and Rule C are respected as long as all grantees are trusted. Otherwise, a non-
trusted grantee can provide non-authorized users with the access credentials,
making them able to read, write, delete and list on the bucket. This contradicts
Rule C. However, the bucket owner can revoke grantees permissions just by
deleting them from the bucket ACL, or even by removing their sub-users.



bucket'owner' Grantee'X'

2.#' 5.#'

Grantee'Y'

3.#' 6.#'

Storage#Cloud#

1.#'

1.#'

4.#'

4.#'

Fig. 2. Sharing a bucket with HP Public Cloud and RackSpace Cloud Files.

Another issue is that these two clouds do not allow sharing across different
accounts. This increase the number of necessary steps of the protocol. More
specifically, there is the need of steps 2, 4 and 5. It is important that the step 4
is executed over a secure connection to ensure that no one can read the access
credentials from the network.

5.3 Sharing with Windows Azure

The only way to share a container with other users using Windows Azure is
through a Temporary Constraint. Figure 3 illustrates the required steps.

1. The bucket owner creates the bucket he wants to share.
2. Generate the Shared Access Signature to this bucket with all the permissions

that Windows Azure provide: read, write, delete and list.
3. Disseminate the URL among the grantees.
4. Once the grantee have the URL, he can use it to access the bucket for read,

write, delete and list until its expiration.

As in the previous protocols, there is the need to assume that the grantees
are trusted. The second step of the protocol allows the creation of a URL with
the rules we define in Section 5. However, using a Temporary Constraint as an
access-granting technique raises some issues. Firstly, step 3 should be done via a
secure connection. The second one relates to the fact that a grantee can give to
others the URL, thus breaking rule C. This means that other users can access
the bucket for read, write, list and delete. Finally, there is the inconvenience of
repeating the process (with the exception of step 1) every time the URL expires.

5.4 Suggestions for improvements

In each cloud service there are some aspects that can be modified in order to
make secure sharing easier. Here they are summarized.

Amazon S3 and Google Storage. As explained above, when a user wants
to give the capability of read the content of the files inside a bucket, it needs to
give the read permission to each object inside that bucket. This obviously does
not scale in applications with a large number of objects. To solve this problem,



bucket'owner' Grantee'X'

3.#'

3.#'

4.#'

Grantee'Y'

1.#'

Storage#Cloud#

2.#'

Fig. 3. Sharing a bucket with Windows Azure.

these services should provide bucket permissions that give users read access to
all objects inside that bucket. In order to prevent grantees to give others access
to files they upload, these clouds just need to use a model where the bucket
owner is the owner of all objects inside the buckets it pays for, instead of the
model where the owner of an object is the user who uploads it.

RackSpace Cloud Files and HP Public Cloud. These clouds require addi-
tional steps for defining the credentials for grantees to have access to the shared
data. These steps are needed because neither of these services allow cross-account
sharing, and could be avoided if this was supported. Specially for RackSpace
Cloud Files, a permission to grant list access to grantees should be provided.

Windows Azure Storage. With Shared Access Signatures a malicious grantee
is always able to give others the URL allowing anyone to access the shared
resources. To solve this issue, Windows Azure just need to provide other access-
granting technique, such as ACLs, allowing users to share data between accounts.

6 Conclusion

This paper presents a study of the access control capabilities of some storage
cloud services that permit users to share data using the unmodified clouds di-
rectly and assuming a model where each user pays for the storage of the objects
he/she creates. The storage clouds studied were Amazon S3, Google Storage,
HP Public Cloud, RackSpace Cloud Files, Windows Azure Storage and Luna
Cloud.

We described the permissions provided by the services, their semantics, and
the different access-granting techniques that are used to apply these permissions
to specific users. Additionally, a set of protocols for sharing data securely in
several public storage clouds were presented. These protocols were defined by
extending an ideal set of properties required for sharing data between different
users of a cloud service.

We concluded that none of the studied cloud services offer the tools to im-
plement an optimal solution that respect all these properties, but it is possible
to implement sharing in most of them.

Acknowledgments. This work is supported by EC’s and FCT through projects
BiobankCloud (FP7-317871) and LaSIGE (PEst-OE/EEI/UI0408/2014).



References

1. Amazon s3. http://aws.amazon.com/s3/
2. Amazon s3 documentation. http://docs.aws.amazon.com/AmazonS3/latest/

dev/ACLOverview.html

3. Box. https://www.box.com/
4. Dropbox. https://www.dropbox.com/
5. Dropbox number of users announcement. http://techcrunch.com/2014/04/09/

dropbox-hits-275m-users-and-launches-business-product-to-all/

6. Google drive. https://drive.google.com/
7. Google storage. https://developers.google.com/storage/
8. Google storage documentation. https://developers.google.com/storage/docs/

accesscontrol

9. HP public cloud. http://www.hpcloud.com/products-services/storage-cdn
10. HP public cloud documentation. https://docs.hpcloud.com/api/

object-storage#general_acls-jumplink-span

11. Lunacloud. http://www.lunacloud.com/pt/cloud-storage
12. Lunacloud predefined permissions documentation. http://www.lunacloud.com/

docs/tech/storage-restful-api.pdf

13. Microsoft onedrive. https://onedrive.live.com/about/pt-br/
14. Rackspace acls documentation. http://www.rackspace.com/blog/

create-cloud-files-container-level-access-control-policies/

15. Rackspace cloud files. http://www.rackspace.co.uk/cloud/files
16. Rackspace temporary urls documentation. http://docs.rackspace.com/files/

api/v1/cf-devguide/content/TempURL-d1a4450.htmll

17. S3QL - a full-featured file system for online data storage. http://code.google.
com/p/s3ql/

18. Ubuntu one. https://one.ubuntu.com/
19. Windows azure. http://www.windowsazure.com/pt-br/solutions/

storage-backup-recovery/

20. Windows azure permissions documentation. http://msdn.microsoft.com/en-us/
library/windowsazure/dn140255.aspx

21. Windows azure predefined permissions documentation. http://msdn.microsoft.
com/en-us/library/windowsazure/dd179354.aspx

22. Windows azure shared access signature documentation.
http://azure.microsoft.com/en-us/documentation/articles/

storage-dotnet-shared-access-signature-part-1/

23. Bessani, A., Correia, M., Quaresma, B., Andre, F., Sousa, P.: DepSky: Dependable
and secure storage in cloud-of-clouds. ACM Transactions on Storage 9(4) (2013)

24. Bessani, A., Mendes, R., Oliveira, T., Neves, N., Correia, M., Pasin, M., Verissimo,
P.: SCFS: a shared cloud-backed file system. In: Proceedings of the 2014 USENIX
Annual Technical Conference – ATC’14 (2014)

25. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2) (1978)

26. Vrable, M., Savage, S., Voelker, G.M.: BlueSky: A cloud-backed file system for the
enterprise. In: Proceedings of the 10th USENIX Conference on File and Storage
Technologies – FAST’12 (2012)


